Chapter 3
Ground State Energy

3.1 Introduction

Since the first observations of the Bose-Einstein condensation in trapped gas in
1995 [1,2,3] many theoretical studies of the system have been done [13]. The
literature concerning this topic is abundant so it is redundant to repeat it here.
The reader is referred to some good reviews {14,15]. Among all theoretical ap-
proaches to Bose-Einstein condensation in trapped gas, the most suécessful one
is the Gross-Pitaevskii mean field theory [16] since it is applicable for both sta-
tical and dynamical aspects. However, this method is suitable for some forms
of the interaction between particles such as the contact potential which can be
described by a Dirac-delta function and the strength of the interaction is in the
form of s-wave scattering length. Some works have been done in the case of finite
range interaction [17,18,19]. The remarkable work is the one by Brosens et al.
[7,8] in which the authors successfully use the many-body path integrals devel-
oped by Feynman [6] to study thermodynamic properties of the system. However
the calculations are long and tedious. In this chapter we show that the density
matrix of the distinguishable particles in a harmonic potential with interactions
can be derived by using the cumulant expansion. The upper bound of the ground
state energy of the system can be estimated variationally by using the Feynman-
Jensen inequality. This upper bound is equivalent to the ground energy of the

Bose-Einstein condensation of atomic gas in a harmonic trap. The result is in
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agreement with the variational ground state energy of the same system obtained

by Baym and Pethick [20] using the Gross-Pitaevskii equation.

3.2 Approximate Density Matrix

In order to compare our result to the aforementioned work we use the model
Lagrangian of the N-particle system in an anisotropic trap. According to the
many-body theory the two-body interaction between particles should be repre-
sented by the T-matrix in which the effects of other particles in the system are
taken into account. However, because of the diluteness of the system and the fact
that the system is at a very low temperature, we can approximate the interac-
tion by a contact potential which is in the form of the Dirac-delta function. The

strength of the interaction is characterized by a, the s-wave scattering length.

N

We then write the Lagrangian,
Bo. N N
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where we have used the natural unit 7 = 1 and the atomic mass m has been set to
unity. Above, 7; and 7 are respectively the coordinates of the i*" and j** particle;
and w; and w, are the trap frequency in the radial and axial direction respectively.
This is effectively the form of the potential used in the first observation by Cornell
and Wieman group [1,2,3].

The imaginary-fime path integral relevant to this Lagrangian cannot be
solved exactly. So we use the variational path integral technique [21] which is
normally used for estimation of the ground state energy [22]. Introduce the trial

action to be that of the harmonic oscillator with radial and axial frequency €, ,
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2, serving as variational parameters,

1:2
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Since the path integral for this Lagrangian can be solved analytically [21], the

density matrix of the N-particle system is conveniently expressed as

/ Dlf|e® = p, (¥, BIF, 0) {e~(5~5)) (3.3)

where 7 represents the set of coordinates of NV particles, namely 7 = {7, 7, ..., TN}-

The trial density matrix derived from Eq.(3.2) is

N
po (7, 817, 0) = | [ o (7%, BI, 0) (3.4)
gt

with the one-dimensional harmonic osciallator with frequency ( is

1
< Q 2 (2% + 2%) cosh QB — 22’
po (2, Bl 0) = (m) . {‘5 sinh 18 } . )

Above, the Euclidean action is defined as S = fﬁ dr with 7 being the imaginary
time and 8 = 1/(kgT); the bracket representsoan average of the quantity inside
with respect to So, that is (A) = [ D[F]A exp(—Ss)/ [ D[] exp(—S,). Using the
cumulant expansion [23] of the (e=(9=5)) term, the density matrix now takes the

form

p(f',,@W,O) ~ p, (T ,BIT 0) ( (S— So)—%(((S—So)2>—(S-So)2)+...). (36)

If we keep only the first term in the exponent which is called the first cumulant,

we obtain the approximate density matrix as

Y m
p(T,BIT,0) =~ p, (7, B|F,0) exp [—/ {Z; Q1) (2 + )
—73 w? — %) <z2>+47razz<63 73)}}] (3.7)
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Now we have to calculate the quantities (z7 +37), (27) and (6° (7; — ;) ) which

can be done by using the generating functional technique [21]. For the first two

quantities, the result is standard, that is,

2 o _ (sinhQ, (8 —7)sinhQ, 7 _|.,sinhQ, 7
(2 (1) = i (7)) _< i amh ), B ) [misinhQLB
sinhQ (8- 17)]?
T einh 2, B ]

(3.8)

and

20 yy _ (SnhQ(8—7)sinhQ,7\ [ sinh@,7  sinhQ, (8- 7)]?
& (e} = ( mS2, sinh 2,3 " sinh Q.8 o sinh (2,3 :
(3.9)

As for the average of the interaction potential, we need to show the calculation

in more detail. We first express the delta function as a Fourier transform,

A3k
2n)’
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Since L, is simply the sum of z;, 1; and z; terms each having the form of the
one-dimensional harmonic oscillator, the integrand in Eq. (3.10) can be expressed

as a product of terms like

(exp tky(z; — z;)) T DF] e)tp(—Soz) /D[i] exp(—Soz + 1kz(z; — x4))
= K; (K] (Q) (3.11)

where, for simplicity, we have used € for both Q, and ., depending on which co-
ordinate we are interested in. We denote Z for the set of coordinates z of IV parti-
cles and S, is the part of the action involving only the z-coordinate. In Eq. (3.11)
we have defined K;* () = [ Dla:] exp(—(Sos, () £iks2:))/ [ Dlz:] exp(— Sos, (Q))
which can be evaluated easily if we notice that the exponent of the denomina-

tor is just the action of the forced harmonic oscillator with the force defined by
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f*(s) = £iké (t — 5). The result is

KE(0) = oxp [:f:ik (a:; sinh Q7 + z;sinh Q(f — T)) _ kZ sinhQ(B—1) sinhQ'r]

sinh Q3 ms) sinh 23
(3.12)
We thus find
S (= > dks ., +(Q dky b
(& (7 (1)~ 75 (7)) = o Kot () Ko (1) [ 52K () K (Q0)
o K () K5 (), (313)

where the k-integrals are simply Gaussian and simple to evaluate, for example,

1
dk:c £ =5 g mQL sthJ_ﬂ 2
%K’”i () Ko (8= (47r sinhQ, (83— 7)sinhQ, 7
mSYy sinh Q, B , . sinhQ, 7 _ sinhQ (8- 1) 2
ny [SSinh Q. (B —7)sinh Q7 ((”" %) Soh R 7y 37 '

(3.14)
The full density matrix p (7, B|7, 0) is obtained by simply substituting Eqgs. (3.8),
(3.9), (3.13) and (3.14) into Eq. (3.7) and we obtain

N
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3.3 Ground State Energy of BEC

In the limit 8 — oo or temperature goes to zero, the density matrix can be

written in the form

p (7', BIF,0) ~ ¢(7)¢* (F)e PP (3.16)

B—o0
where ¢ (7) and E,, are the ground state wave function and energy respectively.

The partition function in the zero temperature limit is
Z(N,B) ~ e FoP, (3.17)
B—oo

We can see from Eq. (3.16) that the coordinate-dependent terms in Eq. (3.5)
contribute to the wave functions and the rest contributes to the energy. We now
obtain the ground state energy as follows. We first note that we can roughly
write

B
e~ 57%) ~ exp [/o dr (A(r) + B (r) fa) ) (3.18)

In Eq. (3.14) if we expand the exponential terms we see that, the leading terms
contribute to A (7) and the rest goes to B (7). To obtain the ground state energy,
we use the Feynman-Jensen inequality [20] so that we can estimate an upper

bound of the ground state energy as

1 ,
By < o+ Jim 2(S — 5.)', (3.19)
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where (S — S,)’ denotes the coordinate-independent part, say foﬁ dr A (1) and
E, = N (Q. +./2) is the ground state energy corresponding to the density
matrix p, (7, B|7,0). The explicit form of (S — S,)’ is found to be

(S-58,) = w/ﬁ(h (SiﬂhQL(ﬂ~T)sinthT>

sinh 2, 3
0

B
+N(w§ - 02) /d sinh Q,(8 — 7)sinh Q,7
2Q) = sinh 2,3

ﬂ
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0
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Q,sinh Q.
(47r sinh ©, (8 — 7) sinh QZT) ’ 20)
where we have used the relations ZFI = N and Z;V=1 Zfil# = N(N —1) since

all the terms are independent of 4. In the limit 8 — oo, Eq. (3.17) becomes

2 2 3
Wi/ R O (N -1)af, 0
(5~ S.) = N8 (2m e ] T o g 1aoy

Using Eq. (3.18) together with the contribution from E,, we obtained the upper

limit of the ground state energy of the system,

2 2 2
wi Wl 2, | NaQ2,Q:
Bs's <2Q_L b % > +4Qz + y = : (3.22)

which is exactly the same as the result from the mean field method [20]. In fact,
in going from Eq. (3.17) to Eq. (3.18) we encounter a mathematical problem.
In the last term of Eq. (3.17) the integral diverges at the two ends of the range
of integration. However, when 8 — oo, the integral can be written as (we set

2, = Q, for convenience)

B
lim [ dr Sty

p=o) " (sinhQ(B — ) sinh Qr)*/>

~ 2[3 + divergent terms. (3.23)
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Our experience in mean-field theory suggests that this divergency is corresponding
to the quantum correction of the self-energy diagram. This correction is analogue
to the correlation energy in the Hatree-Fock approximation. Hence, the result
of the ground state energy and its divergency implies that our approximation is
equivalent to the mean-field approximation.

Our result shows that the ground state properties of the interacting par-
ticles in a harmonic potential can be calculated by using the variational path
integral technique. The density matrix can be derived by using the cumulant ex-
pansion and the generating functional technique. The upper bound of the ground
state energy of the system can be estimated by considering the density matrix
at zero temperature and using the Feynman-Jensen inequality. For the contact
interaction the ground state energy coincides with the result obtained by using
mean field theory [20] for the variational ground state energy of the Bose-Einstein
condensation in trapped gas. As our result is obtained by evaluating only the
first cumulant in Eq. (3.4), it suggests that the result could be improved by
evaluating the second cumulant to give the correction terms which is beyond the
mean field approximation. One of the advantages of this method is that it can
be applied to various forms of interaction as long as we can calculate the average
of the particle coordinates.

However, the application of this method to the system of indistinguishable
particles is not valid because to find the partition function we have to do the sum
over all permutations,

e o o4 i
Z = / dr p (7, B|F,0) = / drm\; pp (PF, B|F,0) (3.24)

As discussed in the previous chapter, this can be done only in the case when the

density matrix can be expressed as a product of single-particle density matrices.
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In our case, however, as pointed out in the previous chapter we cannot write the
one particle density matrix explicitly because of the coupling between particles
via the interaction terms. Our attempt in obtaining the analytic form of the
density matrix for the indistinguishable-particle case thus fails. Nevertheless,
the ground state energy we obtained is still correct because at zero temperature
the ground state of the distinguishable-particle system coincides with the free
energy of the indistinguishable-particle system. The reader is referred to the
works by Brosens, Lemmens and Devreese [7,8] for the many-body path integral
calculations at finite temperature of both bosons and fermions. The free energy
and other thermodynamic properties can also be obtained successfully in those
works. However, the calculations are very complicated. Our method thus provides

a relatively simple way to study some ground state quantities.
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