CHAPTER III

THEORY

3.1 Basic knowledge in thermodynamics

One method for representing the PVT behavior of fluid are the use of
empirical equation of state, exemplified by the class of polynomial equation that
are cubic in molar volume. The simplest useful polynomial equation of state are
cubic. There has been extensive progress made in recent years in research
towards the development of analytic statistical-mechanical equation of state
applicable for process design calculation. However, cubic equation of state is
still widely used in chemical engineering practice for the calculation and

prediction of fluids and fluid mixtures.

These equation of state are generally modification of the Van der Waals

equation of state:

P= RT _iz
v=-b v

Extensive researches on equations of state have indicated that the Van der
Waals equation of state is not accurate enough for the prediction of properties of
compressed gases and liquids. This deficiency of the Ven der Waals equation of
state has initiated a great deal of research on the development of other equations

of state.



3.1.1 Generic-Redlich-Kwong equation of state
A cubic equation of state be explicit in pressure and that it yield
steep isothermal for small value of V, then algebraic arguments lead to an

expression of the form:

_Rr __ qv-1]
P_v—-b [v—b][v2+§v+£]

3-1)

Where each of the five parameters b, 0, €, 8, and n  can be depended upon
temperature and composition.
Equation 3-1) may be considered a generalization of the Van der Waals
equation, to which it reduces as the simplest nontrivial special case . Thus for T
= b, 8-e=0 and O=constant = a, we obtain :

RT a

P O Yo
v=b v?

Which is the Van der Waals equation.
We define the Generic -Redlich-Kwong equation of state.

RT 0

j . .
v—b v[v+d]

3-2)

Equation 3-2) is obtained from eq. 1) by the assignments §-n=b and g-o ;
parameters O is function of T.

6 = 5y 3-3)
Parameter a and b are constant.

Equation 3-2) may be written to display more explicitly its cubic nature.
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There are many ways to solve this equation of state. The two most often used

are the classical derivative conditions on the critical isotherm :

(_0'1_”) - R 3-5a)

W Tior

(al : ) <\ /4 3-5b)
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Equation 3-5) when applied to a cubic equation yield the equivalent requirement
that the equation gives three equals roots for the volume at the critical state, i.e.,

V=YY = 0
or V-3V V24V V -V, = 0 3-6)
At the critical state, the generic Redlich-Kwong may be written as
Rl pa b’ 4R 6.\, b6 _ 3-7)
c I A F,

Here Tc and Pc are the usual critical properties; since b and 6 may depend upon
T, the subscripts on these quantities indicate that they are evaluated at the critical
temperature.

Comparison of coefficients of V in Eq. 3-6) and 3-7) yields three equation
relating the five quantities Pc, Ve, Tc, bc and ac :

’;T« T 3-8)

c
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By Eq.3-8) v,

and thus, by Eq. 3-10)

Substitution of Eq.3-11) and 3-12) into Eq.

cubic equation
b+ + lb: i =
3 27

b.F,

When 3¢ =

c

-3y 3-9)
= ¥ 3-10)
= ’Zc 3-11)

cTc

3-9) yields on rearrangement the

3-13)

. Equation 3-14) has but one real root given by.

b = 0.08664 3-14a)

b, = 0.08664 RT‘ 3-14b)
Substitution of Equation 3-15b) into 3-12) gives

6, = 0.42748 sz"} 3-15a)
Also 0 = % , and Equation 3-15a) yields

a T 3-15b)

c



3.1.2 Soave-Redlich-Kwong equation of state

Most modifications of Redlich-Kwong equation incorporate, in
addition to Tc and Pc, a third corresponding states parameter, usually the acentric

factor @: One such modifications is that of Soave who retain the original

expression for b,

b = b, = 0.08664 £
but replaces the original expression for a,
from eq 3-3)and 3-11)
2/ /K8 a D)
a oy o BAAY
f(T)
So a = 0, =<3
£L)
asnsard 1D
(1)
a = aa
When @ = [1+(0480+1570-01760?)(1-2%)]

For SRK equation of state

3-16)

3-17)

3-18)

3-19)

3-20)

a = a[1+(0480+1570-01760?)(1-7%)] 3-21)
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a = < 3-22)

From Eq. 3-17) may be written to cubic equation of state

- ih-B- W) - =D 3-23)
When ¥4 = ﬂ
RT
4 - aP2
RT
3 | B
RT

From Eq.3-20) and 3-23):

4/ =70, 4274{%]0: 3-24)
- T
P
B = 008664-~ 3-25)

r

3.1.3 Peng-Robinson equation of state

Peng-Robinson equation of state can be expression of the form:

RT a

e v—b_v[v+b]+b[v—b]

3-26)

When a = a'f(T)

From equation 3-26) may be written to cubic equation of state :



Z-(1-B)z* +(4-3B*-2B)Z -(AB-B*-B*) =0

3-27)
When . S i 3-28)
Rr
r £ aP
RT? 3-29)
s S 3-30)
RT
The classical derivative condition on the critical isotherm be used to solve this
equation.
At critical, il-)- =0
aV T:Cr

o*pP
(A
T:Cr

Compare the coefficient of v" in equation 3-6) and 3-27) i.e.,

3w, = 1-B 3-31)
3w = A-3B'-2B 3-32)
v\ = AB-B'-PB 3-33)

Combine equation 3-29), 3-30) and 3-31), 3-32) :

bP,
Iy, « w1 3-34)
P 3P 2bP
3 2 ~ ac I ey, gy ¢ c -
V2 e RD RL 3-35)
2 p2 3 p3
V: = acIJc bl)c b ‘Pc b Pc 3"‘36)

R*T? RT, —Rsz _st;s
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a =y 2k 08 88
¢ c R2 ];2 R37;3 bcPcz
Combine equation 3-35) and 3-37) :
At critical temperature,
22
a(T) = 0.45724 2%
o(r) = 0.07780 2L
At other temperature , a, —= /(1)
f(7)
a = aa
At T=Tc N oC = 2
OC is a function of Tr = T/Tc and @ :
a® = 1+m(1-T%)

3-87)

3-38)

3-39)

3-40)

m = 0.37464 +1.54226 @ — 0.26992 @*
3-41)
So for equation of state :
a = a,[1+(0.37464+154226 0~ 0.26992 0*)(1- 7%)|
3-42)
b = b = O.O778ORT° 3-43)

c
¢
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3.2 Cubic equation of state for mixtures

Application of empirical equations of state to mixtures is usually done
through mixing rules for the equation of state parameters. Only a few type of
mixing rules have gained general acceptance for use with cubic equation of state;
most of them may be considered special cases of the quadratic mixing rule

e BN LY R 3-44)
£ 3

Here, the unsubscripted symbol P represents the value of parameter for a mixture.
The double subscripts parameters are of two type :

1. If j=i, then Pij = Pii = Pi

2. If j#i, then Pij represents interactions between unlike chemical
species , and is called an interaction parameter

Interaction parameters (Pij) are independent of composition. They are
related to the pure-fluid parameters Pi and Pj by empirical recipes called

combination rules :

1. Arithmetic-mean combination rule

B = 5B+B) = S(B+B) 3-45)

Then P = Y XB 3-46)
i

2. Geometric-mean combination rule
% % %
B = (rp) = (PR = (Bp)" = (BR)
3-47)

(Z X,P,%)2 3-48)

~
|

Then

3. Combination rule that modified from geometric-mean combination

rule by adding interaction parameter lij.
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%
BoF (l—l,.j)(RPj) 3-49)
I;=0 when j=i and Iij is a small value.

For equation of state that are generally modifications of the van der Waals

equation of state,

According to the van der Waals, the extension of this equation of state to
mixtures requires replacement of a and b by the following compositions-

dependent expression :

R = ZZXiXiag 3-50)
J

i

b =/ BINRX D 3-51)
J

In this equation, aij and bij (i = j) are parameters corresponding to pure
component (i) while aij and bij ( i # j) are called the unlike - interaction
parameters. It is customary to relate the unlike - interaction parameters to the

pure - component parameters by the following expression :

(l—kij)(aiiajj)% 3'52)

a

i~
Il

= (B+g,)r2 3-53)
Van Der Waals mixing rules is used in this research for a, b in cubic

equation of state by the following expression :

> x.x,(aq,)"(1-4,) 3-54)

a

b = Y Xp 3-55)

i
i
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3.3 Phase equilibrium from equation of state

For multicomponent mixtures, Analytical computational procedures must
be applied with thermodynamic properties represented preferably by algebraic
equations. Because mixtures properties depend on temperature, pressure, and
phase composition, these equation tend to be complex. Nevertheless the equation
presented in the following are widely used for computing phase equilibrium,

enthalpy and densities of mixtures over wide range of conditions.

1. Fugacity-a Basis for Phase Equilibrium
For each phase in a multiphase, multicomponent system, the Gibbs free energy is
given functionally as

G=G{T,P,n,n,,...,n}
Where n=moles and subscripts refer to species. The total differential of G is

oG oG oG
dG=(—J (_) dp+z[_) " 3-56)
or by oP — on, ) , . A i
where j#i. From classical thermodynamics
Witxonn 1k 3-57)
or P,nj
and
L 14 3-58)
oP P.nj

Where S=entropy and V=volume. Defining the chemical potential, u, of species

1as

2 (ﬁ) | 3-59)
5"' P.T nj

and substituting into (3-56), we have
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dG = SdT +VdP + " udn, 3-60)

When (3-60) is applied to a closed system consisting of two phases in
equilibrium at uniform temperature and pressure, where each phase is an open

system capable of mass transfer with another phase
AG pm = X[ X4 —dn®]= 0 3-61)

Where the superscript (k) refers to each of phase. Conservation of moles of each

species requires that
1) - (k)
dn;’ = E dn,

which, upon substitution into (3-61), gives
> [ @® - u®)dn®]=0 3-62)

With dn{" eliminated in (3-62), each dn®®’ terms can be varied independently of
any other dn’ terms. But this requires that each coefficient of dn® in (3-62)

be zero. Therefore.
D= = = 3-63)

Thus, the chemical potentials of any species in a multicomponent system are

identical in all phases at physical equilibrium.

Chemical potential cannot be expressed as an absolute quantity, and the
numerical values of chemical potential are difficult to relate to more easily
understood physical quantities. Furthermore, the chemical potential approaches

an infinite negative value as pressure approaches zero. For these reasons, the
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chemical potential is not directly useful for phase equilibrium calculations. In
stead, fugacity, as defined below, is employed as a surrogate.

Equation (3-59) restated in terms of chemical potential is

(2&) = 3-64)
p (T)

where v,=partial molal volume. For a pure substance that behaves as an ideal

gas, ¥, = RT/P, and (3-64) can be integrated to give
1, = RTInP +C,{T} 3-65)

Where C, depends on T.

Unfortunately, (3-65) does not describe real multicomponent gas or liquid
behavior. However, (3-65) was rescued by G.M. Lewis, who in 1901
invented the fugacity f, a pseudo pressure, which, when used in place of pressure
in (3-65), preserves the functional form of the equation. Thus, for a

component in a mixture
Ji =C,{T}exp(u, / RT) 3-66)

where C, is related to C,.
Regardless of the value of C, it is shown in Prausnitx that, at physical
equilibrium, (3-63) can be replaced with

b ol A 3-67)
For a pure, ideal gas, fugacity is equal to the pressure and, for a component in an
ideal gas mixture, it is equal to its partial pressure, P, = y,P.
Because of the closed relationship between fugacity and pressure, it is convenient

to define their ratio for a pure substance as

v =f°/P 3-68)
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where v/ is the pure species fugacity coefficient and  £° is the pure species
fugacity. The fugacity concept was extended to mixtures by Lewis and Randall
and used to formulate the ideal solution rule

Ju=yo 3-69)

iy =X 3-70)
where subscripts V and L refer, respectively, to the vapor and liquid phases.
Ideal liquid solutions occur when molecular diameters are equal, chemical
interactions are absent, and intermolecular forces between like and unlike
molecules are equal. These same requirements apply to the gas phase, where
at low pressures molecules are not in close proximity and an ideal gas solution is
closely approximated.
It is convenient to represent the departure from both types of ideality (ideal gas

law and ideal gas solution) by defining the following mixture fugacity

coefficients.
o
g, =L 3-71)
,.P
f-L
s 3 = 7 2
= )

At a given temperature, the ratio of the fugacity of a component in a mixture to
its fugacity in some standard state is termed the activity. If the standard state is
selected as the pure species at the same pressure and phase condition as the

mixture, then

a =2 3-73)
Ji

For an ideal solution, substitution of (3-69) and (3-70) into (3-73) shows
that g, = y, and a; = x,
To represent departure of activity from mole fraction when solutions are non

ideal, activity coefficients based on concentrations in mole fractions are

commonly used
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yiv = ﬁ 3—74)
Vi

yo =L 3-75)
X,

For ideal solution, 7, =10 and y, =10

3.4 Summary

The two constant equation of Generic-Redliche-Kwong is empirical
relationships which is applicable over a wide range of pressure. The GRK
equation is particularly attractive because it contains only two constant and these
can be determined directly from the critical temperature, Tc and critical pressure,
Pc.  Furthermore, the GRK equation has an accuracy that compares quite
favorably with more complex equation of state in vapor region and it has the
ability to approximate the liquid region when the two constant Van der Waals
equation can fail badly in this respect. This GRK equation of state is suitable for
the vapor phase and unsuitable for liquid phase. The major difficulty with the
GRK equation is its failure to predict vapor pressure and other liquid phase
thermodynamic properties accurately for a wide range of molecular shape.

SRK is the most modification of Redliche Kwong equation by Soave
(1972) who retains the original expression for b, but replace the original
expression for a, in addition to Tc and Pc, a third corresponding state parameter,
usually the acentric factor @; these improves the performance of the equation for
nonsimple fluid. Modification of Redliche Kwong by adding of @ as a third
constant greatly improves its ability to predict vapor pressure and other liquid
phase thermodynamic.

PR equation is a new two constant equation of state that modified by
Peng and Robinson in 1976. Parameter expresses in term of Pc, Tc, o, like
SRK. The model is likely to improve prediction of liquid density and phase
equilibrium in the critical region. These equations can application to all

calculation of all fluid properties both liquid and gas in natural process.
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