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CHAPTER I 

 

INTRODUCTION 
 

 

 

 

 

Thin film growth technology is an important technology used widely in many 

applications. A well-known technological process used to produce high quality thin films 

is Molecular Beam Epitaxy (MBE). In this technique, atoms from vapor or molecular 

beam are deposited and then are grown on a substrate under epitaxy condition, i.e. atomic 

structure of the film can be controlled by the structure of the substrate. The conditions for 

the ideal MBE are considered with no evaporation from the surface, no vacancy in the 

film, and overhanging at the growth process is not allowed. Usually, an aggregation or a 

deposition process produces quite a rough surface (a kinetically rough interface)[1]. 

Surface diffusion process activates a smoother interface. A high temperature MBE 

growth enables one to produce smooth thin films, since a high substrate temperature 

yields higher surface diffusion that gives rise to layer-by-layer growth. 

In experiments, a smooth layer-by-layer growth is identified by Reflection High 

Energy Electron Diffraction (RHEED) intensity oscillations [2–3]. Usually, the RHEED 

intensity oscillates with a period of one monolayer. In reality the layer-by-layer growth is 

not “absolute”: the next layer is produced before the previous layer is completely filled so 

the RHEED intensity oscillation eventually damps out. The damping time, the time that 

the layer-by-layer dies out, depends on the substrate temperature. 

Simulation technique is utilized to study growth mechanism such as atom 

aggregation and surface diffusion. In simulation, the layer-by-layer is identified by 

oscillations observed in the plot of interface width W (root mean square fluctuation of the 

surface height of simulated films) versus deposition time (deposition time unit: the time 
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interval of one monolayer means that number of deposited particles during that time 

equals number of lattice site on the substrate). The layer-by-layer growth is only a 

temporary growth mode because the oscillation of W eventually damps and crosses over 

to a power law behavior associated with kinetic surface roughening. In the case of perfect 

layer-by-layer growth, interface width fluctuates between 0 (flat interface or complete 

filled layer) and 1 (a half filled layer) whereas in a kinetically rough growth, the interface 

width increases as power law with time (films thickness). In growth simulations, two 

noise-reduction techniques - long surface diffusion length [4 - 6] and multiple hit [4, 6 - 

10] noised-reductions - are used to reduce stochastic noise and enhance the layer-by-layer 

growth. The long surface diffusion length is equivalent to the increase of the growth 

temperature in experiments while the multiple hit noise-reduction is only a computational 

technique. Interesting issues are whether the multiple hit noise-reduction is equivalent to 

the long surface diffusion length technique, and how scaling relations between the 

damping time and noise-reduction parameters are.  

In 1998, Brende, Kallabis and Wolf [7] investigated another limited mobility 

growth model on one-dimensional substrates using the multiple hit noise reduction 

technique. They found that the layer-by-layer growth was visible when the noise was 

reduced and the damping time depended on the parameter m with a power law relation 

when m is a parameter that tells how much noise reduction was done. In 2002, Punyindu 

Chatraphorn and Das Sarma [4] studied one-dimensional solid-on-solid limited mobility 

growth models using the long surface diffusion length and the multiple hit noise-

reductions. Their results show that these two noise reductions are equivalent and the 

damping time is proportional to mμ and (l/L)δ  when l is the diffusion length, L is 

substrate size, μ and δ are constant. But in the two-dimensional substrates, only the 

multiple hit technique was used (no result for the long surface diffusions length 

technique). In our work, we use both of the two noise-reduction techniques in the two-

dimensional substrates to confirm that the multiple hit noise reduction equivalents to the 

long surface diffusion length, and that the damping time tc ∼ (l/L)δ and tc ∼ mμ  in the 

two-dimensional substrate systems as well. 

Furthermore, in studies of a discrete growth model, one of the goals is to find 

universality class of the model. This can be done via a calculation of critical exponents 
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such as growth exponent (β), roughness exponent (α) and dynamical exponent (z), of the 

growth model. Estimation of the critical exponents helps in the finding of the continuum 

growth equation that describes each model. In some models, however, there are 

crossovers of the critical exponents that make it difficult to define the universality class. 

In these cases, finding asymptotic exponents are necessary. One technique used to obtain 

the asymptotic exponents is the noise reduction technique. The multiple hit noise 

reduction is applied to attain correct asymptotic critical exponents in some growth models 

[6, 10-11]. The noise reduction technique dose not changes the universality class of the 

model [9-12]. It only reduces high surface steps and deep wells in the surface 

morphology. This suppression leads to the success of the noise reduction technique in 

acquiring asymptotically correct universality class of the growth model [6, 11].  For 

example, in 1998, Punyindu and Das Sarma [11] used the multiple hit noise reduction 

technique with (1+1)-dimensional Das Sarma-Tamburenea (DT) model and showed that 

this model belonged to the nonlinear fourth-order universality class whereas the original 

DT model without the noise reduction technique indicated the linear forth-order 

universality class with complications on the symmetry of the morphologies [6-11]. For 

(2+1)-dimensional growth, the multiple hit noised reduction technique is used to prove 

that the (2+1)-dimensional DT model belongs to the linear second-order universality 

class, EW universality class, [6]. In 1993, Tamborenea and Das Sarmar [5] showed that 

the long surface diffusion length is also effective on finding asymptotic values of the 

critical exponents in (1+1)-dimensional kink diffusion model (KD) model, random 

deposition with relaxation (RDR) model. However, the long surface diffusion length 

noised reduction technique was not used to find asymptotic critical exponents in (2+1)-

dimensional growth. In our thesis, we study a critical exponent (the growth exponent β) 

both the long surface diffusions length technique and the multiple hit noise reduction 

technique. Our results are compared to see whether these techniques have similar effects 

on the critical exponent. 

To obtain correct asymptotic exponents, there is another method presented in the 

literature. In this method, correction-to-scaling terms are studied to reduce finite size 

effects on a growth model [13-15]. Finite size of the substrate length has strong effects on 

behavior of the critical exponents and the method aims to extrapolate results from finite 
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size substrates to the infinitely large substrate [13-15].  In 2003, Aarão Reis and 

coworkers [14] showed that the (1+1)-dimensional DT model belonged to the nonlinear 

forth-order universality class which is the same as results from the noise reduced DT 

model done earlier [11]. However, in some models, this technique yields unreliable 

asymptotic estimation [14]. In our work, we study the finite size effects in (2+1)-

dimensions of a growth model without the noise reduction techniques to obtain the 

correct asymptotic critical exponents. 

  

Overview of our thesis 
In our work, we simulate films using the DT model with two noise reductions 

techniques: the long surface diffusion length and the multiple hit noise reduction 

technique, on two-dimensional substrates ((2+1)-dimensional substrate systems). In 

chapter 2, we talk about theory and model such as growth process (deposition, 

desorption, and diffusion process), discrete model (Random Deposition (RD) model and 

DT model), universality class (scaling and continuum growth equations), and noise 

reduction techniques. For chapter 3, we present result and discussion on the DT model 

with noise reduction techniques in (2+1)-dimensions to confirm whether the multiple hit 

noise reductions is equivalent to the long surface diffusion length. Both interface width 

and morphologies are compared, we also try to find relationship for the damping time and 

noise reduction parameters. In chapter 4, we show the result and discussion on the study 

of the finite size effects on the (2+1)-dimensional DT model without the noise reduction 

techniques. The results are extrapolated to find the asymptotic growth exponent and 

roughness exponent in an attempt to predict the correction-to-scaling terms of those 

exponents. Finally, Chapter 5 is the conclusion of our study.  
 

 

     

 



CHAPTER II 

 
THEORY AND MODEL 

 

 

 

 

 

In thin film growth, there are many processes that occur on the film surface. In this 

chapter, we will talk about these processes, growth simulation techniques, discrete 

growth models, and noised reduction techniques. Furthermore, we will introduce theories 

and equations used to analyze simulation results such as the scaling concept and 

continuum growth equations.  

 

2.1 Growth Process 
Microscopic growth processes on the surface consist of three interplayed 

processes: deposition, desorption and surface diffusion processes [1]. These processes 

have strong effects on the properties of a grown film. 

 

2.1.1 Deposition process 
 The deposition process is the process that an atom from atomic vapor or electron 

beam reaches a random position on surface and then forms bonds with neighboring 

atoms. It is incorporated at that random site and becomes a part of the growing film. 

These nearly incorporated atoms may not stay at the deposition sites permanently because 

the bonds may be broken again and the atoms may continue with the desorption or the 

diffusion process. 
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2.2.2 Desorption process 
 The desorption is a procedure that deposited atoms on the surface evaporate from 

the interface. Probability of desorption depends on the strength of bonds between the 

atom and neighboring atoms. This strength of bonds indicates amount of energy needed 

to destroy the bond. Desorption rate can be calculated from  

 

)/exp(0 TkERR BB
evev −= ,    (2.1) 

 

where ev
oR  is the attempt frequency for the desorption process (in the order of 11310 −s  

[16]), BE  is binding energy of the atom on the surface, Bk  is Bolthzmann’s constant and 

T  is substrate temperature [16]. At low substrate temperature in MBE growth, the 

desoption process can be neglected from the study [1, 16]. Growth process under the 

condition that there is no evaporation of atoms on the surface is called conserved growth. 

 

2.2.3 Diffusion Process 
 When an atom arrives at a random position on the interface, it forms bonds 

with neighboring atoms. However, if the atom has enough energy to break these bonds, it 

can move to other sites. This is called “diffusion process” which becomes important 

when the temperature of the substrate is high enough. When an atom diffuses on the 

surface, it tries to search for the energetically most favorable site. This means the 

diffusing atom tries to move to a site that it can form many bonds. High substrate 

temperature leads to high mobility and the atoms can diffuse to sites far from the 

deposition sites. The distance that an atom can diffuse is the “diffusion length” which, 

obviously, depends on the substrate temperature. 

 

2.2 Discrete Growth Model  
 Discrete growth models are used to study growth process in the atomic scale. The 

simplest discrete growth model is the Random deposition (RD) model [1]. For our work, 

we simulate the thin film growth using the Das Sarma and Tamborenea (DT) model [17].  
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 2.2.1 Random Deposition (RD) model 
 Natural interface growth process is a random process. In simulation technique, the 

RD model is used to simulate the random process and study deposition mechanisms and 

statistical properties of the growth process.   

 

  

 

In simulation, size of a system is determined by number of lattice sites on the 

substrate. Most simulations are on either one- or two- dimensional substrates. Convention 

notation is (d+1) when d is the dimension of the substrate. For a (1+1) dimensional 

simulation, the substrate is a straight line. In this case, the substrate size (L) is defined as 

number of lattice sites on the line. For example, Fig. 2.1 is a diagram of a (1+1) 

dimensional RD model with the substrate size L = 18. More realistic simulations are done 

on two-dimensional substrates which can be denoted as (2+1) dimensional simulations. 

In this case, the system size is defined as number of sites on each side of the substrate. In 

our work, all simulations are done on square substrates so the size of a system is denoted 

by L when actually the substrate has L×L sites. 

Fig.2.1 Illustration of the aggregation of (1+1) dimensional Random 
Deposition (RD) model with L = 18. The atoms fall from random 
positions, indicated by arrows.    
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For the RD model, the diffusion and desorption processes are not included. As 

shown in Fig. 2.1, an incident atom is released from a random position above the 

substrate. It travels down vertically until it reaches the top of that column and sticks 

there. The height of that column is increased by one. A new atom is then released from 

another randomly chosen position. And the process continues until the simulated film 

reaches the desired thickness. 
 

2.2.2 Das Sarma-Tamborenea (DT) model 
In our work, we use the Das Sarma-Tamborenea (DT) model [17] with two noise 

reduction techniques: long surface diffusion length [4-7] and multiple hit techniques [4, 

6-11]. All simulations are done on (2+1)-dimensions. The DT model is a solid-on-solid 

limited mobility growth model. The solid-on-solid conditions exclude overhangs, 

evaporation, and vacancy. Those correspond to the ideal MBE growth. 

 

 

 

 

Fig.2.2 Illustration of deposition and diffusion rules in the DT model on (1+1) 
dimensional systems with 19=L , large arrows show the column of incident 
atoms and small arrows indicate directions that atoms can diffuse. 
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In this model (see Fig.2.2), an atom is released from a randomly chosen site above 

a surface. Large vertical arrows indicate the falling atoms above the interface. After the 

deposition, each atom moves according to the model diffusion rules as shown with small 

arrows. It can move only to its nearest neighbors (diffusion length l = 1) to find the final 

site where it can increase number of bonds. If more than one neighbor provides higher 

bonding number, one of them is randomly chosen. The exception is when the original site 

provides one or more lateral bones (total of two or more bonds) then the deposited atom 

is not allowed to move. These aggregation rules are equivalent to low temperature MBE 

growth, a deposited atom has enough energy to break only one bone, but not enough to 

break two or more bonds.   

 

2.3 Universality class  
Generally, standard tools to study surface growth are experiments, a discrete 

growth models, scaling concept and continuum growth equations. For our thesis, we 

mainly use the scaling concepts and the discrete growth model. We study the scaling 

concept to define the universality class of growth model. The universality class is a 

product of modern statistical mechanics [1].  

 

2.3.1 Scaling Concept 
 In a study of surface properties, the quantities of interest are interface width (W ) 

and the critical exponents such as the growth exponent ( β ), the roughness exponent (α ) 

and the dynamical exponent (z). 

For the interface width which is a standard deviation of surface height, it is 

defined as   

( ) ( ) ( )[ ]
2/12

1
,1,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

=

L

i
d thtih

L
tLW .   (2.2) 

Here, ),( tih  is the height of column i  at time t, )(th  is the mean height of the surface at t 

defined by 
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( ) ∑
=

=
L

i
ih

L
th

1

1
,    (2.3)  

and d is the dimension of the substrate. If the deposition rate is constant, the average 

height increases linearly with time. The bracket, , denotes a configurational average 

over many different runs. The surface width has two regions separated by a crossover 

time or saturation time (tsat). At early time of growth (t << tsat), interface width increases 

as a power of time 

),( tLW  ∼ βt ,     (2.4) 

where β is called the growth exponent. For long time, (t >> tsat), interface width reaches a 

saturated value ( satW ) that depends on the substrate size as power laws, 

)(LWsat  ∼ αL ,     (2.5) 

where α is called the roughness exponent. Furthermore, the crossover time or saturation 

time depends on the substrate size,  

tsat  ∼ zL ,     (2.6) 

where z is called the dynamical exponent. These three critical exponents obey scaling 

relation,   

β
α

=z .     (2.7) 

A typically interface width versus time plot is illustrated in Fig.2.3. The dot line 

indicates the saturation time. Usually, time unit is monolayer (deposition time unit: the 

time interval of one monolayer means that number of deposited particles during that time 

equals number of lattice sites on the substrate). In the growth regime, surface width 

grows linearly on a log-log plot and the slope of the best linear fit is the growth exponent 

β. In the saturation regime, surface width becomes constant. This constant value, Wsat, 

depends on the system size as shown in Fig.2.4. If we plot Wsat versus L on a log-log 

scale. The data should fall on a straight line with the slope being the roughness exponent 

α. 
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Fig.2.4 Illustration of the log-log plot of the interface width growth for the DT 
model in (2+1)-dimensions. The different curves indicate results from different 
substrate sizes. 

t (ML)
100 101 102 103 104 105 106

W

100

101

L = 10
L = 20
L = 30
L = 40

Fig.2.3 Illustration of the log-log plot of the interface width growth for the DT 
model in (2+1) dimensions with L × L = 900×900. The vertical dot line indicates the 
saturation time and slope of the dashed line is β. 
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2.4.2 Continuum growth equations 
Continuum growth equations, stochastic are used to study behavior of the 

interface in large length scale, Details in small scale are neglected and the focus is on 

asymptotic coarse-grained properties [1]. These continuum equations are derived from 

symmetry principles [1]. The critical exponents investigated from a discrete growth 

model should be consistent with the corresponding continuum growth equation 

describing that model. 

Symmetry principles used in creating continuum growth equations are as follows. 

1. Invariance under translation in time: ttt δ+→ . It should not matter when 

the time is set as zero so the equation should not change when ttt δ+→  

so terms with direct-time-dependent must be excluded. Example, 

t
h
∂
∂ obeys this symmetry [1]. 

2. Translation invariance along growth direction, invariance under the 

translation: hhh δ+→ . It should not matter when the height is set as zero 

so the equation should not change when hhh δ+→ . Example, h∇ , 

h2∇ ,… hn∇  survive this condition [1]. 

3. Translation invariance in direction perpendicular to the growth direction: 

xxx δ+→ . It should be independent of x, having the symmetry when 

xxx δ+→  so terms x-dependent must be excluded.  Example, 
x
h

n

n

∂
∂  with 

0>n  include this symmetry [1]. 

4. Rotation and inversion symmetry about the growth direction n, invariance 

under the translation: xx −→ . Example, ( )2h∇  and h2∇  respond this 

condition but h∇  and ( )h2∇∇  not exist this symmetry [1]. In some model, 

there are other system such as 

5. up-down symmetry for h , invariance under the translation: hh −→ . 

Example, h2∇  assent this symmetry while ( )2h∇ and ( )4h∇ exclude this 

transformation [1]. 
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Those arguments are used to construct the continuum growth equations. If condition 5th  

is obeyed, the equation will be linear and the model that can be described by those linear 

equations are consistent with linear them. Otherwise, the equations are nonlinear and the 

models follow nonlinear theory. 

The simplest growth equation describes fluctuation of interface is the second-

order linear growth equations called Edwards-Wilkinson (EW) equation [1, 5-6, 18-20]  

 

( ) ( )txh
t

txh ,, 2
2 ην +∇=

∂
∂ .    (2.10) 

 

Here, ( )txh ,  is the interface height at position x and time t. ( )tx,η  is noise term and 2ν  is 

a constant. The scaling exponents of the EW equation [1] are  

 

,
2

2 d−
=α  ,

4
2 d−

=β  2=z ,    (2.11) 

 

when d is the dimensional substrate. If the discrete growth model has asymptotic scaling 

exponents that agree with equation (2.11), that model belongs to the EW universality 

class. Some models have lateral growth thus a nonlinear term 2)( h∇  can be included to in 

the EW growth equation and a new continuum equation can be written as [1] 

 

( ) ( ) ( )txhh
t

txh ,, 2
2

2
2 ηλν +∇+∇=

∂
∂ ,    (2.12) 

 

which is called Kardar-Parisi-Zang (KPZ) equation [1, 20]. And give the scaling 

exponents that are α = 1/2, β = 1/3 and z = 3/2 in (1+1)-dimensional substrate.  

When we consider the surface diffusion process, the growth equation described 

diffusion is the forth-order linear term [1, 21] expressed by  

 

( ) ),,(, 4
4 txh

t
txh ην +∇−=

∂
∂ .    (2.13) 
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When 4ν  is constant. This term provides the scaling exponents as 

 

,
2

4 d−
=α  ,

8
4 d−

=β  4=z .    (2.14) 

 

Villain, Lai and Das Sarma [22, 23] proposed the fourth-order nonlinear equation,  

 

( ) ( ) ( )txhh
t

txh ,, 22
1

4
4 ηλν +∇∇+∇−=

∂
∂ ,   (2.15) 

 

when 1λ  is constant. The equation (2.15) is called Villain-Lai-Das Sarma (VLDS) 

equation [14, 19, 22, 23]. The scaling exponents of equation (2.15) [1] are 

 

,
3

4 d−
=α  ,

8
4

d
d

+
−

=β  
3

8 dz +
= .   (2.16) 

 

Equation (2.15) is also frequency called a conserved KPZ equation [1, 22]. The 

asymptotic critical exponents of each dominant term from the continuum growth equation 

for (1+1)- and (2+1)-dimensions [21] are shown in Table 2.1.  

 
Table 2.1. The asymptotic critical exponents of dominant terms in continuum growth 

equation for one-dimensional substrate (d =1) and two-dimensional substrates (d = 2) 

growth models. 

 

α β z 
Universality class 

1=d  2=d 1=d  2=d  1=d  2=d

2nd order linear equation (EW) 0.5 0 0.25 0 2 2 

4th order linear equation 1.5 1 0.375 0.25 4 4 

4th order nonlinear equation (VLDS) 1 0.667 0.333 0.2 3 3.333 
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2.5 Noise Reduction Techniques  
In simulations, stochastic noise can be very strong. Two noise reduction 

techniques are introduced to help reduce effect of the noise.  

 

2.5.1 Long surface diffusion length technique 

For the long surface diffusion length technique (l > 1) [4-6], we increase the 

diffusion length (l), which is the lateral length that an atom can diffuse. In experiments, 

it is found that higher substrate temperature promotes the diffusion of surface atoms. So 

this l > 1 technique in simulations is equivalent to increasing substrate temperature in 

experiments. For our work, we define the parameter l as a maximum number of times an 

atom can hop to find the final site under diffusion rules of the DT model. This mean an 

atom can hop up to l times to find a site with at least two bonds. Note that, with this 

technique, we simulate the DT Model with a large diffusion length that is equivalent to 

the increase in the substrate temperature. However, the desorption process is neglected 

from the model which implies temperature that is not very high. So our model is valid for 

only a range of temperature that is high enough for atoms to have large diffusion length 

but not high enough for desorption. 

 

2.5.2 Multiple hit noise reduction technique 
For the multiple hit noise reduction (m > 1) [4, 6-11], a multiple hit parameter m 

is defined as a number of the time a site must be selected before actual incorporation can 

happen.  In this technique, the diffusion rules are the same as the original model (l = 1). 

After an adatom chooses its final site, the incorporation does not immediately occur. 

Each surface site has its own counter. When a site is selected, the counter of that site is 

increased by one but the height of that site remains the same until the counter reaches the 

multiple hit parameter (m), which is an integer (m = 1 for the original model), then the 

height of that site is increased by one (one atom) and the counter is reset to zero (see 

Fig.2.5). 
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C1 = 0, h1 = 0 
C2 = 0, h2 = 0 
C3 = 0, h3 = 0 
C4 = 0, h4 = 0 
C5 = 0, h5 = 0 
C6 = 0, h6 = 0 
C7 = 0, h7 = 0 
C8 = 0, h8 = 0 
C9 = 0, h9 = 0 

C1 = 0, h1 = 0 
C2 = 0, h2 = 0 
C3 = 0, h3 = 0 
C4 = 0, h4 = 0 
C5 = 1, h5 = 0 
C6 = 0, h6 = 0 
C7 = 0, h7 = 0 
C8 = 0, h8 = 0 
C9 = 0, h9 = 0 

C1 = 0, h1 = 0 
C2 = 1, h2 = 0 
C3 = 0, h3 = 0 
C4 = 0, h4 = 0 
C5 = 1, h5 = 0 
C6 = 0, h6 = 0 
C7 = 0, h7 = 0 
C8 = 0, h8 = 0 
C9 = 0, h9 = 0 

C1 = 0, h1 = 0 
C2 = 1, h2 = 0 
C3 = 0, h3 = 0 
C4 = 0, h4 = 0 
C5 = 2, h5 = 0 
C6 = 0, h6 = 0 
C7 = 0, h7 = 0 
C8 = 0, h8 = 0 
C9 = 0, h9 = 0 

C1 = 0, h1 = 0 
C2 = 1, h2 = 0 
C3 = 0, h3 = 0 
C4 = 0, h4 = 0 
C5 = 3, h5 = 1 
C6 = 0, h6 = 0 
C7 = 0, h7 = 0 
C8 = 0, h8 = 0 
C9 = 0, h9 = 0 

C1 = 0, h1 = 0 
C2 = 2, h2 = 0 
C3 = 0, h3 = 0 
C4 = 0, h4 = 0 
C5 = 0, h5 = 1 
C6 = 0, h6 = 0 
C7 = 0, h7 = 0 
C8 = 0, h8 = 0 
C9 = 0, h9 = 0 

Fig. 2.5 Illustrations of the multiple hit noise reduction in case m = 3 on 
(2+1)-dimensional flat substrates, after deposited atom chooses its final site 
the counter of that site is increased by one but its height not change until the 
counter equal to 3. 



 CHAPTER III 

 
RESULT AND DISCUSSIONS:  

DT MODEL WITH NOISE REDUCTION TECHNIQUES IN 

(2+1) DIMENSIONS 
 

 

 

 

In this chapter, we present our results from simulations of the DT model with both 

the long surface diffusion noise reduction technique and the multiple hit noise reduction 

technique. The time evolution of the interface width and the surface morphologies are 

presented in the first section. In the second section, effects of the noise reduction 

parameters on the growth exponent are discussed. 

 

3.1 DT model with the long surface diffusion length and the 

multiple hit noise reduction techniques 
 

3.1.1 The interface width 
We simulate thin film growth with the DT model in (2+1) dimensions using the 

noise reduction techniques: the long surface diffusion length and the multiple hit 

techniques. Now we present our results simulations. In Fig. 3.1, we present W-t 

oscillations of the DT model with L×L = 1000×1000 with an average over many different 

configurations using the long surface diffusion length noise reduction technique, l = 1, 9, 

36, 64, 100, and 144. When the growth time is less than 0.5 ML, the interface widths 

from simulating with all value used for the parameter l are straight. The slope of the 

straight lines, which is the growth exponent, is approximately 0.5 corresponding to the 

growth exponent of the random deposition model [1].  
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Fig. 3.1 W-t oscillations of the (2+1)-dimensional DT model with m = 1, 
L×L = 1000×1000, l = 1, 9, 36, 64, 100 and 144 (top to bottom).  
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This results show that during 0-0.5 ML, both the DT model and the noise reduced DT 

model show behavior that obeys the random deposition process. Since at early growth 

time, surface diffusion of atom is weak yields the diffusion rules of the DT model and the 

long surface diffusion length technique are smaller than the random deposition process 

then obtained growth exponent is like the RD model. 

Fig. 3.2 is shown W-t oscillations of the DT model with L×L = 1000×1000 and a 

configurationally average over many different runs using the surface diffusion length l = 

1, 9, 36, 64, 100, and 144. While Fig. 3.3 is the plots of W-t oscillations of the DT model 

using the multiple hit noise reductions, m = 1, 3, 5, 8, 10 and 15. From both Fig.3.2 and 

Fig 3.3, at early time ( ctt < ), the growth is clearly in layer-by-layer mode when l > 1 or 

m > 1. This can be seen from the oscillations of the surface with W. W-t oscillations 

indicate that each layer is grown from flat surface then surface width increases until a 

half filled layer and decreases into flat surface at a completely filled layer before next 

layer is grown. Thus the interface width fluctuates between the minimum values (a 

completely filled layer) and the maximum values (a half filled layer) and a period of the 

oscillations are one monolayer (ML). Note that, for “perfect” layer-by-layer growth, W(t)  

must fluctuates between 0 (a completely filled layer) and 1 (a half completely filled layer) 

but from our results, the oscillations damp out. This is because, eventually when the film 

is thicker, a new layer starts forming before the preceding layer is completely filled. Thus 

W is not turns to zero. This result agrees with Ref. [4, 7, 24]. At large l and m, the 

minimum W of each layer is lower than at small l and m. This indicates that the layer-by-

layer growth is near perfect at larger l and m. For long growth time ( t  > ct ), no layer-by-

layer oscillations are found. W(t) crosses over to kinetically roughness. Furthermore, our 

simulations are equivalent to RHEED study of GaAs (331)B at different substrate 

temperatures in Ref. [3] and RHEED intensity during Ag growth onto Si (111) surface 

with deposition rate 60ML/min at different substrate temperatures in Ref. [25].   

Comparing Fig. 3.2 and Fig 3.3., we can see that the minimum values of W at each 

period from the multiple hit technique are less than the minimum W from the long surface 

diffusion length technique, especially at large m. The maximum values of W at each layer 

from both noise reduction techniques, however, are similar.  
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Fig. 3.2 W-t oscillations of the (2+1)-dimensional DT model with m = 1, 
L×L = 1000×1000, l = 1, 9, 36, 64, 100 and 144 (top to bottom).  
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Fig. 3.3 W-t oscillations of the (2+1)-dimensional DT model with  l = 1, 
L×L = 1000×1000, m = 1, 3, 5, 8, 10 and 15 (top to bottom). 
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There results show that during the layer-by-layer growth region, the multiple hit 

technique produces “better” layer-by-layer than the long surface diffusion length 

technique.  After the end of the layer-by-layer growth, the W-t plots from the two noise 

reduction techniques are practically undistinguished. Thus, we can confirm that the long 

surface diffusion length technique and the multiple hit technique enhance layer-by-layer 

growth in the (2+1)-dimensional systems. From l > 1 technique (see Fig. 3.2) and m > 1 

technique (see Fig. 3.3), obvious results are that the damping time tc is long as l and m 

increase. We rescale t axis with tc under assumptions; tc ∼ mμ and tc ∼ (l/L)δ by plotting 

W2 versus t/mμ  (see Fig. 3.4) and W2 versus t/(l/L)δ (see Fig. 3.5) then varying the 

constants, μ and δ, until the curves are best collapse  to find a scaling collapse. Our 

results show that the graphs are best collapsed at μ = 2.5 for m > 1 technique (agree with 

Ref. [4]) and δ = 1.5 for l > 1 technique, which prove that the damping time for the 

(2+1)-dimensional DT model obeys the scaling relations; 

               mμ    for the multiple hit techniques,  

 tc ∼  

                          (l/L)δ   for the long surface diffusion length. 

Beside we can confirm that W(t) ∼   fm (t / mμ) or W(t) ∼ fl (t / (l/L)δ ) in the layer-by-layer 

mode. Finally, previous literatures [26, 27] studied about theory for the layer-by-layer 

growth oscillations by a renormalization group approach. The exponent δ is shown that 

depend on 
dz

zd
−

= γδ  [27], when γ is constant and depends on diffusion process and 

dimension of islands [24, 26, 27]. Then the exponent is that 
d

d
−

=
4
4γδ  for conserved 

KPZ equation [24] which is sometime also referred to as the forth-order nonlinear growth 

equation [4] which obey equation 2.14 [4, 24] and 
d

d
−

=
2
2γδ  for EW equation. When d 

= 2 and γ = 1/2 [24], the exponent δ should be 2 [4] for the forth-order nonlinear growth 

equation and equals to ∞ [4] for the EW equation. From our result, the exponent δ equals 

to 1.5 which is approximately 25 % less than the value of the forth-order nonlinear 

equation which should be δ = 2.  
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Fig. 3.4 Point plots at every a half ML of W2 versus t / mμ of the DT 
model with  l = 1, L×L = 1000×1000, m = 3, 5, 8, 10 and 15 that 
obtains best collapse at μ  = 2.5. 
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Fig. 3.5 Point plots at every a half ML of W2 versus t / (l/L)δ of the DT 
model with m = 1, L×L = 1000×1000, l = 9, 36, 64, 100 and 144 that 
obtains best collapse at δ = 1.5. 
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This difference may arise from the way we define l. Traditionally, l is defined as the 

distance between the random deposition site and the final incorporation site. But in our 

case, l is the number of hop allowed. If the diffusing atom goes in one direction only, 

these two definitions give the same l. However, if the atom changes direction during 

diffusion, the two definitions give different values for l. And δ = 2 comes from the fact 

that the parameter γ is chosen as γ = 1/2 [24] which is from the assumption that the island 

density ρ ∼ l-1. Obviously, if l is different, γ is not going to be 1/2 and δ  will not be 2 as 

predicted. The value γ = 1/2, come from assumption that the density of islands (ρ) is 

related to diffusion length (l) as ρ ∼ l-1 [24]. 

 

3.1.2 Surface morphologies  
Here we present surface morphologies of both the original DT model and the 

noise reduced DT model from our simulations. First, in Fig 3.6., morphologies from the 

DT model with the long surface diffusion length noise reduction technique (l = 144) at 

very early time are shown. Each morphology is a section of 100×100 lattice sites from a 

system of 1000×1000 lattice sites. They are snap shots at t = 0.5 ML,         1 ML, 1.5 ML, 

2 ML, 2.5 ML and 3 ML. All of them are from the layer-by-layer growth regime. It is 

obvious from Fig. 3.6 that morphologies at 0.5 ML, 1.5 ML and 2.5 ML are 

approximately half-filled. For example, at 0.5 ML, about half of the surface in Fig. 3.6 (a) 

have h = 0 and the other half have h = 1. This contributes to a relatively large standard 

deviation of the h value – relatively large surface width W. On the other hand, 

morphologies at 1 ML, 2 ML, and 3 ML are almost completely filled. For example, at 1 

ML, most of the surface have h = 1, while very few columns have h = 2 (the new layer 

starts forming) and very few columns have h = 0. In this situation, the values of h from 

most sites are 1 while very few are 0 or 2. Thus contributes to very small standard 

deviation of the value of h – relatively small value of W. The alternate between half-filed 

layers and almost completely filled layers in this manner yields oscillation in W-t plots. 

The period of oscillation is 1 ML as shown in Fig. 3.2. 

 Information from Fig. 3.6 confirms that early growth time of the DT model with 

long surface diffusion length noise reduction technique is, indeed, in layer-by-layer mode 



 26

as previously seen in the W-t plot (Fig. 3.2). Note that if the layer-by-layer is “perfect”, 

the morphologies at 1 ML should be perfectly smooth with h of all columns at h = 1. 

Note also that the DT model with multiple hit noise reduction technique shows similar 

morphologies at these early times.  

Morphologies of the DT model with multiple hit noise reduction technique with 

varies m are shown in Fig. 3.7-3.10. Each morphology is a section of 200 × 200 from a 

substrate of 1000 × 1000 lattice sites. All morphologies are at 1000 ML and they are all 

plotted on the same scale for easy comparison. The vertical scale is reset so they are 

height <h> at zero and the plot is actually of the height fluctuation h - <h>. In Fig. 3.7, 

we set m = 1 which is the original DT model. Because t = 1000 ML which is after the W-t 

oscillation already damps out, the morphology here is in the kinetically rough growth 

region. We can see lots of high surface steps and deep grooves on the surface. When the 

noise is reduced with m = 5, the surface in Fig. 3.8 is much smoother than in Fig. 3.7 with 

further noise reduction at m = 10 and 15 in Fig. 3.9 and Fig. 3.10, the surface became 

smoother as m increased. This result agrees with the W-t plot in Fig. 3.3 where it can be 

seen that the surface width of a system with large m is smaller than the system with small 

m. It should be noted that although the surface with large m are smooth, they still look 

somewhat like the morphology of the original DT model in Fig. 3.7 but with less high 

steps and less deep grooves. If we look at the morphologies closely, we can see that the 

look “rough” in a sense that the height of nearby columns do not correlate much but 

rather there are a lot of up-down-up-down fluctuation from one column to the next. 

 In Fig. 3.11 – 3.14, morphologies of the DT model with long surface diffusion 

length noise reduction technique are shown. In Fig. 3.11, we set  l = 1 which means the 

model is back to the original DT model (as in Fig. 3.7) for comparison. All morphologies 

are plot on the same scale as the ones in Fig. 3.7 - 3.10 for easy comparison. These are, 

again, at  t = 1000 ML which is already in the kinetically rough growth model. When  l = 

36 in Fig. 3.12, the surface becomes smoother because the long surface diffusion length 

helps reducing the deep grooves by letting diffusing atom search for the grooves and be 

incorporate there. With large values of l, l = 100 in Fig. 3.13 and  l = 144 in Fig. 3.14, 

the morphologies become smoother with increasing  l. Thus morphologies are consistent  
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a) b) 

c) d) 

e) f) 

t  = 0.5 ML
 t  = 1 ML

t = 1.5 ML
t = 2 ML

t = 2.5 ML t = 3 ML

Fig.3.6 Surface morphologies of noise reduced DT model with l = 144, m = 1 
and L×L = 1000 ×1000 (a sections of 100×100 is shown in each plot) at t equals 
to a) 0.5 ML b) 1ML c) 1.5 ML d) 2ML e) 2.5 ML and f) 3 ML. 
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with the smaller surface width W with large l in the W-t plot in Fig. 3.2. 

Comparing the two noise reduction techniques, we see that both of them can 

induce layer-by-layer growth during early time and both techniques produce smoother 

surface up to 1000 ML. However, morphologies from the two techniques are not 

indistinguishable. For the multiple hit technique, islands on a surface are small and sharp 

while for the long surface diffusion length technique, there are very few island on a 

surface and the islands have wide top. This is become behavior of diffusing atom of the 

multiple hit technique are the same as in original DT model so the shape of islands are 

similar to islands in the original model but with high surface step and deep grooves being 

suppressed. However, behavior of diffusing atoms of the long surface diffusion length 

technique is different from atoms in the original model. With large l, each atom tries to 

search for a step-edge on the surface which is a site that can provide large bonding 

number. This mechanism promotes nucleation of small islands so they merge and we are 

left with few large islands on the surface instead.  
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m = 1, l = 1 

Fig. 3.7 Surface morphology of the original DT model with l = 1, m = 1 and 
L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 

Fig. 3.8 Surface morphology of noise reduced DT model with l = 1, m = 5 
and L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 

m = 5, l = 1 
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m = 10, l = 1 

Fig. 3.9 Surface morphology of noise reduced DT model with l = 1, m = 10 
and L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 

m = 15, l = 1 

Fig. 3.10 Surface morphology of noise reduced DT model with l = 1, m = 15 
and L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 
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m = 1, l = 36 

Fig. 3.12 Surface morphology of noise reduced DT model with l = 36, 
m = 1 and L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 

m = 1, l = 1 

Fig. 3.11 Surface morphology of the original DT model with l = 1, m = 1 and 
L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 
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m = 1, l = 144 

Fig. 3.14 Surface morphology of noise reduced DT model with l = 144, 
m = 5 and L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 

m = 1, l = 100 

Fig. 3.13 Surface morphology of noise reduced DT model with l = 100,   
m = 5 and L×L = 1000 ×1000 (a sections of 200×200) at t = 1000 ML. 
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3.2 Effects of noise reduction parameter on growth exponent 
We are interest to see effects of the noise reduction parameters (l and m) on the 

growth exponent β. It is clear from both the W-t plots and the morphologies that when the 

value of the noise reduction is large, the growth exponent becomes small. To indicate that 

the value of the growth exponent in this section may not be the “true” value for the DT 

model, we call the noise reduction parameter – dependent growth exponent effective 

growth exponent (βeff). The effective growth exponents are calculated from the W-t plots 

of our simulating for the DT model with both the long surface diffusion length noise 

reduction technique and the multiple hit noise reduction technique.   

In Fig 3.15, the surface width from the DT with long surface diffusion length 

noise reduction technique with various values of l (l = 1, 10, 40 and 100) are plotted as a 

function of time. Each curve is from a system with L × L = 1000 × 1000 with an average 

over different configurations. The top curve with (l = 1), which is the original DT model, 

does not oscillate for obvious observe. However, it is quite clear that the curve can be 

separated in two regimes with different slopes. During early time (t < 102 ML), the best 

fit yields βeff  = 0.261 while in the later time (t > 102 ML), the best fit yield βeff  = 0.199. 

The first value βeff  = 0.261 is close to the theoretical value of β  = 0.25 from the linear 

forth-order continuum growth equation (Equation 2.13. This for  can not be the true 

asymptotic value for the growth exponent for the DT model as the morphologies do not 

show up-down symmetry indicating that the  continuum equation describing the DT 

model must be a nonlinear equation.  The crossover of βeff  to βeff  = 0.199 during later 

growth time seems to provide an answer to that problem the value βeff  = 0.199, in very 

close to the theoretical value of β from the nonlinear froth-order condition grave equation 

(Equation 2.15). This crossover shows that the continuum equation describing the DT 

model contains both the linear forth-order term )( 4h∇  and the nonlinear froth-order 

term ))(( 22 h∇∇ . 

When the value of l is increased, results in Fig.3.15 show that early time surface 

width oscillation, as already discussed earlier in section 3.1. However, for t > 102 ML, all 

curves can be fitted rather well with a straight line. The slope of the curves decrease as  
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Fig. 3.15 W-t oscillations of (2+1)-dimensional DT model with L×L = 
1000×1000, m = 1, l = 1, 10, 20, 40 and 100 (top to bottom). The dot 
straight lines are the best power-law fits which produce the effective 
growth exponent βeff that decreases as l increases.  

βeff  = 0.199 

βeff  = 0.165 

βeff  = 0.160 

βeff  = 0.146 
βeff  = 0.142 

βeff  = 0.261 
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Fig. 3.16 W-t oscillations of (2+1)-dimensional DT model with L×L = 
1000×1000, m = 1, 3, 5, 10, 15 and l = 1 (top to bottom). The dot 
straight lines are the best power-law fits which produce the effective 
growth exponent βeff that decreases as m increases. 

βeff  = 0.199 

βeff  = 0.125 
βeff  = 0.150 

βeff = 0.075 
βeff  = 0.095 

βeff  = 0.261 
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l is increased. From βeff   = 0.199 for l = 1, the effective growth exponent goes down to 

βeff   = 0.142 for l = 100. This result seems to agree previous works [6, 19] that pointed 

out that the continuum equation for the DT model should contain the linear second-order 

term )( 2h∇  also the work [6, 19] was done by studying particle diffusion current, which 

is a completely different approach from our growth exponent study. To our knowledge, 

the linear second-order term has not been confirmed by exact calculation of the value of 

β. The confirmation of β the h2∇  term is complicated because the theoretical value of β 

from the h2∇  term is 0(log) in (2+1)-dimensions. Our results that show decreasing value 

of βeff is quite encouraging. 

 Similar produces have been repeated using the DT model with multiple hit noise 

reduction technique. The results are shown in Fig. 3.16. Here, we obtain similar results- 

increasing m yield decreasing βeff . With the multiple hit noised reduction technique, we 

are able to reduce value of the effective growth exponent to βeff = 0.075 with m = 15. 
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Table 3.1 Effective growth exponent βeff in d = 2, obtained from the growth region (no 

layer-by-layer growth and very good power-law fits used least square fit) of log-log plots 

of W(t). 

 

m βeff r2 l βeff r2 

1 0.199 0.9994 1 0.199 0.9994 

3 0.150 0.9987 10 0.165 0.9988 

5 0.125 0.9963 20 0.160 0.9985 

7 0.110 0.9962 30 0.155 0.9992 

9 0.096 0.9975 40 0.146 0.9975 

11 0.088 0.9958 50 0.152 0.9992 

13 0.082 0.9929 60 0.146 0.9973 

15 0.075 0.9922 70 0.149 0.9983 

17 0.071 0.9935 100 0.142 0.9970 

19 0.064 0.9924 200 0.149 0.9899 

21 0.068 0.9954 300 0.130 0.9984 

   400 0.140 0.9882 

   500 0.122 0.9948 
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Fig 3.17 The effective growth exponent βeff versus noise 
reduction parameter m for the DT model with the multiple 
hit technique in (2+1) dimensions.    
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Fig. 3.18 The effective exponent βeff versus noise reduction 
parameter l for the DT model with the long surface diffusion 
length in (2+1) dimensions. 



CHAPTER IV 

 
RESULT AND DISCUSSIONS:  

FINITE SIZE EFFECTS ON THE DT MODEL  

IN (2+1) DIMENSIONS 
 

 

 

 

 

In chapter III, the noise reduced models suggest that asymptotic behavior of the 

(2+1)-dimensional DT model may belong to linear second-order continuum growth 

equation which corresponds to the EW universality class this is in agreement with 

previous literature [6] which used a diffusion approach (particle diffusion current) to 

study the model. Another approach was done the (1+1)-dimensional DT model. Previous 

works [14, 15] studied the finite size effects on scaling exponents and found that results 

after correction term for finite size effects were added agree with results from the noise 

reduction technique studies. In this chapter we present our results from the study of finite 

size effects on the DT model in (2+1) dimensions. We simulated the original DT model 

(l =1 and m = 1) on two-dimensional substrates. The substrate size L×L is varied with L = 

10, 20, 30, 40, 50, 60, 80, 100, 200, and 1000. Periodic boundary conditions are used. 

Number of the configurationally average are set to be 200 to 500 for small substrate size 

(L = 10, 20, 30, 40, 50, 60 and 80), 30 for L = 100, and 5 for L = 200 and 1000. For 

system with 100≤L , the simulations were done up to time long enough to observe clear 

saturation of the surface width. 
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4.1 The growth exponent 
 The interface width W as a function of deposition time t (films thickness) for 

several substrate sizes are shown in Fig. 4.1. In the early growth region                 

(typically, 1 ML ≤ t ≤ 20 ML), W rapidly increases and then gradually crossover to a 

saturated value in a steady-state region. Note that when the substrate size is large the 

linear increase of log W as a function of log t continues for longer time. The crossover 

from the growth region to the steady-state region happens at later time for a system with 

large L. It can also be seen from the figure that the surface width in a large L system 

substrates to a large value. 

 First, we consider the growth exponent which describes the time evolution of the 

surface roughness. We tried to calculate the slope in the growth region which would yield 

β, but there is a problem of how to define the growth region. For this work, we choose 

the growth region by the least square method on log W-log t plots. It is still difficult to 

determine when the growth region begins and ends because there are slowly crossovers in 

the interface widths curves. We choose to fit our log W-log t data with a straight line 

(which yields W ∼ tβ) with r-squared ≥  0.999 (r-squared (r2) is a parameter used to 

determine how well the data can be fitted to a straight line. The closer to the value of r2 = 

1, the better). The growth region was separated into two parts as Fig. 4.2. The first 

growth region, stars at an initial time to in the range 2 < t0 < 4 ML to a final time t1 that 

still provides r-squared = 0.999, Produces effective growth exponent )1(
Lβ  for each curve. 

The second growth region is in the interval [t1, t2] that gives r-square = 0.999. Slopes 

from this region provide )2(
Lβ  for each curve. Table 4.1 shows the effective growth 

exponents )1(
Lβ  and )2(

Lβ  for several systems of various substrate size. )2(
Lβ was observed 

only when the substrate L is larger than 30. Our results in Table 4.1 show that growth 

exponents from the early time region for all substrate size are approximately the 

same )1(
Lβ  ≈ 0.25. This value of β is consistent with the forth-order linear equation. One 

the other hand, the growth exponents from the second part of the growth region for all 

substrate size also have approximately the same value at )2(
Lβ  ≈ 0.20. This value 

corresponds to the forth-order nonlinear equation.  
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Fig 4.1   W-t of the (2+1)-dimensional DT model with m = 1 and l = 1. 
When vary substrate sizes, L × L here L = 10, 20, 30, 40, 50, 60, 80 and 
100. The saturation times increase as substrate sizes increase. 
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Fig. 4.2 Illustration of definition of growth regions for the (2+1)-
dimensional DT model for each substrate size, first and second 
growth regions are indicated )1(

Lβ and )1(
Lβ  respectively. R-squared of 

data in each growth region is also shown. 

)1(
Lβ  

)2(
Lβ  

r2 = 0.999 

r2 = 0.999 
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Table 4.1 Effective exponents )1(
Lβ  and )2(

Lβ  obtained from log W- log t plots of the 

(2+1)-dimensional DT model using least square fits to define the approximated growth 

regions  

 

Substrate 
length  

 
  (L) 

 

 
R2 = 0.999

 
)1(

Lβ  
 

1t (ML) 

 
R2 = 0.999

 
)2(

Lβ  
 

2t (ML)  

10 0.251 18 - - 

20 0.248 48 - - 

30 0.250 58 - - 

40 0.250 72 0.200 546 

50 0.249 85 0.198 1340 

60 0.247 122 0.199 650 

80 0.250 75 0.198 1860 

100 0.250 144 0.194 2207 

200 0.249 72 0.203 2931 

1000 0.249 124 0.196 1000 
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From our results, the growth exponents from all substrate sizes have a crossover 

from the forth-order linear equation to the forth-order nonlinear equation. This implies 

that both the h4∇  and the ( )22 h∇∇  terms are included in the continuum growth equation 

for the (2+1)-dimensional DT model, i.e. ( )txhh
t
h ,)( 22

1
4

4 ηλν +∇∇+∇=
∂
∂ . The 

coefficient ν4 must be larger than the coefficient λ1, so effects of the h4∇  term shows 

through in the value of the growth exponent from early time.  To see effects of the 

substrate size on the value of )1(
Lβ  and )2(

Lβ , we plot )1(
Lβ  and )2(

Lβ  versus 1/L as shown in 

Fig. 4.3. This method was used in (1+1)-dimensional DT model [14, 15] to find the 

“asymptotic” β which is the value of the growth exponent in the ideal case of L→∞. 

From the βL versus 1/L plot, the curve can be extrapolated back to find the Y-intercept of 

the curve which is the value of βL with 1/L = 0 or L → ∞. However, from our results, the 

value of )1(
Lβ and )2(

Lβ  do not seems to depend on L because, as can be seen in Fig.4.3, the 

values of )1(
Lβ  are practically 0.25 for all values of L while )2(

Lβ  fluctuates very closely 

around the value of 0.20. If we insist on extrapolating the curve, we would surely obtain 
)1(

Lβ ≈ 0.25 and )2(
Lβ ≈ 0.20. This shows that finite size substrates do not have any strong 

effect on the growth exponents β for the (2+1) dimensional DT model. This method that 

work so well in the (1+1)-dimension DT model [14, 15] does not help in obtaining the 

“true” asymptotic β in our case. On the other hand, this is quit consistent with 

experiments. As we mentioned before, the growth exponent gives information about time 

evolution of the roughness of the surface. Large β means the film roughness increases 

rapidly in time. Experimentally, one should see that this time evolution of film roughness 

depends on growth conditions and material of the film, but does not depend on the size of 

the film substrate. So the substrate size L should not have much effect on the value of the 

growth exponent. 

 

 

 

 

 



 46

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Effective growth exponent )1(
Lβ and )2(

Lβ of the DT model in 
(2+1) dimensions, obtained from plots of W versus 1/L with L = 30, 
40, 50, 60, 80, 100, 200 and 1000. 

)1(
Lβ  

)2(
Lβ  
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4.1 The roughness exponent 
Although the extrapolation method to eliminate finite size effects do not work for 

the estimation of asymptotic growth exponent of the (2+1)-dimensional DT model, we 

repeat the procedure to try to calculate the asymptotic roughness exponent α. 

Traditionally, the roughness exponent α is obtained from a log – log plot of saturation 

value of W versus the substrate size L. From scaling relation, Wsat ∼ tα, the plot should 

yield a straight line with the slope being the value of α. That means data from all 

substrate sizes combined will give just one value of α. In Fig. 4.4, our results from L = 

10, 20, 30, 40, 50, 60, 80, and 100 are plotted using the method. The dot line represents 

the best fit to a straight line which has a slope of 0.616. So our calculated roughness 

exponent from the traditional method is α = 0.616. But in this study, we also want to 

have value of the roughness exponent α as a function of the substrate size L. Obviously, 

the traditional method does not work in our case so we follow another approach to extract 

α [13, 14, 15] 

 The effective roughness exponent α L for each value of L can be calculated with a 

relation [13, 14]: 
[ ]

2ln
)2/(/)(ln LWLW satsat

L =α   . 

Here, )(LWsat and )2/(LWsat are the saturation values of the surface width for the 

substrate size L and L/2 respectively. The value of )(LWsat  is obtained from an average 

of the surface width in the stead-state region (the constant width for each L in Fig.4.1). 

)(LWsat , )2/(LWsat  and Lα  from our calculation are shown in Table 4.2. The effective 

roughness exponents were then plotted as a function of Δ−L . The constant Δ  that 

provides the best linear fit (r2 = 0.987) is 0.2 as shown in Fig 4.5. From Fig 4.5, the 

results indicate that when ∞→L  the effective roughness exponent Lα  converts to 0.005 

that suggests the linear second-order h2∇ term (α = 0). This seems to imply that the 

asymptotic universality class of the (2+1) dimensional DT model is the EW universality 

class and correction-to-scaling term for the roughness exponent is  

αα +≈ − 2.0ALL , 
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A is a constant and α is the asymptotic roughness which is α = 0.005 in this work. 

 We note, however, that the data we use here are from small substrate size (L ≤ 

100). The asymptotic value of  005.0=∞→Lα  that we obtain from the extrapolation may 

not be correct. This is because when the system size is large (L >> 100), it is possible that 

the Lα  versus Δ−L  curve may crossover to other behavior and the values of both Δ  and 

∞→Lα  may change. To improve this result, saturation values of surface width from large 

system sizes are needed. But with the limitation in computer speed, this is difficult to do 

because surface width from a larger system will saturate at a much later time. So with the 

resource we have, we still believe that 2.0=Δ  and 005.0=∞→Lα  are the best estimate 

we can obtain although we acknowledge that 005.0=α  may not be the true asymptotic 

value of the roughness exponent for the (2+1)-dimensional DT model. 

  

  

Table 4.2 The value of Lα  and )(LWsat  obtained from large saturation regions of the DT 

model in (2+1) dimensions. 

 

L )(LWsat  Lα  

10 1.63± 0.02 - 

20 2.69± 0.03 0.724± 0.02 

30 3.49± 0.04 - 

40 4.15 ± 0.05 0.621± 0.02 

50 4.72 ± 0.05 - 

60 5.25± 0.06 0.590± 0.02 

80 6.10± 0.10 0.558± 0.03 

100 6.74± 0.20 0.515± 0.04 
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α = 0.616 

Fig. 4.4 Log Wsat versus log L for (2+1)-dimensional DT model with 
L×L when L = 10, 20, 30, 40, 50, 60, 80 and 100 (bottom to top). The 

dot line shows the best linear fits that gives α = 0.616.  
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Fig. 4.5 The effective roughness exponents αL versus L-Δ  in (2+1)-
dimensional DT model. The straight dot line is a good linear fit with 
Δ = 0.2 and A is constant. L = 20, 40, 60, 80 and 100 (top to bottom).  

αL = AL- 0.2 + 0.005 



CHAPTER V 

 
CONCLUSIONS 

 
 
 
 
 
 

We study the noise reduced DT model in (2+1) dimensional substrates. Two noise 

reduction techniques - long surface diffusion length and multiple hit - are used.  The DT 

model is a solid-on-solid limited mobility growth model. Aggregation rules of the DT are 

equivalent to low temperature MBE growth. For The DT model, after an atom is released 

from a randomly chosen site above the surface, it can move only to its nearest neighbors 

to find the final site where it can increase number of bonds. A deposited atom has enough 

energy to break only one bond, but not enough to break two or more bonds. The long 

surface diffusion length technique (l>1) is equivalent to the increase in the substrate 

temperature that encourage the diffusion of surface atoms while the multiple hit noise 

reduction technique ( 1>m ) is a computational technique. Parameter l is a maximum 

length to diffuse under the aggregation rules of the DT model while parameter m  is a 

number of attempts to stick at the chosen final site on the substrate before a deposition 

occurs.  

Our investigations show that the long surface diffusion length noise reduction 

technique and the multiple hit noise reduction technique can enhance the layer-by-layer 

growth indicated by oscillation in surface roughness - oscillation of interface width 

versus time - during early growth time. The layer-by-layer damps out when growth time 

is longer than the damping time ct . We find that the damping time depends on the noise 

reduction parameters with power laws relations: ct ∼ δ)( Ll  when L  is substrate size and 

ct  ∼ μm . We found that for the (2+1)-dimensional DT model, 5.1=δ and 5.2=μ  for 

the long surface diffusion length and the multiple hit techniques respectively. 
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Our surface morphologies when t < tc confirm that these two noise reduction techniques 

produce smooth film surfaces which is equivalent to increasing substrate temperature in 

experiments. In fact, the noise reduced films from the long surface diffusion length 

technique and the multiple hit noise reduction technique are practically indistinguishable. 

So we can conclude that the two noise reduction techniques are indeed equivalent for the 

study of the layer-by-layer growth. 

After the damping time, surface roughness shows kinetically rough growth and 

interface width increases with time as a power law, W ∼ βt . For the original DT model (l 

= 1 and m = 1), there is a slow crossover of the growth exponent from β = 0.26 (that 

belongs to the linear forth-order equation) to β = 0.2 (that belongs to the nonlinear forth-

order equation). In addition, our results show that the two noise reduction techniques 

have effects on the growth exponent β. For the multiple hit technique, the effective 

growth exponent effβ decreases as parameter m is increased and it becomes close to zero 

(that belongs to the EW universality class) at large m. For the long surface diffusion 

length technique, effβ decreases as parameter l is increased. At large l, effβ  fluctuates 

and does not converge to zero.  So we conclude that the long surface diffusion length 

noise reduction technique is not strong enough to find the asymptotic value of the DT 

model. 

Furthermore, we study finite size effects on the DT model in (2+1) dimensional 

substrates. We simulated the (2+1) dimensional DT model without the two noise 

reduction techniques (l = 1 and m = 1) and varied the size of the substrate. We found that 

the finite size effects are not strong on the calculation of the growth exponent of (2+1)-

dimensional DT model. It is, however, so strong that it effects the value of the roughness 

exponent. Effective roughness exponent αL of each substrate size is calculated from 

[ ]
2ln

)2/(/)(ln LWLW satsat
L =α  [13,14]. The effective roughness exponents Lα versus Δ−L  

plots are fitted to a linear curve with 2.0=Δ  that gives correction-to-scaling term 

αα +≈ − 2.0ALL , when A is a constant and α  is the asymptotic roughness exponent. We 

found that our results of the (2+1)-dimensional DT model yield the asymptotic roughness 
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exponent α = 0.005. That indicates the model asymptotically belongs to the EW 

universality class.  

From our work, we belief that the continuum growth equation describing the 

(2+1)-dimensional DT model consists of the second-order linear term h2
2∇ν , the forth-

order linear term h4
4∇ν , the froth-order nonlinear term ( )22

1 h∇∇λ  and the noise term 

( )tx,η . At early growth time, the simulation results show behavior of the froth-order 

linear term so it means the coefficient ν4 is the strongest. However, because λ1 and ν2 are 

not zero, behaviors of the nonlinear forth-order term and the linear second-order appear at 

later time. With the behavior of the linear second-order term so difficult to see, the 

coefficient ν2 must have a very small value. In addition we can confirm that the multiple 

hit noise reduction technique can reduce noise until the asymptotic behavior of growth 

model appears. But the long surface diffusion length technique does not work to find the 

asymptotic growth exponent of the (2+1) DT Model. 

Finally, values of the growth exponent (β) and the roughness exponent (α) of the 

(2+1)-dimensional DT model obtained from different methods in our work are concluded 

in Table. 5.1. 

 

 

Table 5.1 The growth exponent (β) and the asymptotic roughness (α) of the (2+1)-

dimensional DT model obtained from difference methods. 

 
Methods β  α  

Noise reduction techniques   

   - Multiple hit technique 0.005 - 

   - Long surface diffusion length 0.12-0.13 - 

Traditional scaling  
)1(β ≈ 0.25 crossover to 

)2(β  ≈ 0.20 
0.616 

Finite size effects  
)1(β ≈ 0.25 crossover to 

)2(β  ≈ 0.20 
0.005 
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