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CHAPTER I

HYPERRINGS AND HYPERMODULES

The theory of hyperstructures (also called multialgebras) started with the

communication of F. Marty in 1934 at the 8th Congress of Scandinavian Math-

ematicians. Marty introduced the notion of hypergroups and since then many

researchers have worked on and developed this topic. The concept of hyperrings

was introduced by M. Krasner. Later, J. Mittas and D. Stratigopoulos, two stu-

dents of Krasner, earned their theses by studying the structure of hyperrings.

These details can be found in [15].

P. Corsini gathered the fundamental concepts in his book “Prolegomena of

hypergroup theory” and its applications in “Application of hyperstructure theory”.

The structure of hypermodules over hyperrings is defined analogously to that

of modules over rings. It has been known that there are many different types of

hyperrings, for examples, a Krasner hyperring, a feeble hyperring, a multiplicative

hyperring, a D-hyperring and a V-S-hyperring. As a result, it is not surprising

that a hypermodule over a hyperring can be defined in various ways. However, in

this research, we choose hyperrings and hypermodules such that all operations are

hyperoperations. These can be viewed as generalizations of Krasner hyperrings

and hypermodules over Krasner hyperrings, respectively. In fact, hypermodules

over hyperrings generalize modules over rings.

This chapter contains three sections. The first section introduces the basic

notations and examples of hyperstructures. The second section gives definitions

of hyperrings and hypermodules and provides with proofs of some elementary

properties. Moreover, hyperideals and subhypermodules are introduced and some

properties which will be used in this dissertation are investigated. The last sec-

tion discusses the differences between modules over rings and hypermodules over

hyperrings.
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1.1 Preliminaries

In this section, we give some definitions of hyperstructures gathered by P. Corsini,

[9]. Many examples of hyperstructures are also given.

For a set H, let ℘(H) denote the power set of H, ℘∗(H) = ℘(H) r {∅} and

|H| the cardinality of H.

Definition 1.1.1. [9] A hyperoperation on a nonempty set H is a mapping

of H ×H into ℘∗(H). A hypergroupoid is a system (H, ◦) consisting of a nonempty

set H and a hyperoperation ◦ on H.

Let (H, ◦) be a hypergroupoid. For nonempty subsets X and Y of H, let

X ◦ Y =
⋃
x∈X
y∈Y

(x ◦ y),

and let X ◦ y = X ◦ {y} and y ◦X = {y} ◦X for all y ∈ H.

A hypergroupoid (H, ◦) is said to be commutative if

x ◦ y = y ◦ x for all x, y ∈ H.

A semihypergroup is a hypergroupoid (H, ◦) such that

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H.

A hypergroup is a semihypergroup (H, ◦) such that

x ◦H = H ◦ x = H for all x ∈ H.

Definition 1.1.2. [9] Let (H, ◦) be a hypergroupoid.

An element e of H is called an identity of H if

x ∈ (x ◦ e) ∩ (e ◦ x) for all x ∈ H.

An element e of H is called a scalar identity of H if

x ◦ e = e ◦ x = {x} for all x ∈ H.

In general, an identity of a hypergroupoid may not be unique. However, a

scalar identity is unique since if x and y are scalar identities of a hypergroupoid

(H, ◦), then {x} = x ◦ y = {y}, so that x = y.
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Definition 1.1.3. [9] Let (H, ◦) be a semihypergroup. An element x of H is said

to be an inverse of an element y of H if there exists an identity e of H such that

e ∈ (x ◦ y) ∩ (y ◦ x),

that is, (x ◦ y) ∩ (y ◦ x) contains at least one identity of H.

Example 1.1.4. [17] Let H be a nonempty set. Define

x ◦ y = H for all x, y ∈ H.

Then (H, ◦) is a commutative hypergroup with the following properties.

(i) Every element of H is an identity of H. Consequently, H has a scalar

identity if and only if |H| = 1.

(ii) All pairs of elements of H are inverses of each other.

This hypergroup (H, ◦) is usually called the total hypergroup.

Definition 1.1.5. [9] A hypergroup (H, ◦) is called a canonical hypergroup if

(i) (H, ◦) is commutative,

(ii) (H, ◦) has a scalar identity,

(iii) every element x of H has a unique inverse, denoted by x−1, in H, and

(iv) x ∈ y ◦ z implies z ∈ y−1 ◦ x for all x, y, z ∈ H.

Note that if (H, ◦) is a canonical hypergroup, then x ∈ y ◦ z also implies

z ∈ x ◦ y−1 for all x, y, z ∈ H.

Definition 1.1.6. [9] Let (H, ◦) be a canonical hypergroup. For a nonempty

subset X of H, let

X−1 = {x−1 | x ∈ X}.

Proposition 1.1.7. [18] Let (H, ◦) be a canonical hypergroup. Then (x−1)−1 = x

and (x ◦ y)−1 = x−1 ◦ y−1 for all x, y ∈ H.



4

Proposition 1.1.8. Let (H, ◦) be a canonical hypergroup with the scalar iden-

tity 0. Then for all nonempty subsets A, B and C of H, we have

(i) A ◦B = B ◦ A,

(ii) A ◦ {0} = A,

(iii) (A ◦B) ◦ C = A ◦ (B ◦ C), and

(iv) (A ◦B)−1 = A−1 ◦B−1.

Proof. (i), (ii), (iii) are straightforward.

(iv) First, let x ∈ (A ◦B)−1. Then x−1 ∈ A ◦B. There exist a ∈ A and b ∈ B

such that x−1 ∈ a ◦ b, so that b ∈ a−1 ◦ x−1 = x−1 ◦ a−1. Then a−1 ∈ b ◦ x. Thus

x ∈ b−1 ◦ a−1 = a−1 ◦ b−1 . Hence x ∈ A−1 ◦B−1.

Conversely, let x ∈ A−1 ◦B−1. Then x ∈ a ◦ b for some a ∈ A−1 and b ∈ B−1.

Then b ∈ a−1 ◦ x, so that a−1 ∈ b ◦ x−1. Thus x−1 ∈ b−1 ◦ a−1 = a−1 ◦ b−1. Hence

x−1 ∈ A ◦B, i.e., x ∈ (A ◦B)−1.

We give some examples of canonical hypergroups.

Example 1.1.9. [18] Let H be a nonempty set of cardinality at least 2. Choose

an element in H and denote it by 0. Define a hyperoperation ◦ on H by, for any

a, b ∈ H,

a ◦ b =



{a}, if b = 0,

{b}, if a = 0,

H, if a = b 6= 0,

{a, b}, if a 6= b, a 6= 0 and b 6= 0.

Then (H, ◦) is a canonical hypergroup with 0 as the scalar identity and a as the

inverse of a ∈ H.

The next examples are examples of canonical hypergroups constructed from

real intervals. Let R be the set of real numbers.
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Example 1.1.10. [18] Let a ∈ R be such that 0 < a ≤ 1 and R = [0, a] or [0, a).

Define a hyperoperation ⊕ on R by, for any x, y ∈ R,

x⊕ y =


{

max{x, y}
}
, if x 6= y,

[0, x], if x = y.

Then (R,⊕) is a canonical hypergroup.

Example 1.1.11. [18] Let a ∈ R be such that a ≥ 1 and R = [a,∞) ∪ {0} or

(a,∞) ∪ {0}. Define a hyperoperation ⊕ on R by

x⊕ 0 = 0⊕ x = {x} for all x ∈ R,

x⊕ x = [x,∞) ∪ {0} for all x ∈ Rr {0} and

x⊕ y =
{

min{x, y}
}

for all x, y ∈ Rr {0} with x 6= y.

Then (R,⊕) is a canonical hypergroup.

Example 1.1.12. [18] Let a ∈ R be such that 0 < a ≤ 1 andR = [−a, a] or (−a, a).

Define a hyperoperation ⊕ on R by

x⊕ x = {x} for all x ∈ R,

x⊕ (−x) = [−|x|, |x| ] for all x ∈ R and

x⊕ y = y ⊕ x = {x} for all x ∈ R with |y| < |x|.

Then (R,⊕) is a canonical hypergroup.

Definition 1.1.13. [9] Let (H, ◦) be a canonical hypergroup. A nonempty subset

H ′ of H is called a canonical subhypergroup of (H, ◦) if

(i) x ◦ y ⊆ H ′ for all x, y ∈ H ′,

(ii) e ∈ H ′ where e is the scalar identity of H and

(iii) x−1 ∈ H ′ for every x ∈ H ′.

Remark 1.1.14. [18] Let H ′ be a canonical subhypergroup of a canonical hyper-

group (H, ◦). It is easy to see that (H ′, ◦) is a canonical hypergroup such that the

scalar identity of H is the scalar identity of H ′ and the inverse of x in H ′ is the

same as the inverse of x in H for each x ∈ H ′.
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The following proposition gives a practical method for verifying whether a

nonempty subset of a given canonical hypergroup is a canonical subhypergroup.

Proposition 1.1.15. [18] Let (H, ◦) be a canonical hypergroup and H ′ a nonempty

subset of H. Then H ′ is a canonical subhypergroup of (H, ◦) if and only if x◦y−1 ⊆

H ′ for all x, y ∈ H ′.

In group theory, if A ⊆ B ∪ C, then A ⊆ B or A ⊆ C for all subgroups A, B

and C of the same group. We extend this result to canonical hypergroups.

Proposition 1.1.16. Let (H, ◦) be a canonical hypergroup and A, B and C canon-

ical subhypergroups of H. If A ⊆ B ∪ C, then A ⊆ B or A ⊆ C.

Proof. Assume that A ⊆ B ∪ C. Suppose that A * B and A * C. There exist

c ∈ A r B and b ∈ A r C. By assumption, b ∈ B and c ∈ C. Since b, c ∈ A,

b ◦ c ⊆ A. Let x ∈ b ◦ c. Then x ∈ A ⊆ B ∪C, so x ∈ B or x ∈ C. If x ∈ B, then

c ∈ x−1 ◦ b ⊆ B, a contradiction. If x ∈ C, then b ∈ x−1 ◦ c ⊆ C, a contradiction.

Hence A ⊆ B or A ⊆ C.

For a canonical hypergroup (H, ◦), we define na, where n is an integer and

a ∈ H, by

na =



{a} ◦ {a} ◦ · · · ◦ {a}︸ ︷︷ ︸
n copies

, if n > 0,

{a−1} ◦ {a−1} ◦ · · · ◦ {a−1}︸ ︷︷ ︸
−n copies

, if n < 0,

{0}, if n = 0,

where 0 is the scalar identity of H.

1.2 Hyperrings and Hypermodules

First, we introduce hyperrings and hypermodules in which both operations are

hyperoperations.

Definition 1.2.1. A hyperring is a structure (R,+,�) that satisfies the following

peroperties:
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(i) (R,+) is a canonical hypergroup with scalar identity 0.

(ii) (R,�) is a semihypergroup.

(iii) For all a, b, c ∈ R,

a� (b+ c) ⊆ a� b+ a� c and (b+ c)� a ⊆ b� a+ c� a.

(iv) For all a, b ∈ R, a� (−b) = (−a)� b = −(a� b).

Note that −r is the inverse of r in (R,+) for any r ∈ R. If equality holds for both

subset relations in (iii), the hyperring is called strongly distributive. A hyperring

is commutative if a� b = b� a for all a, b ∈ R. For convenience, we abbreviate a

hyperring (R,+,�) by a hyperring R and a� b by ab for all a, b ∈ R.

Definition 1.2.2. Let R be a hyperring. An R-hypermodule is a structure

(M,+, ◦) such that (M,+) is a canonical hypergroup and ◦ is a multivalued

scalar operation, i.e., a function R ×M → ℘∗(M) such that for all a, b ∈ R and

x, y ∈M ,

(i) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y,

(ii) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x,

(iii) (ab) ◦ x = a ◦ (b ◦ x), and

(iv) a ◦ (−x) = (−a) ◦ x = −(a ◦ x) where −a and −x are the inverses of a and

x, respectively, and −(a ◦ x) = {−y | y ∈ a ◦ x}.

If equality holds in (i), the R-hypermodule is said to be strongly distributive on the

right. Similarly, if equality holds in (ii), the R-hypermodule is said to be strongly

distributive on the left. Moreover, if equality holds in both (i) and (ii), then the

R-hypermodule is said to be strongly distributive. For convenience, we abbreviate

an R-hypermodule (M,+, ◦) by an R-hypermodule M and a ◦ m by am for all

a ∈ R and m ∈M .

It is easy to see that every hyperring R is an R-hypermodule.
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This definition generalizes modules over rings. Moreover, it is a generalization

of hypermodules over Krasner hyperrings.

To avoid any confusion about the meanings of AB and AX for any nonempty

subsets A and B of a hypering R and a nonempty subset X of an R-hypermodule

M , we define the following notations.

For nonempty subsets A and B of a hyperring R and a nonempty subset X of

an R-hypermodule M ,

AB =
⋃
{aibi | ai ∈ A, bi ∈ B}

[AB] =
⋃{

n∑
i=1

aibi | ai ∈ A, bi ∈ B, n ∈ N

}
AX =

⋃
{aixi | ai ∈ A, xi ∈ X}

[AX] =
⋃{

n∑
i=1

aixi | ai ∈ A, xi ∈ X,n ∈ N

}
.

In particular, let aB = {a}B,Ab = A{b}, Ax = A{x} and aX = {a}X for all

a, b ∈ R and x ∈M .

Next, we give some basic properties by extending the properties in the def-

inition of hypermodules from the element point of view to the subset point of

view.

Proposition 1.2.3. Let M be an R-hypermodule. Then for nonempty subsets A

and B of R and X and Y of M ,

(i) A(X + Y ) ⊆ AX + AY ,

(ii) (A+B)X ⊆ AX +BX,

(iii) (AB)X = A(BX), and

(iv) A(−X) = (−A)X = −(AX).

Proof. These are straightforward.

Proposition 1.2.4. Let M be an R-hypermodule. Then for nonempty subsets A

and B of R and X and Y of M ,
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(i) if X, Y ⊆ X + Y , then [A(X + Y )] = [AX] + [AY ], and

(ii) if A,B ⊆ A+B, then [(A+B)X] = [AX] + [BX].

Proof. (i) Assume that X, Y ⊆ X + Y . Let m ∈ [A(X + Y )]. There exist n ∈ N,

ai ∈ A and li ∈ X + Y such that m ∈
∑n

i=1 aili. For each i ∈ {1, 2, . . . , n}, there

exist xi ∈ X and yi ∈ Y such that li ∈ xi + yi. Then

m ∈
n∑
i=1

aili ⊆
n∑
i=1

ai(xi + yi) ⊆
n∑
i=1

aixi +
n∑
i=1

aiyi ⊆ [AX] + [AY ].

For the reverse inclusion, since X, Y ⊆ X + Y ,

[AX] + [AY ] ⊆ [A(X + Y )] + [A(X + Y )] ⊆ [A(X + Y )].

Therefore [A(X + Y )] = [AX] + [AY ].

(ii) The proof is similar to (i).

Since a hyperring R can be considered as an R-hypermodule, we obtain the

following corollaries.

Corollary 1.2.5. Let R be a hyperring. Then for all nonempty subsets A, B and

C of R, we have

(i) (−A)B = A(−B) = −(AB),

(ii) A(B + C) ⊆ AB + AC, and

(iii) (A+B)C ⊆ AC +BC.

Corollary 1.2.6. Let R be a hyperring. Then for all nonempty subsets A, B and

C of R, we have

(i) if B,C ⊆ B + C, then [A(B + C)] = [AB] + [AC], and

(ii) if A,B ⊆ A+B, then [(A+B)C] = [AC] + [BC].

Let M be an R-hypermodule. From the above notations, Rx and [Rx] may

not be equal for any x ∈M . We give a condition which guarantees that equality

holds in the next proposition.
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Proposition 1.2.7. Let (M,+, ◦) be a strongly distributive R-hypermodule. Then

for every a ∈ R, x ∈ M , subhypergroup P of (R,+) and subhypergroup N of

(M,+), we have Px = [Px] and aN = [aN ].

Proof. It is obvious that Px ⊆ [Px]. Let m ∈ [Px]. Then m ∈
∑n

i=1 rix where

ri ∈ P for all i. Thus

m ∈ (r1x) + (r2x) + (r3x) + · · ·+ (rnx) = (r1 + r2)x+ (r3x) + · · ·+ (rnx).

Then there exists l1 ∈ r1 + r2 ⊆ P such that m ∈ (l1x) + (r3x) + · · · + (rnx) =

(l1 + r3)x + · · · + (rnx). Continuing this process, we eventually obtain m ∈

(ln−2 + rn)x ⊆ Px. Hence [Px] ⊆ Px.

Consequently, Px = [Px]. Similarly, aN = [aN ].

Corollary 1.2.8. Let (R,+, ·) be a strongly distributive hyperring. Then for every

a ∈ R and subhypergroup P of (R,+), Pa = [Pa] and aP = [aP ].

The remainder of this section is divided into 3 subsections: hyperideals, sub-

hypermodules and examples of hyperrings and hypermodules.

1.2.1 Hyperideals

In this subsection, we give a definition and some properties of hyperideals.

Definition 1.2.9. Let R be a hyperring. A nonempty subset I of R is called a

subhyperring of R if I is a hyperring under the same hyperoperations. A subhy-

perring is a hyperideal of R if ra ⊆ I and ar ⊆ I for all r ∈ R and a ∈ I.

The immediate result is the following.

Proposition 1.2.10. Let I be a subhyperring of R. Then I is a hyperideal of R

if and only if [RI] ⊆ I and [IR] ⊆ I.

Proof. This is obvious.

The next result follows from Proposition 1.1.15.
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Proposition 1.2.11. Let I be a nonempty subset of a hyperring R. Then I is a

hyperideal of R if and only if for every a, b ∈ I and r ∈ R, a− b ⊆ I, ra ⊆ I and

ar ⊆ I.

Proof. This proof is clear.

The next proposition shows two ways to create new hyperideals from two

hyperideals.

Proposition 1.2.12. Let R be a hyperring and I, J hyperideals of R . Then

I + J and [IJ ] are hyperideals of R.

Proof. First, we show that I + J is a hyperideal of R. Let x, y ∈ I + J . Then x ∈

a1 +b1 and y ∈ a2 +b2 for some a1, a2 ∈ I and b1, b2 ∈ J . Then x−y = x+(−y) ⊆

(a1+b1)+(−(a2+b2)) = a1+b1+(−a2)+(−b2) = (a1+(−a2))+(b1+(−b2)) ⊆ I+J .

Let r ∈ R. Then rx ⊆ r(a1 + b1) ⊆ ra1 + rb1 ⊆ I + J . Similarly, xr ⊆ I + J .

Hence I + J is a hyperideal of R.

Next, we show that [IJ ] is a hyperideal of R. Let x, y ∈ [IJ ]. Then x ∈∑n
i=1 aibi and y ∈

∑m
i=1 cidi where ai, ci ∈ I and bj, dj ∈ J for all i and j. Then

x− y ⊆
n∑
i=1

aibi +

(
−

m∑
i=1

cidi

)
⊆

n∑
i=1

aibi +

(
m∑
i=1

−(cidi)

)

=
n∑
i=1

aibi +

(
m∑
i=1

(−ci)di

)
⊆ [IJ ].

Let r ∈ R. Then rx ⊆ r
(∑n

i=1 aibi
)
⊆
∑n

i=1 r(aibi) =
∑n

i=1(rai)bi ⊆
∑n

i=1 Ibi.

Let l ∈ rx. Then l ∈
∑n

i=1 pibi for some pi ∈ I. Hence l ∈ [IJ ] so that rx ⊆ [IJ ].

Similarly, xr ⊆ [IJ ]. Hence [IJ ] is a hyperideal of R.

Definition 1.2.13. An element e of a hyperring (R,+, ·) is called an identity of R

if r ∈ er ∩ re for all r ∈ R.

In ring theory, it is well known that an ideal which contains an identity is the

whole ring. The following proposition shows that this is also true in hyperrings.

Proposition 1.2.14. Let (R,+, ·) be a hyperring with an identity e and I a

hyperideal of R. If e ∈ I, then I = R.
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Proof. Assume that e ∈ I. Let r ∈ R. Then r ∈ er ⊆ I. Hence r ∈ I.

Next, we introduce the hyperideal generated by a subset of a hyperring.

Proposition 1.2.15. Let A be a nonempty subset of a hyperring R. Then [RA]+

[AR] + [RAR] + [ZA] is a hyperideal of R where [ZA] =
{∑m

i=1 niai | m ∈ N, ni ∈

Z, ai ∈ A
}

.

Proof. For any b, c ∈ [RA] + [AR] + [RAR] + [ZA], it follows that

b− c ⊆ b+ (−c)

⊆ [RA] + [AR] + [RAR] + [ZA] + (−[RA]) + (−[AR]) + (−[RAR]) + (−[ZA])

⊆ [RA] + [AR] + [RAR] + [ZA] + [(−R)A] + [A(−R)] + [(−R)AR] + [(−Z)A]

⊆ [RA] + [AR] + [RAR] + [ZA] + [RA] + [AR] + [RAR] + [ZA]

⊆ [RA] + [AR] + [RAR] + [ZA].

In particular, 0 ∈ b− b ⊆ [RA] + [AR] + [RAR] + [ZA] for some b ∈ [RA] + [AR] +

[RAR] + [ZA]. Let r ∈ R. Then

rb ⊆ r([RA] + [AR] + [RAR] + [ZA]) ⊆ (r[RA] + r[AR] + r[RAR] + r[ZA])

⊆ ([(rR)A] + [(rA)R] + [(rR)AR] + [Z(rA)])

⊆ [RA] + [RAR]

⊆ [RA] + [RAR] + 0

⊆ [RA] + [AR] + [RAR] + [ZA].

Similarly, br ⊆ [RA] + [AR] + [RAR] + [ZA]. Thus [RA] + [AR] + [RAR] + [ZA]

is a hyperideal of R.

Definition 1.2.16. Let A be a nonempty subset of a hyperring R. Define 〈A〉

to be the smallest hyperideal of R containing A. The hyperideal 〈A〉 is called the

hyperideal generated by A.

Proposition 1.2.17. Let Iλ be a hyperideal of a hyperring R for all λ ∈ Λ.

Then
⋂
λ∈Λ Iλ is a hyperideal of R. Moreover, for any nonempty subsets A of R,

〈A〉 =
⋂
{I | I is a hyperideal of R containing A} which is a hyperideal of R.
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Proof. We know that 0 ∈
⋂
λ∈Λ Iλ. Let a, b ∈

⋂
λ∈Λ Iλ and r ∈ R. Then a, b ∈ Iλ

for all λ ∈ Λ. Since Iλ is a hyperideal of R, a − b ⊆ Iλ and ra, ar ⊆ Iλ for all

λ ∈ Λ. Hence a− b, ra, ar ⊆
⋂
λ∈Λ Iλ. Thus

⋂
λ∈Λ Iλ is a hyperideal of R.

Let A = {I | I is a hyperideal of R containing A}. It follows that
⋂
A is a

hyperideal of R containing A. Then 〈A〉 ⊆
⋂
A. Since 〈A〉 is a hyperideal of R

containing A, 〈A〉 ∈ A. Hence
⋂
A ⊆ 〈A〉. Therefore 〈A〉 =

⋂
A.

Next, we give an explicit form of 〈A〉 for all nonempty subsets A of R.

Proposition 1.2.18. Let A be a nonempty subset of a hyperring R. Then

〈A〉 = [RA] + [AR] + [RAR] + [ZA].

Proof. Note that a ∈ 0 + a for every a ∈ A. Since [RA] + [AR] + [RAR] + [ZA] is

a hyperideal of R, clearly, 0 ∈ [RA] + [AR] + [RAR] + [ZA]. Hence

a ∈ 0 +a ⊆
(
[RA] + [AR] + [RAR] + [ZA]

)
+ [ZA] ⊆ [RA] + [AR] + [RAR] + [ZA].

Therefore A ⊆ [RA]+[AR]+[RAR]+[ZA], so 〈A〉 ⊆ [RA]+[AR]+[RAR]+[ZA].

Next, since A ⊆ 〈A〉, we have [RA] ⊆ [R〈A〉] ⊆ 〈A〉, [AR] ⊆ [〈A〉R] ⊆ 〈A〉,

[RAR] ⊆ [R〈A〉R] ⊆ 〈A〉 and [ZA] ⊆ 〈A〉. Thus [RA]+[AR]+[RAR]+[ZA] ⊆ 〈A〉.

Hence 〈A〉 = [RA] + [AR] + [RAR] + [ZA].

Corollary 1.2.19. Let A be a nonempty subset of a hyperring R.

(i) If A ⊆ RA, then 〈A〉 = [RA] + [RAR].

(ii) If A ⊆ AR, then 〈A〉 = [AR] + [RAR].

(iii) If A ⊆ RAR, then 〈A〉 = [RAR].

(iv) If R is commutative, then 〈A〉 = [RA] + [ZA].

(v) If R is commutative and A ⊆ RA, then 〈A〉 = [RA].

Corollary 1.2.20. Let A be a nonempty subset of a hyperring R.

(i) If a ∈ Ra for all a ∈ A, then 〈A〉 = [RA] + [RAR].
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(ii) If a ∈ aR for all a ∈ A, then 〈A〉 = [AR] + [RAR].

(iii) If a ∈ RaR for all a ∈ A, then 〈A〉 = [RAR].

(iv) If R is commutative and for every a ∈ R , a ∈ Ra, then 〈A〉 = [RA].

Let (R,+, ·) be a hyperring and P a hyperideal of R. We can construct a

hyperring by defining the relation ρ on R by

aρb if and only if a+ P = b+ P for all a, b ∈ R.

It is obvious that ρ is an equivalence relation. We denote the collection of all

equivalence classes by R/P . Note that R/P =
{

[a]ρ | a ∈ R
}

where [a]ρ is the

equivalence class containing a.

Lemma 1.2.21. Let ρ be the equivalence relation defined as above. Then [a]ρ =

a+ P for all a ∈ R. Moreover, R/P = {a+ P | a ∈ R}.

Proof. Fix a ∈ R. Let x ∈ [a]ρ. Then x ∈ x+P = a+P . Next, let x ∈ a+P . We

show that x+P = a+P . Since x ∈ a+P , we obtain that x+P ⊆ a+P+P ⊆ a+P

and there exists p ∈ P such that x ∈ a + p. Hence a ∈ x + (−p) ⊆ x + P . Thus

a + P ⊆ x + P + P ⊆ x + P . Therefore x + P = a + P . We can conclude that

x ∈ [a]ρ.

As a consequence of Lemma 1.2.21, we can conclude that a ∈ b+P if and only

if a+ P = b+ P for all a, b ∈ R.

Proposition 1.2.22. Let (R,+, ·) be a hyperring and P a hyperideal of R. Define

⊕ : R/P ×R/P → ℘∗(R/P ) by

(a+ P )⊕ (b+ P ) = {x+ P | x ∈ a+ b} for all a, b ∈ R.

Then (R/P,⊕) is a canonical hypergroup.

Proof. First, we show that ⊕ is well-defined. Let a1 + P = a2 + P and b1 + P =

b2 + P where a1, a2, b1, b2 ∈ R. Moreover, let A = {v + P | v ∈ a1 + b1} and

B = {w + P | w ∈ a2 + b2}. To show that A = B, first let v ∈ a1 + b1. Then
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v ∈ a1 + b1 ⊆ (a2 + P ) + (b2 + P ) = (a2 + b2) + P . So there exists w ∈ a2 + b2

such that v ∈ w+P , i.e., v+P = w+P . Hence A ⊆ B. The proof of the reverse

inclusion is similar. Consequently, ⊕ is well-defined.

Next, we show that (R/P,⊕) is a hypergroup. Let a1, a2, a3 ∈ R. Then(
(a1 + P )⊕ (a2 + P )

)
⊕ (a3 + P ) = {v + P | v ∈ a1 + a2} ⊕ (a3 + P )

=
⋃

v∈a1+a2

(v + P )⊕ (a3 + P )

=
⋃

v∈a1+a2

{w + P | w ∈ v + a3}

= {w + P | w ∈ (a1 + a2) + a3}

= {w + P | w ∈ a1 + (a2 + a3)}

=
⋃

v∈a2+a3

{w + P | w ∈ a1 + v}

=
⋃

v∈a2+a3

(a1 + P )⊕ (v + P )

= (a1 + P )⊕ {v + P | v ∈ a2 + a3}

= (a1 + P )⊕
(
(a2 + P )⊕ (a3 + P )

)
.

Thus ⊕ is associative. In order to show that (a1 +P )⊕ (R/P ) = R/P , let a ∈ R.

Since R is a hypergroup, R = a1+R so that there exists b ∈ R such that a ∈ a1+b.

Then a+ P ∈ (a1 + P )⊕ (b+ P ) ⊆ (a1 + P )⊕R/P .

Now, we prove that (R/P,⊕) is canonical. It is clear that (R/P,⊕) is com-

mutative because (R,+) is commutative. We see that P is the scalar identity of

(R/P,⊕). To show that −a+ P is an inverse of a+ P for each a ∈ R, let a ∈ R.

Then (a+ P )⊕ (−a+ P )= {v + P | v ∈ a+ (−a)}. Thus P ∈ (a+P )⊕(−a+P ).

Hence −a + P is an inverse of a + P . For the uniqueness of an inverse of a + P ,

we let b ∈ R be such that P ∈ (a+ P )⊕ (b+ P ). There exists t ∈ a+ b such that

t+P = P . Then t ∈ P and b ∈ −a+t, so b ∈ (−a+t)+0 ⊆ (−a+t)+P = −a+P .

Hence b+ P = −a+ P .

Finally, assume that a1 +P ∈ (a2 +P )⊕ (a3 +P ) where a1, a2, a3 ∈ R. There

exists t ∈ a2 +a3 such that a1 +P = t+P . Then t ∈ a1 +u for some u ∈ P . Since

t ∈ a2 + a3, we obtain that a3 ∈ t− a2 ⊆ a1 + u− a2 = (a1 − a2) + u. Then there



16

exists s ∈ a1 − a2 such that a3 ∈ s + u so that a3 ∈ s + P , i.e., a3 + P = s + P .

Hence a3 + P ∈ (a1 + P )⊕ (−a2 + P ) = (a1 + P )⊕
(
−(a2 + P )

)
.

Proposition 1.2.23. Let (R,+, ·) be a hyperring and P a hyperideal of R. Define

◦ : R/P ×R/P → ℘∗(R/P ) by

(a+ P ) ◦ (b+ P ) = {x+ P | x ∈ ab} for all a, b ∈ R.

Then (R/P,⊕, ◦) is a hyperring. This hyperring is called a quotient hyperring.

Proof. First, we show that ◦ is well-defined. Let a1+P = a2+P and b1+P = b2+P

where a1, a2, b1, b2 ∈ R. To show that A := {v + P | v ∈ a1b1} = {w + P | w ∈

a2b2} := B, let v ∈ a1b1. Then v ∈ a1b1 ⊆ (a2 + P )(b2 + P ) ⊆ (a2b2) + P . So

there exists w ∈ a2b2 such that v ∈ w + P , i.e., v + P = w + P . Hence A ⊆ B.

The proof of the reverse inclusion is similar. Consequently, ◦ is well-defined.

The proof of the associativity of ◦ is essentially the same as the proof of the

associativity of ⊕ in Proposition 1.2.22.

Moreover, we see that

(a1 + P ) ◦
(
(a2 + P )⊕ (a3 + P )

)
= (a1 + P ) ◦ {v + P | v ∈ a2 + a3}

=
⋃

v∈a2+a3

(a1 + P ) ◦ (v + P )

=
⋃

v∈a2+a3

{w + P | w ∈ a1v}

= {w + P | w ∈ a1(a2 + a3)}

⊆ {w + P | w ∈ a1a2 + a1a3}

=
⋃

s∈a1a2, l∈a1a3

{w + P | w ∈ s+ l}

=
⋃

s∈a1a2, l∈a1a3

(s+ P )⊕ (l + P )

= {s+ P | s ∈ a1a2} ⊕ {l + P | l ∈ a1a3}

=
(
(a1 + P ) ◦ (a2 + P )

)
⊕
(
(a1 + P ) ◦ (a3 + P )

)
,

i.e., (a1 +P )◦
(
(a2 +P )⊕ (a3 +P )

)
⊆
(
(a1 +P )◦ (a2 +P )

)
⊕
(
(a1 +P )◦ (a3 +P )

)
.

Similarly,
(
(a2+P )⊕(a3+P )

)
◦(a1+P ) ⊆

(
(a2+P )◦(a1+P )

)
⊕
(
(a3+P )◦(a1+P )

)
.
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Next, we show that (a1 + P ) ◦
(
−(a2 + P )

)
= −

(
(a1 + P ) ◦ (a2 + P )

)
=(

−(a1 + P )
)
◦ (a2 + P ). First,

(a1 + P ) ◦
(
−(a2 + P )

)
= (a1 + P ) ◦ (−a2 + P ) = {v + P | v ∈ a1(−a2)}

= {v + P | v ∈ (−a1)a2}

= (−a1 + P ) ◦ (a2 + P )

=
(
−(a1 + P )

)
◦ (a2 + P ),

i.e., (a1 + P ) ◦
(
−(a2 + P )

)
=
(
−(a1 + P )

)
◦ (a2 + P ). Moreover,

(a1 + P ) ◦
(
−(a2 + P )

)
= (a1 + P ) ◦ (−a2 + P ) = {v + P | v ∈ a1(−a2)}

= {v + P | v ∈ −(a1a2)}

= {−v + P | v ∈ a1a2}

= −{v + P | v ∈ a1a2}

= −
(
(a1 + P ) ◦ (a2 + P )

)
.

i.e., (a1 + P ) ◦
(
−(a2 + P )

)
= −

(
(a1 + P ) ◦ (a2 + P )

)
.

Therefore (R/P,⊕, ◦) is a hyperring.

1.2.2 Subhypermodules

In this subsection, we give a definition of subhypermodules and some properties

that parallel the properties of hyperideals.

Definition 1.2.24. A nonempty subset N of an R-hypermodule M is called a

subhypermodule of M if N is an R-hypermodule under the same hyperoperations

on M .

By the same ideas as in the section on hyperideals, we obtain the following

propositions. So the proof are omitted.

Proposition 1.2.25. Let N be a nonempty subset of an R-hypermodule M . Then

N is a subhypermodule of M if and only if for every x, y ∈ N and r ∈ R, x−y ∈ N

and rx ⊆ N .
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Corollary 1.2.26. Let N be a canonical subhypergroup of an R-hypermodule M .

Then N is a subhypermodule of M if and only if [RN ] ⊆ N .

The following are some ways to construct new subhypermodules from given

subhypermodules, hyperideals and elements in hyperrings and hypermodules.

Proposition 1.2.27. Let M be an R-hypermodule, I a hyperideal of R, N and K

subhypermodules of M , a ∈ R and m ∈ M . Then [aN ], [Im], [IN ], and N + K

are subhypermodules of M .

Proof. The proofs are routine.

Next, we introduce the subhypermodule generated by a subset of a hypermod-

ule.

Proposition 1.2.28. Let X be a nonempty subset of a hypermodule M . Then

[RX] + [ZX] is a subhypermodule of M .

Proof. Let b, c ∈ [RX] + [ZX]. Then

b− c ⊆ b+ (−c)

⊆ [RX] + [ZX] + (−[RX]) + (−[ZX])

⊆ [RX] + [ZX] + [(−R)X] + [(−Z)X]

⊆ [RX] + [ZX] + [RX] + [ZX]

⊆ [RX] + [ZX].

Hence b− c ⊆ [RX] + [ZX]. Let r ∈ R. Then

rb ⊆ r([RX] + [ZX]) ⊆ (r[RX] + r[ZX])

⊆ ([(rR)X] + [Z(rX)])

⊆ [RX]

⊆ [RX] + [ZX].

Thus [RX] + [ZX] is a subhypermodule of M .
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Definition 1.2.29. Let X be a nonempty subset of a hypermodule M . Define

〈X〉 to be the smallest subhypermodule of M containing X. The subhypermodule

〈X〉 is called the subhypermodule generated by X.

Proposition 1.2.30. Let Nλ be a subhypermodule of a hypermodule M for all

λ ∈ Λ. Then
⋂
λ∈Λ Nλ is a subhypermodule of M . Moreover, for all nonempty sub-

sets X of M , 〈X〉 =
⋂
{N | N is a subhypermodule of M containing X} which

is a subhypermodule of M .

Proof. We know that 0 ∈
⋂
λ∈Λ Nλ. Let a, b ∈

⋂
λ∈Λ Nλ and r ∈ R. Since Nλ

is a subhypermodule of M , a − b ⊆ Nλ and ra ⊆ Nλ for all λ ∈ Λ. Hence

a− b, ra ⊆
⋂
λ∈Λ Iλ. Thus

⋂
λ∈Λ Iλ is a subhypermodule of M .

Let N = {N | N is a subhypermodule of M containing X}. Then
⋂
N is a

subhypermodule of M containing X. Thus 〈X〉 ⊆
⋂
N . Since 〈X〉 is a sub-

hypermodule of M containing X, 〈X〉 ∈ N . Hence
⋂
N ⊆ 〈X〉. Therefore

〈X〉 =
⋂
N .

Next, we give an explicit form for 〈X〉 for all subsets X of M .

Proposition 1.2.31. Let X be a nonempty subset of an R-hypermodule M . Then

〈X〉 = [RX] + [ZX].

Proof. Note that for every x ∈ X, x ∈ 0 + x. Since [RX] + [ZX] is a subhyper-

module of M , 0 ∈ [RX] + [ZX]. Hence

x ∈ 0 + x ⊆
(
[RX] + [ZX]

)
+ [ZX] ⊆ [RX] + [ZX].

Therefore X ⊆ [RX] + [ZX], so 〈X〉 ⊆ [RX] + [ZX]. Next, since X ⊆ 〈X〉, we

have [RX] ⊆ [R〈X〉] ⊆ 〈X〉 and [ZX] ⊆ 〈X〉. Thus [RX] + [ZX] ⊆ 〈X〉. Hence

〈X〉 = [RX] + [ZX].

Corollary 1.2.32. Let X be a nonempty subset of an R-hypermodule M such

that X ⊆ RX. Then 〈X〉 = [RX].

Corollary 1.2.33. Let X be a nonempty subset of an R-hypermodule M such

that x ∈ Rx for all x ∈M . Then 〈X〉 = [RX].
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Proposition 1.2.34. Let N be a subhypermodule of an R-hypermodule M . Then

N =
∑

n∈N〈n〉.

Proof. The proof is straightforward.

Similar to the way that we define a quotient hyperring, we can define a quotient

hypermodule. For an R-hypermodule M and a subhypermodule N of M , we can

define M/N = {x+N | x ∈M} where x ∈ y+N if and only if x+N = y+N for

all x, y ∈ M in the same way that R/P is defined where P is a hyperideal of R.

We describe the details about quotient hypermodules in the next proposition.

Proposition 1.2.35. Let (M,+, ·) be an R-hypermodule and N a subhypermodule

of M . Define ⊕ : M/N ×M/N → ℘∗(M/N) and ◦ : R×M/N → ℘∗(M/N) by

(x+N)⊕ (y +N) = {t+N | t ∈ x+ y}

r ◦ (x+N) = {t+N | t ∈ rx}

for all r ∈ R and x, y ∈ M . Then (M/N,⊕, ◦) is an R-hypermodule. This

R-hypermodule is called a quotient hypermodule.

Proof. The proof is similar to the proof of Proposition 1.2.22 and Proposition

1.2.23 combined.

Proposition 1.2.36. Let M be an R-hypermodule and N a subhypermodule of M .

Then every subhypermodule of M/N is in the form K/N , where K is a subhyper-

module of M containing in N .

Proof. Let W be a subhypermodule of M/N and K = {w ∈M | w+N ∈ W}. It

is clear that N ⊆ K and W = K/N . We show that K is a subhypermodule of M .

Let k1, k2 ∈ K and r ∈ R. To show that k1−k2 ⊆ K, let x ∈ k1−k2 = k1 +(−k2).

Then x + N ∈ (k1 + N) ⊕ (−k2 + N) ⊆ W . Hence x ∈ K so k1 − k2 ⊆ K. To

show that rk1 ⊆ K, let x ∈ rk1. Then x + N ∈ r ◦ (k1 + N) ⊆ W . Hence x ∈ K

so rk1 ⊆ K. Thus K is a subhypermodule of M .
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1.2.3 Examples of Hyperrings and Hypermodules

For convenience, we gather our examples of hyperrings and hypermodules together

in this subsection. Before that, we recall the definition of a Krasner hyperring, [9].

Definition 1.2.37. [9] A system (R,⊕, ◦) is called a Krasner hyperring if

(i) (R,⊕) is a canonical hypergroup,

(ii) (R, ◦) is a semigroup with zero 0 where 0 is the scalar identity of (R,⊕) and

(iii) x ◦ (y ⊕ z) = x ◦ y ⊕ x ◦ z and (y ⊕ z) ◦ x = y ◦ x⊕ z ◦ x for all x, y, z ∈ R.

Example 1.2.38. Let (A,+, ·) be a Krasner hyperring and let H be a hyperideal

of A. Define ◦ : A×A→ ℘∗(A) by a ◦ b = ab+H for all a, b ∈ A. Then (A,+, ◦)

is a strongly distributive hyperring.

To show that (A,+, ◦) is a strongly distributive hyperring, first note that since

(A,+, ·) is a Krasner hyperring, (A,+) is a canonical hypergroup. To show that

(A,+, ◦) is a hyperring, let a, b, c ∈ A. Then

(a ◦ b) ◦ c =
⋃
v∈a◦b

v ◦ c =
⋃

v∈ab+H

vc+H = (ab+H)c+H

= (ab)c+H

= a(bc) +H

= a(bc+H) +H

=
⋃

w∈bc+H

aw +H

= a ◦ (b ◦ c).

Thus (a ◦ b) ◦ c = a ◦ (b ◦ c). Next,

(a+ b) ◦ c =
⋃

v∈a+b

v ◦ c =
⋃

v∈a+b

vc+H = (a+ b)c+H

=
(
ac+H

)
+
(
bc+H

)
= (a ◦ c) + (b ◦ c).

In the same way, a ◦ (b+ c) = (a ◦ b) + (a ◦ c). Finally,
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(−a) ◦ b = (−a)b+H = a(−b) +H = a ◦ (−b) = a(−b) +H = −(ab) +H

= −
(
ab+H

)
= −(a ◦ b).

Hence (A,+, ◦) is a strongly distributive hyperring.

Example 1.2.39. Let (G,+) be a canonical hypergroup. Define ◦ : G × G →

℘∗(G) by a ◦ b = 〈a, b〉, the subhypergroup of G generated by the set {a, b}, for

all a, b ∈ G. Then (G,+, ◦) is a hyperring.

To show that (G,+, ◦) is a hyperring, first note that 〈X〉 = [ZX] for all

nonempty subsets X of G. Next, we show that 〈a, b, c〉 =
⋃
v∈〈a,b〉〈v, c〉 for all

a, b, c ∈ G. Let a, b, c ∈ G. First, let x ∈ 〈a, b, c〉. Then x ∈ n1a + n2b + n3c for

some n1, n2, n3 ∈ Z. Then x ∈ y + n3c for some y ∈ n1a + n2b ⊆ 〈a, b〉. Thus

x ∈ y + n3c ⊆ 〈y, c〉 and y ∈ 〈a, b〉. Hence x ∈
⋃
v∈〈a,b〉〈v, c〉.

Let x ∈
⋃
v∈〈a,b〉〈v, c〉. Then x ∈ 〈v, c〉 for some v ∈ 〈a, b〉. Thus x ∈ n1v + n2c

and v ∈ n3a + n4b for some n1, n2, n3, n4 ∈ Z. Hence x ∈ n1v + n2c ⊆ n1(n3a +

n4b) + n2c = (n1n3)a+ (n1n4)b+ n2c ⊆ 〈a, b, c〉.

This shows that 〈a, b, c〉 =
⋃
v∈〈a,b〉〈v, c〉.

Now, we prove that (G,+, ◦) is a hyperring. Let a, b, c ∈ G. Then

(a◦b)◦c =
⋃
v∈a◦b

v◦c =
⋃

v∈〈a,b〉

〈v, c〉 = 〈a, b, c〉 =
⋃

w∈〈b,c〉

〈a, w〉 =
⋃
w∈b◦c

a◦w = a◦(b◦c).

Moreover, (a+b)◦c =
⋃
v∈a+b v◦c =

⋃
v∈a+b〈v, c〉 ⊆ 〈a, c〉+〈b, c〉 = (a◦c)+(b◦c).

We also obtain similarly that a ◦ (b+ c) = (a ◦ b) + (a ◦ c). Finally,

(−a) ◦ b = 〈−a, b〉 = 〈a, b〉 = 〈a,−b〉 = a ◦ (−b) = 〈a,−b〉

= 〈a, b〉 = −〈a, b〉 = −(a ◦ b).

Hence (G,+, ◦) is a hyperring.

Example 1.2.40. Let R be a hyperring. Then R is an R-hypermodule.

Example 1.2.41. Let R be a Krasner hyperring, M an R-hypermodule and N

a subhypermodule of M . Define ◦ : R ×M → ℘∗(M) by a ◦ x = ax + N for all

a ∈ R and x ∈M . Then (M,+, ◦) is a strongly distributive hypermodule.
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1.3 Differences between Modules and Hypermodules

Besides the diferrence of operations and hyperoperation, there are some proper-

ties in modules over rings that may not hold in hypermodules. In the previous

subsection, we give a basic case study to show the differences between modules

and hypermodules.

First, {0} is always a submodule of any modules but not necessarily a subhy-

permodule of a hypermodule.

Example 1.3.1. Consider the hyperringR in Example 1.2.39 as anR-hypermodule

when R 6= {0}. We obtain that R is the only subhypermodule of R. Hence {0} is

not a subhypermodule of R.

We give a necessary and sufficient condition for {0} to be a subhypermodule.

Proposition 1.3.2. Let M be an R-hypermodule. Then {0} is a subhypermodule

of M if and only if there exist a hyperideal I of R and a subhypermodule N of M

such that IN = {0}.

Proof. First, assume that {0} is a subhypermodule of M . Choose I = R and

N = {0}. Then IN = {0}.

Conversely, assume that there exist a hyperideal I of R and a subhypermod-

ule N of M such that IN = {0}. It follows that [IN ] = {0}. Thus {0} is a

subhypermodule of M since [IN ] is a subhypermodule of M .

Proposition 1.3.3. Let R be a hyperring. Then {0} is a hyperideal of R if and

only if there exist hyperideals I and J such that IJ = {0}.

Proof. This is similar to the proof of the previous proposition.

For nonempty subsets X and Y of an R-hypermodule, we define

(X : Y ) = {r ∈ R | rY ⊆ X}.

As the following example shows, even if N is a subhypermodule of M , the set

(N : M) may be empty. However, if N is a submodule of a module M , then

(N : M) is nonempty.
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Example 1.3.4. Let (R,+) be an abelian group such that |R| ≥ 2. Define

� : R × R → ℘∗(R) by a � b = 〈a, b〉, the subgroup of R generated by the

set {a, b}, for all a, b ∈ R. Then (R,+,�) is a hyperring. Consider R as an

R-hypermodule via the hypermodule action ◦ : R×R→ ℘∗(R) defined by

r ◦m =

r �m if m 6= 0,

{0} if m = 0,

for all r,m ∈ R. Then {0} is a subhypermodule of R and ({0} : R) = ∅.

The next proposition is about a property of (N : M) when (N : M) is not

empty.

Proposition 1.3.5. Let N be a subhypermodule of an R-hypermodule M . If

(N : M) is nonempty, then (N : M) is a hyperideal of R.

Proof. Let a, b ∈ (N : M) and r ∈ R. Then aM ⊆ N and bM ⊆ N . It follows

that (a − b)M ⊆ aM + bM ⊆ N + N ⊆ N . Hence a − b ∈ (N : M). Next, we

show that ra, ar ∈ (N : M). Consider

raM = r(aM) ⊆ rN ⊆ N and arM = a(rM) ⊆ aM ⊆ N.

Thus ra, ar ∈ (N : M) as desired. Therefore (N : M) is a hyperideal of R.



CHAPTER II

PRIME HYPERIDEALS AND

PRIME SUBHYPERMODULES

In this chapter, we introduce prime and weakly prime hyperideals and subhyper-

modules. Many properties are investigated. However, we emphasize ones related

to prime and weakly prime subhypermodules.

2.1 Prime Hyperideals and Prime Subhypermodules

The first section is seperated into two subsections, namely prime hyperideals and

prime subhypermodules.

2.1.1 Prime Hyperideals

In this subsection, we give a definition of prime hyperideals and determine some

characterizations of them.

Definition 2.1.1. Let R be a hyperring. A proper hyperideal P of R is called

prime if for all hyperideals I and J of R,

[IJ ] ⊆ P ⇒ I ⊆ P or J ⊆ P .

Proposition 2.1.2. Let R be a hyperring and P a proper hyperideal of R. Then

P is a prime hyperideal if and only if IJ ⊆ P implies I ⊆ P or J ⊆ P for all

hyperideals I and J of R.

Proof. Assume that P is a prime hyperideal. Let I and J be hyperideals of R

such that IJ ⊆ P . Since P is a hyperideal and [IJ ] is the hyperideal generated

by IJ , we see that [IJ ] ⊆ P . Hence I ⊆ P or J ⊆ P .

The converse follows from the fact that IJ ⊆ [IJ ].
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Next, we give examples of prime hyperideals.

Example 2.1.3. 1. Every prime ideal of a ring can be considered as a prime

hyperideal of a hyperring.

2. Let R = [0, 1]. Then (R,⊕max, ·
)

is a Krasner hyperring
(
see [18]

)
, where

⊕max is defined as in Example 1.1.10 and · is the usual multiplication on real

numbers. Furthermore, let K = [0, 0.5]. Then K is a hyperideal of R. It follows

from Example 1.2.38 that (R,⊕max, ◦) is a hyperring. Choose P = [0, 1). Thus P

is a prime hyperideal of R.

3. Let R = [1,∞) ∪ {0}. Then (R,⊕min, ·
)

is a Krasner hyperring
(
see [18]

)
,

where ⊕min is defined as in Example 1.1.11 and · is the usual multiplication on

real numbers. Furthermore, let K = [3,∞) ∪ {0}. Then K is a hyperideal

of R. It follows from Example 1.2.38 that (R,⊕min, ◦) is a hyperring. Choose

P = (1,∞) ∪ {0}. Thus P is a prime hyperideal of R.

4. Let R = [−1, 1]. Then (R,⊕abs, ·
)

is a Krasner hyperring
(
see [18]

)
, where

⊕abs is defined as in Example 1.1.12 and · is the usual multiplication on real

numbers. Furthermore, let K = [−3, 3] ∪ {0}. Then K is a hyperideal of R. It

follows from Example 1.2.38 that (R,⊕abs, ◦) is a hyperring. Choose P = (−1, 1).

Thus P is a prime hyperideal of R.

Next, we characterize prime hyperideals under the condition that the hyperring

is commutative.

Proposition 2.1.4. Let R be a commutative hyperring and P a proper hyperideal

of R. Then P is a prime hyperideal if and only if ab ⊆ P implies a ∈ P or b ∈ P

for all a, b ∈ R,.

Proof. First, assume that P is prime. Let a, b ∈ R be such that ab ⊆ P . Choose

I = 〈a〉 and J = 〈b〉. Then I and J are hyperideals of R. We show that IJ ⊆ P .

Recall from Corollary 1.2.20 that

I = [Ra] + [Za] and J = [Rb] + [Zb].

Since ab ⊆ P , P is a hyperideal and R is commutative, we have IJ ⊆ P . Hence

I ⊆ P or J ⊆ P . Thus a ∈ 〈a〉 ⊆ P or b ∈ 〈b〉 ⊆ P .
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Conversely, assume that ab ⊆ P implies a ∈ P or b ∈ P for all a, b ∈ R. Let I

and J be hyperideals of R such that IJ ⊆ P . Suppose that I * P . There exists

a ∈ I r P . Let b ∈ J . Then ab ⊆ IJ ⊆ P . By assumption, we have b ∈ P .

Therefore J ⊆ P .

Finally, we characterize prime hyperideals under the condition that a ∈ Ra

for all a ∈ R or a ∈ aR for all a ∈ R.

Proposition 2.1.5. Let R be a hyperring such that a ∈ Ra for all a ∈ R and P

a proper hyperideal of R. Then P is a prime hyperideal if and only if aRb ⊆ P

implies a ∈ P or b ∈ P for all a, b ∈ R.

Proof. First, assume that P is prime. Let a, b ∈ R be such that aRb ⊆ P . Then

I = 〈a〉 and J = 〈b〉 are hyperideals of R. We show that IJ ⊆ P . Note that by

Corollary 1.2.20

I = [Ra] + [RaR] and J = [Rb] + [RbR].

Since aRb ⊆ P and P is a hyperideal, IJ ⊆ P . Hence I ⊆ P or J ⊆ P . Thus

a ∈ 〈a〉 ⊆ P or b ∈ 〈b〉 ⊆ P .

Conversely, assume that aRb ⊆ P implies a ∈ P or b ∈ P for all a, b ∈ R. Let

I and J be hyperideals of R such that IJ ⊆ P . Suppose that I * P . There exists

a ∈ I r P . Let b ∈ J . Then Rb ⊆ J . Hence aRb ⊆ IJ ⊆ P . By assumption, we

have b ∈ P . Therefore J ⊆ P .

Proposition 2.1.6. Let R be a hyperring such that a ∈ aR for all a ∈ R and P

a proper hyperideal of R. Then P is a prime hyperideal if and only if aRb ⊆ P

implies a ∈ P or b ∈ P for a, b ∈ R.

Proof. The proof is similar to that of the previous proposition.

2.1.2 Prime Subhypermodules

We first give a defintion of prime subhypermodules.
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Definition 2.1.7. Let R be a hyperring and M an R-hypermodule. A proper

subhypermodule N of M is said to be prime if for every hyperideal I of R and

every subhypermodule D of M ,

[ID] ⊆ N ⇒ I ⊆ (N : M) or D ⊆ N .

Next, we give some characterizations of prime subhypermodules via three dif-

fernt conditions. Our first characterization resembles Proposition 2.1.2.

Proposition 2.1.8. Let R be a hyperring, M an R-hypermodule and N a proper

subhypermodule of M . Then N is a prime subhypermodule if and only if ID ⊆ N

implies I ⊆ (N : M) or D ⊆ N for all hyperideals I of R and all subhypermod-

ules D of M .

Proof. This proof is similar to the proof of Proposition 2.1.2.

Example 2.1.9. 1. Every prime submodule of a module can be considered as a

prime subhypermodule of a hypermodule.

2. Every prime hyperideal P of a hyperring R is a subhypermodule of the

R-hypermodule R.

3. Every proper subhypermodules N of M such that (N : M) = R is always

a prime subhypermodule. For example, let R = [0, 1) and M = [0, 1]. Then

[R,⊕max, ·
]

and [M,⊕max, ◦
]

are Krasner hyperring and hypermodules over Kras-

ner hyperring R, respectively,
(
see [18]

)
, where ⊕max is defined as in Example

1.1.10 and · is the usual multiplication on real numbers and ◦ : R ×M → M

is defined by r ◦ m = r · m for all m ∈ M . Let N = [0, 1) which is a proper

subhypermodule of M . Then (N : M) = {r ∈ R | rM ⊆ N} = R. Thus N is a

prime subhypermodule of M .

For the second characterization, we consider the condition that the hyperring

is commutative.

Proposition 2.1.10. Let R be a commutative hyperring, M an R-hypermodule

and N a proper subhypermodule of M . Then N is a prime subhypermodule if and

only if am ⊆ N implies a ∈ (N : M) or m ∈ N for all a ∈ R and m ∈M .
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Proof. Assume first that N is a prime subhypermodule of M . Let a ∈ R and

m ∈M be such that am ⊆ N . Then I = 〈a〉 and D = 〈m〉 are a hyperideal of R

and a subhypermodule of M , respectively. We claim that ID ⊆ N . As a result

of the commutativity of R,

I = [Ra] + [Za] and D = [Rm] + [Zm].

Since am ⊆ N , N is a subhypermodule and R is commutative, we have ID ⊆ N .

Hence I ⊆ (N : M) or D ⊆ N . Thus a ∈ 〈a〉 ⊆ (N : M) or m ∈ 〈m〉 ⊆ N .

Conversely, assume that am ⊆ N implies a ∈ (N : M) or m ∈ N for all a ∈ R

and m ∈ M . Let I and D be a hyperideal of R and a subhypermodule of M ,

respectively, such that ID ⊆ N . Suppose that D * N . There exists m ∈ D rN .

Since ID ⊆ N , it follows that am ⊆ N , so by assumption, a ∈ (N : M) for all

a ∈ I. Thus I ⊆ (N : M).

For the third characterization, we are interested in the condition a ∈ aR for

all a ∈ R.

Proposition 2.1.11. Let M be an R-hypermodule, N a proper subhypermodule

of M and assume that a ∈ aR for every a ∈ R. Then N is a prime subhypermodule

if and only if aRm ⊆ N implies a ∈ (N : M) or m ∈ N for all a ∈ R and m ∈M .

Proof. Assume that N is a prime subhypermodule. Let a ∈ R and m ∈M be such

that aRm ⊆ N . Consider the hyperideal I = 〈a〉 of R and the subhypermodule

D = 〈m〉 of M . We show that ID ⊆ P . It follows from Corollary 1.2.20 and

Proposition 1.2.31 that

I = [aR] + [RaR] and D = [Rm] + [Zm].

Since aRm ⊆ N , we have ID ⊆ N . Hence I ⊆ (N : M) or D ⊆ N . Thus

a ∈ 〈a〉 ⊆ (N : M) or m ∈ 〈m〉 ⊆ N .

Assume for the converse that aRm ⊆ N implies a ∈ (N : M) or m ∈ N for all

a ∈ R and m ∈M . Let I and D be a hyperideal of R and a subhypermodule of M ,

respectively, such that ID ⊆ N . Suppose that D * N . There exists m ∈ D rN .



30

To show that I ⊆ (N : M), let a ∈ I. Then aR ⊆ IR ⊆ I. Thus aRm ⊆ ID ⊆ N .

By assumption, a ∈ (N : M). Hence I ⊆ (N : M).

We can also obtain the same characterization under the condition m ∈ Rm

for all m ∈M .

Proposition 2.1.12. Let M be an R-hypermodule, N a proper subhypermodule

of M and assume that m ∈ Rm for every m ∈ M . Then N is a prime subhyper-

module if and only if aRm ⊆ N implies a ∈ (N : M) or m ∈ N for all a ∈ R and

m ∈M .

Proof. The proof is similar to that of the previous proposition.

Next, we give some properties of prime subhypermodules.

Proposition 2.1.13. Let N be a subhypermodule of an R-hypermodule M such

that ∅ 6= (N : M) 6= R. If N is a prime subhypermodule of M , then (N : M) is

a prime hyperideal of R.

Proof. Proposition 1.3.5 guarantees that (N : M) is a hyperideal of R. Let I and

J be hyperideals of R such that IJ ⊆ (N : M). Suppose that J * (N : M). Then

JM * N , so that [JM ] * N but I[JM ] ⊆ [I[JM ]] = [(IJ)M ] ⊆ N . Since N

is a prime subhypermodule, I ⊆ (N : M). Thus (N : M) is a prime hyperideal

of R.

Corollary 2.1.14. Let M be an R-hypermodule such that M = RM and N a

subhypermodule of M such that (N : M) 6= ∅. If N is a prime subhypermodule of

M , then (N : M) is a prime hyperideal of R.

Proof. Assume that N is a prime subhypermodule of M . Then N 6= M . Suppose

that (N : M) = R. Then M = RM ⊆ N , a contradiction. Hence (N : M) 6= R.

The conclusion follows from Proposition 2.1.13.

Definition 2.1.15. A simple hypermodule is a non-zero hypermodule which has

no subhypermodules besides the zero subhypermodule and itself.
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Lemma 2.1.16. Let N be a maximal subhypermodule of an R-hypermodule M .

Then the quotient hypermodule M/N is simple.

Proof. The proof is straightforward.

Example 2.1.17. 1. Consider the hyperring R in Example 1.2.39 as an R-

hypermodule where R 6= {0}. We obtain that R is the only subhypermodule

of R.

2. From Example 2.1.3, we can see that [0, 1), (1,∞) ∪ {0} and (−1, 1) are

maximal subhypermodules of [0, 1]-hypermodule [0, 1], [1,∞)∪{0}]-hypermodule

[1,∞)∪{0} and [−1, 1]-hypermodule [−1, 1]. Hence [0, 1]/[0, 1), [1,∞)∪{0}]/(1,∞)∪

{0}] and [−1, 1]/(−1, 1) are simple by above lemma.

Proposition 2.1.18. Let N be a maximal subhypermodule of an R-hypermodule M .

Then N is a prime subhypermodule of M .

Proof. Let I and D be a hyperideal of R and a subhypermodule of M , respectively,

such that ID ⊆ N . Suppose that D * N . There exists m ∈ D r N . Then

m + N 6= N and I(m + N) = N . Since N is a maximal subhypermodule, M/N

is simple.

Let m be the element m + N of M/N . Then 〈m〉 = M/N (note that 〈m〉

is the subhypermodule of M/N generates by m). We have I(M/N) = I〈m〉 =

I
(
[Rm] + [Zm]

)
⊆ [IRm] + [I(Zm)] ⊆ [Im] + [Z(Im)] ⊆ N . This shows that

I(M/N) ⊆ {N}. We claim that IM ⊆ N . Suppose not. Then there exist a ∈ I

and m ∈M such that am * N . Thus there exists t ∈ am such that t /∈ N . Hence

t+N 6= N . Since a ∈ I and m ∈M , we obtain that a(m+N) ⊆ I(M/N) ⊆ {N},

i.e., {l + N | l ∈ am} ⊆ {N}, a contradiction. Thus IM ⊆ N , i.e., I ⊆ (N : M).

Therefore N is a prime subhypermodule of M .

The following property is another characterization of prime subhypermodules.

Proposition 2.1.19. Let N be a proper subhypermodule of an R-hypermodule M .

Then N is a prime subhypermodule if and only if (N : K) = (N : M) for every

subhypermodule K of M such that N ⊂ K ⊆M .
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Proof. First, assume that N is prime and let K be a subhypermodule of M such

that N ⊂ K ⊆ M . It is obvious that (N : M) ⊆ (N : K). Let r ∈ (N : K).

Then rK ⊆ N . We show that 〈r〉K ⊆ N . Note that 〈r〉K =
(
[Rr] + [rR] +

[RrR] + [Zr]
)
K ⊆ [RrK] + [rRK] + [RrRK] + [ZrK] ⊆ N. Since N is prime

and N ⊂ K, we obtain that 〈r〉 ⊆ (N : M). Hence r ∈ (N : M). This shows

(N : K) = (N : M).

Conversely, assume that (N : K) = (N : M) for every subhypermodule K

of M such that N ⊂ K ⊆ M and let I and D be a hyperideal of R and a

subhypermodule of M , respectively, such that ID ⊆ N . Suppose D * N . Set

K = D + N . Then N ⊂ K ⊆ M and IK = I(D + N) ⊆ ID + IN ⊆ N . Thus

I ⊆ (N : K). By assumption, I ⊆ (N : M). Hence N is a prime subhypermodule

of M .

In the rest of this section, we introduce homomorphisms of hypermodules and

give some properties of prime subhypermodules that are related to homomor-

phisms.

Definition 2.1.20. Let M and M ′ be R-hypermodules. A function φ : M →M ′

is called a (hypermodule) homomorphism if

φ(x+ y) = φ(x) + φ(y) and φ(rx) = rφ(x)

for all r ∈ R and x, y ∈M .

We define the kernel and the image of φ , denoted by ker(φ) and im(φ), re-

spectively, by

ker(φ) = {m ∈M | φ(m) = 0} and im(φ) = {φ(m) | m ∈M}.

Proposition 2.1.21. Let M and M ′ be R-hypermodules and φ : M → M ′ a

homomorphism. If φ(0) = 0, then φ(−x) = −φ(x) and φ(nx) = nφ(x) for all

x ∈M and n ∈ Z.

Proof. Assume that φ(0) = 0. Let x ∈ M . Since 0 ∈ x + (−x), it follows that

φ(0) ∈ φ
(
x + (−x)

)
= φ(x) + φ(−x), so that 0 = φ(0) ∈ φ(x) + φ(−x). Hence
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φ(−x) = −φ(x). Moreover, to show that φ(nx) = nφ(x) for all n ∈ Z, let

n ∈ Z. If n = 0, then we are done. If n > 0, then φ(nx) = φ(x+ x+ · · ·+ x︸ ︷︷ ︸
n copies

) =

φ(x) + φ(x) + · · ·+ φ(x)︸ ︷︷ ︸
n copies

= nφ(x). Assume that n < 0. Then

φ(nx) = φ
(
(−x) + (−x) + · · ·+ (−x)︸ ︷︷ ︸

−n copies

)
= φ(−x) + φ(−x) + · · ·+ φ(−x)︸ ︷︷ ︸

−n copies

=
(
−φ(x)

)
+
(
−φ(x)

)
+ · · ·+

(
−φ(x)

)︸ ︷︷ ︸
−n copies

= nφ(x).

Hence φ(nx) = nφ(x).

From above, we see that the condition φ(0) = 0 gives useful results. Thus

from now on, all homomorphisms satisfy the condition φ(0) = 0.

Proposition 2.1.22. Let M and M ′ be R-hypermodules and φ : M → M ′ a

homomorphism.

(i) If N is a subhypermodule of M , then φ(N) is a subhypermodule of M ′.

(ii) If N ′ is a subhypermodule of M ′, then φ−1(N ′) is a subhypermodule of M .

Proof. The proof is easy.

Lemma 2.1.23. Let M and M ′ be R-hypermodules and φ : M → M ′ a homo-

morphism. Let N be a subhypermodule of M such that kerφ ⊆ N . If x ∈ M is

such that φ(x) ∈ φ(N), then x ∈ N .

Proof. Assume that x ∈M is such that φ(x) ∈ φ(N). Then φ(x) = φ(n) for some

n ∈ N . Then 0 ∈ φ(x) − φ(n) = φ(x − n). There exists p ∈ x − n such that

φ(p) = 0, i.e., p ∈ ker(φ) ⊆ N . Since p ∈ x− n, we have x ∈ p+ n ⊆ N .

Proposition 2.1.24. Let M and M ′ be R-hypermodules and φ : M → M ′ a

surjective homomorphism. Let N be a prime subhypermodule of M such that

kerφ ⊆ N . Then φ(N) is a prime subhypermodule of M ′.
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Proof. First, we show that φ(N) 6= M ′. Suppose not. Since N is prime, there

exists m ∈ M r N . Since φ(N) = M ′, we have φ(m) ∈ φ(N). By the previous

lemma, m ∈ N , a contradiction. Thus φ(N) 6= M ′.

Let I be a hyperideal of R and D′ a subhypermodule of M ′ such that ID′ ⊆

φ(N). Proposition 2.1.22 yields that φ−1(D′) is a subhypermodule of M . We

claim that Iφ−1(D′) ⊆ N . Let a ∈ I and x ∈ φ−1(D′). Then φ(x) ∈ D′, so that

φ(ax) = aφ(x) ⊆ φ(N). To show that ax ⊆ N , let l ∈ ax. Then φ(l) ∈ φ(N),

so that l ∈ N from the previous lemma. Therefore ax ⊆ N . This shows that

Iφ−1(D′) ⊆ N as claimed.

Since Iφ−1(D′) ⊆ N , φ−1(D′) is a subhypermodule of M and N is prime,

we can conclude that I ⊆ (N : M) or φ−1(D′) ⊆ N . Then IM ⊆ N or

φ(φ−1(D′)) ⊆ φ(N). Since φ is surjective, IM ′ = Iφ(M) = φ(IM) ⊆ φ(N)

or D′ ⊆ φ(φ−1(D′)) ⊆ φ(N). Hence I ⊆ (φ(N) : M ′) or D′ ⊆ φ(N). Thus φ(N)

is a prime subhypermodule of M ′.

Proposition 2.1.25. Let M and M ′ be R-hypermodules and φ : M → M ′ a

homomorphism. Let N ′ be a prime subhypermodule of M ′ such that φ−1(N ′) 6= M .

Then φ−1(N ′) is a prime subhypermodule of M .

Proof. Let I be a hyperideal of R and D a subhypermodule of M such that

ID ⊆ φ−1(N ′). Then Iφ(D) = φ(ID) ⊆ N ′. By Proposition 2.1.22, φ(D) is a

subhypermodule of M ′. Since N ′ is prime, I ⊆ (N ′ : M ′) or φ(D) ⊆ N ′. Thus

φ(IM) = I(φ(M)) ⊆ IM ′ ⊆ N ′ or D ⊆ φ−1(N ′). Hence I ⊆ (φ−1(N ′) : M) or

D ⊆ φ−1(N ′). Therefore φ−1(N ′) is a prime subhypermodule of M .

Corollary 2.1.26. Let N and K be subhypermodules of an R-hypermodule M

such that N ⊆ K. Then K is a prime subhypermodule of M if and only if K/N

is a prime subhypermodule of M/N .

Proof. The proof follows from Proposition 2.1.24 and Proposition 2.1.25 by using

the canonical projection φ : M →M/N .
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2.2 Weakly Primality

This section is divided into two subsections, discussing weakly prime hyperide-

als and weakly prime subhypermodules, respectively. Weakly prime hyperideals

(subhypermodules) are a generalization of prime hyperideals (subhypermodules).

We are interested in studying some properties regarding weakly prime hyperideals

and weakly prime subhypermodules.

2.2.1 Weakly Prime Hyperideals

The definition of weakly prime hyperideals are extened from prime hyperideals in

the same way as the extension of weakly prime ideals from prime ideals.

Definition 2.2.1. Let R be a hyperring. A proper hyperideal P is called weakly

prime if for all hyperideals I and J ,

{0} 6= [IJ ] ⊆ P ⇒ I ⊆ P or J ⊆ P .

We know from Chapter I that {0} may not be a hyperideal. If {0} is not a

hyperideal, then, by Proposition 1.3.3, there are no hyperideals I and J such that

IJ = {0}. Thus we obtain the following result.

Proposition 2.2.2. Let R be a hyperring such that {0} is not a hyperideal of R.

Then prime hyperideals and weakly prime hyperideals of R are the same.

In this subsection, it is reasonable for us to consider hyperrings such that {0}

is their hyperideal. For the rest of this subsection, we assume that {0} is always

a hyperideal. We characterize weakly prime hyperideals in the same ways as we

did for prime hyperideals.

Proposition 2.2.3. Let R be a hyperring and P a proper hyperideal of R. Then

P is a weakly prime hyperideal of R if and only if {0} 6= IJ ⊆ P implies

I ⊆ P or J ⊆ P for all hyperideals I and J of R.

Proof. Assume that P is a weakly prime hyperideal of R. Let I and J be hyper-

ideals of R such that {0} 6= IJ ⊆ P . Then [IJ ] ⊆ P and {0} 6= IJ ⊆ [IJ ]. Thus

{0} 6= IJ ⊆ P . Hence I ⊆ P or J ⊆ P .
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Conversely, assume that {0} 6= IJ ⊆ P implies I ⊆ P or J ⊆ P for all

hyperideals I and J of R. Let I and J be hyperideals of R such that {0} 6= [IJ ] ⊆

P . Since [IJ ] 6= {0}, there exist ai ∈ I and bi ∈ J for all i ∈ {1, 2, . . . , n} such

that a1b1 +a2b2 + · · ·+anbn 6= {0}. Then ajbj 6= {0} for some j. Hence IJ 6= {0},

so that {0} 6= IJ ⊆ P . By assumption, I ⊆ P or J ⊆ P . This shows P is weakly

prime.

If a hyperring is strongly distributive and commutative, we obtain the follow-

ing:

Proposition 2.2.4. Let R be a strongly distributive commutative hyperring and

P a proper hyperideal of R. Then P is a weakly prime hyperideal if and only if

{0} 6= ab ⊆ P implies a ∈ P or b ∈ P for all a, b ∈ R.

Proof. Assume that P is weakly prime. Let a, b ∈ R be such that {0} 6= ab ⊆ P .

Note that R is commutative. Then we consider the following hyperideals I and J

of R:

I = 〈a〉 = [Ra] + [Za] and J = 〈b〉 = [Rb] + [Zb].

Then a ∈ I and b ∈ J . Thus ab ⊆ IJ , so that IJ 6= {0}. Since R is commutative

and ab ⊆ P , we have IJ ⊆ P . Thus {0} 6= IJ ⊆ P . Hence I ⊆ P or J ⊆ P .

Thus a ∈ P or b ∈ P .

Assume for the converse that {0} 6= ab ⊆ P implies a ∈ P or b ∈ P for all

a, b ∈ R. Let I and J be hyperideals of R such that {0} 6= IJ ⊆ P . Suppose that

J * P . There exists x ∈ J rP . To show that I ⊆ P , let a ∈ I. If ax 6= {0}, then

{0} 6= ax ⊆ P , so by assumption, we have a ∈ P . Now, assume that ax = {0}.

Then there are two cases to be considered

Case 1 aJ 6= {0}. There exists d ∈ J such that ad 6= {0}, so that {0} 6= ad ⊆ P .

If d /∈ P , then we are done. Assume that d ∈ P . Since R is strongly distributive,

a(x+d) = ax+ad = ad 6= {0}. Hence there exists l ∈ x+d such that {0} 6= al ⊆ P .

We have a ∈ P or l ∈ P . If l ∈ P , then x ∈ l + (−d) ⊆ P since l ∈ x + d, a

contradiction. Hence a ∈ P .

Case 2 aJ = {0}.
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Case 2.1 Ix 6= {0}. There exists r ∈ I such that rx 6= {0}. Then {0} 6=

rx ⊆ P . We have r ∈ P . Note that (r + a)x = rx + ax = rx 6= {0}. Then there

exists p ∈ r + a such that {0} 6= px ⊆ P . We have p ∈ P . Since p ∈ r + a,

a ∈ (−r) + p ⊆ P .

Case 2.2 Ix = {0}. Since IJ 6= {0}, there exist b ∈ I and d ∈ J such

that bd 6= {0}, so that {0} 6= bd ⊆ P . If d /∈ P , then we have b ∈ P . Note

(a+b)d = ad+bd = bd 6= {0}. Hence there exists p ∈ a+b such that {0} 6= pd ⊆ P .

We have p ∈ P . Since p ∈ a+ b, a ∈ p+ (−b) ⊆ P .

Assume that d ∈ P . Then b(x + d) = bx + bd = bd 6= {0}. Hence there exists

l ∈ x + d such that {0} 6= bl ⊆ P . We have b ∈ P or l ∈ P . If l ∈ P , then

x ∈ l + (−d) ⊆ P since l ∈ x + d, a contradiction. Therefore l /∈ P and b ∈ P .

We have (a + b)l = al + bl = bl 6= {0}. Then there exists p ∈ a + b such that

{0} 6= pl ⊆ P . Hence p ∈ P . Since p ∈ a+ b, a ∈ p+ (−b) ⊆ P .

Finally the last two characterizations are considered.

Proposition 2.2.5. Let R be a strongly distributive hyperring such that a ∈ Ra

for all a ∈ R and P a proper hyperideal of R. Then P is a weakly prime hyperideal

if and only if {0} 6= aRb ⊆ P implies a ∈ P or b ∈ P for all a, b ∈ R.

Proof. Assume first that P is a weakly prime hyperideal. Let a, b ∈ R be such

that {0} 6= aRb ⊆ P . Here let

I = 〈a〉 = [Ra] + [RaR] and J = 〈b〉 = [Rb] + [RbR].

Then I and J are hyperideals of R such that a ∈ I and b ∈ J . Note aRb ⊆ IJ ,

so that IJ 6= {0}. Since aRb ⊆ P , we have IJ ⊆ P . Thus {0} 6= IJ ⊆ P . Then

I ⊆ P or J ⊆ P because P is weakly prime. Hence a ∈ P or b ∈ P .

Now assume that {0} 6= aRb ⊆ P implies a ∈ P or b ∈ P for all a, b ∈ R.

Let I and J be hyperideals of R such that {0} 6= IJ ⊆ P . Suppose that J * P .

There exists x ∈ J r P . We show that I ⊆ P . Let a ∈ I. Then aRx ⊆ P . If

aRx 6= {0}, then we are done. Assume further that aRx = {0}. We obtain that

arx = {0} for all r ∈ R. Consider two cases as follow.
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Case 1 aRJ 6= {0}. There exists d ∈ J such that aRd 6= {0}, so that {0} 6=

aRd ⊆ P . If d /∈ P , then we are done. Assume that d ∈ P . Since aRd 6= {0},

there exists r ∈ R such that ard 6= {0}. Then ar(x+d) = arx+ard = ard 6= {0}.

There exists l ∈ x + d such that {0} 6= arl ⊆ P . Therefore {0} 6= aRl ⊆ P .

We have a ∈ P or l ∈ P . If l ∈ P , then x ∈ l + (−d) ⊆ P since l ∈ x + d, a

contradiction. Hence a ∈ P .

Case 2 aRJ = {0}.

Case 2.1 Ix 6= {0}. There exists r ∈ I such that rx 6= {0}. Then {0} 6=

rRx ⊆ IJ ⊆ P . We have r ∈ P . Since rRx 6= {0}, there exists s ∈ R such that

rsx 6= {0}. Then (r + a)sx = rsx + asx = rsx 6= {0}. There exists p ∈ r + a

such that {0} 6= psx, so that {0} 6= pRx ⊆ P . We have p ∈ P . Since p ∈ r + a,

a ∈ (−r) + p ⊆ P .

Case 2.2 Ix = {0}. Since IJ 6= {0}, there exist b ∈ I and d ∈ J such that

bd 6= {0}, so that {0} 6= bRd ⊆ P . If d /∈ P , then we have b ∈ P . Since bRd 6= {0},

there exists s ∈ R such that bsd 6= {0}. Then (a+ b)sd = asd+ bsd = bsd 6= {0}.

Hence there exists p ∈ a + b such that psd 6= {0}, so that {0} 6= pRd ⊆ P . We

have p ∈ P . Since p ∈ a+ b, a ∈ p+ (−b) ⊆ P .

Assume that d ∈ P . Since bRd 6= {0}, there exists s ∈ R such that bsd 6= {0}.

Then bs(x + d) = bsx + bsd = bsd 6= {0}. Hence there exists l ∈ x + d such

that bsl 6= {0}, so that {0} 6= bRl ⊆ P . We have b ∈ P or l ∈ P . If l ∈ P ,

then x ∈ l + (−d) ⊆ P since l ∈ x + d, a contradiction. Therefore l /∈ P and

b ∈ P . We have (a + b)sl = asl + bsl = bsl 6= {0}. Then there exists p ∈ a + b

such that psl 6= {0}, so that {0} 6= pRl ⊆ P . Hence p ∈ P . Since p ∈ a + b,

a ∈ p+ (−b) ⊆ P .

Proposition 2.2.6. Let R be a hyperring such that a ∈ aR for all a ∈ R and

P a proper hyperideal of R. Then P is a weakly prime hyperideal if and only if

{0} 6= aRb ⊆ P implies a ∈ P or b ∈ P for a, b ∈ R.

Proof. The proof is nearly the same as the proof of the previous proposition.
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2.2.2 Weakly Prime Subhypermodules

This subsection is devoted to studying properties of weakly prime subhypermod-

ules. First, we give a definition of weakly prime subhypermodules.

Definition 2.2.7. Let R be a hyperring and M an R-hypermodule. A proper

subhypermodule N of M is called weakly prime if for all hyperideals I of R and

all subhypermodules D of M ,

{0} 6= [ID] ⊆ N ⇒ I ⊆ (N : M) or D ⊆ N .

Recall from Chapter I that {0} may not be a subhypermodule. By Proposi-

tion 1.3.2, if {0} is not a subhypermodule, then there are no hyperideals I and

subhypermodules N such that IN = {0}. Thus the following result is obtained.

Proposition 2.2.8. Let M be an R-hypermodule such that {0} is not a subhyper-

module of M . Then prime subhypermodules and weakly prime subhypermodules

of M are the same.

In this section, we consider only hypermodules satisfying the property that

{0} is a subhypermodule. First, we characterize weakly prime subhypermodules

in the same ways as prime subhypermodules.

Before starting on these characterizations, we consider a generalization of

weakly prime subhypermodules, called L-prime subhypermodules. L-prime sub-

hypermodules are defined in similar way to weakly prime subhypermodules but

we change the subhypermodule {0} to a subhypermodule L.

Definition 2.2.9. Let R be a hyperring, M an R-hypermodule and L a subhy-

permodule of M . A proper subhypermodule N of M is called L-prime if for all

hyperideals I of R and all subhypermodules D of M ,

L 6= [ID] ⊆ N ⇒ I ⊆ (N : M) or D ⊆ N .

The following proposition gives a relationship between weakly prime subhy-

permodules and L-prime subhypermodules.
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Proposition 2.2.10. Let M be an R-hypermodule and L a subhypermodule of M .

Then a subhypermodule N of M is L-prime if and only if N/(N ∩ L) is a weakly

prime subhypermodule of M/(N ∩ L).

Proof. First, assume that N is L-prime and let I and D/(N ∩L) be a hyperideal

of R and a subhypermodule of M/(N ∩ L), respectively, such that {N ∩ L} 6=

[I(D/(N ∩ L))] ⊆ N/(N ∩ L). Then L 6= [ID] ⊆ N . Since N is L-prime, we

obtain that I ⊆ (N : M) or D ⊆ N . Hence I ⊆ (N/(N ∩ L) : M/(N ∩ L)) or

D/(N ∩L) ⊆ N/(N ∩L). Thus N/(N ∩L) is a weakly prime subhypermodule of

M/(N ∩ L).

Conversely, assume that N/(N ∩ L) is a weakly prime subhypermodule of

M/(N ∩ L), and let I and D be a hyperideal of R and a subhypermodule of M ,

respectively, such that L 6= [ID] ⊆ N . Then {N ∩ L} 6= [I(D/(N ∩ L))] ⊆

N/(N ∩ L), so that I ⊆ (N/(N ∩ L) : M/(N ∩ L)) or D/(N ∩ L) ⊆ N/(N ∩ L).

Hence IM ⊆ N or D ⊆ N . Thus I ⊆ (N : M) or D ⊆ N , which shows that N is

L-prime.

This relation confirms us that it is sufficient to study only weakly prime sub-

hypermodules. Next we present some characterizations of weakly prime subhy-

permodules. First we characterize under the same conditions as the above.

Proposition 2.2.11. Let M be a hypermodule and N a proper subhypermodule of

M . Then N is a weakly prime subhypermodule if and only if {0} 6= ID ⊆ N im-

plies I ⊆ (N : M) or D ⊆ N for all hyperideals I of R and all subhypermodules D

of M .

Proof. Similar to the proof of Proposition 2.2.3.

Proposition 2.2.12. Let R be a commutative hyperring, M a strongly distributive

R-hypermodule and N a proper subhypermodule of M . Then N is a weakly prime

subhypermodule if and only if {0} 6= am ⊆ N implies a ∈ (N : M) or m ∈ N for

all a ∈ R and m ∈M .

Proof. This proof is much like the proof of Proposition 2.2.4.
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Proposition 2.2.13. Let M be a a strongly distributive R-hypermodule, N a

proper subhypermodule of M and assume that a ∈ aR for every a ∈ R. Then

N is a weakly prime subhypermodule if and only if {0} 6= aRm ⊆ N implies

a ∈ (N : M) or m ∈ N for all a ∈ R and m ∈M .

Proof. This proof is much like the proof of Proposition 2.2.6.

Proposition 2.2.14. Let M be a strongly distributive R-hypermodule, N a proper

subhypermodule of M and assume that x ∈ Rx for every x ∈ M . Then N is a

weakly prime subhypermodule if and only if {0} 6= aRm ⊆ N implies a ∈ (N :

M) or m ∈ N for all a ∈ R and m ∈M .

Proof. This proof is also similar to the proof of Proposition 2.2.5.

Proposition 2.2.15. Let M be an R-hypermodule and N a proper subhypermod-

ule of M . The following are equivalent.

(i) N is a weakly prime subhypermodule.

(ii) For any subhypermodule D * N , (N : D) = (N : M) ∪ ({0} : D).

(iii) For any subhypermodule D * N , (N : D) = (N : M) or (N : D) = ({0} :

D).

Proof. (i) ⇒ (ii) Assume that (i) holds. Let D be a subhypermodule of M such

that D * N . It is obvious that (N : M) ∪ ({0} : D) ⊆ (N : D). Let a ∈ (N : D).

Then aD ⊆ N . If aD = {0}, then a ∈ ({0} : D). On the other hand, let

aD 6= {0}. Then {0} 6= 〈a〉D ⊆ N so that 〈a〉 ⊆ (N : M) or D ⊆ N by

Proposition 2.2.11. Consequently, a ∈ 〈a〉 ⊆ (N : M) since D * N .

(ii) ⇒ (iii) It is obtained from Proposition 1.1.16.

(iii) ⇒ (i) Assume that (iii) is valid. Let I and D be a hyperideal of R and

a subhypermodule of M , respectively, such that {0} 6= ID ⊆ N . Suppose that

D * N . It follows from (iii) that (N : D) = (N : M) or (N : D) = ({0} : D).

Note that I ⊆ (N : D) because ID ⊆ N . Thus I ⊆ (N : M) or I ⊆ ({0} : D). If

I ⊆ ({0} : D), then ID ⊆ {0} so that ID = {0} leading to a contradiction. Thus

I ⊆ (N : M).
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Corollary 2.2.16. Let M be an R-hypermodule and N a proper subhypermodule

of M . If N is a weakly prime subhypermodule, then (N : 〈m〉) = (N : M)∪ ({0} :

〈m〉) for every element m of M with m /∈ N .

Proof. Let m be an element of M with m /∈ N and let D = 〈m〉. Then D is a

subhypermodule of M with D * N , so the conclusion follows from Proposition

2.2.15.

Although the following characterization of weakly prime subhypermodules

are quite similar to those in Propoition 2.2.15, the strongly distributivity of R-

hypermodules is needed.

Corollary 2.2.17. Let M be a strongly distributive R-hypermodule, N a proper

subhypermodule of M and assume that x ∈ Rx for every x ∈ M . The following

are equivalent.

(i) N is a weakly prime subhypermodule.

(ii) For all elements m ∈M with m /∈ N , (N : Rm) = (N : M) ∪ ({0} : Rm).

(iii) For all elements m ∈M with m /∈ N , (N : Rm) = (N : M) or (N : Rm) =

({0} : Rm).

Proof. The proofs of (i) ⇒ (ii) ⇒ (iii) follow from Proposition 2.2.15 and the

facts for m ∈ M rN that [Rm] is a subhypermodule of M with [Rm] * N ,

(N : Rm) =
(
N : [Rm]

)
and ({0} : Rm) =

(
{0} : [Rm]

)
.

(iii) ⇒ (i) Assume that (iii) holds. Let a ∈ R and m ∈ M be such that

{0} 6= aRm ⊆ N . Suppose that m /∈ N . Note that a ∈ (N : Rm). By (iii),

a ∈ (N : M) or a ∈ ({0} : Rm). It is not possible that a ∈ ({0} : Rm) since

aRm 6= {0}. Hence a ∈ (N : M). Therefore, N is a weakly prime subhypermodule

by Proposition 2.2.14.

Proposition 2.2.18. Let M be a strongly distributive R-hypermodule and N a

proper subhypermodule of M and assume that a ∈ aR for every a ∈ R. The

following are equivalent.
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(i) N is a weakly prime subhypermodule.

(ii) For all elements m ∈M with m /∈ N , (N : Rm) = (N : M) ∪ ({0} : Rm).

(iii) For all elements m ∈M with m /∈ N , (N : Rm) = (N : M) or (N : Rm) =

({0} : Rm).

Proof. (i) ⇒ (ii) Assume that N is a weakly prime subhypermodule. Let m ∈

MrN . It is obvious that (N : M) ∪ ({0} : Rm) ⊆ (N : Rm). Let a ∈ (N : Rm).

Thus aRm ⊆ N . If aRm = {0}, then a ∈ ({0} : Rm). If aRm 6= {0}, then

a ∈ (N : M) by assumption together with Proposition 2.2.13.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) This is similar to the proof (iii) ⇒ (i) of the above proposition by

applying Proposition 2.2.13 instead.

This subsection ends with an investigation of some properties of weakly prime

subhypermodules.

Proposition 2.2.19. Let M be an R-hypermodule and N and K subhypermodules

of M with K ⊆ N .

(i) If N is a weakly prime subhypermodule of M , then N/K is a weakly prime

subhypermodule of M/K.

(ii) If K and N/K are weakly prime subhypermodules of the appropriate hyper-

modules, then N is a weakly prime subhypermodule of M .

Proof. (i) Assume that N is a weakly prime subhypermodule of M . Let I and

D/K be a hyperideal of R and a subhypermodule of M/K, respectively, such

that {K} 6= I(D/K) ⊆ N/K. If ID = {0}, then I(D/K) = K, a contradiction.

Thus {0} 6= ID ⊆ N . Since N is weakly prime, I ⊆ (N : M) or D ⊆ N .

Hence I ⊆ (N/K : M/K) or D/K ⊆ N/K. Therefore, N/K is a weakly prime

subhypermodule of M/K.

(ii) Assume that K and N/K are weakly prime subhypermodules of the ap-

propriate hypermodules. Let I and D be a hyperideal of R and a subhypermodule
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of M , respectively, such that {0} 6= ID ⊆ N .

Case 1 ID ⊆ K. Then {0} 6= ID ⊆ K. Since K is weakly prime, I ⊆ (K : M)

or D ⊆ K. Thus I ⊆ (N : M) or D ⊆ N since K ⊆ N .

Case 2 ID * K. Then {K} 6= I(D/K) ⊆ N/K. Since N/K is weakly prime,

I ⊆ (N/K : M/K) or D/K ⊆ N/K. Thus IM ⊆ N or D ⊆ N , so I ⊆ (N : M)

or D ⊆ N . Therefore N is a weakly prime subhypermodule of M .

By Proposition 2.1.13, we know that if N is a prime subhypermodule, then

(N : M) is a prime hyperideal. But if we change “prime” to “weakly prime”, this

property may not hold. Thus we study conditions that imply this property.

Proposition 2.2.20. Let M be an R-hypermodule such that {0} is a prime sub-

hypermodule and N a subhypermodule of M such that ∅ 6= (N : M) 6= R. If N is

a weakly prime subhypermodule of M , then (N : M) is a weakly prime hyperideal.

(This R-hypermodule is also called a prime R-hypermodule.)

Proof. Assaume that N is a weakly prime subhypermodule of M . Let A and B

be hyperideals of R such that {0} 6= AB ⊆ (N : M). Suppose that B * (N : M).

There exist b ∈ B and m ∈M such that bm * N . Note that

A〈bm〉 ⊆ A(Rbm+ Zbm) ⊆ N.

If A〈bm〉 = {0}, then A ⊆
(
{0} : M

)
or 〈bm〉 ⊆ {0}. Thus A ⊆ ({0} : M) ⊆ (N :

M). If A〈bm〉 6= {0}, then A ⊆ (N : M) since N is weakly prime.

Corollary 2.2.21. Let M be a prime hypermodule such that M = RM and

N a subhypermodule of M such that (N : M) 6= ∅. If N is a weakly prime

subhypermodule of M , then (N : M) is a weakly prime hyperideal.

Proof. Assume that N is a weakly prime subhypermodule of M . Then N 6= M .

Suppose that (N : M) = R. Then M = RM ⊆ N , a contradiction. Hence

(N : M) 6= R. The result now follows from Proposition 2.2.20.

Finally, we determine the relations between prime and weakly prime subhy-

permodules. It is clear that prime subhypermodules are weakly prime subhyper-

modules. Therefore we give a condition which implies that weakly prime subhy-

permodules are prime subhypermodules.
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Proposition 2.2.22. Let N be a weakly prime subhypermodule of an R-hypermodule

M . If (N : M)N 6= {0}, then N is a prime subhypermodule of M .

Proof. Assume that (N : M)N 6= {0} and let I and D be a hyperideal of R and

a subhypermodule of M , respectively, such that ID ⊆ N . If ID 6= {0}, then we

are done. Assume that ID = {0}.

Case 1 IN 6= {0}. Then IN ⊆ I(D + N) ⊆ ID + IN = {0} + IN = IN .

Therefore {0} 6= I(D + N) ⊆ N . Since N is weakly prime, I ⊆ (N : M) or

D +N ⊆ N . Hence I ⊆ (N : M) or D ⊆ N .

Case 2 IN = {0}.

Case 2.1 (N : M)D 6= {0}. Then (N : M)D ⊆
(
I + (N : M)

)
D ⊆ ID+ (N :

M)D = (N : M)D. Hence {0} 6=
(
I+(N : M)

)
D ⊆ N . Since N is weakly prime,

I + (N : M) ⊆ (N : M) or D ⊆ N . Thus I ⊆ (N : M) or D ⊆ N .

Case 2.2 (N : M)D = {0}. Then (N : M)N ⊆
(
I + (N : M)

)
(D + N) ⊆

ID + IN + (N : M)D + (N : M)N = (N : M)N ⊆ N . Hence {0} 6=
(
I + (N :

M)
)
(D + N) ⊆ N . Since N is weakly prime, I + (N : M) ⊆ (N : M) or

D +N ⊆ N . Therefore I ⊆ (N : M) or D ⊆ N .

Corollary 2.2.23. Let N be a weakly prime subhypermodule of an R-hypermodule

M which is not prime. If I is a hyperideal of R such that I ⊆ (N : M), then

IN = {0}. In particular, (N : M)N = {0}.

Proof. By the previous proposition, we have (N : M)N = {0}. Assume that I is

a hyperideal of R such that I ⊆ (N : M). Then IN ⊆ (N : M)N = {0}. Hence

IN = {0}.



CHAPTER III

PRIME AND WEAKLY PRIME SUBHYPERMODULES

OF MULTIPLICATION HYPERMODULES

In this chapter, we introduce multiplication hypermodules and give some proper-

ties of prime and weakly prime subhypermodules of multiplication hypermodules.

3.1 Multiplication Hypermodules

First, we give a definition of multiplication hypermodules.

Definition 3.1.1. Let M be an R-hypermodule. Then M is called a multipli-

cation R-hypermodule if for every subhypermodule N of M , N = [IM ] for some

hyperideal I of R.

Recall that, in general, if N is a subhypermodule of an R-hypermoduleM , then

(N : M) may be empty. We show that if M is a multiplication R-hypermodule,

then (N : M) is always nonempty.

Proposition 3.1.2. Let M be a multiplication R-hypermodule. Then (N : M) is

nonempty for every subhypermodule N of M .

Proof. Let N be a subhypermodule of M . Then there exists a hyperideal I such

that N = [IM ]. Hence IM ⊆ N , i.e., I ⊆ (N : M). Since I is nonempty, (N : M)

is nonempty.

Next, we determine an explicit form for a subhypermodule of a multiplication

hypermodule.

Proposition 3.1.3. Let M be a multiplication R-hypermodule. If N is a subhy-

permodule of M , then N = [(N : M)M ].
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Proof. LetN be a subhypermodule ofM . ThenN = [IM ] for some hyperideal I of

R. Thus IM ⊆ N , so I ⊆ (N : M). Hence N = [IM ] ⊆ [(N : M)M ]. Conversely,

[(N : M)M ] ⊆ N since (N : M)M ⊆ N . Therefore N = [(N : M)M ].

Corollary 3.1.4. Let M be a multiplication R-hypermodule and N a subhyper-

module of M . Then M = [RM ]. Moreover, N = M if and only if (N : M) = R.

Proof. By the above proposition, M = [(M : M)M ] = [RM ]. Assume N = M .

Then (N : M) = (M : M) = R. Conversely, assume that (N : M) = R. Then

N = [(N : M)M ] = [RM ] = M .

Recall from Chapter I that N =
∑

n∈N〈n〉 for any subhypermodules N of

an R-hypermodule M . If M is also a multiplication R-hypermodule, then the

following proposition is obtained.

Proposition 3.1.5. Let N be a subhypermodule of a multiplication R-hypermodule

M . Then N =
∑

n∈N [InM ] =
[(∑

n∈N In
)
M
]

where for each n ∈ N , In is any

hyperideal of R such that 〈n〉 = InM .

Proof. This is straightforward.

The following proposition gives a characterization of multiplication hypermod-

ules.

Proposition 3.1.6. An R-hypermodule M is a multiplication R-hypermodule if

and only if for each m ∈ M , there exists an hyperideal I of R such that 〈m〉 =

[IM ].

Proof. First, assume that M is a multiplication R-hypermodule. Let m ∈ M .

Since 〈m〉 is a subhypermodule of M , there exists a hyperideal I of R such that

〈m〉 = [IM ].

Conversely, assume that for each m ∈ M , there exists an hyperideal I of R

such that 〈m〉 = [IM ]. Let N be a subhypermodule of M . Then for each

x ∈ N there exists a hyperideal Ix of R such that 〈x〉 = [IxM ]. We claim that

N =
[(∑

x∈N Ix
)
M
]
. For each x ∈ N , it follows that x ∈ 〈x〉 = [IxM ] ⊆



48

(∑
x∈N Ix

)
M , so N ⊆

[(∑
x∈N Ix

)
M
]
. Now, let m ∈

[(∑
x∈N Ix

)
M
]
. Then

m ∈
[(∑

x∈N Ix
)
M
]
⊆
∑

x∈N [IxM ] =
∑

x∈N〈x〉. It follows that m ∈ N since

〈x〉 ⊆ N for each x ∈ N .

Corollary 3.1.7. Let M be an R-hypermodule such that x ∈ Rx for all x ∈ M .

Then M is a multiplication R-hypermodule if and only if for each m ∈ M , there

exists an hyperideal I of R such that [Rm] = [IM ].

Proof. This follows from Proposition 3.1.6.

Corollary 3.1.8. Let M be an R-hypermodule such that N = RN for every

subhypermodule N of M . Then M is a multiplication R-hypermodule if and only

if for each m ∈M , there exists a hyperideal I of R such that [Rm] = [IM ].

Proof. This follows from Proposition 3.1.6.

Next, we study some properties of multiplication hypermodules. First, we give

a lemma which is related to homomorphisms of hypermodules.

Lemma 3.1.9. Let M and M ′ be R-hypermodules. If f : M → M ′ is a homo-

morphism, then f
(
〈x〉
)

=
〈
f(x)

〉
for every x ∈M .

Proof. Assume that f : M → M ′ is a homomorphism. By Proposition 2.1.21,

f(ax) = af(x) for all a ∈ Z and x ∈ M . Let x ∈ M . First, let t ∈ f
(
〈x〉
)
. Then

there exists l ∈ 〈x〉 = [Rx]+[Zx] such that t = f(l). Thus l ∈
∑n

i=1 rix+
∑k

i=1 aix

where n, k ∈ N, ri ∈ R and ai ∈ Z for all i. Hence

t = f(l) ∈ f

(
n∑
i=1

rix+
k∑
i=1

aix

)
=

n∑
i=1

rif(x) +
k∑
i=1

aif(x)

⊆
[
Rf(x)

]
+
[
Zf(x)

]
=
〈
f(x)

〉
.

This shows that f
(
〈x〉
)
⊆
〈
f(x)

〉
.

Next, let t ∈
〈
f(x)

〉
. Then t ∈

[
Rf(x)

]
+
[
Zf(x)

]
, i.e., t ∈

∑n
i=1 rif(x) +∑k

i=1 aif(x) =
∑n

i=1 f(rix) +
∑k

i=1 f(aix) where n, k ∈ N, ri ∈ R and ai ∈ Z for

all i. Thus
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t ∈ f

(
n∑
i=1

rix

)
+ f

(
k∑
i=1

aix

)
= f

(
n∑
i=1

rix+
k∑
i=1

aix

)
⊆ f

(
[Rx] + [Zx]

)
= f

(
〈x〉
)
.

This shows that
〈
f(x)

〉
⊆ f

(
〈x〉
)
.

Proposition 3.1.10. Every homomorphic image of a multiplication R-hypermodule

is a multiplication R-hypermodule.

Proof. LetM andM ′ beR-hypermodules, M a multiplicationR-hypermodule and

f : M → M ′ a surjective homomorphism. Let x′ ∈ M ′. Then there exists x ∈ M

such that f(x) = x′. Since M is a multiplication R-hypermodule, 〈x〉 = [IM ] for

some hyperideal I of R. We claim that 〈x′〉 = [IM ′]. Note that by Lemma 3.1.9,

we obtain that

[IM ′] =
[
If(M)

]
= f

(
[IM ]

)
= f

(
〈x〉
)

=
〈
f(x)

〉
= 〈x′〉.

Hence M ′ is a multiplication hypermodule.

Corollary 3.1.11. Let M be a multiplication R-hypermodule and N a subhyper-

module of M . Then M/N is a multiplication R-hypermodule.

Proof. Define f : M → M/N by f(m) = m + N for all m ∈ M . It is clear that

f is surjective and f(0) = 0 +N . It is easy to check that f is a surjective homo-

morphism. It, then, follows from Proposition 3.1.10 that M/N is a multiplication

R-hypermodule.

3.2 Prime and Weakly Prime Subhypermodules

The main results of this chapter are given in this section. Our aim is to character-

ize prime and weakly prime subhypermodules of a multiplication hypermodule.

In general, we know that if N is a prime subhypermodule of an R-hypermodule

M such that (N : M) is not empty, then (N : M) is a prime hyperideal. In the

next proposition, we consider this statement under the assumption that M is a

multiplication R-hypermodule.
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Proposition 3.2.1. Let M be a multiplication R-hypermodule and N a subhyper-

module of M . Then N is a prime subhypermodule of M if and only if (N : M) is

a prime hyperideal of R.

Proof. The necessary part follows from Propositions 2.1.13 and 3.1.2 and Corollary

3.1.4.

Next, assume that (N : M) is a prime hyperideal of R. Then (N : M) 6= R,

so that N 6= M by Corollary 3.1.4. Let I and D be a hyperideal of R and a sub-

hypermodule of M , respectively, such that ID ⊆ N . Since M is a multiplication

R-hypermodule, D = [JM ] for some hyperideal J of R. Thus

(IJ)M = I(JM) ⊆ I[JM ] = ID ⊆ N.

This shows that IJ ⊆ (N : M). Since (N : M) is a prime hyperideal of R,

either I ⊆ (N : M) or J ⊆ (N : M). Then I ⊆ (N : M) or JM ⊆ N , so that

I ⊆ (N : M) or D ⊆ N . Hence N is a prime subhypermodule of M .

Next, we define the product of subhypermodules of a multiplication hyper-

module.

Definition 3.2.2. Let R be a commutative hyperring and M be a multiplication

R-hypermodule. For subhypermodules N and K of M , we define the product of

N and K as follows :

NK =
[
[IJ ]M

]
where N = [IM ] and K = [JM ] for some hyperideals I and J of R.

Note that products of subhypermodules of a multiplication R-hypermodule

require the hyperring R to be commutative. As a result, for the rest of this

chapter, we let R be a commutative hyperring.

Proposition 3.2.3. The product of subhypermodules is well-defined.

Proof. Let N and K be subhypermodules of a multiplication R-hypermodule.

Suppose that N = [I1M ] = [I2M ] and K = [J1M ] = [J2M ] for some hyperideals

I1, I2, J1 and J2 of R. Then
[
[I1J1]M

]
=
[
I1[J1M ]

]
=
[
I1[J2M ]

]
=
[
[I1J2]M

]
=[

[J2I1]M
]

=
[
J2[I1M ]

]
=
[
J2[I2M ]

]
=
[
[J2I2]M

]
=
[
[I2J2]M

]
.
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The next proposition gives a characterization of prime subhypermodules which

is analogous to the definition of prime hyperideals.

Proposition 3.2.4. Let M be a multiplication R-hypermodule and N a proper

subhypermodule of M . Then N is prime if and only if PK ⊆ N implies P ⊆ N

or K ⊆ N for all subhypermodules P and K of M .

Proof. First, assume that N is a prime subhypermodule of M . Let P and K be

subhypermodules of M such that PK ⊆ N . Suppose P = [IM ] and K = [JM ] for

some hyperideals I and J of R. Then I[JM ] ⊆
[
(IJ)M

]
⊆
[
[IJ ]M

]
= PK ⊆ N .

Since N is prime, I ⊆ (N : M) or [JM ] ⊆ N . Hence IM ⊆ N or K ⊆ N . Thus

P = [IM ] ⊆ N or K ⊆ N .

Conversely, assume that PK ⊆ N implies P ⊆ N or K ⊆ N for all subhyper-

modules P and K of M . Let I and D be a hyperideal of R and a subhypermodule

of M , respectively, such that [ID] ⊆ N . Suppose D = [JM ] for some hyper-

ideal J of R. Set P = [IM ]. Then P and D are subhypermodules of M such

that PD =
[
[IJ ]M

]
=
[
I[JM ]

]
= [ID] ⊆ N . By assumption, P ⊆ N or D ⊆ N .

Thus IM ⊆ [IM ] = P ⊆ N or D ⊆ N . Therefore I ⊆ (N : M) or D ⊆ N , which

shows that N is prime.

In fact, we can define the product of two elements of a multiplication hyper-

module.

Definition 3.2.5. Let M be a multiplication R-hypermodule M . For m,m′ ∈M

and a subhypermodule N of M , we define mm′ = 〈m〉〈m′〉, mN = 〈m〉N and

Nm = N〈m〉.

Lemma 3.2.6. Let M be a multiplication R-hypermodule, N a canonical sub-

hypergroup of (M,+) and P and K subhypermodules of M . Then the following

hold.

(i) PK ⊆ N if and only if pK ⊆ N for all p ∈ P .

(ii) PK ⊆ N if and only if Pk ⊆ N for all k ∈ K.
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(iii) PK ⊆ N if and only if pk ⊆ N for all p ∈ P and k ∈ K.

Proof. (i) First, assume that PK ⊆ N . Then
[
[(P : M)(K : M)]M

]
⊆ N . Let

p ∈ P . Then 〈p〉 = [IpM ] for some hyperideal Ip of R. Note that IpM ⊆ P so that

Ip ⊆ (P : M). Hence pK = 〈p〉K =
[
[Ip(K : M)]M

]
⊆
[
[(P : M)(K : M)]M

]
⊆

N .

Conversely, assume that pK ⊆ N for all p ∈ P . Since P =
∑

p∈P 〈p〉, we

obtain that PK =
(∑

p∈P 〈p〉
)
K. Note that for each p ∈ P , 〈p〉 = [IpM ] for some

hyperideal Ip of R. By assumption,
[
[Ip(K : M)]M

]
= pK ⊆ N for all p ∈ P .

Hence

PK =

(∑
p∈P

[IpM ]

)
K =

([(∑
p∈P

Ip)M
)])([

(K : M)M
])

=

[[(∑
p∈P

Ip
)
(K : M)

]
M

]
=
∑
p∈P

[[
Ip(K : M)

]
M
]
⊆ N.

(ii) The proof is similar to (i).

(iii) First, assume that PK ⊆ N . By (i), we have that pK ⊆ N for all p ∈ P ,

i.e., 〈p〉K ⊆ N for all p ∈ P . Thus by (ii) 〈p〉k ⊆ N for all p ∈ P and k ∈ K. By

definition, 〈p〉k = 〈p〉〈k〉 = pk, so pk ⊆ N for all p ∈ P and k ∈ K.

Conversely, assume that pk ⊆ N for all p ∈ P and k ∈ K. Then p〈k〉 ⊆ N for

all p ∈ P and k ∈ K, so that P 〈k〉 ⊆ N for all k ∈ K by (i). Thus Pk ⊆ N for

all k ∈ K. By (ii), PK ⊆ N .

The following result is analogous to Proposition 3.2.4. Its proof makes use of

Lemma 3.2.6.

Proposition 3.2.7. Let N be a proper subhypermodule of a multiplication R-

hypermodule M . Then N is prime if and only if mm′ ⊆ N implies m ∈ N or m′ ∈ N

for all m,m′ ∈M .

Proof. The necessary part is obtained from Proposition 3.2.4 and the definition

of the product mm′.

Conversely, assume thatmm′ ⊆ N impliesm ∈ N or m′ ∈ N for allm,m′ ∈M .

Let P and K be subhypermodules of M such that PK ⊆ N and K * N . Then
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there exists k ∈ K r N . To show that P ⊆ N , let p ∈ P . Since PK ⊆ N , we

have pk ⊆ N by Lemma 3.2.6. By assumption, p ∈ N or k ∈ N . Thus p ∈ N .

This shows P ⊆ N . We conclude that N is a prime subhypermodule of M .

By considering the multiplication of elements in a multiplication hypermodule,

zero divisors can be defined.

Definition 3.2.8. Let M be a multiplication R-hypermodule. An element m ∈

Mr{0} is called a zero divisor if there exists m′ ∈Mr{0} such that mm′ = {0}.

The following result gives a characterization of prime subhypermodules in

terms of zero divisors.

Proposition 3.2.9. Let N be a proper subhypermodule of a multiplication R-

hypermodule M . Then N is prime of M if and only if M/N has no zero divisors.

Proof. First, assume that N is a prime subhypermodule of M . Suppose that

there exist m,m′ ∈ M/N such that mm′ = {0}. Let 〈m〉 =
[
I(M/N)

]
and

〈m′〉 =
[
J(M/N)

]
for some hyperideals I and J of R. Then

[
[IJ ](M/N)

]
=

〈m〉〈m′〉 = mm′ = {0}. Thus I[JM ] ⊆
[
I[JM ]

]
=
[
[IJ ]M

]
⊆ N . Since N

is prime, I ⊆ (N : M) or [JM ] ⊆ N . Then [IM ] ⊆ N or [JM ] ⊆ N . Thus

〈m〉 = {0} or 〈m′〉 = {0}. Hence m = 0 or m′ = 0.

Conversely, assume that M/N has no zero divisors. Let m,m′ ∈ M be such

that mm′ ⊆ N . Then m,m′ ∈ M/N with mm′ = {0}. Therefore, m = 0 or

m′ = 0. Hence m ∈ N or m′ ∈ N . Thus N is prime by Proposition 3.2.7.

The above proposition gives another characterization of prime subhypermod-

ules. Finally, we characterize weakly prime subhypermodules of multiplication

R-hypermodules.

Lemma 3.2.10. Let P and K be subhypermodules of a multiplication R-hypermodule

M . Then the following hold.

(i) PK = {0} if and only if pK = {0} for all p ∈ P .

(ii) PK = {0} if and only if Pk = {0} for all k ∈ K.
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(iii) PK = {0} if and only if pk = {0} for all p ∈ P and k ∈ K.

Proof. This is an immediate consequence of Lemma 3.2.6 by using N = {0}.

We finish with a characterization of weakly prime subhypermodules of a mul-

tiplication R-hypermodule in the following proposition.

Proposition 3.2.11. Let N be a proper subhypermodule of a multiplication R-

hypermodule M . Then N is weakly prime if and only if {0} 6= PK ⊆ N implies

P ⊆ N or K ⊆ N for all subhypermodules P and K of M .

Proof. First, assume that N is a weakly prime subhypermodule of M . If N

is prime, then we are done. Suppose that N is not prime. Let P and K be

subhypermodules of M such that {0} 6= PK ⊆ N and assume for a contradiction

that P * N and K * N . We show that PK = {0} by applying Lemma 3.2.10.

We claim that pK = {0} for all p ∈ P rN . It follows from P =
∑

l∈P 〈l〉 that

P =
[(∑

l∈P Il
)
M
]

where for each l ∈ P , Il is a hyperideal of R such that 〈l〉 =

[IlM ]. Let p ∈ P rN and let 〈p〉 = [IpM ] and K = [IM ] for some hyperideals Ip

and I of R. Then
[[(∑

l∈P Il
)
I
]
M
]

= PK ⊆ N . Thus pK = 〈p〉K =
[
[IpI]M

]
⊆[[(∑

l∈P Il
)
I
]
M
]
⊆ N . Hence I〈p〉 = I[IpM ] ⊆

[
[IIp]M

]
=
[
[IpI]M

]
⊆ N , i.e.,

I ⊆
(
N : 〈p〉

)
. By Corollary 2.2.16 and Proposition 1.1.16, I ⊆ (N : M) or

I ⊆
(
{0} : 〈p〉

)
. Thus IM ⊆ N or I ⊆

(
{0} : 〈p〉

)
so that K = [IM ] ⊆ N or

I ⊆
(
{0} : 〈p〉

)
. Since K * N , we must have I ⊆

(
{0} : 〈p〉

)
, i.e., I〈p〉 = {0}.

Therefore pK = 〈p〉K =
[
[IpI]M

]
=
[
[IIp]M

]
=
[
I[IpM ]

]
= [I〈p〉] = {0}.

Similarly, we have Pk = {0} for all k ∈ K r N . It remains to show that

pk = {0} for all p ∈ P ∩N and k ∈ K ∩N . Let p ∈ P ∩N and k ∈ K ∩N . By

Corollary 2.2.23, pk = 〈p〉〈k〉 ⊆ NN = [(N : M)N ] = {0}.

Thus PK = {0}, which is a contradiction. Hence P ⊆ N or K ⊆ N .

Conversely, assume that {0} 6= PK ⊆ N implies P ⊆ N or K ⊆ N for all

subhypermodules P and K of M . Let I and D be a hyperideal of R and a

subhypermodule of M , respectively, such that {0} 6= ID ⊆ N . Set K = [IM ]

so that K is a subhypermodule of M . Then KD =
[
[I(D : M)]M

]
=
[
I
[
(D :

M)M
]]

= [ID] ⊆ N . Thus {0} 6= KD ⊆ N . By assumption, K ⊆ N or D ⊆ N .

Hence I ⊆ (N : M) or D ⊆ N . This shows that N is weakly prime.



CHAPTER IV

FUZZY HYPERIDEALS AND

FUZZY SUBHYPERMODULES

Fuzzy sets is an interesting area for doing research, see [1], [3], [4], [5], [11], [14]

and [19]. In [14], J.N. Mordeson and D.S. Malik gathered together many concepts

related to fuzzy sets, for example, L-subgroup, L-ideals and L-submodules. More-

over, there has been much work done on fuzzy sets of hyperstructures, see [3], [5],

[11] and [19]. In [5], R. Ameri and R. Mahjoob investigated some properties of

fuzzy hyperideals and prime fuzzy hyperideals.

In this chapter, we study fuzzy subsets of hyperrings and hypermodules, in-

spired by [5]. Then we extend these to fuzzy subhypermodules. Basic notations

related to fuzzy subsets follow from [5] and are given below.

A fuzzy subset of a nonempty set X is a function µ from X to [0, 1]. Denote

by FX the collection of all fuzzy subsets of X. A fuzzy subset µ of X is called

non-constant if there exist x, y ∈ X such that µ(x) 6= µ(y). For each subset A of

X and a ∈ [0, 1], define aA ∈ FX as follows:

aA(x) =

a, if x ∈ A,

0, otherwise,

for all x ∈ X. Moreover, we let ax = a{x} for all x ∈ X.

For µ ∈ FX and a ∈ [0, 1], define µa by

µa = {x ∈ X | µ(x) ≥ a},

then µa is called the a-cut or a-level subset of µ.

For µ, ν ∈ FX , we say that µ is contained in ν if µ(x) ≤ ν(x) for all x ∈ X,

and denote this by µ ⊆ ν. For a, b ∈ [0, 1], we define a ∨ b and a ∧ b by

a ∨ b = max{a, b} and a ∧ b = min{a, b}.
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For a nonempty subset A of X and a fuzzy subset µ of X, we define
∨
x∈A µ(x)

and
∧
x∈A µ(x) by∨
x∈A

µ(x) = sup{µ(x) | x ∈ A} and
∧
x∈A

µ(x) = inf{µ(x) | x ∈ A}.

For µ, ν ∈ FX , we define fuzzy subsets µ ∪ ν and µ ∩ ν of X by

(µ ∪ ν)(x) = µ(x) ∨ ν(x) and (µ ∩ ν)(x) = µ(x) ∧ ν(x)

for all x ∈ X.

Let µi be a fuzzy subset of X for all i ∈ λ and x ∈ X. Then define
∨
i∈λ µi(x)

and
∧
i∈λ µi(x) by∨
i∈λ

µi(x) = sup{µi(x) | i ∈ λ} and
∧
i∈λ

µi(x) = inf{µi(x) | i ∈ λ}.

Moreover, we define fuzzy subsets
⋃
i∈λ µi and

⋂
i∈λ µi of X by

(⋃
i∈λ

µi
)
(x) =

∨
i∈λ

µi(x) and
(⋂
i∈λ

µi
)
(x) =

∧
i∈λ

µi(x).

for all x ∈ X.

We seperate this chapter into three parts, namely, fuzzy hyperideals of hyper-

rings, fuzzy subhypermodules of hypermodules and prime fuzzy subhypermodules.

Example Let µ be the fuzzy subset of N defined by µ(x) = 1
x
. Then the 1

2
-level

subset of µ is µ 1
2

= {n ∈ N | µ(n) ≥ 1
2
} = {1, 2},

∨
x∈2N µ(x) = sup{µ(x) | x ∈

2N} = 1
2

and
∧
x∈2N µ(x) = inf{µ(x) | x ∈ 2N} = 0.

Let ν be the fuzzy subset of N defined by ν(x) = 1
x+1

. Then ν ⊆ µ and µ ∪ ν

and µ ∩ ν are the fuzzy subsets of N defined by

(µ ∪ ν)(x) = µ(x) ∨ ν(x) =
1

x
∨ 1

x+ 1
=

1

x
and

(µ ∩ ν)(x) = µ(x) ∧ ν(x) =
1

x
∧ 1

x+ 1
=

1

x+ 1

for all x ∈ N. Hence we see that µ ∪ ν = µ and µ ∩ ν = ν, as we would expect

when ν ⊆ µ.
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4.1 Fuzzy Hyperideals of Hyperrings

We recall the definition and properties of fuzzy hyperideals from the work of

R. Ameri and R. Mahjoob. They defined and investigated, in [5], fuzzy hyperideals

and prime fuzzy hyperideals. We would like to gather some of their results here

in order to obtain ideas that we can extend to fuzzy subhypermodules.

Definition 4.1.1. [5] A fuzzy subset α of a hyperring R is called a fuzzy hyperideal

of R if for every x, y ∈ R,

(i)
∧
z∈x+y α(z) ≥ α(x) ∧ α(y),

(ii) α(−x) ≥ α(x), and

(iii)
∧
z∈xy α(z) ≥ α(x) ∨ α(y).

It is easy to show that if α is a fuzzy hyperideal of a hyperring R, then

α(x) = α(−x) for all x ∈ R.

Example 4.1.2. Let I be a hyperideal of a hyperring R and c ∈ [0, 1]. Then cI

is a fuzzy hyperideal of R.

We show that, in fact, condition (ii) in the definition of a fuzzy hyperideal of

a hyperring R can be omitted if the hyperring R satisfies a ∈ Ra (or a ∈ aR) for

all a ∈ R.

Proposition 4.1.3. Let R be a hyperring such that a ∈ Ra (or a ∈ aR) for all

a ∈ R and α a fuzzy subset of R. Then α is a fuzzy hyperideal of R if and only if

(i)
∧
z∈x+y α(z) ≥ α(x) ∧ α(y), and

(ii)
∧
z∈xy α(z) ≥ α(x) ∨ α(y),

for all x, y ∈ R.

Proof. Without loss of generality, we assume that R satisfies a ∈ Ra for all a ∈ R.

The proof of the necessary part is clear. Conversely, assume that (i) and (ii) hold.

It suffices to show that α(−x) ≥ α(x) for all x ∈ R. Let x ∈ R. Then −x ∈
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R(−x), so that there exists r ∈ R such that −x ∈ r(−x) = (−r)x. Moreover,

α(−x) ≥
∧
z∈(−r)x α(z) ≥ α(−r) ∨ α(x) ≥ α(x). Hence α is a fuzzy hyperideal

of R.

The following are interesting results from [5] serving as guidelines for the next

section.

Proposition 4.1.4. [5] Let α be a fuzzy hyperideal of a hyperring R. Then α(0) ≥

α(x) for all x ∈ R.

Proposition 4.1.5. [5] Let α be a fuzzy subset of a hyperideal R. Then α is

a fuzzy hyperideal of R if and only if every nonempty a-level subset of α is a

hyperideal of R.

Let α be a fuzzy subset of a hyperring R. Define α∗ as follows:

α∗ =
{
x ∈ R | α(x) = α(0)

}
.

Note that α∗ is the nonempty α(0)-level subset of α. By Proposition 4.1.5, α∗ is

a hyperideal of R if α is a fuzzy hyperideal of R.

Definition 4.1.6. [5] Let R be a hyperring and α a fuzzy subset of R. Define

〈α〉 to be the smallest fuzzy hyperideal of R containing α.

Proposition 4.1.7. [5] Let R be a hyperring and αi be a fuzzy hyperideal of R

for all i ∈ λ. Then
⋂
i∈λ αi is a fuzzy hyperideal of R. Moreover, 〈β〉 =

⋂
{α |

α is a fuzzy hyperideal such that β ⊆ α} for all fuzzy subsets β of R.

Proposition 4.1.8. [5] Let R be a hyperring, A a nonempty subset of R and

a ∈ [0, 1]. Then 〈aA〉 = a〈A〉.

4.2 Fuzzy Subhypermodules of Hypermodules

In this section, fuzzy subsets of hypermodules are investigated. We give a defi-

nition of a fuzzy subhypermodule of a hypermodule. This notion is derived from

fuzzy hyperideals of hyperrings. The idea for constructing this definition arises

from [5] and [14].
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Definition 4.2.1. Let M be an R-hypermodule. A fuzzy subset µ of M is called

a fuzzy subhypermodule of M if for all r ∈ R and x, y ∈M ,

(i)
∧
z∈x+y µ(z) ≥ µ(x) ∧ µ(y),

(ii) µ(−x) ≥ µ(x), and

(iii)
∧
z∈rx µ(z) ≥ µ(x).

We can see that a fuzzy hyperideal of a hyperring R is a fuzzy subhypermodule

of the R-hypermodule R. Moreover, it is clear that if µ is a fuzzy subhypermodule

of an R-hypermodule M , then µ(x) = µ(−x) for all x ∈M .

Some properties of fuzzy subhypermodules that parallel those of fuzzy hyper-

ideals can be obtained.

Proposition 4.2.2. Let M be an R-hypermodule such that m ∈ Rm for all

m ∈M and µ a fuzzy subset of M . Then µ is a fuzzy subhypermodule of M

if and only if

(i)
∧
z∈x+y µ(z) ≥ µ(x) ∧ µ(y), and

(ii)
∧
z∈rx µ(z) ≥ µ(x),

for all x, y ∈M .

Proof. This can be proved similarly to Proposition 4.1.3.

Proposition 4.2.3. Let µ be a fuzzy subhypermodule of an R-hypermodule M .

Then µ(0) ≥ µ(x) for all x ∈M .

Proof. For each x ∈ M , it follows that µ(0) ≥
∧
z∈x+(−x) µ(z) ≥ µ(x) ∧ µ(−x) =

µ(x), since 0 ∈ x+ (−x).

Fuzzy subhypermodules and subhypermodules are related as seen in the fol-

lowing proposition.

Proposition 4.2.4. Let µ be a fuzzy subset of an R-hypermodule M . Then µ is

a fuzzy subhypermodule of M if and only if every nonempty a-level subset of µ is

a subhypermodule of M .
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Proof. First, assume that µ is a fuzzy subhypermodule of M . Let µa be a

nonempty a-level subset of µ. Let x, y ∈ µa and r ∈ R. Then µ(x) ≥ a and

µ(y) ≥ a. To show that x − y ⊆ µa, let z ∈ x − y. Then µ(z) ≥
∧
t∈x−y µ(t) ≥

µ(x) ∧ µ(−y) = µ(x) ∧ µ(y) ≥ a. Thus z ∈ µa. Hence x − y ⊆ µa. Next, we

show that rx ⊆ µa. Let z ∈ rx. Then µ(z) ≥
∧
t∈rx µ(t) ≥ µ(x) ≥ a, i.e., z ∈ µa.

Hence rx ⊆ µa. Therefore, µa is a subhypermodule of M .

Conversely, assume that every nonempty a-level subset of µ is a subhypermod-

ule of M . Let r ∈ R and x, y ∈ M . To show that
∧
z∈x+y µ(z) ≥ µ(x) ∧ µ(y),

let a = µ(x) ∧ µ(y). Hence µa is nonempty since x, y ∈ µa. By assump-

tion, µa is a subhypermodule of M . Then z ∈ µa, i.e., µ(z) ≥ a, for all

z ∈ x + y. Thus
∧
z∈x+y µ(z) ≥ a = µ(x) ∧ µ(y). To show that µ(−x) ≥ µ(x)

and
∧
z∈rx µ(z) ≥ µ(x), let a = µ(x). Then µa is nonempty since x ∈ µa. By

assumption, µa is a subhypermodule of M . Then −x ∈ µa and z ∈ µa for all

z ∈ rx, i.e., µ(−x) ≥ a = µ(x) and
∧
z∈rx µ(z) ≥

∧
z∈rx a = a = µ(x). Therefore,

µ is a fuzzy subhypermodule of M .

Let µ be a fuzzy subset of an R-hypermodule M . Similar to the previous

section, we define µ∗ as follows:

µ∗ =
{
x ∈M | µ(x) = µ(0)

}
.

Then µ∗ is the nonempty µ(0)-level subset of µ. Moreover, µ∗ is a subhypermodule

of M if µ is a fuzzy subhypermodule of M .

Proposition 4.2.5. Let µ be a fuzzy subhypermodule of an R-hypermodule M

and x, y ∈M . If
∧
z∈x+y µ(z) = µ(0), then µ(x) = µ(y).

Proof. Assume that
∧
z∈x+y µ(z) = µ(0). Then µ(z) ≥ µ(0) for all z ∈ x + y.

Thus µ(z) = µ(0) for all z ∈ x + y by Proposition 4.2.3. Let z ∈ x + y. Then

x ∈ z + (−y) and

µ(x) ≥
∧

t∈z+(−y)

µ(t) ≥ µ(z) ∧ µ(−y) = µ(z) ∧ µ(y) = µ(0) ∧ µ(y) = µ(y).

Hence µ(x) ≥ µ(y). Since x + y = y + x, we also have z ∈ y + x, and the same

argument shows µ(y) ≥ µ(x). Therefore, µ(x) = µ(y).
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Corollary 4.2.6. Let µ be a fuzzy subhypermodule of an R-hypermodule M and

x, y ∈M . If
∧
z∈x−y µ(z) = µ(0), then µ(x) = µ(y).

The following proposition shows one simple way to construct fuzzy subhyper-

modules.

Proposition 4.2.7. Let N be a subhypermodule of an R-hypermodule M and

c ∈ [0, 1]. Then cN is a fuzzy subhypermodule of M .

Proof. We apply Proposition 4.2.4 to show that cN is a fuzzy subhypermodule

of M . Let a ∈ R. If a = 0, then (cN)a = M . If 0 < a ≤ c, then (cN)a = N .

Otherwise, (cN)a = ∅. This shows that there are only two possibilities for the

nonempty a-level subsets of cN , namely, N and M . Thus every nonempty a-level

subset of cN is a subhypermodule of M . Thus cN is a fuzzy subhypermodule

of M .

We define the product of fuzzy subsets of a hyperring and the product of a

fuzzy subset of a hyperring and a fuzzy subset of a hypermodule.

Definition 4.2.8. Let M an R-hypermodule, α, β fuzzy subsets of R and µ a

fuzzy subset of M . The product of α and β, denoted by αβ, is defined as follows:

for all z ∈ R,

(αβ)(z) =


∨

x,y∈R,
z∈xy

(
α(x) ∧ β(y)

)
, if z ∈ R2 (where R2 := RR),

0, otherwise.

The product of α and µ, denoted by αµ, is defined similarly, as follows: for all

m ∈M ,

(αµ)(m) =


∨

a∈R,n∈M,
m∈an

(
α(a) ∧ µ(n)

)
, if m ∈ RM,

0, otherwise.

Proposition 4.2.9. Let M be an R-hypermodule, A and B nonempty subsets

of R, X a nonempty subset of M and a, b ∈ [0, 1]. Then aAbB = (a ∧ b)AB and

aAbX = (a ∧ b)AX
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Proof. To show that aAbB = (a∧ b)AB, let r ∈ R. If r /∈ R2, then r /∈ AB so that

(aAbB)(r) = 0 = (a ∧ b)AB(r). Assume that r ∈ R2. If r ∈ AB, then there exist

x ∈ A and y ∈ B such that r ∈ xy and

(aAbB)(r) =
∨

x′,y′∈R,
z∈x′y′

(
aA(x′) ∧ bB(y′)

)
= aA(x) ∧ bB(y) = a ∧ b = (a ∧ b)AB(r).

Assume that r /∈ AB, then r1 /∈ A or r2 /∈ B for all r1, r2 ∈ R such that r ∈ r1r2.

Then

(aAbB)(r) =
∨

x,y∈R,
r∈xy

(
aA(x) ∧ bB(y)

)
= 0 = (a ∧ b)AB(r).

Hence aAbB = (a ∧ b)AB. Similarly, aAbX = (a ∧ b)AX .

Lemma 4.2.10. Let M be an R-hypermodule A, B nonempty subsets of R, X a

nonempty subset of M and a, b, c ∈ [0, 1]. Then (aAbB)cX = aA(bBcX). In fact,

aAbBcX is well-defined.

Proof. By above proposition, (aAbB)cX = (a ∧ b)ABcX = (a ∧ b ∧ c)(AB)X =

(a ∧ b ∧ c)A(BX) = aA(b ∧ c)BX = aA(bBcX). Thus (aAbB)cX = aA(bBcX).

Recall that if I is a hyperideal of a hyperring R, then RI ⊆ I and IR ⊆ I;

moreover, if N is a subhypermodule of an R-hypermodule M , then RN ⊆ N .

Next, we prove some analogous properties of fuzzy hyperideals and fuzzy sub-

hyprmodules.

Proposition 4.2.11. Let M be an R-hypermodule.

(i) If α is a fuzzy hyperideal of R, then αβ ⊆ α and βα ⊆ α for any fuzzy

subsets β of R.

(ii) If µ is a fuzzy subhypermodule of M , then αµ ⊆ µ for any fuzzy subsets α

of R.

Proof. (i) Assume that α is a fuzzy hyperideal of R. Let r ∈ R. If r /∈ R2, it

follows that

(αβ)(r) = 0 ≤ α(r).
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Assume, now, that r ∈ R2. We claim that α(r) ≥ α(x) for all x, y ∈ R such that

r ∈ xy. Let x, y ∈ R be such that r ∈ xy. Since α is a fuzzy hyperideal,

α(r) ≥
∧
t∈xy

α(t) ≥ α(x) ∨ α(y) ≥ α(x)

as claimed. Thus

(αβ)(r) =
∨

x,y∈R,
r∈xy

(
α(x) ∧ β(y)

)
≤

∨
x,y∈R,
r∈xy

α(x) ≤ α(r).

Hence αβ ⊆ α. Similarly, βα ⊆ α.

The proof of (ii) parallels the proof of (i).

Proposition 4.2.12. Let M be an R-hypermodule and µi be a fuzzy subhyper-

module of M for all i ∈ λ. Then
⋂
i∈λ µi is a fuzzy subhypermodule of M .

Proof. Let x, y ∈M . Since µi is a fuzzy subhypermodule of M for all i ∈ λ,∧
z∈x+y

µi(z) ≥ µi(x) ∧ µi(y) ≥
(∧
j∈λ

µj(x)
)
∧
(∧
j∈λ

µj(y)
)

=
(⋂
j∈λ

µj
)
(x) ∧

(⋂
j∈λ

µj
)
(y)

for all i ∈ λ. Hence
∧
i∈λ
(∧

z∈x+y µi(z)
)
≥
(⋂

i∈λ µi
)
(x) ∧

(⋂
i∈λ µi

)
(y). Thus∧

z∈x+y

(∧
i∈λ µi(z)

)
=
∧
i∈λ
(∧

z∈x+y µi(z)
)
≥
(⋂

i∈λ µi
)
(x) ∧

(⋂
i∈λ µi

)
(y), i.e.,∧

z∈x+y

(
(
⋂
i∈λ µi)(z)

)
≥
(⋂

i∈λ µi
)
(x) ∧

(⋂
i∈λ µi

)
(y).

It can be shown similarly that for all r ∈ R and x ∈ M , (
⋂
i∈λ µi)(−x) ≥

(
⋂
i∈λ µi)(x) and

∧
z∈rx

(
(
⋂
i∈λ µi)(z)

)
≥
(⋂

i∈λ µi
)
(x). Therefore,

⋂
i∈λ µi is a fuzzy

subhypermodule of M .

Definition 4.2.13. Let M be an R-hypermodule and µ a fuzzy subset of M .

Define 〈µ〉 to be the smallest fuzzy subhypermodule of M containing µ and call

this 〈µ〉 the fuzzy subhypermodule of M generated by µ .

Proposition 4.2.14. Let M be an R-hypermodule and µ a fuzzy subset of M .

Then 〈µ〉 =
⋂
{ν | ν is a fuzzy subhypermodule of M such that µ ⊆ ν}.

Proof. This proof is straightforward.

Proposition 4.2.15. Let M be an R-hypermodule, A and B nonempty subsets

of R, X a nonempty subset of M and a, b, c ∈ [0, 1]. Then
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(i) 〈aA〉 = a〈A〉 and 〈aX〉 = a〈X〉,

(ii) 〈aAbB〉 = (a ∧ b)〈AB〉 and 〈aAbX〉 = (a ∧ b)〈AX〉, and

(iii) 〈aAbBcX〉 = (a ∧ b ∧ c)〈ABX〉.

Proof. (i) We obtain that 〈aA〉 = a〈A〉 by [5]. Next, we show that 〈aX〉 = a〈X〉.

Since aX ⊆ a〈X〉 and a〈X〉 is a fuzzy subhypermodule of M , 〈aX〉 ⊆ a〈X〉. Let µ

be a fuzzy subhypermodule of M such that aX ⊆ µ. We show that a〈X〉 ⊆ µ. Let

m ∈ M . If m /∈ 〈X〉, then a〈X〉(m) = 0 ≤ µ(m). Assume that m ∈ 〈X〉. Then

m ∈ 〈X〉 = [RX]+[ZX] so that m ∈ m1+m2 for some m1 ∈ [RX] and m2 ∈ [ZX].

Hence µ(m) ≥ µ(m1) ∧ µ(m2). Since m1 ∈ [RX], m1 ∈ r1x1 + r2x2 + · · · + rnxn

where ri ∈ R and xi ∈ X for all i ∈ {1, 2, 3, . . . , n}. Then

µ(m1) ≥ µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xn) ≥ aX(x1) ∧ aX(x2) ∧ · · · ∧ aX(xn) = a.

Similarly, µ(m2) ≥ a. Hence µ(m) ≥ a = a〈X〉(m). This shows a〈X〉 ⊆ µ for

all fuzzy subhypermodules µ such that aX ⊆ µ. Thus a〈X〉 ⊆ 〈aX〉. Therefore,

〈aX〉 = a〈X〉.

(ii) By (i) and Proposition 4.2.9, we obtain that 〈aAbB〉 = 〈(a ∧ b)AB〉 =

(a ∧ b)〈AB〉 and 〈aAbX〉 = 〈(a ∧ b)AX〉 = (a ∧ b)〈AX〉.

(iii) This proof follows easily from (ii).

4.3 Prime Fuzzy Subhypermodules

We start off this section by defining (ν : µ) where µ and ν are fuzzy subsets of an

R-hypermodule M . This definition is inspired by that of (X : Y ) from Chapter I

where X and Y are nonempty subsets of M .

Definition 4.3.1. Let µ and ν be fuzzy subsets of an R-hypermodule M . Define

(ν : µ) by

(ν : µ) =
⋃
{α ∈ FR | αµ ⊆ ν}

Proposition 4.3.2. Let c ∈ [0, 1] and N a subhypermodule of an R-hypermodule M .

Then

(1N ∪ cM : 1M) = 1(N :M) ∪ cR.
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Proof. First, we show that 1(N :M) ∪ cR ⊆
(
1N ∪ cM : 1M

)
, i.e., we prove that(

1(N :M) ∪ cR
)
1M ⊆ 1N ∪ cM . Let x ∈ M . If x /∈ RM , we are done. Assume that

x ∈ RM .

Case 1 x ∈ N . We obtain that (1N ∪ cM)(x) = 1 and the result follows.

Case 2 x /∈ N . We have (1N ∪ cM)(x) = c. Since x /∈ N , it follows that

x /∈ (N : M)M . Then r /∈ (N : M) for all r ∈ R and n ∈M with x ∈ rn. Thus(
1(N :M) ∪ cR

)
1M(x) =

∨
r∈R,n∈M,
x∈rn

((
1(N :M) ∪ cR

)
(r) ∧ 1M(n)

)
=

∨
r∈R,n∈M,
x∈rn

c = c = (1N ∪ cM)(x).

We conclude that 1(N :M) ∪ cR ⊆
(
1N ∪ cM : 1M

)
.

Next, we show that α ⊆ 1(N :M) ∪ cR for all fuzzy subsets α of R such that

α1M ⊆ 1N ∪ cM . Let α be a fuzzy subset of R such that α1M ⊆ 1N ∪ cM and

a ∈ R.

Case 1 a ∈ (N : M). We obtain that (1(N :M) ∪ cR)(a) = 1 and thus α(a) ≤

(1(N :M) ∪ cR)(a).

Case 2 a /∈ (N : M). There exists m ∈ M such that am * N . Thus there

exists t ∈ am such that t /∈ N . Since α1M ⊆ 1N ∪ cM , it follows that (α1M)(t) ≤

(1N ∪ cM)(t) = c. Then α(a) ∧ 1M(m) ≤ c. Hence α(a) = α(a) ∧ 1M(m) ≤ c =

(1(N :M) ∪ cR)(a).

This shows that α ⊆ 1(N :M) ∪ cR for all α such that α1M ⊆ 1N ∪ cM . Hence(
(1N ∪ cM) : 1M

)
⊆ 1(N :M) ∪ cR. Therefore,

(
(1N ∪ cM) : 1M

)
= 1(N :M) ∪ cR.

Our aim for this section is to study prime fuzzy subhypermodules. Prime fuzzy

subhypermodules are defined using an idea similar to the one used to define prime

subhypermodules of a hypermodule. In fact, prime fuzzy subhypermodules are an

extension of prime fuzzy hyperideals.

We recall the definition of prime fuzzy hyperideals from [5].

Definition 4.3.3. [5] A fuzzy hyperideal p of a hyperring R is called a prime fuzzy

hyperideal if p is non-constant and for all fuzzy hyperideals α, β of R if αβ ⊆ p,

then α ⊆ p or β ⊆ p.
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In [5], the authors gave a characterization of prime fuzzy hyperideals of hy-

perrings.

Theorem 4.3.4. [5] Let p be a fuzzy hyperideal. Then p is a prime fuzzy hyperideal

of R if and only if p(0) = 1, p∗ is a prime hyperideal of R and p = 1p∗ ∪ cR for

some c ∈ [0, 1).

Now, we define a fuzzy subhypermodule of a hypermodule. The idea for this

definition comes from the book [14] and the paper [4].

Definition 4.3.5. A non-constant fuzzy subhypermodule µ of anR-hypermoduleM

is said to be prime if for all fuzzy hyperideals α of R and fuzzy subhypermodules

ν of M , if αν ⊆ µ, then α ⊆ (µ : 1M) or ν ⊆ µ.

We determine some properties related to prime fuzzy subhypermodules.

Proposition 4.3.6. Let M be an R-hypermodule. If µ is a prime fuzzy subhyper-

module of M , then µ∗ is a prime subhypermodule of M .

Proof. Assume that µ is a prime fuzzy subhypermodule. Recall that µ∗ is a

subhypermodule of M . Since µ is prime, µ is non-constant. Thus µ∗ 6= M . Let I

and D be a hyperideal of R and a subhypermodule of M , respectively, such that

ID ⊆ µ∗. Let α = 1I and ν = 1D. Then αν = 1I1D = 1ID ⊆ 1µ∗ ⊆ µ. Since µ

is prime, α ⊆ (µ : 1M) or ν ⊆ µ, i.e., 1I ⊆ (µ : 1M) or 1D ⊆ µ. If 1I ⊆ (µ : 1M),

then 1IM = 1I1M ⊆ µ. Thus IM ⊆ µ∗ or D ⊆ µ∗. Therefore I ⊆ (µ∗ : M) or

D ⊆ µ∗.

The following results give a characterization of prime fuzzy subhypermodules.

This result is similar to Theoerm 4.3.4. However, the conditions M = RM and

(µ∗ : M) 6= ∅ are required.

Theorem 4.3.7. Let µ be a fuzzy subhypermodule of an R-hypermodule M such

that M = RM and (µ∗ : M) 6= ∅. If µ is a prime fuzzy subhypermodule of M ,

then µ∗ is a prime subhypermodule of M , µ(0) = 1 and µ = 1µ∗ ∪ cM for some

c ∈ [0, 1).
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Proof. Assume that µ is a prime fuzzy subhypermodule of M . By Proposition

4.3.6, µ∗ is a prime subhypermodule of M . Let us show that µ(0) = 1. Since

µ is non-constant, there exists x ∈ M such that µ(x) < µ(0). Define a fuzzy

subset α of R by α = 1(µ∗:M) and a fuzzy subset ν of M by ν = µ(0)M . Then

α is a fuzzy hyperideal of R and ν is a fuzzy subhypermodule of M such that

αν = 1(µ∗:M)µ(0)M = µ(0)(µ∗:M)M ⊆ µ(0)µ∗ ⊆ µ. Since µ is prime and ν * µ, we

have α ∈ (µ : 1M), i.e., 1(µ∗:M)1M ⊆ µ. Since (µ∗ : M) 6= ∅, let y ∈ (µ∗ : M)M .

Then y ∈ µ∗, i.e., µ(y) = µ(0), and 1(µ∗:M)1M(y) = 1. Thus 1 = 1(µ∗:M)1M(y) ≤

µ(y) = µ(0). Hence µ(0) = 1.

Next, we show that µ = 1µ∗ ∪ cM for some c ∈ [0, 1). Note that it is sufficient

to show there exists c ∈ [0, 1) such that µ(x) = c for all x /∈ µ∗. Since µ(0) = 1

and µ is non-constant, there exists c ∈ [0, 1) and x /∈ µ∗ such that µ(x) = c < 1.

To show that µ(y) = µ(x) for all y /∈ µ∗, let y /∈ µ∗. Then cx ⊆ µ. By Proposition

4.2.15, c〈x〉 = 〈cx〉 ⊆ µ. We have cR1〈x〉 = cR〈x〉 ⊆ c〈x〉 ⊆ µ. Since µ is prime and

1〈x〉 * µ, cR ⊆ (µ : 1M), which implies cR1M ⊆ µ. Since M = RM , it follows that

cM = cRM = cR1M ⊆ µ. Thus µ(x) = c = cM(y) ≤ µ(y). Similarly, µ(y) ≤ µ(x).

Therefore µ(x) = µ(y). We conclude that µ = 1µ∗ ∪ cM .

Theorem 4.3.8. Let µ be a fuzzy subhypermodule of an R-hypermodule M . If µ∗

is a prime subhypermodule of M , µ(0) = 1 and µ = 1µ∗ ∪ cM for some c ∈ [0, 1),

then µ is a prime fuzzy subhypermodule of M .

Proof. Suppose that µ∗ is a prime subhypermodule, µ(0) = 1 and µ = 1µ∗ ∪ cM
for some c ∈ [0, 1). Since µ∗ 6= M and µ = 1µ∗ ∪ cM , we obtain that µ is non-

constant. Let α and ν be a fuzzy hyperideal of R and a fuzzy subhypermodule

of M , respectively, such that αν ⊆ µ. Suppose that α * (µ : 1M) and ν * µ.

Since ν * µ, there exists x ∈ M such that ν(x) > µ(x). Then µ(x) 6= 1, i.e.,

x /∈ µ∗. Thus 〈x〉 * µ∗ and ν(x) > µ(x) = c. Since α * (µ : 1M), i.e., α1M * µ,

there exists t ∈ M such that α1M(t) > µ(t). There exist r ∈ R and y ∈ M such

that t ∈ ry and α(r) = α(r) ∧ 1M(y) > µ(t). Hence µ(t) 6= 1, i.e., t /∈ µ∗ and

α(r) > µ(t) = c. Since t ∈ ry ⊆ rM and t /∈ µ∗, rM * µ∗. Hence r /∈ (µ∗ : M).

Thus 〈r〉 * (µ∗ : M).
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Now, we have 〈x〉 * µ∗, 〈r〉 * (µ∗ : M), ν(x) > c and α(r) > c. Since µ∗ is

prime, 〈r〉 * (µ∗ : M) and 〈x〉 * µ∗, we conclude that 〈r〉〈x〉 * µ∗. Then there

exists l ∈ 〈r〉〈x〉 such that l /∈ µ∗. Note that

l ∈ 〈r〉〈x〉 =
(
[Rr] + [rR] + [RrR] + [Zr]

)(
[Rx] + [Zx]

)
= [RrRx] + [Rrx] + [rRx] + [Zrx].

Then l ∈ l1 +l2 +l3 +l4 for some l1 ∈ [RrRx], l2 ∈ [Rrx], l3 ∈ [rRx] and l4 ∈ [Zrx].

Since l /∈ µ∗, there exists i ∈ {1, 2, 3, 4} such that li /∈ µ∗.

Assume that l1 /∈ µ∗. Since l1 ∈ [RrRx], there exist n ∈ N and si, ti ∈ R

for all i ∈ {1, 2, . . . , n} such that l1 ∈ s1rt1x + s2rt2x + . . . + snrt1x. Then

l1 ∈ l11+l22+· · ·+lnn where lii ∈ sirtix. Since l1 /∈ µ∗, there exists ljj /∈ µ∗ for some

j ∈ {1, 2, 3, . . . , n}. Then µ(ljj) = c. Since ljj ∈ sjrtjx, it follows that ljj ∈ sjz

for some z ∈ rtjx. Then c = µ(ljj) ≥ µ(z). Since z ∈ rtjx, we obtain that z ∈ rz1

for some z1 ∈ tjx. Thus c = µ(ljj) ≥ µ(z) ≥ (αν)(z) ≥ α(r)∧ν(z1) ≥ α(r)∧ν(x).

That is c ≥ α(r) ∧ ν(x). Therefore, α(r) ≤ c or ν(x) ≤ c, a contradiction.

Similarly, we obtain a contradiction if li /∈ µ∗ for i = 2, 3 or 4. Therefore, we

conclude that µ is a prime fuzzy subhypermodule of M .

This is the immediate consequences of Theorem 4.3.7 and Theorem 4.3.8.

Corollary 4.3.9. Let µ be a fuzzy subhypermodule of an R-hypermodule M such

that M = RM and (µ∗ : M) 6= ∅. Then µ is a prime fuzzy subhypermodule of M

if and only if µ∗ is a prime subhypermodule of M , µ(0) = 1 and µ = 1µ∗ ∪ cM for

some c ∈ [0, 1).

The previous results give one way to construct examples of prime fuzzy sub-

hypermodules which we make use of in the following example.

Example 4.3.10. Let R = [0, 1]. Then (R,⊕max, ·
)

is a Krasner hyperring,

see [18], where ⊕max : R×R→ ℘∗(R) is a multi-valued function defined by

x⊕max y =


{

max{x, y}
}

if x 6= y,

[0, x] if x = y,
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and · is the usual multiplication on real numbers. Let K = [0, 0.5]. Then K is a

hyperideal of R. It follows from Example 1.2.38 that (R,⊕max, ◦) is a hyperring,

where ◦ is defined as in that example, with H = K. Then R is an R-hypermodule.

Choose L = [0, 1). It is easy to check that L is a maximal subhypermodule of

R, and thus is prime by Proposition 2.1.18. We have 1L ∪ cR is a prime fuzzy

subhypermodule of R for all c ∈ [0, 1) by Theorem 4.3.7.

In Chapter II, we characterized prime subhypermodules under three different

conditions: R is commutative, a ∈ aR for all a ∈ R and m ∈ Rm for all m ∈ M ,

where M is an R-hypermodule. The rest of this chapter is devoted to providing

some characterizations of prime fuzzy subhypermodules undr these three condi-

tions in the context of fuzzy subsets. First, we consider the condition that the

hyperring is commutative.

Theorem 4.3.11. Let R be a commutative hyperring and µ a fuzzy subhypermod-

ule of an R-hypermodule M . Then µ is a prime fuzzy subhypermodule of M if and

only if

(i) µ∗ is a prime subhypermodule of M , and

(ii) for all r ∈ R, x ∈ M and a, b ∈ [0, 1], if arbx ⊆ µ, then bx ⊆ µ or

ar ⊆ (µ : 1M).

Proof. First, assume that µ is a prime fuzzy subhypermodule of M . By Propo-

sition 4.3.6, it remains only to prove (ii). Let r ∈ R, x ∈ M and a, b ∈ [0, 1].

Assume that arbx ⊆ µ. By Proposition 4.2.15 (iii), it follows that (a ∧ b)〈rx〉 =

〈arbx〉 ⊆ µ. We claim that a〈r〉b〈x〉 ⊆ (a ∧ b)〈rx〉. Let m ∈ M . If m /∈ 〈r〉〈x〉,

then a〈r〉b〈x〉(m) = 0 ≤ (a ∧ b)〈rx〉(m). Assume that m ∈ 〈r〉〈x〉. Since R is

commutative,

m ∈ 〈r〉〈x〉 =
(
[Rr] + [Zr]

)(
[Rx] + [Zx]

)
⊆ [Rrx] + [Zrx] = 〈rx〉.

Thus m ∈ 〈rx〉 and a〈r〉b〈x〉(m) = a ∧ b = (a ∧ b)〈rx〉(m). Hence a〈r〉b〈x〉 ⊆ (a ∧

b)〈rx〉 = 〈arbx〉 ⊆ µ. Since µ is prime, a〈r〉 ⊆ (µ : 1M) or b〈x〉 ⊆ µ. Thus

ar ⊆ (µ : 1M) or bx ⊆ µ.
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Conversely, assume that (i) and (ii) hold. Since µ∗ is a prime subhypermodule

of M , µ∗ 6= M . There exists m′ ∈ M such that m′ /∈ µ∗. Then µ(m′) < µ(0).

Thus µ is non-constant. Let α and ν be a fuzzy hyperideal of R and a fuzzy

subhypermodule of M , respectively, such that αν ⊆ µ. Assume that ν * µ. There

exists m ∈ M such that ν(m) > µ(m). To show that α ⊆ (µ : 1M). Let r ∈ R.

Since α(r)r ⊆ α and ν(m)m ⊆ ν, it follows that α(r)rν(m)m ⊆ αν ⊆ µ. By (ii),

α(r)r ⊆ (µ : 1M) or ν(m)m ⊆ µ. Thus α(r)r ⊆ (µ : 1M), i.e., α(r) ≤ (µ : 1M)(r).

This shows that α(r) ≤ (µ : 1M)(r) for all r ∈ R, i.e., α ⊆ (µ : 1M). We conclude

that µ is a prime fuzzy subhypermodule of M .

For the second characterization, we are interested in the condition a ∈ aR for

all a ∈ R.

Theorem 4.3.12. Let R be a hyperring such that a ∈ aR for all a ∈ R and

µ a fuzzy subhypermodule of an R-hypermodule M . Then µ is a prime fuzzy

subhypermodule of M if and only if

(i) µ∗ is a prime subhypermodule of M , and

(ii) for all r ∈ R, x ∈ M and a, b ∈ [0, 1], if ar1Rbx ⊆ µ, then bx ⊆ µ or

ar ⊆ (µ : 1M).

Proof. First, assume that µ is a prime fuzzy subhypermodule of M . Again, it

remains only to prove (ii). Let r ∈ R, x ∈ M and a, b ∈ [0, 1]. Assume that

ar1Rbx ⊆ µ. By Proposition 4.2.15 (iv), (a ∧ b)〈rRx〉 = 〈ar1Rbx〉 ⊆ µ. We claim

that a〈rR〉b〈x〉 ⊆ (a∧ b)〈rRx〉. Let m ∈M . If m /∈ 〈rR〉〈x〉, then a〈rR〉b〈x〉(m) = 0 ≤

(a ∧ b)〈rRx〉(m). Assume that m ∈ 〈rR〉〈x〉. Since a ∈ aR for all a ∈ R,

m ∈ 〈rR〉〈x〉 =
(
[rR] + [RrR]

)(
[Rx] + [Zx]

)
⊆ [RrRx] + [ZrRx] = 〈rRx〉.

Thus m ∈ 〈rRx〉 and a〈rR〉b〈x〉(m) = a ∧ b = (a ∧ b)〈rRx〉(m). Hence a〈rR〉b〈x〉 ⊆

(a ∧ b)〈rRx〉 = 〈ar1Rbx〉 ⊆ µ. Since µ is prime, a〈rR〉 ⊆ (µ : 1M) or b〈x〉 ⊆ µ. Thus

ar ⊆ (µ : 1M) or bx ⊆ µ.

Conversely, assume that (i) and (ii) hold. Since µ∗ is a prime subhypermodule

of M , there exists m′ ∈ M such that m′ /∈ µ∗. Then µ(m′) < µ(0) and µ is non-

constant. Let α and ν be a fuzzy hyperideal of R and a fuzzy subhypermodule



71

of M , respectively, such that αν ⊆ µ. Assume that ν * µ. There exists m ∈

M such that ν(m) > µ(m). To show that α ⊆ (µ : 1M), let r ∈ R. Since

α(r)r1R ⊆ α1R ⊆ α and ν(m)m ⊆ ν, we obtain that α(r)r1Rν(m)m ⊆ αν ⊆ µ.

Then α(r)r ⊆ (µ : 1M) or ν(m)m ⊆ µ by (ii). Thus α(r)r ⊆ (µ : 1M), i.e.,

α(r) ≤ (µ : 1M)(r). This shows that α(r) ≤ (µ : 1M)(r) for all r ∈ R. Thus

α ⊆ (µ : 1M). We conclude that µ is a prime fuzzy subhypermodule of M .

For the last characterization, we obtain the same characterization as above

under the condition m ∈ Rm for all m ∈M .

Theorem 4.3.13. Let M be an R-hypermodule such that m ∈ Rm for all m ∈M

and µ a fuzzy subhypermodule of M . Then µ is a prime fuzzy subhypermodule

of M if and only if

(i) µ∗ is a prime subhypermodule of M , and

(ii) for all r ∈ R, x ∈ M and a, b ∈ [0, 1], if ar1Rbx ⊆ µ, then bx ⊆ µ or

ar ⊆ (µ : 1M).

Proof. This proof is similar to the proof of Theorem 4.3.12.

By comparing the characterizations of prime subhypermodules and prime fuzzy

subhypermodules under the same conditions, we observe that the results are sim-

ilar, by replacing r, m, R and M by ar, bm, 1R and 1M , respectively.
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