Chapter 4

Collective Excitation of the
Non-Interacting Bosons System

4.1 Experimental Background

After the realization of Bose-Einstein condensation (BEC) in dilute atomic va-
pors [1,2,3], the dynamical aspects of the system have been studied. Technically,
the excitations are generated in response to small time-dependent perturbations
of the trapping potential. There are various procedures and consequently various
types of excitations. The first experiments have been performed by modulating
the trapping potential and resulted in the observation of center-of-mass oscilla-
tions (also called sloshing modes) and shape oscillations. The MIT group [9]
observed the shape oscillation of the trapped Bose condensate as shown in Fig.
4.1. This is a low-lying collective excitation of the condensate. The experimental
setup for creating Bose condensates can be described briefly as follows. After the
sodium atoms were optically cooled and trapped, they were transferred into a
magnetic trap where they were further cooled by RF-induced evaporation. The
condensate obtained in this way was confined in a cloverleaf magnetic trap which
had cylindrical symmetry with trapping frequencies of 19 Hz axially and 250 Hz
radially. The condensate was then excited by a time-dependent modulation of
the trapping potential. The bias magnetic field was used to excite the shape
oscillation; a weak oscillation of the radial width was also detected.

In the simplest case of a non-interacting ideal gas in an isotropic harmonic

potential, it was found that all modes of oscillation have frequencies which are
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Figure 4.1: Shape oscillation of a Bose-Einstein condensate [9].
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Figure 4.2: Oscillation at 30 Hz.  Damping of the harmonic oscillations was
observed with decay time of 250 ms [9).
integer multiples of the harmonic trapping frequency. In a homogeneous weakly
interacting Bose condensate, the lowest frequency excitations of the density are
phonons propagating at the speed of sound. The frequency is independent of the
number of atoms in the condensate since the dependences on the sound velocity
and on the size of the condensate exactly cancel (see [9] for details). It was also
found that the damping of the oscillation as shown in Fig. 4.2 is probably due to
the thermal interaction between the condensate and the thermal gas.

From the damping of the shape oscillation the lifetime of this quasi-
particle can be determined. For the system with nearly pure condensate 7" = ()
the damping due to thermal excitation can be neglected. Studying of this low

lying excitation is fundamental for a better understanding of dynamical aspects
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Figure 4.3: Zero-temperature excitation data from Jin et al. [10]. The oscillation
of the condensate in radial and axial widths are shown as 180° out of phase.

of the condensate system. A similar experiment had been done by JILA group
[10]. They found the relation between the width of the condensate and time as
shown in Fig. 4.5, and also found the oscillation of the shape of the condensate.
They claimed that the interaction energy determines the excitation spectrum of
_the condensate.

After these two experiments, many theoretical explanations had been
done [25,26]. Elementary excitations (also called quasiparticles or normal modes)
of the Bose-Einstein condensate are solutions of the linearized Gross-Pitaevskii
equation. The coherent excitation of many quasiparticles leads to collective
oscillations or density modulations (also called sound) of the trapped atomic
cloud. The frequencies of these excitations agreed well with theoretical calcula-
tions [25,26]. The oscillations were damped by interactions between the collective
modes and thermal excitations. For an ideal gas the frequencies of the excitations

induced are simply multiples of the trap frequencies; for an interacting conden-
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sate, however, deviations from these frequencies are expected and were indeed
observed in these experiments.

Although this phenomenon is successfully described within the framework
of Gross-Pitaevskii mean field theory, it is interesting to devise the many-body

path integral method to study this system.

4.2 Path Integral Approach

In this section, we consider the time-evolution of the prepared state represented
by p, (Z,B|z,0) where Z = {z;,22,...,zn}, the density matrix of bosons in a
harmonic trap with the trap frequency v. We first consider the single-particle
density matrix, then the generalization to the many-body density matrix will

follow naturally. We can write the density matrix in the formal way as

pu(B8) = [n)pa (B) (n| (4.1)

where the weighting factor p, (8) = e #£=/Z, (B), the single-particle partition
function Z; (8) =) e =, and |n) denotes the eigenstate with energy E, of the
oscillator of frequency v. Let U,(t,0) denote the time-evolution operator of the

harmonic oscillator of frequency w. The time-dependent density matrix is then

Po (t,8) = > Uw(t,0)[n)ps (B) (n|UL (2, 0) (4.2)
and its coordinate representation of the time—dependent density matrix is
ps (@, HT) = (2|, (t,8)|2) = (2|Us (£,0) 0} () U, (2,0)] ')
//delldeIII (.’f‘ IUw (t, O)I j") <i‘” Ipzlz (ﬂ)' j‘"’) <i,/// IUL (t, O)I :E')

= / / d"z"dV 2" K, (%,it|3") p, (3", BIZ") Ko (2", —it|Z') .  (4.3)
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Above Ky, (Z,it|Z") = (z |Uy (t,0)| z”) is represented as the path integral (in real
time) of the system with the Hamiltonian of harmonic oscillator of frequency w
and p, (2", B12") = (& |0} (B)| 2") = (& |e~PH-

matrix at temperature 7" related to 8 by 8 =1/ (kgT).

z") is the equilibrium density

4.2.1 The Time-Dependent Density Matrix (TDDM)

To simulate the phenomenon described in the Section 4.1, we start by looking
at the time-evolution of the system of particles confined in a harmonic potential
under the changing of the frequency of the trap from v to w. For simplicity we
assume the isotropy of the potential (w, = w, = w,). The generalization to the
anisotropic case is not so difficult. From Eq. (4.3), the time-dependent density

matrix is
pg (z,t|z") =//Kw (z,1t|2") p, (2", Blz") Ky (2", —it|z’) dz"dz”.  (4.4)

Note that we work in one dimension for convenience. The generalization to the

three dimensional case is obvious. Using the well-known results, we find

3 v ((2")? "?) cosh v — 2’2"
PU(I”,ﬁ|$/)=(;) exp (__(( ) +($)) h ,3 2%z ), (45)

27 sinh v 2 sinh vf3
1
, [ S 2 w ((2") + ()?) cos wt — 22'z”
" A il 2%
HalZ e ] (2i7rsinwt) exp( 2 ¢sin wt o

Then the density matrix can be calculated:

1
oo w? \?
t / g , d /”d "
pp (@, tl) (87r3 sinh v sin® wt) // i
( (wz' (2% + (2")?) cos wt — 23::c”)
X |exp | —

2 sin wt
i ((.’L‘”/)2 . (IL‘")2) coshvf — 22" z"
SRR 2 sinh vf3

ke (_ wi ((2")? + (')2) (cos wt) — 2“:)) iy

2 sin wt
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n

The integral over dz” can be evaluated with the result

@te) = (m=)’ = %
PRVEEIE ) = Ll e (v sinwt cosh v + wi cos wt sinhv3)

wceoswt /5 ‘ 2)
s (22 sin wt (w () )

i / Aitins _1(vcoshvp SiI.l wt —.wi coswt sinhv/3) (")?
2 sin wt sinh v 3
wi i sin wt sinh v3
sin wt 2 (v cosh v sin wt + wi cos wt sinhv3)

< (1/2 (33”)2 w? ($')2 i1 vwiz'z” )J (4.8)

sinh? v ~ sin®wt  sinh v sin wt
After evaluating the integral over dz” we obtain the final form of the time-

dependent density matrix:

vw? :
z,tlz') = :
oo (z, ) (27r sinh v (2 sin® wt + w? cos? wt) )

w
2 (v?sin® wt + w? cos? wt) sinh B

X exp [— {—-2vwzz’
+ [i (v* — w?) sinh v cos wt sin wt + wv cosh vf) (z')?

+ [~ (¥* — w®) sinh g cos wt sin wt + vw coshv] z?}] (4.9)

We now discuss the properties of this TDDM. The partition function can be found

immediately as

1
2

and the thus density of a distinguishable particle in three dimensions is

ps (7, 1|7)
"7 (B)

3
s ( ( I/w2 tanh %I/ﬁ )) 2 e(-’“z 2 ,:;i::\:,zi;fz wt)) (4'11)
m

v2sin® wt 4+ w? cos? wt

(4.10)

n (7, 1)

Note that the density is time dependent while the partition function is not. More-

over, we find that our TDDM has the semi-group property hence the sum over
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all permutations can be applied to this system. For the non-interacting particle
system, we can easily see that the particle density is independent of the number
of the particles. This is because of the distinguishable nature of the particles in
the system. We shall see later that this is not the case of the indistinguishable
particle system where each particle is aware of the existence of other particles
hence the density is N-dependent. To calculate the density we need to know the

partition function first.

4.2.2 The Partition Function for Indistinguishable Parti-
cles

We know from Chapter 2 that to find the partition function for a System of

indistinguishable particles we need to sum over all permutations:

My Ms.. My

Z(N)=‘]—vl—! ¥ M"YM H21 (v8)™" (4.12)

Thesum 3’  is subject to the constraint >~ M.,y = N. Notice that Z (N)
M1M2...MN g

is a canonical partition function of an N-particle system and Z; (v) is a single-

particle partition function with imaginary time interval 73 which comes from a

cycle of length . As previously pointed out in Chapter 2, we need to remove the

constraint by introducing the grand canonical partition function

Sfy) = iZNuN

N=0

= exp [Z gl(q;‘ﬂ} . (4.13)

=1
In fact, this quantity has physical meaning as a partition function for a system

in which the particle number is not conserved but here, we use it as a generating
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function for finding the canonical partition function as

Yo gt

Z(N) = = 2E )

(4.14)

u=0

This formula leads to the recursion relation for the canonical partition function.
We shall show some detailed calculation as follows.

Consider the derivative,

d .

—-E(u) =E(u ZZI (v+1)8 (4.15)
=0

Then the N derivative can be calculated by using the binomial theorem

& e o o
v = duN—1< =("))

: ’Vz“f(Nn: 7/ AN (%gzl((v+1)ﬁ)m>

m=0
N-1 Ao d(N—l—m) Vs 0 Y=
g mz; ( m ) (du(N—1~m)'=(u)) ;(’:—_m)izl (v+1)8),  (416)

where (V1) = ~=W_ and from Eq. (4.14) we see that

m (N—1—m)!m!>

d(N 1-m)
= (N—1-m)Z(N-1-m).

u=0

When we set u = 0 in Eq. (4.16) only the terms with m = v survive and after

dy(N—-1-m) e (u)

redefining v + 1 — ~ we find

N}:Z =) 21 (7). (4.17)

Thus for a system of non-interacting particles or the interaction can be decoupled
as in the model of Brosens et al. [7,8] the canonical partition function can be found
by this recursion relation provided that we know the single-particle partition
function. However this formula is not useful if we want to evaluate the partition

function numerically.
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4.2.3 Recursion Relation for Partition Function

The recurrence relation in Eq. (4.17) can be written in our case in terms of a

single-partition function of the harmonic oscillator in three dimensions as

N
1 1
Z(N) = — Z(N —~) -
N Zl (2sinh %fyvﬂ)a
5
1 b2(N m)
= Zo Pl ), (4.18)
where b = e~ (in SI unit this factor is e"#"). In general, the factor Ty b’iz':; )

is very small. For example, at low temperature and moderate number of particles
with b = 0.75 and N = 1000, this factor is of the order 10~!88 which is almost

impossible for numerical calculation. So we define a quantity o (N), by

G ) s
Q(N)———Z(N_l)b 2, (4.19)
in order to single out the small terms. Then we find
Z(N) = Z(N) Z(N-1) Z(m+1)

Zm) _ Z(N-1)Z(N-2)" Z(m)
= Q(N)b%Q(N—l)b%...g(m-}-l)b%

N
= 81%-m T o(3), (4.20)
and from Eq. (4.19) we can find o (1) as
_QZ(I) 3 b2 1
o(1)=0b Z(0) =H% L (1 s g (4.21)

The next p can be successively obtained from Eq. (4.20) and Eq. (4.18), for

example,

PETC 2o LR T N S
9(2)=b§()= 52 "

: J (4.22)
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p[i)

Figure 4.4: The behaviour of the function ¢ (i) with ¢ being the number of parti-
cles.

0(8) = b3

Defining
1
) = : 4.24
§ IS i424)
by deduction, we obtain the formula
1 N-1 N-1 1
Q(N)=—(§(1)+Z€(l) 11 —) (4.25)
i 1=2 k=N+1-1 9 (k)

The character of this function can be shown graphically in Fig. 4.4. Then the
partition function can be calculated numerically. However, the aim of this chapter
is to find the density of indistinguishable particles which will be shown in the next

subsection. ST

4.2.4 Density of Indistinguishable Particles

If we want to compare our theory with the experimental results then the quantity

of interest is the density distribution of the particles. In this subsection, we
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calculate this quantity for a system of indistinguishable particles. Recall that the

density of an N-particle system is

0= 28 = 7) = s [ dPae¥ng (4.26)

where ng = & i (e'™). When the particles are indistinguishable, the permu-
tation sum mu;?be applied in the same way as in [7,8]. Note that this case is
simpler than the case of distinguishable particles because there is no center of
mass coordinates. The explicit form of ng is

< lzN:iZ—l—/df’dF ;- -8 ﬁ (P, 87, 0) %% (4.27)

N¢=1 N . Z(N) 1472 szl Ps 3> UTjs X 1

The above equation can be decomposed into permutation cycles; as in the com-
putation of the partition function but in this case there are two types of the
permutation cycles, one is the cycle that contains e’7 and the others are those
without this factor. If the factor €™ appears in a cycle of length @ and there
are M, cycles of length o, then there are al, ways of putting this factor into
a cycle. After summing over ¢ and performing the integration these avM,, terms
give the same result. Thus the sum over particle numbers Z —, is changed to
sum over cycle lengths Za=1 aM,. Then we can write the Fourier transform of
the density as

"G = N7y Z Z (aM K M 'aMcx ICM“_I) H

M1 My a=1 ’7#&

KM (4 28)

M"y

where the term in the brackets corresponds to a cycle which contains the factor

e'?™. The cycle containing this factor is

.
V@ = [ a8 =) e T 0y (o, t5,0). (429)
j=1
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and those do not contain the factor can be written as
¥
,C,). = /d’f‘:’_’_l ce. /d'f‘ié (T_",y+1 = 'Fl) Hpﬁ ('Fj+1a tl’lz;,()) 5 (430)
j=1

Since the single-particle TDDM satisfies the semigroup property, then performing
integration is equivalent to replacing the imaginary time 3 by +/ for the cycle of
length . Thus we can evaluate Eq. (4.30)

3
1
Ky=|—=5]. 4.31
x <2sinh7;—f’) )

We can see that this is simply a partition function of single particle. For K. (@),

we obtain
3
1 (1/2 sin® wt + w? cos? wt)
K = | ————=A b/l % ; 4.32
1 (@) (2sinh 3’%5) 9 [ 2 4vw? tanh jg—ﬂ ( )

Collecting the above results, one finds

1 (v2sin® wt + w? cos? wt)
ng = ——— aM, exp | —¢* 4.33
. NZ(N) MI..Z.MN za: 2 [ ¥ 4vw? tanh a—;ﬁ o3

N : : 3M,
X - 4.34
g M, 1y My (2sinh3§é> 0

To remove the constraint ) yM, = N, as in Chapter 2, we introduce the gener-

~
ating function for the grand canonical ensemble as

oo

Gi(w,q) =Y [Z(N) Nngju" (4.35)

N=0
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which can be simplified as follows. From Eq. (4.28) we write

Gi(w,q) = i . (aMaICa(q)%,Cya—l)H(U”KA}i;y)hlv
N:OMI..MN:::IOO . % oy .
- 5 3 e ot e
N e Ka M"_l °° (WK y
& ;(uana@él(“( /fl)' )EIMZ u 7/7)
& é wKo () ﬁl ;; (u”’CMi"Y)M’

using the explicit forms of K, (¢) and K, we obtain

S (v2 sin® wt + w? cos? wt vp
Giluq) = Ef Zexp[ ) othfy j|

4vw? 2

x ( (2 sinh 1;—/3)3) 4:38)

where

e
o0 u,y
= exp [Z TYIER (4.37)
G 2
is the generating function for the partition function of N identical particles as

found in the previous subsection. The Fourier transform of the density can be

found from this generating function as
1 " i 1 i
NZ (V) N a9 (4 D h=o = 777 ™) N'd N Z[Z (k) kngl u*|u=o = ng.
(4.38)
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X (—_(ZSinh 3%’@)3>}u=0. (4.39)

Using the binomial theorem as in the case of finding the recursion relation for the

1 1/ sin® wt + w? cos wt) yvB
o h
" = Nz (N )N'duN [ (“)ZGXP[ aae

partition function, we find

_kasm wt+w? cos wt)

N exp [ e coth 3%@
b S Z (2sinh 7g—ﬁ)3 Z(N)

The spatial density distribution can be found by

#
1 N —
n{F;t) = i = Z( )
N y=1 (2 sinh %é) Z (N)
d3q _p (¥?sin® wt + w? cos? wt) wB .
pd 4 g t _ 3
X / (27r)3 exp [ q I coth 5 1q-T
B 1XN: 1 Z(N —7) vw? tanh 228 *
- N =1 (2sinh ff—é) Z(N)  \ 7 (v2sin® wt + w? cos? wt)
S vw? tanh 7—;"
g [ 4 (v2sin® wt + w2 cos? wt)
N 3
1 Z (N —v) e 5 exp [—wA (t,v8) 7] sw b
g Lk _
N; Z(N) (1_ —“/uﬂ) (71' (t’fy’B)) (4 41)
where
- tanh 22
A(t,vB8) = i (4.42)

(v2sin® wt + w2 cos? wt)

We have defined A (t,78) to be a dimensionless quantity. Note that if we
set v = w, which means there is no perturbation of the condensate, the factor
A (t,73) becomes a time-independent quantity and the problem reduces to that

of the static case. We now see that the result resembles the one from the work
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by Brosens et al. [7,8] except the modification of the factor A (¢,73). Since the
formula Eq. (4.41) is not useful for numerical calculation, we apply the following
technique.

Our trick is to find the recursion relation for the density of particles.
The factor T(IWZ appears in the density can be simplified as in the case of the

partition function. Using Eq. (4.20)

Z(N) LN s 1
bg(N k) H Q =b 37 H = (4.43)
Z(k) Al ZW) gk ol)
then
s w 3 e o3
n(rt) = = —A(t,V08)) exp [—wA(mB)'FQ]< —
N;(l—b”f)s (w ) j=g+19(1)
L N 1
= =Y e ( Il — ) , (4.44)
N =1 » j=N=y+1 9 (‘])
where
vw tanh 22
A(t, = . 4.45
(t,78) (v? sin® wt + w? cos? wt) (4.45)
1 w 2
a = — t exp |—wA (t, ] . 4.46
M) = GEpplAG) ep[ua )] (146)
We can write the density of particles explicitly as
a(N-1)+ 25
(1) + 4Ot
1a(l)+ (Np—l)_
n(rt) == - : 4.47
(7t = = s (4.47)

With this formula we can calculate n (7,t) numerically. From this calculation we
found that the frequency of oscillation is 2w which arises from the time-dependent

factor

(v?sin® wt + w? cos’ wt) = = (V¥ + w?) + = (v* — w?) cos 2ut, (4.48)

DN | =
D | =



(7
.l

%
o
%
Iy
oy

a,

AT T Ry
‘.Q.,».‘ AT

Al
S,
£]

[
L
.“' ;
)
',
f
o,

i
oidhe
ol
i
1
7
£

%
bl
q,'&
£
v
hah
it

Lt

LT
51005004y
AT s
R

{7
K
LRI

e
T

ALY,
LA
L/
(it
b
.'

it
DA
]

Figure 4.5: The breathing mode calculated from our method.

in accordance with the experimental results and other theoretical calculations.
This is equivalent to lowest-lying collective mode of the excitations. The result
is shown schematically below in Fig. 4.5 with the parameters v = 1, w = 1.2,
b = 0.75 and N = 1000 (for this value of b corresponds to the temperature of
the order 0.1 nK). The result is compared to the case of distinguishable particles
in Fig. 4.6 which is calculated from Eq. (4.11) with the same set of parameters
except the number of particles N which is meaningless in this case.

We can see that the particles accumulate at the center of the condensate
making the width of the density very narrow compared to the case of distin-

guishable particles. Although our model contains no interaction, the symmetry

properties of the density matrix make the system behaves as if it were an inter-
acting one. This is well known as the “statistical potential” which is attractive
for bosons and repulsive for fermions (for details discussions, see Huang [4]).

In the experiment the higher modes exist together with the decay of os-
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Figure 4.6: The probability density of the distinguishable particles.

cillation. As mentioned before, this damping is due to the thermal excitation
and interaction between particles. In our model, the particles interact statis-
tically and the condensate oscillates with no damping. This corresponds to the
experimental result obtained by Jin et al.{10] which the no-damping oscillation at
zero-temperature limits has been studied. However, it is interesting to study the
system within our model by adding the interactions between particles which we
shall discuss in the next section. Although we are not successful in the calculation

of the analytic result but we present it for academic purpose.

4.3 The Breathing Mode in Interacting Bos
Gas 5

Our system is particles confined in a harmonic potential interacting via some
kind of two-particle potential, for example, contact potential or s-wave scattering

interaction, Morse potential, etc. What we are interested in is the evolution of
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the system after abruptly changing the confining potential from v to w. We have
already found the density matrix and the particle density for the non-interacting
particles under a harmonic potential, the number density of the system oscillates
with frequency 2w. Note that this is the zeroth order of the perturbation theory
of our system. In the real experimental results the condensate oscillates and is
damped down due to the interaction between the condensate and the thermal
cloud. We would like to see how the interaction modifies the oscillation of the
system. We also want to see how the statistics modifies the oscillation of the
system, quantitatively. If we want to study this system within the path integral
framework, we have to seek for the many-particle Lagrangian with interactions
which the corresponding path integral can be decomposed into the product of
single-particle density matrices (in order to be applicable for cyclic decomposition
in permutation sum). The most well-known interacting model is the harmonic
interacting model made by Brosens et al.(7,8] which we review briefly in Chapter
2. In this model, the particles interact with each others via the potential of the

form
N
Uy Y- (m=7)% (4.49)
f=lofal

where U is the strength of interaction. With this form of interaction the density

matrix of the system can be rewritten as

p(VNR,BVNR,0) ~ v i
— ( 7 573 )Q H P (’f_", B'F’ O)w ) (450)
p (\/NR',ﬁI\/NR, O)w 5y

Pp (FI’ IBIF’ 0)
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with the introduction of the center of mass coordinates R. Then the partition
function is
_ &k oqp (VNRBIVNR,0) n
th / d3 e ik-R p f’
@) p(VNR,BIVNR,0) i

MiMs..My v

where the superscript int denotes the interacting system and
’7 o3 o
IC"“ /dr%l /drlé (Foy41 — T2 Hp r]+1,[3|7"j,0)e_“°"‘1'/1v. (4.52)
=1

Comparing this expression with Eq. (4.30), the extra factor is

Im

Y T
—ik-7j /N _ flr)-7(r)dr <2
H e Ere 4 with f (7 [y ; T—78). (4.53)

j=1

If p (7541, B|7, 0) is the propagator of a system with Lagrangian £ of the harmonic

oscillator as in Chapter 2, then the full propagator in ICi’"‘(l_c') 1s the propagator

of a system with Lagrangian £ + fow V2 (1) - 7(7) dr. The exact solution of the

path integral with this Lagrangian can be found in [21]. The partition function in

Eq. (4.51) can be found in closed form. However, when we apply this calculation

scheme to our case of the TDDM, i.e.,

.

IC (k. t) = / LR / dry6 (P = 71) [ | pp (7, 175,00 e *5/V - (4.54)
j=1

we found that we cannot write the force term as in Eq. (4.53), hence no closed--

form for Ki"t(g, t). The problem stems from introducing the change of the trap

frequency and this causes the time dependent factor (v? sin® wt 4 w? cos? wt).

When we add the force terms e=*7i/N_ we cannot find the propagator in closed

form. In fact, this factor can be calculated numerically and then the permutation
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sum can be done, so we leave it for future work. However, we can think intu-
itively that this harmonic model is nothing but a set of free oscillators with extra
degree of freedom from the center of mass coordinate. Hence, we suspect that the
harmonic model might not give the damping of the oscillation. The alternative
Lagrangian with dissipation might be a good candidate.

In this chapter we have calculated the quasi-static excitation (breathing
mode) of the Bose-Einstein condensation of Boson gas in a spherical magnetic trap
by the method of many-body path integrals. We found that the non-interacting
model gives the perpetual oscillation of the condensate while in the experiment
the damping of the oscillation was found. Nevertheless, in the zero-temperature
limit the damping is very small. It is generally accepted that the damping is due
to the interaction between bosons. We find that the mathematical manipulation

is formidable and that we cannot obtain the density matrix in a closed form
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