

CHAPTER I

INTRODUCTION

Let X_j , $j=1, 2, \ldots$, n be independent random variables such that for some p, q>0, p + q = 1, we have

$$P(X_{j} = 0) = q,$$

$$P(X_{\dot{1}} = 1) = p$$

for all j = 1, 2, ..., n.

Let

$$S_n = X_1 + X_2 + \dots + X_n.$$

It is well-known that $P(k_1 \le s_n \le k_2)$ can be approximated by

$$\frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} -\frac{t^2}{e^2} dt$$

where

$$x_1 = \frac{k_1 - np}{\sqrt{npq}}$$
 and $x_2 = \frac{k_2 - np}{\sqrt{npq}}$

In 1945, W.Feller [1] proved that

$$\left| P(k_1 \le S_n \le k_2) - \frac{1}{\sqrt{2\pi}} \right| \int_{x_1}^{x_2} -\frac{t^2}{e^2} dt \left| \le \frac{c}{\sqrt{n}} \right|$$

where c is a constant.

In 1979, J.V. Uspensky [2] gave a better approximation by introduction a correction term in the approximation and made some adjustment to the normal probability. Limits of integration used in Uspensky's approximation are

$$T_1 = \frac{k_1 - np - \frac{1}{2}}{\sqrt{npq}}$$
,

$$T_2 = \frac{k_2 - np + \frac{1}{2}}{\sqrt{npq}} .$$

The correction term introduced is

$$\frac{q-p}{6\sqrt{21npq}}\left[(1-T_2^2) e^{\frac{T_2^2}{2}} - (1-T_1^2) e^{\frac{T_1^2}{2}} \right].$$

Uspensky's approximation can be stated as follows:

$$P(k_1 \le S_n \le k_2) = \frac{1}{\sqrt{2\pi}} \int_{T_1}^{T_2} -\frac{t^2}{e^2} dt + \frac{(q-p)}{6\sqrt{2 npq}} \left[(1-T_2^2) - \frac{T_2^2}{e^2} - (1-T_1^2) e^{\frac{T_2^2}{2}} \right] + \Delta$$

where the error of approximation Δ satisfies

$$|\Delta| < \frac{c}{n}$$

for some constant c.

In this study, we generalize Upensky's result to the case where X_j , $j=1,\,2,\,\ldots$, n are independent integral-valued random variables. Our main result is given in Theorem 3.11. This theorem is specialized to the case of identically distributed random variables in Chapter IV.