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Let Xj, j=1, 2, ... , n be independent random variables

such that for some p, g > 0, p + g = 1, we have
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It is well-known that P(k1_<_ Sn < k2) can be approximated by
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In 1945, W.Feller [1] proved that
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where ¢ is a constant.



In, 3979, da¥y Uspensky [2] gave a better approximation by .
introduction a correction term in the approximation and made some

adjustment to the normal probability. Limits of integration used in
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Uspensky s approximation are
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The correction term introduced is
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Uspensky s approximation can be stated as follows:
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where the error of approximation A satisfies

for some constant c.
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In this study, we generalize Upensky s result to the case where
Xj, g2 15 25 .:s 5 N are independent integral-valued random variables.
Our main result is given in Theorem 3.11. This theorem is specialized

to the case of identically distributed random variables in Chapter IV.
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