

PRELIMINARIES

Let X be a set and B $_X$ the set of all binary relations on X. For ρ , σ ϵ B $_X$, define their composition $\rho\sigma$ by

 $\rho\sigma \ = \ \big\{(a,b)\; \epsilon X\times X \ \big| \ (a,x)\; \epsilon \; \rho \; \text{and} \; (x,b)\; \epsilon \; \sigma \; \text{for some} \; x \; \epsilon \; X\big\}.$ Then B_X is a semigroup under composition of relations which is called the <u>semigroup</u> of <u>binary relations</u> on X. For a binary relation ρ on X, the domain and range of ρ are denoted by $\Delta \rho$ and $\nabla \rho$, respectively.

By a <u>transformation</u> of X we mean a map of X into itself. A <u>partial transformation</u> of X is a map from a subset of X into X. The <u>empty transformation</u> of X is the partial transformation of X with empty domain and it is denoted by 0. For α , $\beta \in P_X$, define the product $\alpha\beta$ as follows: If $\nabla \alpha \cap \Delta \beta = \emptyset$, let $\alpha\beta = 0$. If $\nabla \alpha \cap \Delta \beta \neq \emptyset$, let $\alpha\beta = (\alpha \mid (\nabla \alpha \cap \Delta \beta)\alpha^{-1})(\beta \mid (\nabla \alpha \cap \Delta \beta))$

Let T_X be the set of all transformations of X. Then T_X is a subsemigroup of P_X with identity 1_X and it is called the \underline{full}

Let V be a vector space. For $A \subseteq V$, let < A > denote the subspace of V generated by A. The following facts of vector spaces will be used in this research :

- (1) The cardinal numbers of any two bases of V are equal.
- (2) Let W and Z be subspaces of V such that W \subseteq Z. Then dim (V/W) > dim (V/Z).
 - (3) If W is a subspace of V, then $\dim V = \dim W + \dim(V/W)$.

Let $\operatorname{LT}_{\operatorname{V}}$, $\operatorname{LG}_{\operatorname{V}}$, $\operatorname{LM}_{\operatorname{V}}$ and $\operatorname{LE}_{\operatorname{V}}$ be given as follows :

 LT_{V} = the set of all linear transformations of V,

 LG_{V} = the set of all 1-1 onto linear transformations of V,

 LM_{V} = the set of all 1-1 linear transformations of V and

 LE_{V} = the set of all onto linear transformations of V.

Then under composition of maps, LT_V , LG_V , LM_V and LE_V are subsemigroups of T_V , P_V and B_V containing I_V as their identity and the semigroups LT_V , LG_V , LM_V and LE_V are referred respectively as the <u>multiplicative</u> semigroup of all linear transformations of V, the <u>multiplicative</u> group of all 1-1 onto linear transformations of V, the <u>multiplicative</u> semigroup of all 1-1 linear transformations of V and the <u>multiplicative</u> semigroup of all onto linear transformations of V. Then LG_V is a subgroup of LM_V , LE_V , LT_V , T_V , P_V and B_V , $\operatorname{LG}_V \subseteq \operatorname{LM}_V \subseteq \operatorname{LT}_V \subseteq \operatorname{T}_V \subseteq \operatorname{P}_V \subseteq \operatorname{B}_V$ and $\operatorname{LG}_V \subseteq \operatorname{LE}_V \subseteq \operatorname{LT}_V \subseteq \operatorname{T}_V \subseteq \operatorname{P}_V \subseteq \operatorname{B}_V$. From the

fact that if dim $V<\infty$ and $\alpha\in LT_V$, then α is 1-1 if and only if α is onto, it follows that if dim $V<\infty$, then $LM_V=LG_V=LE_V$.

If F is a field and n is a positive integer, let M $_n(F)$ be the multiplicative semigroup of all n x n matrices over F and G $_n(F)$ the multiplicative group of all n x n nonsingular matrices over F, so we have M $_n(F)\cong LT$ and G $_n(F)\cong LG$ where F n denotes the vector space F x...xF (n times) over F. Moreover, if V is a vector space over a field F with dim V = n < ∞ , then LT $_V\cong M_n(F)$ and LG $_V\cong G_n(F)$.

A subset A of a semigroup S is said to be $\underline{\text{dense}}^*$ in S if for any semigroup T and for any homomorphisms $\alpha,\beta:S\to T$, $\alpha\big|_A=\beta\big|_A$ implies $\alpha=\beta$.

A subsemigroup U of a semigroup S is said to be $\underline{\operatorname{closed}}^*$ in S if for any element $d \in S \smallsetminus U$, there are a semigroup T and homomorphisms ϕ, ψ : S \to T such that $\phi\big|_U = \psi\big|_U$ and $d\phi \neq d\psi$.

^{*} In Topology, it is known that for a metric space X and for $A \subseteq X$,

⁽¹⁾ A is dense in X if and only if for any metric space Y and for any continuous mappings f, g: X \rightarrow Y f $\Big|_A = g\Big|_A$ implies f = g and

⁽²⁾ A is closed in X if and only if for any point $x \in X \setminus A$, there are a metric space Y and continuous mappings f, $g: X \to Y$ such that $f \Big|_{A} = g \Big|_{A}$ and $f(x) \neq g(x)$.

A semigroup S is said to be <u>absolutely closed</u> if S is closed in every extension of S, that is, S is closed in T for any semigroup T containing S as a subsemigroup.

Let S be a semigroup. For ACS, let <A > denote the subsemigroup of S generated by A. Let U be a subsemigroup of S. For any element d of S, d is said to be <u>dominated</u> by U or U <u>dominates</u> d if for any semigroup T and for any homomorphisms φ , ψ : S \rightarrow T, $\varphi|_U = \psi|_U$ implies $d\varphi = d\psi$. The set of all elements of S which are dominated by U is called the <u>dominion</u> of U in S and it is denoted by Dom(U,S).

The following statements clearly hold:

- (i) $U \subseteq Dom(U, S)$.
- (ii) Dom(U,S) is a subsemigroup of S.
- (iii) U is dense in S if and only if Dom(U,S) = S.
- (iv) U is closed in S if and only if Dom(U,S) = U.
- (v) If U and V are subsemigroups of S such that $U \subseteq V$, then $Dom(U,S) \subseteq Dom(V,S)$ and $Dom(U,V) \subseteq Dom(U,S)$ and hence U is closed in S implies U is closed in V.

Let N denote the set of all positive integers.

Let U be a subsemigroup of a semigroup S. A \underline{zigzag} of length m $\epsilon\, N$ in U over S with value deS is a system of equalities :

$$d = u_0 y_1, u_0 = x_1 u_1$$

$$(*) \qquad x_i u_{2i} = x_{i+1} u_{2i+1}, u_{2i-1} y_i = u_{2i} y_{i+1}, i = 1, 2, ..., m-1,$$

$$u_{2m-1} y_m = u_{2m},$$

where $u_0, u_1, \ldots, u_{2m} \in U, x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m \in S$.

Remark. If (*) holds, then we have the following equalities :

$$d = u_0 y_1$$

 $d = x_{i}u_{2i-1}y_{i} = x_{i}u_{2i}y_{i+1} = x_{i+1}u_{2(i+1)-1}y_{i+1}$, i = 1, 2, ..., m-1

and

 $d = x_m u_{2m}$,

that is,

$$d = u_0 y_1$$

$$= x_1 u_1 y_1, u_0 = x_1 u_1$$

$$= x_1 u_2 y_2, u_1 y_1 = u_2 y_2$$

$$= x_2 u_3 y_2, \quad x_1 u_2 = x_2 u_3$$

$$= x_m u_{2m-1} y_m$$
, $x_{m-1} u_{2m-2} = x_m u_{2m-1}$

$$= x_{m}u_{2m}$$
 , $u_{2m-1}y_{m} = u_{2m}$.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ Since } x_1u_1=u_0 \text{ , we have } x_1u_1y_1=u_0y_1=d. \text{ From } u_{2i-1}y_i=u_{2i}y_{i+1} \text{ and } x_iu_{2i}=x_{i+1}u_{2i+1} \text{ for all } i=1,2,\ldots,m-1,$ we have that

$$x_i^u_{2i-1}y_i = x_i^u_{2i}y_{i+1}$$

and

$$x_{i}^{u}_{2i}^{y}_{i+1} = x_{i+1}^{u}_{2i+1}^{u}_{j+1}$$
, $i = 1, 2, \dots, m-1$.

Now we have

$$d = x_1 u_1 y_1$$

and

$$x_{i}^{u}_{2i-1}y_{i} = x_{i}^{u}_{2i}y_{i+1} = x_{i+1}^{u}_{2i+1}y_{i+1}$$
, $i = 1, 2, ..., m-1$.

Then it follows inductively that

$$d = x_{i}u_{2i-1}y_{i} = x_{i}u_{2i}y_{i+1} = x_{i+1}u_{2(i+1)-1}y_{i+1}$$
, $i = 1, 2, ..., m-1$.

In particular $d = x_m u_{2m-1} y_m$. But $u_{2m} = u_{2m-1} y_m$, so we get

 $x_{m}^{u}u_{2m} = x_{m}^{u}u_{2m-1}y_{m} = d$. Hence the remark is proved.

The following quoted results will be used in this thesis:

Theorem 1.1 (Isbell's Zigzag Theorem,[4]). Let U be a subsemigroup of a semigroup S. Then $d \in Dom(U, S)$ if and only if $d \in U$ or there is a zigzag in U over S with value d.

It is clearly seen from Theorem 1.1 that if A is an ideal of a semigroup S, then Dom(A,S) = A.

Theorem 1.2 ([5]). Every inverse semigroup is absolutely closed.

In particular, every group is absolutely closed.

Theorem 1.3 ([3]). If G is a group and U is a subsemigroup of G containing the identity of G, then $U^{-1} \subseteq Dom(U,G)$ where $U^{-1} = \{x^{-1} \mid x \in U\}$.

Theorem 1.4 ([3]). Let G be a group and U a subsemigroup of G. Then U is dense in G if and only if $\langle UUU^{-1} \rangle = G$ where $\langle UUU^{-1} \rangle$ is the subsemigroup of G generated by UUU^{-1} .

Theorem 1.5 ([3]). Let X be an infinite countable set , A a subset of X such that $|A| = |X| = |X \wedge A|$ and B a subset of X. Then the following statements hold :

- (i) If $A\cap B$ is infinite, then there exists $\alpha \in G_{X}$ such that $A \subset A\alpha \text{ and } A \subseteq B\alpha$
- (ii) If $X \subset (A \cup B)$ is infinite, then there exists $\eta \in G_X$ such that $A\eta \subseteq A$ and $B\eta \subseteq A$.
- (iii) If B is infinite and $X \setminus (A \cup B)$ and $A \cap B$ are finite, then there exists $\lambda \in G_X$ such that $A\lambda \subseteq A$ and $A \cap B\lambda$ is infinite.
- Theorem 1.6 ([3]). Let F be a field and n a positive integer. If F has a proper dense subsemigroup under multiplication, then the matrix semigroups $M_n(F)$ and $G_n(F)$ have proper dense subsemigroups.

Theorem 1.7 ([3]). Let F be a field and n a positive integer. Let S be a subsemigroup of $M_n(F)$ such that $G_n(F) \subseteq S$. If S contains a matrix in $M_n(F)$ of rank k < n, then S contains all matrices in $M_n(F)$ of rank < k.