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Chapter 1

Introduction

1.1 Introduction

This chapter provides the overview of this thesis and its objectives, to
help readers to understand this thesis more easily. The readers will also learn the
purpose and scope of this work.

Cosmic rays are energetic particles or gamma rays from space. These
particles can be accelerated at shocks. A shock, or a discontinuity in fluid pa-
rameters, appears when two fluids collide with a relative velocity greater the
speed of sound. The acceleration of particles at a shock was first explained by
Fermi (1958). The modern understanding is that collisions between the particles
and the magnetic field irregularities keep the particles at the shock and assist the
acceleration. The cause of acceleration is not only the collisions but also the drift
motion of the particles along an electric field. The details of this process will be
explained in chapter 2. At a nearly perpendicular shock, the drift motion of the
particle yields a very large energy gain. In previous analytic theory work on the
acceleration at a nearly perpendicular shock, the multiple magnetic field-shock
crossing were not considered. We expect that these have a significant effect on

the particle acceleration at the shock.



1.2 Objectives

e Develop the computer programs and methodology for tracing magnetic
field lines.

e Study the effects of magnetic turbulence on the distribution of 1) the
angle between the magnetic field and the shock normal at the crossing position,
2) the number of magnetic field-shock crossings per magnetic field line, and 3) the
distance between two crossing positions when the mean magnetic field is nearly
perpendicular to the shock normal.

e Study the effects of magnetic turbulence on particle acceleration at

nearly perpendicular shocks.

1.3 Thesis Outline

In chapter 1, an introduction to and the objectives of this work are pro-
vided. Chapter 2 provides some background information about cosmic rays,
shocks, shock acceleration, and magnetic turbulence. In chapter 3, the mag-
netic field model, the magnetic field line tracing method, and the model of shock
acceleration are explained. In this chapter, we develop a new method for trac-
ing magnetic field lines in two-component turbulence and a new model of shock
acceleration at nearly perpendicular shocks. Chapter 4 will provide the statis-
tics of magnetic field line-shock crossings. Chapter 5 will show the effects of
non-turbulent and turbulent magnetic fields on charged particles. Chapter 6 will

provide a summary and the conclusions of this work.



Chapter 2

Cosmic Rays
and Shock Acceleration

2.1 Cosmic rays

Cosmic rays are energetic particles and gamma rays from space. The first
discovery of cosmic rays was in 1912 when Victor Hess found the ionizing radiation
to increase higher in the atmosphere. The conclusion of Hess’s experiment is
that the source of radiation is outside the earth. At that time, “cosmic rays”
were defined as the extraterrestrial radiation, later identified as particles and
gamma rays. From the 1930s to the 1950s, cosmic rays played an important role
as a source of high energy particles for research when no high energy particle
accelerators had been made. In the space age, a wider range of data are available
because cosmic rays can be detected outside the Earth’s atmosphere. We can
measure their energy, intensity, direction, type of particle and time of arrival.
Modern cosmic ray research is about where cosmic rays originate, how they gain
high energies; what they tell us about the history of the universe, what are the
components of galaxies, etc. Cosmic rays can be any particles, charged or neutral,
and most of them that strike the Earth’s atmosphere are protons. In fact, cosmic
rays include all elements in the periodic table and electrons from space. Cosmic
rays originate at the Sun, shocks, supernovae, stars, etc. The energy of cosmic
rays varies from 10° to 10%° eV depending on their source. If cosmic rays originate

within the solar system, their energy can be up to 10 GeV for some strong events



Sources Species Energy
Sun and p.o.'"c,'%o, .. ~ 100 keV
Shocks €Y up to 80 GeV
Jupiter e 1-25MeV
Termination Shock p, o'’ c'0, ... 1-100 MeV
Our galaxy p, 0, ¢, "0, ... ~ 100 MeV
ey to 10"V
20
Other galaxies p <10 eV
e <10"ev

Table 2.1: The sources of cosmic rays

at the Sun, and if any cosmic rays come from outside the solar system, their
energy must be greater than about 100 MeV to come inward against the flow of
the solar wind. There are many sources of cosmic rays as shown in Table 2.1.

Cosmic rays are separated into 3 types by their origin.

1. Solar energetic particles or SEP

The Sun is a source of cosmic rays. These cosmic rays can originate di-
rectly at the Sun from occasional solar storms, or from the interplanetary medium,
where they are accelerated by the shock waves from solar storms. Solar energetic
particles can be used to measure the elemental and composition of the Sun.

2. Galactic cosmic rays or GCR

These cosmic rays come from outside the solar system but generally from



within our Milky Way galaxy. GCRs are atomic nuclei without surrounding
electrons because these electrons have been stripped away during passage through
the galaxy. They have been accelerated to nearly the speed of light, probably by
supernova remnants.

3. Anomalous cosmic rays or ACR

ACRs are mostly produced by neutral atoms in the interstellar medium
which come into the heliosphere and become ionized by either solar UV radiation
or by charge exchange with the solar wind. They are then picked up by the solar
wind and carried back to the outer heliosphere. Then they are accelerated by the
solar wind termination shock, and these so-called anomalous cosmic rays drift

into the inner heliosphere as shown in Figure 2.1.

2.2 Spectrum of cosmic rays

We are interested in the spectrum of cosmic rays, espectially the spectrum
of ACRs, because this will relate to our work. The flux of cosmic rays per unit
energy or cosmic ray energy spectra are known to have the power-law distributions
over a wide range in energy as shown in Figure 2.2. Over such a range, the energy

spectrum can be fit to

J(E) oc BT, (2.1)

where for ionic species j(FE) is (particle flux)/(time - area - solid angle - kinetic
energy/nucleon), and . is a constant called the spectral index. The spectra can

also be fit in terms of momentum as

j(p) occp™7, (2.2)



Anomalous
Cosmic
Rays

Interstallar
Meutral
Gas

Figure 2.1: Neutral atoms from the interstellar medium are ionized and acceler-
ated to become anomalous cosmic rays
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Figure 2.2: Cosmic ray spectra in the energy range from 107 eV to 103 eV
(Picture credit: Simpson 1983).



where j(p) is (particle flux)/(time - area - solid angle - momentum /nucleon). For
non-relativistic particles, 2y, = 7 because E o p?. If the particles have a very
high energy, E o< p so 7. = 7.

The galactic cosmic rays require an energy more than 10® eV to come into
the solar system. The all-particle spectral index is not constant over the whole
range of energy. From 10° eV to 10'° eV, 7, is about 2.5-2.7. From 10'° eV to
1012 eV, 4, is about 3.1. The change in spectral index at the energy of about
10'° eV is called the “knee.” Beyond the energy of 10! eV, the energy spectra
become flatter. This change is called the “ankle.” The particles below the ankle
are thought to be produced inside the galaxy. The particles beyond the ankle are
expected to be produced outside the galaxy. We believe that shocks at supernova
remnants can accelerate cosmic rays up to the energy of 10'* eV, but the origin
of cosmic rays above the knee is still uncertain. Figure 2.3 shows the “knee” and
“ankle” in the cosmic ray energy spectrum.

The Sun also releases many types of particles in the solar wind, solar
flares, and coronal mass ejections. The solar wind is a stream of particles from
the Sun to all directions with an average speed of about 400 km/s. The source of
the solar wind is the Sun’s corona. The type of solar wind called fast solar wind
has a speed of about 800 km/s. Fast solar wind flows from coronal hole regions.
The other portion.is called slow solar wind which has a typical speed of 300 km//s.
The particles in the solar wind are called thermal particles because they have a
Maxwellian velocity distribution. They are different from cosmic rays (energetic,
non-thermal particles) which have much higher energies and typically not power
law spectra. Figure 2.4 shows the total time-integrated intensity of oxygen from

~300 eV to ~300 MeV. This figure also shows the spectrum of ACRs as a “bump”
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spectrum.

2.3 Conservation of magnetic flux and the in-
terplanetary magnetic field

The behaviour of a magnetic field is important to the acceleration of
cosmic rays at shocks because charged particles gyrate and move along the mag-
netic field. Different types of magnetic fields cause different types of motion of
charged particles. Now we describe the shape of magnetic field lines inside the

solar system. The magnetic flux is defined as

d = /E-d§, (2.3)

where dS is a vector element of area. If this area moves with the plasma velocity

—

U, the magnetic flux through this area is constant or d®/dt = 0. To prove this,
Figure 2.5 shows the change of the area with ¢. At time ¢ + At, the flux through

area B is the sum of the flux through area A and area C or
Oy=dp — D (2.4)

The total change of the magnetic flux across this area moving with the fluid over

time At is A® =@, Ol We can use (2.4) to write

AP (= 0F -0 — g

— /(E(HN)—B&)) -d§—/§(t+At)-d§ (2.5)
B C

At area C, ds = —UAt x dl. Stokes’s theorem and Faraday’s law will be applied,

and the electric field in the fixed frame is —U x B , since there is no electric field
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Figure 2.5: Schematic to explain the conservation of magnetic field flux. Area
A, the area at time ¢t + At; Area B, the area at time t; Area C, the area used to
create a closed volume.

in the plasma rest frame (an electrical conductor). Then as At — 0, we find

L aa_f.d§+/é.(ﬁxd7)

=0 (2.6)

Therefore the magnetic flux through any closed contour that moves with the
plasma is constant.

Now we know the magnetic flux is constant in the plasma frame. The
solar wind is also a plasma so the magnetic flux in the solar wind is constant. In
other words, the magnetic field can be dragged out by the plasma. Two different

volumes of the solar wind released from the same area on the Sun will define the
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same magnetic field line. The solar wind moves outward from the Sun in the
radial direction and drags out the magnetic field lines. The rotation of the Sun
causes the curved shape of magnetic field lines (Parker 1958) as shown in Figure
2.6.

Now we will roughly calculate the shape of the magnetic field line at
the solar wind termination shock, or the discontinuity of fluid parameters at the
edge of the solar system. This shock occurs since the relative speed of the solar
wind and the interstellar medium is greater than the speed of sound. We believe
that the solar wind termination shock forms a spherical shape because the solar
wind velocity is in the radial direction from the Sun. Let V; be the speed of
the solar wind, and w be the angular velocity of the Sun. The initial solar wind
velocity is Vr + (wro)qg at the “corotation radius” ry, where the plasma stops
rotating rigidly with the Sun. After released from the Sun, the solar wind has
V=V, — w(r — T())QZAS in the frame corolating with the Sun. In this frame, the
direction of the solar wind velocity is the direction of the magnetic field. The

angle U between 7 and the magnetic field can be written as

w(r —ro)

tan ¥ =
an T

(2.7)

where w is 2a /T for a solar rotation period T of 24.92 days. Figure 2.6 shows
the interplanetary magnetic field dragged out from the Sun. At the solar wind
termination shock, r is about 110 AU (M. Banaszkiewicz and J. Ziemkiewicz
1997), the shock normal is approximately along 7, and Vj, the solar wind speed,
is about 400 km/s. Since ro < 7, we have ¥ ~ 89°. The magnetic field at the

solar wind termination shock is nearly perpendicular to the shock normal.



Magnetic Field B
Moan Field { B)
Particle hotion
Solar Wind

Figure 2.6:. The interplanetary magnetic field and the angle .
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2.4 Charged particle motion in various types of
magnetic fields

We are interested in cosmic rays that are charged particles. Since there is
no electric field in the plasma frame, the cosmic ray motion is mainly determined
by interaction with the magnetic field. To understand the accelation of particles
at shocks, we must understand the particles” motion in a magnetic field (Jackson

1975; Parks 1991).

2.4.1 Charged particle in a uniform, static magnetic field

The equation of motion of a charged particle in a uniform, static magnetic
field is

F= m%(ﬁ) — ¢(0x B), (2.8)

where m is the rest mass of the charged particle, its charge is ¢, ¥ is the particle’s
velocity, B is the magnetie field, and F is the force acting on the particle. Now
equation 2.8 can be written as

. d ’
T mEU: q(U x B). (2.9)

If we set the z direction to be the direction of the magnetic field, B = Bz, the

equation of motion becomes

d q

d q

— = ——(v,B 2.11
Zo, = L) (211)
d

L. = 0 2.12

The solution of these equations is

vy, = v cos(wt) (2.13)
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v, = wvysin(wt) (2.14)

v, = v, (2.15)

where w = ¢B/m, and v and v, are constant. We know that vﬁ +v? =02, where

Vg 18 constant. Then we can write

v = Upcost (2.16)

v, = vpsinf (2.17)

where 6 is called the pitch angle. In this case, the pitch angle is constant.
This motion is called ¢yclotron motion or gyration. The perpendicular
motion of a charged particle forms a circle. The angular frequency of the circular

motion is called the gyrofrequency, and for non-relativistic particles

qB
=1 2.18
o= (2.18)
and the radius of the circle is called the gyroradius,
re = muv/qB. (2.19)
The perpendicular motion makes a circulating current,
2
q‘B
¥+ : 2.20
2mm ( )
The magnetic moment of this current is
p=Inrl. (2.21)

The magnetic moment can also be written in terms of the total magnetic flux

within the circular path as
1 ¢?

= 2.22
2rm ( )

I

Y
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where ® = 7r2B. In terms of the kinetic energy of the particles moving in the

direction perpendicular to B,
1lme?
2 B

1 (2.23)

This relation is a useful tool in the acceleration model. It will be considered again

in the topic of the “adiabatic invariant” shortly.

2.4.2 Charged particle in a uniform electric field and mag-
netic field

Let a uniform electric field be written as B = E] + E|, where || and L

refer to directions parallel and perpendicular to B. For convenience, we neglect

the relativistic effect so the equations of motion are

d

AT (2.24)
d — —

Emvl = ¢(E, +v] x B). (2.25)

If the electric field is parallel to the magnetic field, the solution of (2.25) in the

direction of B is

E
v = (%) t + vy (2.26)
and
qF
2 (Q_W'L') 2 oyt + 20. (2.27)

where vo|| and 2o are initial values. The particle is accelerated along the direction
of B. In the case of the electric field perpendicular to the magnetic field, we set
the direction of B to be the z direction and the perpendicular electric field to lie

in the x direction. The equations of motion are

d . wk,
—Up = WU
dt Y B

(2.28)
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7l = Wl (2.29)
d
—uv, = 0. 2.30

The components of velocity of the particle from these equation are

E,. .
Uy = Uyocos (wt) + (Vg + §> sin (wt) (2.31)
E, : E,
vy, = (Uyo+ E) cos (wt) — vy sin (wt) — 5 (2.32)
v, =" U,gt (2.33)

We can see that the particle drifts in the y direction while it is gyrating around
B. The drift direction is perpendicular to both the constant electric field and
magnetic field. Thus the general velocity of the particle motion in constant

electric and magnetic fields is

7=+ E;é, (2.34)
where @ satisfies the equation dit/dt = (¢/m)i x B (Parks 1991).
2.4.3 Guiding center drift
A guiding centeris the point defined by
rGo =T—p (2.35)

where 7 is the position vector of the particle and p is the radius of curvature
defined by

mw?5 = qi x B. (2.36)

From (2.18), we can write

(2.37)
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where p'is the momentum of the particle. Then (2.35) becomes

ﬁxé
qB*

—

FGC:T—

(2.38)

In the previous case, the components of the electric field perpendicular
to the magnetic field cause the drift motion. In the general case, any force
perpendicular to the magnetic field can cause a drift motion. Let a particle move
under a static magnetic field and a constant non-magnetic force F = Fh +F.

The particle motion is

d

iy
d all q =
B/, My = 0N A 2.4
dtvL m v m B R (2.40)

From (2.40), the particle is accelerated along B by the constant force
F’h, while F ' causes the drift motion. While the particle gyrates around é,
the particle is accelerated over one half of the orbit since Fl is along ¥, and
is decelerated over the other half of the orbit. From (2.19), the change in the
velocity causes a change in the gyroradius, so the gyroradius will increase when
v, is higher and decrease when v, is lower. This change in the gyroradius leads
to a constant net particle drift perpendicular to the magnetic field. The average
drift velocity can be found by assuming v, = 4 —i—W, where @ satisfies the equation
dit/dt = (q/m)i x B, and dW /dt = 0 (Parks 1991). Then the equation of the

perpendicular motion becomes

d Lo . F
Ci=TwxB+LaxB+ L (2.41)
dt m m m

In the frame moving with W, the particle motion is a purely cyclotron motion,

@ = —(ii x B), (2.42)

4
m

==



so (2.41) requires
W x B+F, =0

Since W is perpendicular to g,

- 1 Fl x B
W=l
q B
by using the vector identity (@ x b) x b=(a-b)

From (2.38), we obtain

dige.  dr \ dp/dt x B

dt  dt qB2

Then (2.45) becomes

b — b2a.

drge 4

a = 3] qB?

v F. x B+ (¥ x B)
qB?

= o FLXE
= U —vUL qB2
. F_”J_XB’
= Y qB2

20

(2.43)

(2.44)

(2.45)

(2.46)

We can conclude that the particle is accelerated along the magnetic field due to

—

Fj, and gyrates around the magnetic field while the guiding center drifts along

the direction perpendicular to both F ' and the magnetic field.

For the next step, we will consider a non-uniform magnetic field. In the

non-uniform magnetic field, the pitch angle is not a constant.

2.4.4 Adiabatic invariant

The adiabatic invariant is related to the action integral of a mechanical

system. The action integral is the integration of the canonical momentum over
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a cycle of the corresponding canonical coordinate. This action integral remains
approximately constant when the properties of the system are changed slowly
compared with the relevant period of the motion. In the case of a charged particle
traveling in a uniform static magnetic field, the transverse motion is periodic, and

gives the action integral as

= }[ (11 + qfY) . (2.47)

where ]3L is the transverse component of momentum in real space, A is the
vector potential, and dl is the line element along the circular path (parallel to the
transverse momentum )(Jackson 1975). Then using Stokes’s theorem and special

relativity (2.47) becomes

JF = j{mzﬁ -l + /qé -nda (2.48)
= Irmwpa® — TMwpa’ (2.49)
= Tmwpa?, (2.50)

where S is the surface bounded by the circular path, da is the infinitesimal area
on S, a is the particle’s gyroradius, and the Stokes theorem is applied to the
second term in (2.47).. The unit vector 7i is anti-parallel to B since dl is in
a counterclockwise direction around B. Therefore, the adiabatic invariance of
J means that the flux through the particle’s orbit is constant.. The adiabatic
invariance of J also causes p? /B and the magnetic moment of the current due
to the motion of the particle to remain constant. The magnetic flux through
the particle’s orbit is approximately conserved. This is similar to the conserved
flux through an area moving with the plasma (section 2.3). If the magnetic

field changes slowly over the period of the transverse motion of the particle, the
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magnetic flux is also constant through the particle orbit. The constant flux gives

us

v} 2

EL - ?5' (2.51)
The speed of any particle in a static magnetic field is constant since the magnetic
force is always perpendicular to a particle’s velocity. If the particle comes from
a weak magnetic field By to a strong magnetic field B, |v, | becomes larger, and
[v| becomes smaller. If the magnetic field B is strong enough or |v | is large
enough, |v| becomes zero, and the particle can be reflected back. If the particle
comes from a strong magnetic field By to a weak magnetic field B, |v, | becomes

smaller, and |v)|| becomes larger, so the particle’s motion becomes more parallel

to the magnetic field line.

2.4.5 Curvature drift of the guiding center

We know that if the magnetic field varies very slowly, the particle’s orbit
will conserve the magnetic flux. If the magnetic field is curved over a part of a
circle as shown in Figure 2.7, the trajectory of the particle’s guiding center should
be curved also. Let p be the radial vector of the circle as shown in Figure 2.7.
We consider that the curvature of the magnetic field acts like a centrifugal force

written as
7

F:mvﬁ 5
0

(2.52)

where ‘v is the gyro-averaged guiding center velocity of particles along the di-
rection of the curved magnetic field, and Fis perpendicular to B (Parks 1991).

Then the guiding center drift due to F is

2—» =
. mulix B
W= __IP _

2.53
B (2.53)
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Figure 2.7: Geometry of curved magnetic field lines

The particle drifts to a direction perpendicular to both the magnetic field and
the radius of curvature.

We can express p in terms of spatial derivatives of B. Introducing spheri-
cal coordinates, let p be the radius and 6 be the direction of the curved magnetic
field. If ds = pdf is the length along the circle, then dé/ds must be in the

direction of —pg. If the magnitude of the magnetic field is constant, we can write

s 9B
p2 | 0sB
~ 10B
~ Bos
1 - .
= _§<B -V)B. (2.54)
Equation (2.53) becomes
B 1 _
W=—"Bx (B -V)B (2.55)
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Note that

—

(Vx B)x B=(B-V)B—V(B?/2) (2.56)

(Parks 1991). To show this, in index notation and using the Levi-Civita symbol,

we have
(V. % B) X B = €;€;mi(0, B)) By (2.57)
Using the identity
€ijk€iml = OkmOit — Ok10im, (2-58)
we have
(Vx B)x B=(B-V)B - V(B%2). (2.59)

After that (B-V)B = V(B%/2), since V x B = 0, because we consider a charged
particle in a magnetic field with no current and an electric field. Therefore, the

drift velocity due to the curved magnetic field can be written as

. mvﬁ = )

2.4.6 Gradient drift of the guiding center
Let us define the magnetic field to only change in magnitude and to lie

in the z direction. Let the magnitude of the field increase linearly along the y

direction (Parks 1991). The magnetic field can be written as

~ dB
B=|Bys+ ==y % 2.61
(Bi% S0) (2:61)

The force on the particle is

F = qix (2.62)

B
dB R dB R
= q (Uy (Bo + d_yy ) T — <Uz (Bo + d_yy)> Yy (2.63)

U X By + vyd—yy) T — (vx@y> gj) . (2.64)
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The second and the third term in (2.64) are considered as an extra force. This
force leads to the particle’s drift motion. We already found the drift motion for
a constant force, but this force is not constant, so we average this force over the
gyromotion. Because of the small change in the magnitude of the magnetic field,

the unperturbed solution dominates over a gyroperiod and gives

Uy = v COoSWt (2.65)

v = mwt (2.66)
w

vy, = wvyisinwt (2.67)

g p— YL cos wt, (2.68)
w

where w = ¢By/m. The average of the  component in the extra force is zero,

but the average of the y component is

2
_ @ dB
= o i (2.69)

From (2.44) and (2.69), the average gradient drift velocity is

2
g

— B). 2.70
2wB? dy (5% B) ( )

W= —

2.5 Shocks

In compressible fluids, if any object moving through the medium with a
speed faster than the speed of sound, the properties of the fluid such as density,
pressure, temperature, velocity, etc are changed suddenly. The thin region having
discontinuous fluid properties is called a shock. There are shocks in space. In the
solar system, a shock can be created by a coronal mass ejection (CME), a vast

mass of gas filled with magnetic field lines that can be ejected from the Sun during
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a solar storm. The speed of a CME is usually faster than the speed of sound and
the speed of the solar wind in the interplanetary medium. At the edge of the
solar system, the solar wind termination shock is expected to be found and to
have a roughly spherical shape. The solar termination shock is expected to exist
because the speed of the solar wind is greater than the speed of sound. There are
also shocks outside the solar system. A supernova explosion can produce shocks

in a supernova remnant.

2.6 Fermi acceleration

In 1949, Fermi proposed a theory of cosmic rays in which cosmic rays
originate and are aceelerated primarily in the interstellar space of the galaxy by
collisions against moving magnetic fields. This theory provides the inverse power
law spectral distribution of cosmic rays.

In the plasma frame, the average electric field is zero, but the average
magnetic field is not zero. Since the plasma fluid is turbulent, the magnetic field
is irregular. In the upstream plasma frame, the speed of the particle is roughly
constant since the average electric field is zero. In the other frames which are
not the plasma frame, if the relative velocity between that frame and the plasma
frame is not parallel to the magnetic field, the electric field does not vanish and
charged particles can be accelerated by the electric field. The normal incidence
frame is the frame that is boosted along the average plasma velocity until the
shock is stationary. Normally, the average plasma velocity is not parallel to the
magnetic field so there is a nonzero eletric field. The calculation with an electric
field is difficult so we will calculate the momentum changes in a frame with no

electric field. There is a frame called the de Hoffman-Teller frame. This frame
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has a stationary shock plane, and is boosted along the magnetic field, so there
is no electric field in this frame. We will use this frame to find the momentum
changes when the particles cross the shock.

The irregular magnetic field can cause the particle to change its direction
with no change in the speed in the local fluid frame. If we observe the particle in
the de Hoffman-Teller frame, we can imagine that the change in particle direction
due to a macroscopic magnetic irregularity is like that due to an elastic collision
with massive particle. If there is no shock, all irregular magnetic fields move with
same average speed. The charged particle can be reflected at one magnetic field
irregularity and change its direction; then it can collide with another magnetic
field irregularity and change its direction back to the original direction. After two
collisions the particle is back to the same direction with no change in speed.

If there is a shock (Figure 2.8), a particle initially moving with speed
v can go through the shock, and after the particle passes the shock, it finds the
downstream irregular magnetic field moving toward it with a speed of U; — Us rel-
ative to the upstream plasma, where U; and Us; are the speeds of plasma upstream
and downstream with respect to the de Hoffman-Teller frame, respectively. This
process is shown in Figure 2.8. “We can transform the particle’s velocity into the
rest frame of the irregular magnetic field. In this frame the particle collides with
the irregular magnetic field and goes backward with no change in speed. Then
we transform the particle’s velocity back into the upstream plasma frame. Thus

the speed becomes v + 2(U; — Us). This gives us

o) _ 2 — ) (2.71)

P (%

This is called first order Fermi acceleration.
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Figure 2.8: The particle collides with the irregular magnetic field in both up-
stream and downstream regions with different relative speeds.

2.7 Shock drift acceleration

In the solar wind frame, the average electric field is zero. Let us consider a
shock frame that is called the normal incidence frame, defined as the frame where
the relative velocity to the upstream plasma frame is parallel to the shock normal.
In this frame, the average electrie field is not zero but is equal to ~UxB , where
U is the solar wind velocity with respect to shock frame and B is the average
magnetic field. At a shock the magnetic field generally changes. its direction
and magnitude. If the magnetic field changes, charged particles will have a drift
motion. In the case of an oblique shock, the magnetic field has a component
along the shock plane, and the gradient of the magnetic field is in the direction of
the shock normal. For positively charged particles, the drift direction is parallel

to B x VB. Since VB is parallel to the shock normal, U-VB is positive.
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Therefore the drift direction is parallel to the direction of the electric field. In
the normal incidence frame, we view that charged particles are accelerated by 1)
Fermi acceleration and 2) the drift motion. If we observe the particle in the de
Hoffman-Teller frame which has no electric field, the net change in the velocity
of the particles after crossing the shock (Fermi acceleration) already includes the
effect of the shock drift acceleration. We can easily find the momentum change

since the speed of the particle remains unchanged in this frame.

2.8 Some previous work on particle acceleration
at nearly perpendicular shocks

2.8.1 Adiabatic treatment (Terasawa 1979)

In this work, charged particles are set to move toward a shock. Only the
particles reflected at the shock are considered. The energy gained at each crossing
is shown and it depends on the pitch angle, the angle between the magnetic field
and the shock, and the particle’s speed. In the adiabatic treatment, the magnetic
field changes slowly and smoothly at the shock, and in the kink treatment, the
magnetic field changes rapidly with a discontinuity at the shock. These treat-
ments are then compared. These two magnetic fields are shown in Figure 2.9.
The kink treatment, for which the particle motion can not be solved analytically,
is more realistic since the fluid parameters are discontinuous at the shock. The
adiabatic treatment can be solved analytically, and is shown by Terasawa (1979)
to provide a good approximation.

If there is only a magnetic field, the particle’s motion can be easily approx-
imated. Therefore, we should do all our work in the frame of a zero electric field.

We know that the distribution of pitch angle is initially random in the plasma
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Figure 2.9: (Left) The maguetic field changes slowly at the shock in the adiabatic
treatment. (Right) The magnetic field changes suddenly at the shock in the kink
treatment.

frame, and there is no electric field since the plasma is a conductor. There is
no electric field anywhere except at the shock since the discontinuity at a shock,
the magnetic field changes in magnitude and becomes time dependent when we
observe from the solar wind frame. We should transform the properties of the
particles from a frame in which particles are in both a nonzero magnetic field
and a nonzero electric field into a frame with a zero electric field and a static
magnetic field. In the normal incidence fraine, a frame that is fixed with respect
to the shock in which the upstream (incident) flow is normal to the shock, the
relative velocity between the plasma frame and the normal incidence frame is
not in the direction of the magnetic field as in the case of a nearly perpendicular
shock. Therefore the electric field is not zero in this frame. Now we will find a
frame with no electric field at the shock.

In the solar wind frame the electric field is zero, since the solar wind frame

is the plasma frame. The shock normal is set to be in the x direction. Let us
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write the magnetic field and electric field in the solar wind frame as

B = byi+b.2 (2.72)

=
Il

0. (2.73)

The angle 6 between the magnetic field and the shock normal is written as 6 =
tan~1 b, /b, If we want to use a static magnetic field we might transform to a rest
frame of the shock. If the # direction is the direction of the solar wind (if we
are in the normal incidence frame), let the solar wind speed be Vi z. Using the

Lorentz transformation,

A 4 r, = - \\ y —»—»‘ -

E £ H(E +5 % B)~ 15AE- )

> 53 *_72—‘—’*

B = B =3 xE) - 585 B) (274)
(2.75)

where v = 1/+/1 — v,/c and § = ¥, /¢, the magnetic field and electric field become

B’/

bui + Yushs? (2.76)

—

E, - (”YUS‘/:SbZ/C) ?27 (277)

where 7,, = 1/4/1 — (V2/c?). In this frame, the magnetic field is static but the
electric field is not zero. We can get a frame of zero electric field and a static
magnetic field by transforming the magnetic field and the electric field into the
frame that moves with velocity —uz with respect to the shock frame. This is
called the de Hoffmann-Teller frame. Then the magnetic field and electric field

become

E_’// = (%SVSbZ — be) 7, (279)
Cc C
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where v, = 1/ W . To eliminate the electric field, we need u = 7,,Vib, /b,..
From (2.79) if 7,5 Vb, /b, > c the electric field can not be eliminated. The velocity
17; of the shock frame with no electric field is —Vi& — 7,Vsb, /b, 2 with respect to
the solar wind frame. The solar wind velocity is much smaller than the speed of
light, so v &~ 1. Then |V,| = Visec and the direction of V, is the direction of
the magnetic field in the solar wind frame. Figure 2.10 shows the various frame
we use in this section. The relation between the velocities in two frames can be

written as

g = (2.80)

v = vﬁ—l—VsseCQ, (2.81)

where v, is the component of velocity perpendicular to the magnetic field, and
vy is the component of velocity parallel to the magnetic field
In the adiabatic treatment, we imagine that the magnetic field slowly

changes in magnitude so that we can use the adiabatic invariance (§2.4.4) which

gives
2 2
Yio _ Y1
_ == 2.82

We will consider only the particles passing through theshock. In the shock frame,
a particle that reaches the shock must have a pitch angle less than 90°. Thus
the pitch angle cosine in the solar wind frame must be greater than —V;sec /v
where vy = vfjy + v/, Equation (2.82) tells us that only particles with some
values of the pitch angle can cross the shock. The maximum pitch angle cosine

in the shock frame for which a particle is reflected is

pav = /1 — By/Bs, (2.83)
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where B; and B; are magnitudes of the magnetic field in the upstream and
downstream regions, respectively. In the solar wind frame, the maximum pitch

angle is written as

Vs secf V,sect 2
M = — (1—u?w)+uM\/1—( ) (1= ). (2.84)

Vo Vo

If the particle is reflected from the shock, the magnitude of the parallel
part of velocity is not changed but the direction is reversed. Then the velocity of

the reflected particle in the shock frame can be written as

== 4 (2.85)

U” = —Uﬁ. (286)
Transforming this velocity back to the solar wind frame, we get

e——y; (2.87)

vy = —(v)+2V,sech). (2.88)

Then the energy and the pitch angle of a reflected particle back in the upstream

frame is

. 5ec 6 Lsect)
1+4Vbec M0+4(Vsec > B, (2.89)

Vo Vo

_|_2Vssec6
INEQL LI9R% . (2.90)

2
o sy (L)
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In the kink treatment, the particle trajectories are simulated. The parti-
cle trajectory changes immediately at the shock. Some particles are reflected and
some particles are transmitted at shock due to their gyrophases at the shock. In
the case of the nearly perpendicular shock, the pitch angle distributions, and the
energy distributions after the reflection in both treatments looked alike. The rela-
tions between the energy after the reflection and the final pitch angle are shown in
Figures 2.11 to 2.14 with the crossing angles 20°, 40°, 60°, and 80°. The numbers
in these figures show the number of events at that energy and that pitch angle
from the kink treatment, and the dashed line is from the adiabatic treatment.
The distribution of numbers is close to the dashed line when the crossing angle
is 80°. The distribution of the energy after the reflection is shown in Figure 2.15,
and the distribution of the pitch angle cosine after the reflection is shown in Fig-
ure 2.16 at the crossing angle 80°. Therefore we can accurately approximate the
probability of reflection and the energy gained at a nearly perpendicular shock

by the adiabatic treatment.

2.8.2 Microscopic derivation (Drury 1983)

From Terasawa’s work, the energy gain distribution and the pitch angle
distribution are considered from one crossing. In our work, the multiple crossings
are taken into account. There are multiple crossings because of the magnetic
turbulence. In 1983, Drury summarized how a single shock-field crossing can
cause a power law spectrum of the cosmic rays. In this thesis, we will use the
methods of Drury (1983) for the case of multiple crossings.

The average energy gained by crossing the shock each round, from up-

stream to downstream and back to upstream again, and the probability of the
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Figure 2.11: Frequency distribution in the ratio of the final energy to the initial
energy and the final pitch angle for crossing angle 20°. The numbers show the
number of events at that energy and that pitch angle from the kink treatment,
and the dashed line is from the adiabatic treatment (Terasawa 1979).
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Figure 2.12: Frequency distribution in the ratio of the final energy to the initial
energy and the final pitch angle for crossing angle 40°. The numbers show the
number of events at that energy and that pitch angle from the kink treatment,
and the dashed line is from the adiabatic treatment (Terasawa 1979).
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Figure 2.13: Frequency distribution in the ratio of the final energy to the initial
energy and the final pitch angle for crossing angle 60°. The numbers show the
number of events at that energy and that pitch angle from the kink treatment,
and the dashed line is from the adiabatic treatment (Terasawa 1979).

particle’s escape away from the shock are considered by Drury(1983). The av-
erage energy is calculated from the change of magnitude of the particle’s speed
when 1) the particle’s velocity is transformed from the upstream frame into the
downstream frame upon crossing the shock, 2) the particle downstream changes
direction due to scattering in the irregular magnetic field, 3) returns to the shock,
and 4) returns back into the upstream frame. For an oblique shock, it is also pos-
sible that in step 1 the particle immediately reflects back upstream.

First, we consider the case of a parallel shock, which has a magnetic
field parallel to the shock normal. Let us set p and v to be the magnitude of
the particle’s momentum and velocity, respectively. In the downstream frame,
the particle’s momentum becomes p[l + u(Uy — Us)/v], where Uy and U, are the

average speed of the plasma in the upstream and downstream region, respectively,
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Figure 2.14: Frequency distribution in the ratio of the final energy to the initial
energy and the final pitch angle for crossing angle 80°. The numbers show the
number of events at that energy and that pitch angle from the kink treatment,
and the dashed line is from the adiabatic treatment (Terasawa 1979).
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Figure 2.15: The distribution of the ratio of the final energy to the initial energy
in which the histogram is from the kink treatment and the dashed line is from

the adiabatic treatment (Terasawa 1979).
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Figure 2.16: The distribution of the pitch angle cosine after reflection in which
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and p is the incident particle’s pitch angle. Then the particle is scattered back
upstream, and its momentum becomes p[1+ p(U; —Us) /v — /(U — Us) /v], where
i/ is the final pitch angle. We average the change in magnitude of the particle

momentum over possible values of the initial and final pitch angle:

W = p / / (Ur — Un) 0= Uy — Uy) fo]Agupd d' dp

(Up="Us)/v. (2.91)

o | =~

The probability of escape is calculated from the flux coming to the shock from
the upstream region and the flux going away from the shock into the downstream
region. The flux of particles with speed v coming to the shock is j pvndp/2 =
nv/4 where n is the number of particles having the speed of v. ’ The flux of
particles escaping from the shock is nU;. The escape probability is the ratio of
the escaping flux to the incoming flux, or nls/(nv/4) = 4Us/v. The probability
that the particle comes back to the shock n times without escaping is

P(>n) ~ ﬁ (1 . 452) , (2.92)

i=1

while its momentum becomes

¥ 11 [1 4 g(U1 2 ) /ui] | (2.93)

This means that after crossing n times, the particle has a momentum of p,,. If

v > Uy, we get

Q

4
In pn/po (U =1U2)) —~ (2.94)

5

InP(>n) = —4UQZU— (2.95)

i=1
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or
D —3U2/(U1—U>)
P(>n) = (—n) (2.96)
Po
The number of particles accelerated to momentum p,, or more is
U1 (pn)_3U2/(U1_U2)
N(>n)=—|— Ny, 2.97
(=gt (2 : (2.7

where N is the total number of particle and the factor U; /Us is from the conserved
flux, the number and the energy are conserved. The phase space density of

particles accelerated to only momentum p,, is

Jv

L dN(>p) - No 3U; (&) —3U1/(U1—Us) 29

y 47rp> T AU — Uy Po

Next, we consider an oblique shock. Pitch angles and gyrophases of par-
ticles are separated into 5 sets:

1. Let puy and ¢ be the pitch angle and gyrophase of a particle reaching
the shock from the upstream region.

2. Let us and ¢, be the pitch angle and gyrophase of the particle after
transmission into the downstream region (if applicable).

3. Let ug and ¢3 be the pitch angle and gyrophase of the particle of the
particle after reflection at the shock back te the upstream region (if applicable).

4. If a particle is transmitted into the downstream region, diffuses, and
returns to the shock, let uy and ¢4 be the pitch ‘angle and gyrophase of that
particle.

5. Let p3 and ¢3 be the pitch angle and gyrophase of a particle with gy

and ¢4 after transmission back to the upstream region.

Figure 2.17 shows the directions of motion and (u,¢) sets in each region.
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Figure 2.17: The directions of motion and (u,¢) sets in each region.

Now let T be the set of pitch angles and phases of the particles that are
transmitted through the shock from the upstream region. Let R; be the set of
pitch angles and phases of the particles that are reflected at the shock back into
the upstream region. Let 75 be the set of pitch angles and gyrophases of the
particles that are transmitted through the shock from the downstream region.
A superior bar denotes the set of reversed trajectories of that set. For example,
Ty = (11, 9)|(—p, #) € Tp. The probability of transmission is the ratio of the flux

in 77 to the total incident flux or

ﬁ f npvdpn doy
Ty
P, = . 2.99
3 ﬁ f npnvdp ddy ( )
ThHUR,
Using Liouville’s theorem, we get
L d dgb—l dusde (2.100)
Bl,ul Hiapy = B2M2 H2aPs. .

The value of x is from 0 to 1 in set 75 and T} U R;. Let 6; be the angle at the

upstream region, and 6, be the angle at the downstream region. Each trajectory
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in Ty (upstream) correspends to a trajectory in Th (downstream). Therefore,
using (2.100) we have

By

47 By f n/L2'Ud,u2 d¢2
T

ﬁ f nuvdpy do,

= (2.101)

Therefore, the flux into the downstream region is

27 1
nv nv
/ = cosbhpaladé, =P, / / " o8 Oapisdpizddn
s o Jo 4w

T

= %v cos 0y (2.102)

The flux to co in the downstream region is nUs; cos 5. Thus the probability that
the particles coming from upstream are transmitted and do not return to the
shock again is 4U; cos 6y /(v cos 6y).

On a certain area on the shock plane, the same number of the magnetic
field lines passes from both the upstream region and the downstream region. At
the shock, the angle between the shock normal and the magnetic fields from
both sides of the shock are different. The intensity of the magnetic field is the
number of magnetic field lines per normal area. The normal area is proportional
to 1/cos .

A particle crossing from any direction always gains energy. If a particle
with momentum p in the upstream frame comes to the shock from the upstream
region, it can be reflected at the shock, so (u1,¢1) changes to (us3,¢3), or transmit-
ted into the downstream region, so (ju1,¢1) changes to (u2,¢2). From (2.101) the

probability of particle transmission into the downstream frame is By /Bs, and the
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escape probability after the transmission is 4Us/v. The probability that the par-
ticle goes back to the shock from the downstream region, with (j4,¢4) changing to
(us,05), is (B1/B2)(1 —4Uy/v). We can neglect 4Us /v by assuming (4Uy/v) < 1.

Let v; be the speed of the particle at the plasma frame, and u; be its pitch
angle in that plasma frame. Since the relative velocity between a plasma frame
and the de Hoffman-Teller frame is parallel to the magnetic field, the velocity v

of the particle in the de Hoffman-Teller frame becomes

0 & o+ U+ (1= )

— (1 = ) , (2.103)

Uy

(2.104)

where U; is the relative speed between the plasma frame and the de Hoffman-
Teller frame, and we work to the order U;/v;. If the particle is reflected back
or transmitted to the plasma region with the relative speed between the plasma
frame and the de Hoffman-Teller frame U;, the speed of the particle at the next

plasma frame is

o=\l = Up)? £ — i)
= (1 a “’—UJ) : (2.105)

v
(2.106)
The speed change is
U
v — v = v(l—w> —;
v
= wU; — U, (2.107)

(2.108)
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when we keep terms to order U/v. Now the average momentum gained in a full

cycle is
A 1 1
B L Ur(pr — p)padpndey + — /(U1M1 — Uspia) padpiydepy

P T T
R1 T
B

+% (U1M4 N U2M5)M4du4d¢4. (2109)
Ty

The probability of escaping is small and is ignored in this calculation. By using

Liouville’s theorem,

/ —pispin dpndepy - = / —padpsdes

Rl Rl

= / — 2 dpdo (2.110)

Ry

and

B
/—,u2,u1d/i1d¢1 = gl —u%duzd@
Ty 2T2

27'('31
— 2.111
3 By (2.111)

and

B
/—M5M4dﬂ4d¢4 = gl/—ﬂgdﬂs)d%
2
T2 Tl

B
= L = 2dude. (2.112)
By

T

Now, (2.109) becomes

A 1 1
M = / U1M%d,u1d¢1 - /U1M1M3d,uld¢1+/U2,M1,M2d,u1d¢1
p ™ Y

Ry+Ty 1 T
By

Boymv

+ /(U1/~64 — Uspis) padpadepy

T
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2 1 2U, B
- / Urpiidpndey — _/Ull/Jl,UJSd,Uldel + 2220
TV v 3v By
Ri+T T
Bl Bl
T B /U2Midﬂ4d¢4 - %/Ulm%dmd@- (2.113)
T2 T2

The second term is canceled with the fifth term since

1 B
— / Urpi prsdpnddy = : / Ur popizdpodey
™ Bomv
Tl TQ
= /U dpyde (2.114)
Boro | Uitattsditadds, :
1>

because fio = — 4, piz = =5, and ¢; = ¢;. The third term and the fourth term

give the same value. Thus,

P 3

2.115
v v cos 04 ( )

<Ap> v é (Ul UQCOSQQ)

As in the parallel shock case, dln N(> p)/dInp is the power law index of the
integral spectrum and the ratio of the escape probability to the mean momentum

gain. In this case, the slope of the power law is

din N(>p)  —(4Uycosth)/(vcosty) —3U; cos b (2.116)
dlnp a (Ap)/p Uy costy — Uycosby ’

2.9 Summary

Cosmic rays are energetic particles and gamma rays from space. The ac-
celeration processes at shocks cause the power law spectrum of cosmic rays. From
classical electrodynamics, we know that charged particles move along magnetic
field lines and can be reflected by an intense magnetic field. The drift motion
can happen when the particles are in a non-uniform magnetic field. At shocks,

there is a discontinuity, where the magnetic field changes suddenly. There the



47

particles gain energy by shock drift acceleration and Fermi acceleration, which
have already been developed into the theory of diffusive shock acceleration. The
shock drift acceleration happens when the drift motion due to the non-uniform
magnetic field is in the direction of the electric field at the shock. Fermi accel-
eration is due to the collisions between the particles and the irregular magnetic
field with different relative velocities. In the nearly perpendicular case, the adia-
batic treatment and the kink treatment give similar results for the distribution of
energy gained and the distribution of reflected pitch angles. The particle motion
can be considered in frames with no electric field. The frames with no electric
field are the upstream frame, the downstream frame, and the de Hoffman-Teller
frame. By using Liouville’s theorem, we can find that the energy increases when
particles cross the shock.

In our work, we see that the magnetic field at a nearly perpendicular
shock probably crosses the shock more than one time. We can approximate the
change in the particle’s motion at the shock by using the adiabatic treatment
since the adiabatic treatment can be used in the nearly perpendicular case. The
frames we use are only the upstream frame, the downstream frame, and the de
Hoffman-Teller frame. We can find the distribution of energy by considering the

energy gained at each crossing and the probability of recrossing the shock again.



Chapter 3
Model Components

We introduce the model of the turbulent magnetic field in this chapter.
We develop a new simulation method for the magnetic field line tracing. This
method gives more accurate results and uses less time for the tracing simulation

than the adaptive step size Runge-Kutta method does.

3.1 Turbulent magnetic field model

Fluid motions (such as the solar wind) in space are generally turbulent,
so the magnetic field is also irregular. We use a two component model of the
turbulent magnetic field in space (Matthaeus, Goldstein, & Roberts 1990). This
model was motivated by the observation that solar wind fluctuations are concen-
trated at nearly parallel and nearly perpendicular wave numbers. This model
provides a good explanation of the parallel transport of solar energetic particles
(Bieber et al 1994; Bieber, Wanner, & Matthaeus 1996; Droge 2000).

The total field includes -a-mean magnetic field and a turbulent magnetic
field. The turbulent magnetic field is set to be perpendicular to the mean mag-

netic field. The magnetic field is written as
B = Boz + b.(,y, 2)X + by (2,y, 2)y (3.1)

From (3.1), the mean magnetic field lies in the z direction, By is a constant,
and the turbulent magnetic field lies on the x — y plane. The “slab” component,

depending only on the z direction, and the “2D” component, depending only on
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the x and y direction, are combined in the turbulent magnetic field:

bslab = bx(z)&+by(z)y (32)

From the Biot-Savart law, any magnetic field line must form a loop. This law
implies that
V-B=0. (3.4)

The slab magnetic field already follows this law by construction. The 2D compo-

nent can be written as
b2 (z,y) =V x [a(z,y)2], (3.5)

where a(z,y) is related to a vector potential. It can be called the magnetic
potential function for the 2D component. For any function of z for the slab field
and any function of x and y for the magnetic potential function, the Biot-Savart
law is not violated.

The slab and 2D magnetic fields are different. If we use only one of them,
we obtain an unrealistic model of the magnetic field in space. In the case of
the pure slab magnetic field, the magnetic field line generated from this field can
diffuse though the space, but any position on the  —y plane gives the same value
of the magnetic field as shown in Figure 3.1. Thus the slab component allows
diffusive behavior but a translation on x —y plane gives no change in the magnetic
field. In the case of the pure 2D magnetic field, the shape of the magnetic field
line is periodic as shown in Figure 3.2. A combination of magnetic fields from
both slab and 2D parts is much more realistic, and indeed is directly indicated

by magnetic field data (Matthaeus, Goldstein, & Roberts 1990). When both slab
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Figure 3.1: Two magnetic field lines in the pure slab case.

and 2D components are included into the model, different positions give different
magnetic field lines and the magnetic field lines can diffuse as shown in Figure

3.3. Figures 3.1 to 3.3 are shown in arbitrary units.

3.2 Generating the magnetic field

Both the slab and 2D. components are random functions since they are
used to generate the turbulent magnetic field. “These random functions are the
results of the inverse Fourier transformation of a turbulent power spectrum with
random phases. The same type of spectrum can be found in many turbulent
phenomena.

Figure 3.4 shows a typical turbulent power spectrum in a log-log scale.

The slope of -5/3 is a universal slope for intermediate wave numbers in all tur-
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Figure 3.2: Two magnetic field lines in the pure 2D case.
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Figure 3.3: Two magnetic field lines in the composite turbulence case.

Iog(P(;))

i A -] B {=— C ———p

»
log(k,) log (k)

Figure 3.4: A typical turbulent spectrum that contains region A, the energy-
containing range; region B, the inertial range; and region C, the dissipation range.
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bulent phenomena. This is called the Kolmogorov power spectrum after the
discoverer of the universal spectrum. The scale ky divides the wave numbers into
two groups, large and small distance scales. These are visualized as eddy sizes in
a turbulent flow. The large scale eddies are represented by small wave numbers
in region A. These are the scales that energy is fed into. The small scale eddies
are represented by large wave numbers in regions B and C. These receive energy
from the large scales. This energy transfer into small scales is called an energy
cascade. For tile smallest eddy in region C, there is dissipation of energy since the
fluid viscosity is important. The scale of ky corresponds to scale of the correlation

length of the magnetic field. The correlation length /. is defined as

S B (20)ba (20 + A2))dAz

I. = 0 (3.6)
and ko = 1/1,
3.2.1 Generating the slab field
The slab magnetic field is a random function with
By =0, @gN=0, @7

since the mean magnetic field is parallel to the z direction. To express the tur-
bulent properties, we use a power spectrum as in Figure 3.4 for regions A and
B.

In fact, the power spectrum of a magnetic field is the Fourier transform

of the correlation function:

1 ™ .

Pul) = o [ Rulr)enlic- Rl 33)
= ! ” (T - T

Pol) = oy [ o) explite- 1) (3.9)
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where 7 is the dimensionality of the fluctuations (slab: n = 1, 2D: n = 2) and

the correlation function is defined by
Rex(r) = (bs(ro)bs(ro + 1)) (3.10)
Ryy(r) = (by(ro)by(ro +1)). (3.11)

First, the power spectrum (P’ or P;*) is generated. One possible

spectrum is

Ch
1+ (kzlz)z]%’
where [, is a characteristic length scale related to I, in 3.6

P;:lzab(kZ) — Pys;l/ab(kZ) =

(3.12)

P3lo*(k.) and P;*(k,) are also proportional to [b3**(k.)|* and |bS'*® (k,)|2.
After that, a random phase in each component is generated to form a complex

number with no preferred phase in wave number space:

by (k:) = V/Pgieb(k.) exp(igs) (3.13)
=/ Psleb(k,) cos @y + iy/ P2leb(k,) sin .,

b;’“b(kz) = /P;;ab(kz) exp(idy) (3.14)
= 1/ Pa(k.) cos ¢y + 14/ Peieb(k.) sin ¢,

where 7 is /-1, and ¢, and ¢, are random phases for each k, (varying from 0 to
27).
Finally, we transform b*/%® into real space by inverse Fourier transforms.

We can write the slab magnetic field as

b;lab(z) — b;’“b(kz) exp(—ik,z)dk,, (3.15)

1 o0
\/%/_m
S{a ]‘ °° sta iy

bl (z) = N /_ ooby' *(k,) exp(~ik,z)dk,, (3.16)
b (z) = bI*(2)% + b]*(2)3. (3.17)
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Note that the numerical method that we use for the inverse Fourier transform is
the “fast Fourier transform” (Press et al. 1992). In the numerical method, we

divided the total length of z into 2™ grid points, where we used n = 22.

3.2.2 Generating the 2D field

The power spectrum of the 2D magnetic field must also have the characteristics of
the energy-containing range and of the Kolmogorov power spectrum. The mag-
netic field must be consistent with (3.4) so we start by generating the potential

function a(z,y) so that the inverse Fourier transform of the correlation function

(a(ro)a(ro +1)) is
1

3 [+ (kuly)?]5’

kL = /K2 + 2, (3.19)

and [, is related to the correlation length in the z — y plane.

A(ky) (3.18)

where

This spectrum gives a magnetic field power spectrum proportional to

k=53 for large wave numbers. Then, the inverse Fourier transform of a(z,y) is

a(k,) = /A(kL) exp(i). (3.20)

The random phase ¢ is used to create a complex number for a(k, ) for the same
reason as for the slab part.
The relation between the magnetic field and potential function in wave

number space can be written as

b2 (k,, k,) = —ik X [a(ks, ky)é]. (3.21)
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Now one way to generate the 2D magnetic field in real space is
b2P(z,y) = 51; /_oo /: 2P (k., k,) exp[—i(r - k)]dk,dk,, (3.22)
B (z,y) = ziw /_ : /_ Z BD(k,, k,) expl—i(r - W)|dkadk,.  (3.23)

We use the fast Fourier transform as the numerical technique. This yields
b%'e® and b?P at equally spaced grid points. In this work, we actually generate
the magnetic field by using by = V x [a(z,y)2], where this magnetic field &, is
calculated after we use the inverse Fourier transform to generate the potential
function. If we calculate the magnetic field 51 in wave number space and then
transform into real space, using equations (3.21) to (3.23), this magnetic field is
different from the magnetic field that we actually use. Let

a(z,y) = Z Z (ke, ky) exp [—i(kzz + kyy)]
kz  ky
= > > lalks, ky)l exp[i(¢ — k-z — kyp)), (3.24)
kx  ky
where a(k,, k) = |a(kz, ky)| exp (i¢), and ¢ is a random phase that is different
for each (kg, k,). Then consider the z-component of the 2D magnetic field. From
(3.21), the component b;, is given by
biz(z,y) = ZZ—zk a(kz, ky) exp [—i(k.z + kyy)]. (3.25)
kz ky
Because the magnetic field is real, a(—k,, —k,) = a(ks, k,)*. Equation (3.25) is

written as
= Z Z 2Re {—tk,|a| exp [i(¢ — k.z — kyy)]}, (3.26)
ks ky>0
However, by, is calculated from the potential function in real space by

Alz,y + Ay) — A(z,y)
Ay

b2:c (iL‘, y)
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= Y > alks, ky) exp [~i(kz + ky(y + Ay))l/Ay

ke ky

—a(kz, ky) exp [—i(kx + kyy)]/ Ay

D)3

ke ky>0

Re {—ikylal exp i(¢ — kzz — kyy) [eXp(iiiyi?;) — 1] } (3.27)
v

Each (k,, k,) component in by, is that for b, multiplied by |[1 — exp(—ik,Ay)]

1k, Ayl, which is always less than or equal to one. Therefore,
y -
(bTz) > (ba)- (3.28)

Therefore, we need to use a small value of Ay to maintain an approximately
correct variance of the turbulence in the magnetic field. We need Ay < [,

because when Ay > 1, , the value of |a(k,, k,)| drops very fast.

3.3 Magnetic field line tracing

The position of a magnetic field line is determined as

dr dy dz

5, (3.29)

This equation guarantees that at any point, the magnetic field at that point is

parallel to the magnetic field line.

3.3.1 Magnetic field line tracing in the pure slab case

In the pure slab case, (3.29) becomes

dr bl dy by
dz2 By,  dz By’

(3.30)

The magnetic field computed from the Fourier transform is discrete and exists on

the grid points of z. Therefore, to trace the field lines between grid points using
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(3.29), we need to determine b*®® at intermediate points by interpolation. Here
we use linear interpolation of b*/% so the magnetic field between the grid points
1S

z— 10z

bot(2) = T (b

1+ 1)0z — 2
G5z gy
where dz is the distance between the grid points, ¢ and 7+ 1 label the grid points
at z =16z and (¢ + 1)dz, and z is the position between two grid points. We can

rewrite the magnetic field between grid points as

b (2) = m,z + ¢, (3.32)
where
f (bilab)i+l =3 (bilab)i
My = 5 , (3.33)
and
e = ()i 4+ 1) = (B)iai. (3.34)
This method is also used for the y component:
b(2) = myz + ¢y, (3.35)
where
(b;lab)i-f-l _ (b;lab),'
My = 52 , (3.36)
and
ey = (b5*)i(i +1) — (B3*")is1t. (3.37)
Now, (3.30) becomes
dzx My + Cy
d
Yy _ Mzt G (3.39)

dz Bo
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And the solutions are

T = T+ é—o [ma(2® — 25) + ca(z — 20)] (3.40)
v = w0t g [l )+ e = z0) (3.41)

for a starting location (zg, yo, 20)

3.3.2 Magnetic field line tracing in the pure 2D case

As the magnetic field is discrete and depends on z and v, bilinear interpolation

is used. The potential function between four grid points can be written as

z —10z)(y — 70 1+ 1)ox — z|(y — jo
a(z,y) = ( 5:2(52} % y)ai+1,j+1+ g oz 531(11 y)ai,j+1 (3.42)
(@~ i) 1060 29) G+ 1z -+ Dy —3)
+ oz 8y %140k oz oy Gig>

or as the simpler expression
a(z,y) = may + a2z + azy + aa. (3.43)

Then the magnetic field within this cell is

oa
biD = 5; =T+ as, . (344)
and
Oa
b?ID = ——6—; = —my — ag, (345)
so (3.29) becomes
dx a,x + as
dy a\y + as

@y _ @y tae (3.47)
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The solutions of (3.46) and (3.47) are

=) o2
il O o0
for a starting location (zo, yo, 20). These can also be expressed as
= gﬂ_(;j”_as_ exp [%lo(z — zo)} — Z—j (3.50)
y = ———aly(;j e exp [—;—L(z — Zo)] - ‘Z—f, (3.51)

3.3.3 Magnetic field line tracing in composite turbulence

For composite 2D+slab turbulence, we interpolate b*%® and a within an z-y-z
cell as above. Then (3.29) becomes

dr ~ m.z+az + C;

'l & ' 3.52
dz Bo ( )
where
Cg; = C; + a3, (3-53)
and
dy myz —ay+ Cy
— = , 3.54
dz Bo ( )
where
Cy = Cy — Qas. (355)
The solutions of these equations are
a My m:r:BO + Ca:al
Tz = Agexp (E)z) - Zl—z - [—__af_——] (3.56)
—a m my By — Cyay
y = Ayexp (E—Z) + a—lyz - [—y—a—,{—y——} , (3.57)

where A, and A, are constants calculated from the initial position of the field

line.
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Figure 3.5: Magnetic field line passing through Box 1 and into Box 2.

3.3.4 Magnetic field line tracing across cell boundaries

All the analytic solutions we have shown so far can be used only within one cell
surrounded by grid points. If we want to connect the field line across each cell
the field line passes, we must find the position at the cell’s wall where the field
line passes through and exits the cell. Then the final position of the previous cell
is the initial position of the next cell. When we find the initial and final positions
in each cell, we will obtain the whole field line.

In Figure 3.5 point “a” is the initial point of the tracing in Box 1, and
point “b” is the end of the field line in Box 1. Point “b” is also the initial point
for tracing the field line in Box 2 and point “c” is the end of the field line in Box
2.

3.4 Shock model

A shock is a discontinuity in fluid parameters. This discontinuity always
forms a sheet as shown in Figure 3.6. This sheet divides space into two parts,

upstream and downstream. In the upstream part, the fluid has not yet encoun-
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Figure 3.6: The shock plane is the border between upstream region and down-
stream region.
tered the shock. For the matter in this part, [71 is set to be the average velocity
coming to the shock. In the downstream part, the fluid has already passed the
shock. For the matter in this part, U, is set to be the average velocity.

| In the magnetic field model, we set the z direction along the average
magnetic field. We will consider only the case of a nearly perpendicular shock. In
this case, the average magnetic field is nearly perpendicular to the shock normal.
Let the shock normal be in the £ — 2z plane as 7 = a;T+a,2. If the angle between

the mean magnetic field and the shock normal is 6§, then
A+ 2= a; =cosb (3.58)
and a; = sinf, so the equation of the shock plane is

(x — o) sin@ + (z — z) cos 6 = 0, (3.59)
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Figure 3.7: Shock plane and the mean magnetic field.

and a; = sin 6, so the equation of the shock plane is
(x —xg)sinb + (2 — zp) cos§ = 0, (3.59)

where (zo, z0) is a point on the shock plane. If (xz — x()sin 6 + (z — zp) cos 0 > 0,
then (z, z) is taken to be downstream. If (x — o) sinf + (z — zy) cos§ < 0, then
(x, z) is set to be upstream. Figure 3.7 shows the shock plane, the shock normal,

and the mean magnetic field.



Chapter 4

Statistics of magnetic
field line-shock crossings

From Chapter 2, we know that the shape of the magnetic field affects the
motion of charged particles. Since the magnetic field is turbulent, the particles
can move and diffuse along the magnetic field. Therefore the particles can come
back to the shock many times. The energy gained and the probability of escape
from the shock depend on the number of shock-field crossings, the crossing angles,

and the distance between crossings.

4.1 Parameters in the magnetic field line pro-
gram

First, we describe the parameters that are used to create the power spec-
trum of the magnetic field. The parameter §b/By is related to the energy of the
turbulent magnetic field, where 0b = /(b2) + (b2), and By is the average mag-
netic field. We set By = 1 for convenience. Because the magnetic field has two
components, slab and 2D, the parameter Ey,; is the ratio of the energy in the
“slab” component to the total energy in the turbulent magnetic field. Then the
ratio of the energy of “2D” components to the total energy is 1 — Fg 4. From

chapter 3, the slab power spectrum of the turbulent magnetic field is

C
Pslab kz — PSlab kz — —15’ 4.1
() = Py (k) [1+ (k.1.)?]6 @)

and the 2D power spectrum of the turbulent potential function is
1

AR =

(4.2)
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The parameter [, is proportional to the correlation length of the slab magnetic
field. If we know the correlation length of the turbulent magnetic field in space,
we can set the actual scale of the magnetic field in the model. The parameter [
is proportional to the correlation length of the 2D magnetic field

After we set the parameters for the power spectra of both slab and 2D
magnetic fields, we will generate the magnetic field in wave number space. Then
we transform it into real space according to methods in chapter 3. Before the
transformation, we must set, the size of the box and the number of grid points
inside the box. We set the length along the mean magnetic field to be 100, 000
in arbitary units (au) with 2?2 =4, 194,304 grid points. Thus Az between data
points is 100, 000/4, 194, 304 = 0.0238 au. The distance Az is not changed for all
simulations. The length in x and ¥ is 200 au with 2'2 = 4,096 grid points. Thus
Ax = Ay = 0.0488 in all simulations. The last parameter is the upstream angle
between the mean magnetic field and the shock normal. We set the angle to be
89° as the approximate value determined for the termination shock in Chapter 2.

The speed of the bulk plasma changes immediately after passing the
shock. Let r be the ratio of the bulk plasma speed before passing the shock
to that after passing the shock: Let the shock normal be . Since the magnetic
field line is dragged by the plasma, in the downstream region, the component of
the magnetic field in the x direction is contracted r times. We can generate the
magnetic field line without being concerned with the shock. “After the field line
is in the downstream region we can contract its x component. This contraction
has no effect on collected data, the number of crossings, the upstream angle, or
the distance between crossings.

When we generate magnetic field lines, we vary the values of db/ By, Egap,
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l,, and [, to understand which parameters affect the number of crossings, the
crossing angle, and the distance between each crossing. All magnetic field line

positions are collected on the grid points along the z direction.

4.2 Number of crossings

In this section, the number of shock-field crossings per simulated magnetic
field line is counted. The number of crossings can reduce the probability of
particles” escape from the shock. The particles are known to follow the magnetic
field line and come to the shock around the shock-field crossing position. Some
of the particles are reflected back to the upstream region because their pitch
angle is not low enough to be in the loss cone that enters the downstream region.
Some particles can be transmitted into the downstream region, and can come
back to the shock again, if the magnetic field line they follow crosses the shock
again. If the distance between each crossing is further than the particle’s mean
free path, the pitch angle is randomly changed. The particles can diffuse back
to the shock before the next crossing or are reflected back at the next crossing.
If there are many shock-field crossings, we expect a low probability of particles’
escape. For each crossing, the particle gains energy in both directions, upstream
to downstream and downstream to upstream. If there are many crossings, the
particles are accelerated many times.

In our simulations, the magnetic field line starts from one side of the shock
and then crosses to the other side of the shock. If the magnetic field line crosses
the shock twice, it is back to the same side as before crossing. If the magnetic
field line is on the other side, the number of crossings is odd. After all crossings

the magnetic field line must be on the other side so the number of crossings must
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be an odd number.

Figures 4.1 to 4.3 show the effect of §b/By on the number of crossings in
the pure slab case. From the Figures, a field line can cross a shock more often
when §b/By is larger. Now we change only [, in the pure slab case, and the
distributions are shown in Figure 4.4 for [. = 0.5 au and [, = 0.1 au, respectively.
We can see that the number of crossings does not depend on [, in the pure slab
case.

Since the compound case is more realistic, we set Fy,, = 0.8 and vary
the value of 0b/By. Figures 4.5 to 4.7 show the effect of various 6b/By on the
number of crossings at Ey ., = 0.8. We also show the probability at Fg., = 0.5,
in Figures 4.8 to 4.10, and Fg ., = 0.2, in Figures 4.11 to 4.13. From the data,
the probability does not depend on Fyqp.

For compound turbulence, the change in the scale of the magnetic field
again has no effect on the probability distribution of the number of crossings.
The probability distributions of the number of crossings with 6b/By = 0.5 and
FEgq = 0.5 are shown in Figure 4.14 with [, = 0.5 au and /[, = 1 au, and Figure
4.15 with [, = 1 auand [, = 0.2 au. The probability distributions of the number
of crossings with 0b/By = 0.5'and FEg, = 0.2 are shown in Figure 4.16 with
l,=0.5auand [} =1 au, and Figure 4.17 with'/, =1 auand [, = 0.2 au.

Now we consider the pure 2D case.. The pure 2D case does not have dif-
fusive properties since the magnetic field lines form periodic spiral lines because
each field line follows a path at a constant value of the potential function. There-
fore the distribution of the number of crossings is not like those in the pure slab
and compound cases. Figures 4.18 to 4.20 show the distributions of the number

of crossings for the pure 2D case with b/ By= 0.5, 0.3, and 0.1, respectively.
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of a nearly perpendicular shock at 0b/By = 0.5, Ega = 1, and [, = 1 is plotted
with the fitted curve.
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of a nearly perpendicular shock at 0b/By = 0.3, Ega = 1, and [, = 1 is plotted
with the fitted curve.
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of a nearly perpendicular shock at 0b/By = 0.1, Egq = 1, and [, = 1 is plotted
with the fitted curve.
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of a nearly perpendicular shock at 6b/By = 0.5, Fga = 1, and [, = 0.5 is plotted
with the fitted curve.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.5,
Eslab = 08, lz = 1, and lJ_ =1.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.3,
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/By, = 0.1,
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.5,
Eslab = 05, lz = 1, and lJ_ =1.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.3,
Eslab = 05, lz = 1, and lJ_ =1.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.5,
Eslab = 02, lz = 1, and lJ_ = 1.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.3,
Eslab = 02, lz = 1, and lJ_ = 1.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.5,
Eslab = 05, lz = 05, and lJ_ =1.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.5,
Eslab = 05, lz = 1, and lJ_ =0.2.
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of a nearly perpendicular shock is plotted with the fitted curve at 6b/B, = 0.5,
Eslab = 02, lz = 05, and lJ_ =1.
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Now we find a function that can fit the data. We fit the data for the pure
slab and the compound case only, because the magnetic field lines in space exhibit
diffusive properties. We know that all magnetic field lines must finally cross to the
opposite side from the initial side, so the probability of crossing from the initial
side to the final side is one. We think that whether the magnetic field crosses the
shock again should not depend on the previous crossings because we imagine that
the turbulence at one location is completely independent of the turbulence at the
other locations, assuming they are seperated by more than [, or [,. Therefore,
the probability that the magnetic field line crosses back to the initial side should
be a constant and dees not depend on the cumulative number of crossings. Let
the probability of crossing and re-crossing from upstream to downstream and
back to the upstream region be p. Let P'(n) be the probability that the total
number of crossings is equal to or greater than n times. The number of crossings
cannot be even. (If the number of crossings is even, the magnetic field line is in
the upstream region, and there will still be at least one more crossing from the
upstream region to the downstream region with unit probability.) We can write
P'(n) in terms of p as

(4.3)

Let P(n) be the probability that the total number of crossings is n. Therefore,

n—1 n+1

P(n). .= P(n)—Pn+2)=pz —p2
= (I=pp™ (4.4)
The value of p can be found by fitting the simulation results for the number of
crossings with (4.4). Table 4.1 shows the probability of the magnetic field line

returning to the shock after it crosses from the upstream region to the downstream

region. From the table, the probability is changed only when we change db/By.
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Table 4.1: The probability of recrossing from downstream to upstream as a func-

tion of various parameters.

5b/BO Eslab lz lL p
0.5 1.0 | 1.0 | - | 0.888
0.5 1.0 | 0.5 - |0.832
0.5 0.8 [1.0] 1.0 | 0.887
0.5 0.5 | 1.0 | 1.0 | 0.888
0.5 0.5 05| 1.0 | 0.889
0.5 0.5 | 1.0 0.2 ] 0.885
0.5 0.2 1.0 1.0 | 0.886
0.5 0.2 [05]1.0]0.887
0.5 0.2 |1.0]0.2]0.883
0.3 1.0 | 1.0| - | 0:820
0.3 0.8 |1.0{1.0|0.826
0.3 0.5 [1.0] 1.0 | 0.824
0.3 0.2 [1.0] 1.0} 0.823
0.1 1.0 | 1.0 - |0.576
0.1 0.8 | 1.0 |-1.0 | 0.629
0.1 0.5 | 1.0 |~1.0-1.0.593
0.1 0.2 1.0 1.0 |'0.526
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4.3 Crossing angle

The crossing angle is defined as the upstream angle between the magnetic
field line and the shock normal. From Chapter 2, if the magnetic field is nearly
perpendicular to the shock, the energy gained at the shock is large. The magnetic
field at the solar wind termination shock is also nearly perpendicular to the shock
normal, but the magnetic field is turbulent. Therefore the crossing angle should
not be exactly 89°.

Figures 4.21 to 4.23 show the probability density of the crossing angle in
the pure slab case with [, = 1.0 au and 0b/ By from 0.5 to 0.1. From these Figures,
the crossing angle distribution is changed when 0b/ By is changed. This effect also
occurs in the compound case, with both slab and 2D turbulence. Figures 4.24 to
4.26 show the effect of the 0b/By value on the angle distribution for Fg, = 0.8,
[, = 1.0 au, and [, = 1.0 au while Figures 4.27 to 4.29 are for Eq, = 0.5, and
Figures 4.30 to 4.32 are for Ey,, = 0.2. For all of these figures, the value of Fgy,
seems to have no effect on the angle distribution.

The angle distribution also does not depend on [, and [,. Figure 4.33
shows the angle distributions in pure slab turbulence with [, = 0.5 au. For Ey,, =
0.5, the Figure 4.34 differs from 4.35 only in the value of [, and [, but both of
them show the same distribution. For Eg,, = 0.2, the angle distributions from
different [, and [ as shown in Figure 4.36 and 4.37 show the same distribution.
The angle distributions also depend on only (6b/By) even in the pure 2D case as

shown in Figures 4.38 to 4.40.
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We can find the approximate form of the angle distribution because we
know the turbulent magnetic field distribution. The distribution of the turbulent

magnetic field is

P(b,)db | e { (bz = bo)” ]db (4.5)
s r = X — 5% - .
V2RO b)) L 20— bor)?)
b2
P(b,)db, = ——— exp {———yf] db,. (4.6)
27 (b2) 2(b3)
Because the turbulent magnetic field is axisymmetric, (b, — boz)?) = (b)) =
(1/2)(b*). Therefore,
1 (by — bog)* + b2
p 4 \ y 4,
(bz, by)db,db, 7 exp{ ) }dbxdby (4.7)

and the average magnetic field is boZ + by, 2. If we set the shock normal to be Z,

the relation between cos § and the turbulent magnetic field is

by
o5l = ———. (4.8)
bz +0b; + 1
This cosine of the crossing angle for the average value by, is
bos
cosfy = 0 (4.9)

\/ b6 02+ 1
where 6, is about 89° in the case of solar wind termination shock. The quantity

cos f remains-unchanged along the hyperbolic curve defined as

bl = cos”d (b + b; + bg)
cos® § (b2 + b3)

4.1
1 —cos?26 (4.10)

In our model, we normalize B so that by = 1. We will use new coordinates, cos

and b, instead of b, and b,. Therefore,

P(cosb,b,)d cos 8db, = P(by,b,)db,db,. (4.11)
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Now,
P(cosf,b,) = P(by,b,) b (4.12)
cos 9, by) = P(bs, by) 7. :
From (4.10), we can write
P(bs,b,) = ! exp —L((b — bos)? +b7)

_ 1 _—— 1 ( cosf B cos b, )
o m(b?) P (%) \ V1 —cos20 /1 —cos26,

< —ibQ " ( cos 0 B cos b, )2
4 (v?) ¥ V1 —cos?0 +/1—cos?by
(4.13)

and

0b _3
4 a 2 \ 2 2
(8cos€)by = 2,/02 +1(1—cos’0) 2. (4.14)

Therefore, (4.12) becomes

—
P(cosf,b,) = 2,/b2+1 (1 — cos®6) 2 ey
L cos cos 0y

(1) <\/1 — 020 \/1—cos? 90)2]

. 1 2 1+( cos cos 0y )2
Xp{ — o — .
P (b2) ¥ V1—cos28 /1 —cos?6,

(4.15)

X exp

Now, we will integrate over all b,,

|’ cos 0 cos 6y ?
P ) = 2———m - N
(cos0) (1 co? 9)% exp [ (b2 (\/1 —cos26 /1= cos? 80) ]
. /°° Vi +T

oo T(D?)

b2
Y
s {_@

—_

L+ ( cos 6 B cos By ) 2 b
V1—cos?26 /1 —cos?0, v
(4.16)
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using

Vo Tt b2 b cosf cos 6y 2
v |1 - db
/ exp{ (0%) [ +(\/1—(30829 \/1—003290) Y
B
~ o (4.17)

2
1 cos o cos Oy
™ V1—cos? 6 \/1—(:052 6o

Now (4.16) becomes
|

2
1 cos 0 _ cos 0g
\/ + V1—cos? 0 \/1_0052 0o

Vs : ( cos cos By )2 (4.18)
xp | — L . .
y (b%) \V/1—cos20 /1—cos?6,

From the simulations, we keep the data of a magnetic field line as positions

P(cost) ~ A

[V

(I —cos?0)

along its trajectory. When the space between each position is small, the vector
that points from one position to the next position approximately lies along the
magnetic field line. When the magnetic field line crosses a shock, we know the
position before crossing, the position after crossing, and the vector as shown in
Figure 4.41. The probability that the magnetic field line can cross the shock with
angle 6 is proportional to | cosf|, because if a magnetic field line segment length
Al starts to cross the shock outside a distance Al cos @ from the shock, it cannot
reach the shock. For Ey,, = 1, the probability that the magnetic field line can
cross the shock with angle 6 is proportional to cot # because the correlation length
is on the z direction. Therefore the distribution of crossing angles for F, # 1 is

| cos 0]

2
B 9 \3/2 cos o cos 0
(1 CcOS 6) \/1 + <\/1—c052 0 \/1—0022 90)

woxn | 1 ( cos 6 B cos b )2 (4.19)
p (0?) \v/1—=—cos20 +/1—cos2b, ’ '

P(cost) =
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a magnetic field line

shock normal

\4

Figure 4.41: The probability that the magnetic field line can cross the shock with
angle 6 is proportional to | cosd)|.

Table 4.2: The parameter C; as a function of §b/By.

3b/By | Cr | Cs
05 | 4.85 | 4.41
0.3 | 12.00 | 11.53
0.1 | 98.18 | 97.67

and the distribution of crossing angles for Fg,, = 1 is

| cos 0
2
2 cos 6 cos 6
(1 — cos? ‘9) \/1 + <\/100529 D \/1—0022 90)
1 cos cos By ?
y B _ 4.20
eXp[ (0?) (\/1—00829 \/1—005290> ] .

The values of C; and Cy for each value of b/ By are shown in Table 4.2.

P(cost) = Cy
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4.4 Distance between crossings

When charged particles move longer than their mean free path, their
pitch angles become random. In our model, the distance between each crossing
is used to determine the pitch angle at each crossing. If the distance between
two crossings is further than the particle’s mean free path, the particle’s pitch
angle becomes random. If the distance between two crossings is closer than the
particle’s mean free path, the particle’s pitch angle is approximately unchanged.
The data on the position of magnetic field lines are collected at intervals of Az
along the z direction, where Az = 100,000/2%* = 0.0238. Therefore, we are not
able to measure the distance between each crossing at intervals shorter than Az.
The data on crossing distances of order Az are also not accurate.

First, we consider only the pure slab case. Figures 4.42 to 4.44 show the
distribution of the distance between each crossing with [, = 1 au from 6b/By = 0.5
to 6b/ By = 0.1, respectively. After that, we consider compound turbulence. At
FEq. = 0.8, the distributions of distance are shown in Figures 4.45 to 4.47 for
[, =1auand [} =1 au from db/By = 0.5 to 0b/ By = 0.1, respectively. Figures
4.48 to 4.50 show the distribution with Fg . = 0.5, 1, = 1 au, and [, = 1 au from
from 0b/By = 0.5 to db/ By = 0.1, respectively, while Figures 4.51 to 4.53 show
the distribution with Egq, = 0.2, [, = 1 au, and [, = 1 au from 6b/By = 0.5 to

db/ By = 0.1, respectively.
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For the pure 2D case, Figures 4.54 to 4.56 show the distribution of the
distance between crossings with I, = 1 au from 6b/By = 0.5 to 6b/By = 0.1,
respectively.

Next we vary the values of [, and [, . Figure 4.57 shows the distribution
of crossing distance in the pure slab case with I, = 0.5 au, and §b/B, = 0.5.
At Egq = 0.5 and db/ By = 0.5, Figure 4.58 shows the distribution of crossing
distance with [, = 0.5 au and [, = 1 au, and Figure 4.59 shows the distribution
of crossing distance with [. = 1 au and [, = 0.2 au. At Eg, = 0.2 and
db/ By = 0.5, Figure 4.60 shows the distribution of crossing distance with [, = 0.5
au and [; = 1 au, and Figure 4.61 shows the distribution of crossing distance
with [, =1 au and [, = 0.2 au.

The distribution of crossing distance for the cases of pure slab and com-
pound turbulence can be fitted with P(l) = al® since the magnetic field line
random walk is fractal and scale invariant, but the 2D case cannot be fitted with
this form because the islands have a fixed scale size. Because we collect the dis-
crete data, the data for small distances are not accurate. Therefore we fit only
the data with the distance higher than the average distance. Table 4.3 shows the
parameters a, b, and the average crossing distances d after we fit the data in each
case.

The average distance increases as db/By increases for the pure slab and
compound case, but decreases as db/ By increases for the pure 2D case. In the
pure 2D case, magnetic field lines have periodic helix-like trajectory. The number
of loops per unit length in the z direction is constant. If we imagine z as time,
the turbulent magnetic field is the velocity of a particle. The magnetic field line

in the z-y plane is the trajectory of the particle. If the magnitude of the velocity
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Table 4.3: The average crossing distance, a, and b for various values of 0b/ B,

Egap, 1., and [ .

(Sb/BO Eslab lz li Ci a b
0.5 1.0 110} - | 3748|048 |-1.43
0.5 1.0 105} - |19.09 | 0.44 | -1.50
0.5 0.8 | 1.0] 1.0 5885|0.73 | -1.50
0.5 05 | 1.0 | 1.0 | 74.44 | 0.68 | -1.46
0.5 0.5 10.5]1.064.99 | 0.69 | -1.48
0.5 0.5 [ 1.0]0.2 [30.82 ] 0.77 | -1.58
0.5 02 | 1.0 10| 73.18 | 0.70 | -1.47
0.5 0210510 66.74 | 0.69 | -1.48
0.5 02 11.002]24.21|0.72 | -1.60
0.3 1.0 11.0] - 2221|080 |-1.57
0.3 08 [1.0|1.0 4880|092 |-1.53
0.3 0.5 {1.0]1.0|64.08 {1.04 |-1.52
0.3 02 | 1.0]1.0] 6819 | 1.05 | -1.51
0.1 1.0 1.0 - | 812 | 1.34 |-1.83
0.1 08 | 1.0 1.0 | 28.64 | 1.05 | -1.58
0.1 0.5 | 1.0 104987 | 1.86 | -1.58
0.1 0.2 110106284 | 252 |-1.60
0.5 0 -/ L0 | 3155 | - -
0.3 0 - [ 1.0]4472 ) - -
0.1 0 - 1107026 | - -
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increases, the angular frequency increases. Returning to the case of the turbulent
magnetic field, the increasing angular frequency corresponds to a greater number
of loops per unit length. Therefore, if we increase 0b/ By, there are more loops.
Then the distance between crossings decreases as db/ By increases for the pure 2D
case.

If the magnetic field lines can diffuse, including the slab part, the magnetic
field lines seem to cross with the larger distance when 0b/ By is greater. Even if
Fgu is as small as 0.2, the average distance between crossings still increases as
db/ By increases.

If b/ By is fixed the scalein the x or y direction is proportional to the
scale in the z direction. In the pure slab case, the scale in the z direction of
the magnetic field lines is defined by [.. If we multiply [, by n, the field line is

expanded by n. After that, the distance between crossings is multiplied by n.

4.5 Summary

The distribution of the number of crossings depends on only 0b/ By in
all cases, and can be fit to (1 — p)p%, where p is the probability of a field line
crossing shock from downstream to upstream, and n is the number of crossings.
This quantity does not depend on the scale of the magnetic field line, so if we
change the scale lengths [, and (|, these quatities remain unchanged. 'In the pure
2D case, not all distributions of the number of crossings are exponential curves
because the field lines do not diffuse.

The distribution of the crossing angle also depends on only 6b/B, and
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FEgap. It can be fitted to

| cos 0]

2
B 9 \3/2 cosf o cos 0
(1 COS 9) \/1 + <\/1—c052 0 \/1—c022 90)

« el 1 ( cos 0 B cos b )2 (4.21)
P (b?) \ /1 =cos20 +/1—cos2b, ’ '

for Egq # 1, and for Ey,, = 1,

P(cost) =

| cos 4|

2
(1 —cos20)” \/1 + (\/1?509520 - \/Sif; 00>
1 cos 0/ cos 6 ?
A _ , o (4.22
XP[ (6%) (\/1—COS20 \/1—COS2€0> ] .

where C; and Cy are normalization factors. If d0b/B, is greater, the average

P(cost) = (s

crossing angle is smaller because the magnetic field lines diffuse faster and further.

The distribution of the distance between crossings depends on [, [, and
5b/ By, and can be fit to al®, where [ is the distance between crossings. The
parameters [, and [, are the scale lengths of the magnetic field line, and the
distance between crossings increases as [, and [, increase. In the pure slab case,
if 0b/ By is greater, the diffusion rate increases.” Therefore, the magnetic field line
can have a longer distance between crossings as'its trajectory spreads further in
space. In the pure 2D case, if 6b/ By is greater, the number of field line loops
per unit length increases and the distance between crossings is smaller. In the
compound 2D + slab turbulence, if jb/ By is greater, the number of crossings is
greater, and the distance between crossings is longer even when the value of Eg,,

is small as 0.2.



Chapter 5

Model of particle acceleration
at nearly perpendicular shocks

This chapter will introduce the sawtooth mechanism of the particle accel-
eration at shocks in random magnetic field. If the turbulent magnetic field lines
cross the shock like a sawtooth, a particle that follows the magnetic field lines can
diffuse along the shock, and cross the shock many times. First, we consider the
case of a non-turbulent magnetic field, and then a turbulent magnetic field with
all crossings taking place within the particle scattering mean free path. Finally,
we consider turbulent magnetic fields with multiple field-shock crossings beyond

the particle scattering mean free path.

5.1 The momentum change after one magnetic
field-shock crossing

In Chapter 2, we considered only one magnetic field-shock crossing in the
acceleration model as shown in Figure 5.1. The average momemtum change for
each cycle, upstream to upstream again, is calculated from the momentum change
and the flux of reflected particles and transmitted particles. The average momen-
tum change and the flux of the reflected particles and those of the transmitted
particles are different, which was not considered in the previous work reviewed
in Chapter 2. Now we consider the momentum change for both reflected and
transmitted particles, and also the flux of each type of particles.

Let v, be the initial speed of the particle at the plasma frame. Let U

be the average speed of the upstream plasma in the normal incidence frame, and
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Magnetic field lines

Downstream

Upstream // Shock

Figure 5.1: Much previous work on shock acceleration theory only considered one
magnetic field-shock erossing,.

let 6, be the angle between the shock normal and the upstream magnetic field at
the crossing position. If the particle starts at the upstream frame with the pitch

angle 11, the velocity v in the de Hoffman-Teller frame becomes

v o= \/(7,ulvp +Upsect)? + (1 — pf)v?

= v, (1 = M) , (5.1)

Up
when we work to first order in U /v. If the particle is reflected back to the upstream

region as shown in Figure 5.2, the speed of the particle in the upstream frame is

~

v, = \/(,ugv — Uy sect)?+ (1 — p3)v?
LJ | (1 .l /J,3U1 88091) : (52)

v

where p3 is the pitch angle after the reflection. The speed change is

, uslUy sec 6y
v, =V = 0 1—+ — vy

= /LlUl sec 01 - ,LL3U1 sec 81, (53)

when we work to first order in U/v.
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Let Uy be the average speed of downstream plasma in the normal inci-
dence frame, and 6y be the angle between the shock normal and the downstream
magnetic field at the crossing position. If the particle is transmitted into the
downstream region and has the pitch angle us, the speed of the particle in the

downstream frame is

~

v — \ﬂ,ugv — Uy secBy)? + (1 — p3)v?

- (1 /1 M) 7 (5.4)

v

The speed change is

(%

/ < ,ugUgsec92>
W F= A% | —

— [LlUl Sec 91 = ,UQUQ sec 92, (55)

when we work to first order in U/v.
If the particle comes from the downstream region with the speed v, after
it is transmitted into the upstream region, the particle speed v in the de Hoffman-

Teller frame is

v o= \/(,u4vp + Uy sect2)? 4 (1 — ui)u,

= |y (1 4 M) ’ (5.6)

Up
where 4 1s the pitch angle of the transmitted particle before the transmission

into the downstream frame. When the particle is transmitted into the upstream

region, the speed of the particle in the upstream frame is

v, = \/(/1/5’0 —Uysect;)? + (1 — p)v
= v <1 _ M) ’ (5.7)

(%
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He®s o 0
}-'«14), ”3¢3 !-’-54)5 j.lstbs Magnetic field line

Upstream

Figure 5.2: The sets of pitch angle and gyrophase values.

where p5 is the pitch angle of the transmitted particle after the transmission into

the upstream frame. The speed change is

/ v 1 wsUy sec 0,
vl ) SRS S | — v,

v
= uaU; see Oy — usUy sec 6y, (5.8)

Now we will find the average momentum change for the reflected and
transmitted particles. Let Ap; be the average momentum change when the par-
ticle is reflected at the shock. We integrate equation (5.3) from g = 0 to p,,, the
maximum value of the pitch angle cosine for a reflected particle, and for ¢ from
0 to 27, and then divide it by [/ fo% pidpydey = mu?-to average the speed

change. The momentum change is

L 2m
Ap, = U — vp) padprdgy
T,
m, 271'
= e / (1 Uy sec 0y — usUy sec b)) prdpgdey
Hm
= 432(]1 sec 91/ wrdp
m 0

4
= gmUisectjin, (5.9)
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where m is the mass of particles, us = —p1, and p,, = \/1 — B1/By = \/1 — sec 1/ sec ;.

Then we can write
Apy 4 Uy sectjin,

Falak (5.10)

For transmitted particles, we integrate equation (5.3) from p = p,, to 1
and for ¢ from 0 to 27 and divide it by fuln fo% pdprdgy = w(1 — p2,) to average
the speed change. We use Liouville’s theorem,

1

1
B—luldmd% S Eﬂzdﬂ2d¢2, (5.11)

where B; and B; are the magnitudes of the magnetic field in the upstream re-
gion and the downstream region near the crossing position to find the average

momentum change Apy. Therefore,

1 1 27
S0 = TR [y e

m i 2w
- 1—p2) / / (uUy sec 0y — paUs sec 6y) pydpy dey
m m <0

7(
2 ! B, [*
= m2 [Ul sec 91/ p2dp — Us sec 92—1/ qu,u]
L= o Um BQ 0
. [Uy sec (1 = pp,) — Us sec 0, ] (5.12)
3(1 — p2,) " ’ '
and can be written as
Apy 2 Uy sec (1 — i) — Uysec 0y
p o 3(1—ul) v
2 U1 sec 92(1 G ,u3 ) - UQ 86002
4 ) m 1
3 3 , (5.13)

using 1 — p2, = sec 6,/ sec 0s.
If the particles are transmitted from the downstream region into the up-

stream region, the momentum change is

1 -1 2
B = [ [ i~ o adads,
™ Jo 0
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1 -1 21
= = / / (114Us sec Oy — pusUy sec 01) padpgdgps
o Jo

—1 B —1
= 2m |Us;sec 02/ wrdp — Uy sec@l—z/ wrdp
0 Bl —Hm
2m
= 5 [U1 sec (1 — p?)) — Uy sec (92] , (5.14)

and can be written as

P 5

Aps 2 {Ul secOy(1 —u3 ) — U, sec 921 (5.15)

v

If we set the flux of particles to the shock from the upstream region to
be one, the flux of the reflecting particles is y2,, and the flux of the transmitted

particles will be 1 — 2. The flux-averaged momentum change is then

A A A A
2 e (St
b p p
_ 4 Uy sec 0y 43, 4 A_LUl sec (1 — p2) — %UQ sec 0,
3 v 3 v
41 B
>V [Ul sect; — glUQ sec 02:| ) (5.16)

This is the average momentum change when a particle starts at the upstream
region, then goes to the shock, and finally comes back into the upstream region
again.

In our case, the magnetic field line can cross the shock more than one time.
When we can calculate the momentum change for the case of many magnetic field-
shock crossings, we sometimes need to start the particle at the downstream region
and find the average momentum change when it gets back to the downstream
region again. Now we will show that this calculation gives the same power law
index of the cosmic ray spectrum. Let the flux of particles going to the shock

from the downstream region be one. The particle must be transmitted through
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the shock twice, at the first and the final particle-shock crossings. It can be
reflected at the shock many times if it has a large pitch angle when it reaches
the shock from the upstream region. Let n be the average number of particle

reflections. The value of n can be found from

B_2 m=1
B
folg
o By
B>
P,
By
T
1= fim
(5.17)
Therefore the average momentum change is
Ap/ 2 A A A
ro_ Mmz P1+p2+p3
p L=pz, p p p
4By 1 B
= ggj; UlseCel—glUQSGCGQ s (518)

Recall that the power law index of the integral spectrum is the ratio of
the escape probability to the mean momentum gain (see §2.8). The value of Ap' is
(B2/B1)Ap, but the escape probability corresponding to Ap is 4Us cos 65 /(v cos 6y ),
while the escape probability corresponding to Ap' is 4Us cos 62/ (v cos ) = 4Us /v.

Thus we can get the same power law index wherever the start of the cycle is.
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Magnetic field lines
Downstream ,

Shock

Upstream

| -
| y |

D is less than the particle mean free path

Figure 5.3: Multiple magnetic field-shock crossings within the particle mean free
path

5.2 The momentum change after multiple mag-
netic field-shock crossings

5.2.1 The momentum change after multiple magnetic field-
shock crossings within the particle mean free path

A

Now we consider the case of many shock-field crossings as shown in Figure
5.3. We assume that the pitch angle change conserves the adiabatic invariant
over distances less than the particle scattering mean free path, and it changes
randomly over longer distances.

We have simulated the pitch angle change that conserves the adiabatic
invariant along the turbulent magnetic field line within the length of A\. We set
the particle mean free path to be much greater than the correlation length of the
magnetic fluctuations. Figure 5.4 shows the average number of crossings for each
value of the pitch angle cosine (plus signs) from the simulation of the magnetic

field lines for 0b/By = 0.5, Ega = 0.2, 1, = 1, and I; = 1. We assume that the
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particles will follow the magnetic field line and conserve the adiabatic invariant

over A = 1,000 au. In our model, we approximate this distribution by a step

function (solid line), where y,, is defined as \/1 — (By)/(Bs), and (B;) and (Bs)
are the average magnetic field in the upstream region and the downstream region,
respectively. Therefore when the particle goes to the shock from the upstream
region, we can approximate that if the pitch angle cosine of the particle is greater
than p,,, the particle ean be transmitted along the distance D of the group of
shock-field crossings as shown in Figure 5.3, and if the pitch angle cosine of the
particle is smaller than p,,, the particle is reflected at the first shock-field crossing.
When the particle goes to the shock from the downstream region, most particles
can be transmitted along the distance D. The probability of the transmission
depends on the scale of \.

Now we have two sets of particles, the reflected particles and the trans-
mitted particles. The average momentum change of the reflected particles is Apy,
and the average momentum change of the transmitted particles is n.Aps, where
n. is the average number of shock-field crossings within a scattering mean free
path. The de Hoffman-Teller frame is varied for each particle-shock crossing,
since the shock-field crossing angle is changed for each particle-shock crossing.
For each time particle crosses the shock, the momentum change increases in the
plasma frame, and this increasing momentum can be easily shown in the normal
incident frame to be the result of shock drift acceleration, which always increase
the particle’s momentum. Thus we can add up the momentum changes to be

nAps.
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Figure 5.4: Plus signs show the average number of particle transmissions through
the shock at each value of the pitch angle for 0b/ By = 0.5, Egq, = 0.2, 1, = 1, and
[, = 1. In our model, we approximate this distribution by a step function (solid
line); where 1, is defined as /1 —(By)/(Bs).  In‘our approximation, particles
with a pitch angle cosine greater than p,, can be transmitted through all field-
shock crossings within a mean free path, while particles with p < p,, are reflected
at the first crossing.
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Figure 5.5: Multiple magnetic field-shock crossings over a distance greater than
the particle mean free path \.

5.2.2 The momentum change after multiple magnetic field-
shock crossings beyond the particle mean free path

A

At the nearly perpendicular shock, the distance between shock-field cross-
ings can be greater than the particle mean free path A since the number of cross-
ings can be great as shown in Figure 5.5. We bunch the shock-field crossings that
have a distance less than the particle scattering mean free path. In Figure 5.6,
the squares are the bunches of shock-field crossings within the particle mean free
path. The distance between the starting points of two bunches of crossings is
greater than the particle mean free path, so the particle can go randomly back to
the previous -bunch of crossings or toward the next bunch of crossings. When the
particle goes toward the next bunch of crossings or back to the previous bunch,
the particle can be at the upstream region as well as downstream, so in an en-
semble average sense we can randomly choose the region where the particle starts
to cross the shock again. If there is a next bunch of shock-field crossings, the
particle will never escape the shock since in our model the particle follows that
magnetic field line. We have generated 5,000 magnetic field lines for each set of

parameter values of the magnetic field to collect the number of crossings with a
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Downstream
Group of magnetic field lines

Upstream

Figure 5.6: Groups of shock-field crossings within the particle mean free path
(square boxes).

distance from the first crossing that is greater than A and the number of crossings
within A\. After that we can find the probability P that there is no next group of
crossings, and the average number of crossings within one bunch, n.. We vary the
particle mean free path from 10 to 1000 au. The values of n. and P for various
parameters of the turbulent magnetic field are shown in Tables 5.2, 5.3, and 5.4
when the particle mean free path is 10, 100, and 1000 au, respectively.

Now we are going to find the momentum change in this case. We separate
the approaching particles into 2 groups. The first group A is the group of particles
approaching the shock from the right (the direction from downstream on a large
scale) and the second group B is the group of particles approaching the shock from
the left as shown in Figure 5.7. The particles in group A can return to the same
bunch of shock-field crossings again or go back to the upstream region along the
magnetic field line as shown in Figure 5.8. The particles in group B can go back
to the same bunch of shock-field crossings again or go to the downstream region
along the magnetic field line as shown in Figure 5.9. The particles in group A

must encounter the shock again since the solar wind convects them to the shock,
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Downstream

A
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Figure 5.7: Two groups of particles to the next group of shock-field crossings are
shown.

but those in group B can go to infinity downstream since some magnetic field
lines in the downstream region never cross the shock again.

Now we find the momentum changes of each group of particles at the
next bunch of crossings. If the particle is in the set As, it goes back to the shock

again because of solar wind convection, and the momentum change is
Ap4 = nCApg aF (Bg/Bl == 1)Ap1, (519)

since it reflects at the shock By/B; —1 times, from (5.17), and is then transmitted
through the shock along the magnetic field that crosses the shock n. times within
a scattering mean free path. If a particle is in the set A;, the momentum change
after encountering the next bunch of crossings is n.Aps. If the particle is in the
set As, the momentum change is Apy, the same as that for As, since the particle
may be reflected many times before it is finally transmitted through the shock.
Figure 5.8 shows sets A;, Ay, and As. If the particle is in the set Bs, there is no
momentum change. If the particle is in the set B;, the momentum change after
encouter the next bunch of crossings is n.Aps. If the particle is in the set By, the

momentum change is Ap, as same as that for A, since the particle is reflected
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Downstream

- Shock

Upstream

Figure 5.8: The sets of particles which come to the shock from the right, where
the magnetic field line goes into the downstream region at the far right.

Downstream
—AN\S/ A\ \NA-———— - - Shock

Upstream » B,

Figure 5.9: The sets of particles which come to the shock from the left, where
the magnetic field line goes into the upstream region at the far left.
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many times before it is transmitted through the shock finally. Figure 5.9 shows
sets By, By, and Bs.

If the particle is in set Ay or As, the probability to go right or left is no
different. If the particle is in set Ag, the particle must go the shock again from
the left (B) because of the solar wind convection. If the particle is in set B; or
B,, the probability to go right or left is no different. If the particle is in set Bj,
the particle goes back to where it started downstream of the shock, and a full
cycle has been completed. Let ¢; be the probability that a particle in group A
is in set A;. Recalling that P is the probability that there is no next bunch of

crossings, we have

1—-P
T\
Wy — P
.

3 = P (5.20)

Let d; be the probability that a particle in group B is in set B;. Therefore,

1-P
d1 — T
1-P
dy = ——
A RSS2 (5.21)

Let r;; be the probability that a particle in group : will move to group j, where

1 =A,B and j = A, B. Referring to the hollow arrows in Figure 5.8, we see that

cl+02_1—P

raa = B B
01+CQ+ 1—|—P

T = c3 = ———.

AB 9 3 9

(5.22)
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On the other hand, considering group B, the set Bjs is special. The escape or
return of is particle is considered at the end of the entire process, just as in the
theory of Drury(1983) (see§2.8), so we treat motion in set Bs as the end of one

“round” of acceleration:

di+ds -~ 1-P

LB

.o )
R e il
— 1‘; o= (5.23)

Conceptually, we treat each bunch of crossings traversed in direction A
or B as belonging to the same statistical ensemble and therefore treat them on

equal footing. Let

R = { i "3 ] 7 (5.24)
TAB TBB

so that R is a transfer matrix, and let Fy be

Fo= l 7’;‘2 } , (5.25)

where n 4 is the initial number of particles in group A, and n g is the intial number
of particles in group B. Let A; be the number of particles in each group after

the particles pass a crossing bunch ¢ times. Therefore
F, = R'F,. (5.26)

The average momentum change when the particle was in group A and

already passed the next bunch of crossings is

Apa = c1Apa, + c2Apa, + csApa,

1-P 1-P
= 9 nCAPZ +
1-P 1+ P
= 5 n.Aps + 5 Apy. (5.27)

neAps + PAp,y
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The average momentum change when the particle was in group B and already

passed the next bunch of crossings is

App = diApp, + d2App, + dsApp,

1—-P 1—-P
~ B P (5.28)

Then let AP be
AP = [ Aps App |- (5.29)

Now APF; is the average momentum gain at the (i + 1)th bunch of
shock-field crossings. The total average momentum gain from the first bunch to

the final bunch is

Apj, = AP (iRiF(])

=0

— AP(1-R)'F, (5.30)

We can show that
1-P
. } : (5.31)

2

=Ryt = |

ol ol

Now we will find where the initial particle for each round is. We first
consider the where the round ends. The round ends when the escape probability
is concerned, so the end of a round is in set Bs. In reality, the accelerated particle
starts at the upstream region. Therefore the first round starts at set A; and ends
at set B3. For the next round, we start at set B3, and end at set B;. When
the particles start at set As, all of them must be transmitted through the shock
finally, and be in the group B. At this moment, the momentum gain is Ap,, and

the initial number of particles in each group can be written as

Foy = { ; } . (5.32)
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After all particles have been lost from the shock and gone into set B3, the average

momentum change is

Apml == Ap4 + AP (1 — R)il F01
1P

1
T Apat=A
P(i by Pt poprs

= Aps+

P 1_p
—_— % Ik DN
PU+Pyl]h+< TP ) Pa

2 Tl

The above is the total momentum gain in going from the start (Asz) to
the end of one round (Bs). These particles have not escaped yet, and then go
back to the shock along the magnetic field line. All of these particles must be in
the group A after the first crossing. Before the particles come to group A, they
must be transmitted through the shock n, times and their momentum change is
n.Aps. The initial number of particles in each group at the start of this round

can be written as

After that the averaged momentum change for this second round is

Ame = ncApz =+ AP (]. — R)_l F02

1-P 1
= n.Apy + 2 neAps + FAM
2 1 /By
= =nA S0 A .
plebP2 T 5 (31 ) D1 (5.35)

For all further rounds, the particles start at set Bs, so the average momentum

change is Ap,,2. We can write Ap,,; as

2 1 /B,
Api = — = App+—(2-1)A
Pm1 P1+P)" p”*P(Bl ) P1
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— 3P471nZCP B, {Ul sec Oy (1 — p) — %Ug sec 92} + Z;T; gj Uy sec O,
- 3P471nj—cp B {Ul sec @y — —U2 sec 921
+§_T;%i <1 T P) Uy sec Oy (5.36)
and Ap,,o as
Appe = %nCApg -+ % <% — 1) Apy
= 4?;‘: ij [Ul sec Oy (1 — ) — —U2 secty| + ?)T; B Uy sec O
= %P)Ul sec O 1> + 43m_P (U sec Oy — Uy sec Os)] . (5.37)

The momentum change for the case of one field-shock crossing is
, Am
Ap' = == [U; sec By — Uy sec 6s] (5.38)

where 0, ~ 89° secfy = y/(rtan6;)?+ 1, and By/B; = secfy/sect;. The

average momentum change for the case of many field-shock crossings is

am(1 — 7, 4mn,
4m(1 —ne) m}f Up(secty), (5.39)

3P Up{ps secty) +

dmn,
Apppo = 2 Uy (secBy) —

where pt,, = y/1 = (By)/(Ba). Now we can use this momentum change to estimate
the spectral index of accelerated particles.  Since the crossing angle is not a
constant for each crossing for the multiple crossings case, we use the average value
of secy, By, and By;. We know the distribution of the cosine of the crossing angle

from Chapter 4, so we can find the average values of sec 6. We know (B;) = By,

and then (By) = Byy/(rsin89°)2 + cos?89°, where r is the compression ratio.
Table 5.1 shows (sec ) vs. 0b/ By for r = 4. This is derived from the distributions

shown in Figures 4.21 to 4.40. Since Ap,,; is for the first round, but Ap,,s is for
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Table 5.1: The values of (sec ) vs. db/By for r = 4 from the simulations.

db/ By | (secby)
0.5 | 15.5857
0.3 | 24.5353
0.1 | 69.2662

the other rounds, the cosmic ray spectrum index must be considered from Ap,,»,
and Ap,,1 has the effect of shifting the spectrum. We compare the momentum
change for the case of multiple crossings to the momentum change after one

crossing. The ratio of Ap,,» to Ap is

Apma e U (s, sec 0a) + 22Uy (sec Bo) — e Us(sec 0o) (5.40)
Ay U, sec 05 — Uy sec Oy ’ '

If we assume that the particle mean free path does not depend on the
momentum of the particle, we have the power law of the cosmic ray spectrum.
The power law index of the differential spectrum is v = (3mU, sec 65/ Ap’) + 1 for

the case of one field-shock crossing, and that for many field-shock crossings is

il 3mUs; sec 0,
e Apn,
Ap
= — I 1. 5.41
Apm('y S+ (5.41)

The values of Ap,,/Ap’ and 7,, are shown in Tables 5.2, 5.3, and 5.4 when the
particle mean free path is 10; 100, or 1000 au, respectively.

The distribution of crossing angles has a great effect on the momentum
gain. The average crossing angle is small when the crossing angle distribution is
highly spread or db/ By is high. The small crossing angle tends to cause a small
momentum gain. From Tables 5.2, 5.3, and 5.4, the spectral index of accelerated

particles is higher than that from the non-turbulent magnetic field. The number
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Table 5.2: The values of n., P, Ap,,/Ap’, and =, for each case of the turbulent
magnetic field with A =10 and the compression ratio r = 4.

5b/BO Eslub lz ZJ_ T R Apm/Ap/ Tm
0.5 1.0 {10} - 12431 0.13 0.57 2.72
0.5 1.0 105 | - |3.03]0.16 0.50 2.99
0.5 0.8 | 1.0| 1.0} 227 |0.12 0.63 2.57
0.5 0.5 [1.0]1.0}2.16 | 0.11 0.68 2.45
0.5 05 105{1.0]234|0.11 0.69 2.43
0.5 05 11.0]02]263|0.15 0.51 2.95
0.5 02 |1.0}1.0]| 211 |0.10 0.73 2.36
0.5 02 05410215/ 0.11 0.66 2.50
0.5 0.2 [ 1.0]0.2]290|0.17 0.48 3.06
0.3 1.0 1.0 - ]239|0.22 0.55 2.80
0.3 0.8 | 1.0{10}2190.17 0.68 2.45
0.3 0.5 [ 1.0]1.0]1.96 |0.15 0.74 2.34
0.3 02 |1.0|1.0|1870.14 0.80 2.24
0.1 1.0 1.0 - ]228]0.54 0.63 2.57
0.1 0.8 11.041.0]203|0.38 0.87 2.13
0.1 0.5 1101.0771:0 ] 1.74| 0.32 0.98 2.01
0.1 0.2 1.0 (1.0 ] 1.5010.30 1.01 1.98
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Table 5.3: The values of n., P, Ap,,/Ap’, and =, for each case of the turbulent

magnetic field with A =100 and the compression ratio r = 4.

5b/BO Eslub lz ZJ_ T R Apm/Ap/ Tm
0.5 1.0 { 1.0} - 15721033 0.32 4.05
0.5 1.0 |05 |- | 752043 0.28 4.52
0.5 0.8 | 1.0| 1.0 | 5.08 | 0.28 0.35 3.79
0.5 0.5 | 1.0] 1.0 | 4.66 | 0.26 0.37 3.63
0.5 0.5 105101513 |0.27 0.37 3.64
0.5 05 11.0]02]637|0.38 0.29 4.37
0.5 02 | 1.0} 1.0 |4.83|0.25 0.38 3.58
0.5 0.2 1051101508 ]0.27 0.37 3.67
0.5 02 1 1.0[02]|702]|0.43 0.27 4.63
0.3 1.0 {1.0| - |5.51]0.51 0.32 4.08
0.3 0.8 1.0} 1.0 (459 |0.39 0.38 3.56
0.3 05 | 1.0] 10| 4.13 | 0.36 0.40 3.46
0.3 02 | 1.0{1.0]4100.35 0.41 3.38
0.1 1.0 1.0 - |3.85(0.95 0.42 3.34
0.1 0.8 11.041.0]3.58 | 0.69 0.56 2.76
0.1 05 1101.07710/] 2:967| 0.62 0.59 2.68
0.1 0210 (1.0 25210.62 0.57 2.75
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Table 5.4: The values of n., P, Ap,,/Ap’, and =, for each case of the turbulent

magnetic field with A = 1,000 and the compression ratio r = 4.

5b/BO Eslab lz lL e 4 Apm/Ap/ Ym
0.5 1.0 | 1.0 | - | 13.55|0.79 0.22 5.46
0.5 1.0 105 | - {1547 | 0.91 0.21 5.70
0.5 0.8 | 1.0 | 1.0 | 12.08 | 0.68 0.24 5.15
0.5 0.5 [1.0] 1.0 11.28 | 0.64 0.24 5.07
0.5 0.5 | 0.5{1.0]12.03 | 0.66 0.24 5.02
0.5 0.5 (1002 14.14 | 0.85 0.21 5.66
0.5 02 [10(1.0|11.44 | 0.65 0.24 5.11
0.5 0.2 {05410 11.86 | 0.67 0.24 5.13
0.5 0.2 [ 1.0]0.2|14.74 | 0.89 0.20 D.77
0.3 1.0 | 1.0 - | 10.01 | 0.96 0.23 5.18
0.3 0.8 {1010} 9.49 | 0.84 0.26 4.80
0.3 0.5 |1.0] 10| 867 | 0.80 0.26 4.78
0.3 0.2 [1.0|1.0| 866 |0.78 0.26 4.72
0.1 1.0 {1.0| - 4.03 | 1.00 0.41 3.41
0.1 0.8 1.0 }1.0] 4.89 | 0.99 0.45 3.21
0.1 05 11.041.0 /| 437|098 0.43 3.30
0.1 0.2 | 10|1.0| 2.52 |0.62 0.57 2.75
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of shock-field crossings within the particle mean free path, n., and the probability
P that there is no further bunch of magnetic field-shock crossings also affect the
cosmic ray spectral index. Roughly speaking, if n. is large, the number of field-
shock crossings beyond A is small, so P is high. A particle can stay at the shock
longer if P is smaller, so the particle can be accelerated many times and gain
more momentum. Therefore, the lower crossing angle and the higher P cause the
lower momentum gain. From chapter 4, the number of field-shock crossings along
a field line only depends on 6b/ By, so n. depends on db/By.

A higher X\ causes larger bunches of field-shock crossings, since there is
much space to fill many field-shock crossings. The scale length of the magnetic
field also affects the distance between crossings. Over the same distance, if the
scale of magnetic field is small, n. is high. Therefore, if 6b/By and A are higher,
n. and P are higher, while if the scale of the magnetic field is greater, n. and
P are lower. Figure 5.10 shows the relation between d, related to the scale of
magnetic field lines, and ~,, for 6b/By = 0.5 and A = 100 au.

Now we consider the effect of magnetic field parameters on the spectral
index. In reality, \is roughly proportional to B?/§B%. A higher 6b/ B, (increased
turbulence) causes smaller crossing angles and smaller A\, so the higher 6b/B,
has two effects on the acceleration. The first effect is to increase momentum
gain_because the smaller \ causes a smaller P, while the second is to decrease
momentum gain because of the smaller crossing angle. We find that the second
effect dominates, and there is a higher spectral index (see Table 5.2-5.4), which
implies fewer high energy particles. The spectral index also depends on the ratio
of the scales, [, and [, of the magnetic field to A. If the scales are higher, n. and

P are small, and then the spectral index is again greater.
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Figure 5.10: Plot-of 7y, vs. dfor 6b/ By = 0.5 and )= 100.

80



Chapter 6

Conclusions

We have simulated turbulent magnetic field lines for various values of the
parameters 0b/By, Egu, ., and [;. We collected the statistics of the number
of field-shock crossings, the crossing angle, and the distance between crossings.
These statistics are useful for the sawtooth mechanism of particle acceleration
because the charged particles basically move along the magnetic field line. The
change in the shape of the magnetic field line must affect the particle accelera-
tion. We set the angle between the average magnetic field and the shock normal
to be 89° since we already approximate it in Chapter 2. We also developed a
new theoretical framework for taking multiple magnetic field-shock crossings into

account.

6.1 Statistics of magnetic field lines

The number of crossings and the crossing angle only depend on db/ By,
but the distance between crossings depends on all parameters. If db/ By is greater,
the number of crossings is greater, and the distribution of the crossing angle is
spread more. The distance between crossings is scaled by [, and I . A large/small
[, and [ give a large/small distance between crossings. If Eyu, [, and 1) are
fixed, the distance between crossings is further as 6b/By is greater. If Fgq is
lower, the 2D part dominates, and the magnetic field line forms more loops per
unit length. If there are more loops per unit length, the distance between cross-

ings is shorter. Therefore, if Fg,;, is greater, the distance between crossings is
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greater. The distributions of the number of crossings, the crossing angle, and
the distance between crossings are used to develop the sawtooth mechanism of

particle acceleration.

6.2 Sawtooth mechanism of particle accelera-
tion

The particles are accelerated less if we consider the effect of multiple field-
shock crossings. The average shock-field crossing angle is smaller, which causes
a smaller momentum gain, but that magnetic field line can cross the shock more
than one time, which causes a greater momentum. The effect of the smaller
shock-field crossing angle dominates the effect of many shock-field crossings. The
ratio of the scale of the turbulent magnetic field to the particle mean free path
also has an effect on the particle acceleration. If this ratio is high, the particle
can diffuse but is contained along the magnetic field line at the shock, so the
particle is accelerated more but still less than the acceleration at one shock-field

crossing with a high crossing angle.
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