. CHAPTER 2
THEORY OF X~RAY DIFFRACTION AND STRUCTURE DETERMINATION
2¢1 Scattering of X-rays by atoms

X-rays are short waves consisting of s2lectromagnetic
pulses, Their wavelengths are of the order 1 A°, They are
produced when electrons, travelling at high speeds, collide
with atoms.

Atoms in a crystal are arranged in a pattern which is
repeated regularly in three dimensions, and so they act as a
diffraction grating for penetrating X-rays. X-rays are scat -
tered from these atoms,

We will consider how X-rays are scattered by a single
electron, If an electron is located in the path of an unpolar-
ized X-ray beam, it is forced into oscillation by the electro-
magnetic field of the incident radiations.

In Fige2.1+1, the incident beam is supposed to be travel-
ling in the X-direction, an electron is at a point 0, P is
a  point at a distance r from the electron in XZ plane where OP
is inclined at an angle § to the incident beam.

The intensity of the scattered radiation at a distance r
from the electron is

4 |
I = 1 ( =3 \( 1t °°"2¢) cee (24701)

m ¢ r / 2




incident X~<ray beanm

Fig.2.1e1 Coherent scattering of X-rays by a éingle

electron.
where I° is the intensity of the incident beam,
¢ ié the velocity of light,

e and m are the charge and mass of the éiectron
respectively, |
and o] is the angle between the direction of scatter-
ing of the electron and the undeviated beam
direction.
This equation is called Thomson equation for the scattering
of an X-ray beam by a single electron. It shows that the scattered

Antensity deoreases as the inverse squars of the distance from the
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scattering eleciron, The value in the second bracket in the Eq.
(24141) is called the polarization factor.

The electron occupies a finite velume and esch atom has a
specific number of electrons, Hence the amplitude of the scatt-
ered wave from the whole atom increases =s the number of electrons
in the atom.

An atomic scattering factor, f , is the efficiency of scat-
tering by an atom in a partigg}?z}direction and it is expressed by

the ratio ;‘;;:5 QO Z

.‘/ X ™ ~ T
f% m , oo (2.102)
7electron R
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ytqgeigééttered‘by an atom ihat can be
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written as the sum of }he" emplitude of the scattering by its indi-

s / 1 4
vidual electrons, Aelectiﬁﬁi

The curve onscafféfihélféé%Sr 8gainst sirf s called the

3 Y A
scattering factor cﬁﬁﬁé\.‘\ﬁlﬁ_i§ﬂshoﬁ@ﬂin Fige2.1.2. The curves

have their maximum values when 8inf =0, corresponding to 6 = 0O

A
the value of { ispeguel t0:2 ()41 the HEiBER 5T electrons in the atorn,

?

-

The value of f depends on the type o

atom and the Bragg

¥

angle O« Fige2+1.2 shows that the amplitude scattered by am atom
dzereases with an increase in § . The scattering faclors for the
various atoms are different and they are difficult to calculate,
They are tabulated in vol.III of the Tntermational Tables of

Crystallography.
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Fige2.1.2 The variation of the scattering fact~ - of each

atom is a function of sing .
A



2e2 Diffraction from a crystal

Diffraction is essentially = scattering phenomenon. In-

cident X-rays are scattercd simultancously by atons of a crystal

-

in the path of an X~-ray bean, In general, the scaitered waves
interfere with and destroy one another, but in ceritain snecific
direcctions they combine to form new wave fronts. Thics cooper-
ctive scattering is knovm as i firaction.

Consider first th&iefffctéﬁ%;n 2 tean of monochromatic
X-yays is incident ?E/a/‘<

atons, The conditi

¢ —

| N —
le rowv of cqually spaced identical

[Aiffraction-by a row of atoms is shovm
// ‘:'/ A
. [\ Yt A N o =
ir Fige242.1 a, Two @y$f3§A§“ d~ray Leam strike the row, of
y/ ~as 4\ .
/ |
. . [ he e Ll . . o
periodicity a, at an gngle Q§L;nhidenceL“ + The diffracied rays

axre in phase only if

@ e = —= N —_
5.§T>f€=aT:I?“‘E“‘ET*C§ - 1)
i i \
=, h>\ eeo Ze Cel J
where a is the rcpest translation vector in the lattice,
- -
s and 1 are the scattering and incident beanm vectors,
h is an integer,
and A is the wavelength of the monochromatic X-1r3yg
beam,

In terms of angles

a Cosy; = 23 coSiy =  h)

where the angle of diffraction v, is measured from the positive

end of the row.



The condition for diffraction.is rnot only in the direction
(a.cosVi) but in all directions that maiie an angle of Vi with the row,
The diffracted beams will lie on the surfaces of concentric cones,
coaxial with the row and with half-apgx engles equal to vl(Fis.
20201 b)-

In %wo-iinensional lattice, 2 plane lattice array of otoms

mey be defined by two ftranslation periods 2 and b in the rows OA

8

1d 03, and the angle¥ , Figele2.2 a, we have the condition

- - = - >
DeS = Dbedi ZA (S = i)
= k}\ eve (202.2)
or b.cosve - B/cosy, = k)

Diffraction o€cury A tle! +two equations, Ece2.2.,1 and Eq.
2+2.2 4 are simulteneously  satisfied.  The beam meets the plane
at such an sngle that the cone about OA intersects the cone about
0B along 0X and QY. The &rjle bBetween?0A ond CX is V) , and that
between OB and OY’iﬁ,ﬁ& o in Fig, 2,277 Fo

The diffraction. directions Tor a lhree-dimensional arvay of
atoms are shown by three sets of diffractioﬁ cones coaxial with

three reference rows., We will have the condition for the &

- ol T
CsS = Coi = Colg = 1)
= 1 eee (2.2,3)
or C+CO5V3 = C.COSHU3 = 1\
if € is the third vector defining the lattice,

Fige2¢243 shows the intersecting cones of scattering
directions for a three~dimensioncl latiice. When theee

cones intersect, coch cone will make two infersections with each



Fige2+2+1(a) - Scattering from (b) Cones of diffracted rays.

a row of atoms, from a row of atoms,

Fige2.2+2(a) A two-dimensional (b) Intersecting cones for

lattice, two=dimensional lattice,.
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of the other two cones, The three rows will scatter in phase only
along a direction that is the intersection of three cones.

The equations (2.2.1) , (2.2.2) and (2¢243) are called the
Laue conditions.

The Bragg Law consider 2 beam of parallel Xerays of wavelength

A falling on parallel planes of spacing d. Both the incident and
reflected X-ray beams make an angle 6 with the set of planes, hkl,
as shown in Tige2.2.4.

Since there are large numb'e‘i?s’,of parallel planes, reflection

from these planeswill infgi‘ieré with eaeh other and reinforcement
will occur when the I‘éys"‘éi‘e in phase with one another, i.e., where

the path difference is/ay in%e{;:.jsal nunber of wavelengths,

A 4 /B e n)

PR A
VAN A

where n is an intgpers -

Prom ;eomet Ty,

therefore
nA = 2d.s8in 6 e e (20204)
This is knovm as "Bragg's Lawh,

From Eqe(2.244) we can vrite

’ 1/4d ' A
8inb = A 2 = Qhkl XX (2.(_’05)
d‘}L W
1k !
st 1 = Ok
dhkl
sin@® = N 2l
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A

F18.2.243 Cones on three axes defining possible

diffraction _d:l.reotion.

Incident beam

Fige2.2¢4 An X-ray beam at an angleewith a set of

planes with interplanar spacing 4,
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In Fig42,2,5 , the crystal plane hkl is set om the center

of the sphere of radius }r. The point 0 1s called the origin
of the reciprocal lattice, and the sphere 1s called the Ewald

sphere or the sphere of reflection,

Flge2.2.5 Geometrical construction of a reflection
sphere,
Conslder the reciprocal lattice vector ;

I{ = p.? + q.g’ + r.? Q:.'.:_(z'z.s).

The three coefficient Py Qy T may have any integral values,

-
;:R = 2 (pE’ + dﬁ’ + rE’)

o P
- o
aimilarly bPeR ' = q XX (20207)
and e. = b of

a' ’ v and ¢" are the reciprocal axes, and we have the
conditions

.2 = ) o eee (242.8 8)



-

*

b %

—

Cc

*

. c A

-
The reciprocal lattice vector, R ,

form of unit vectors s and i as

-~
R . S5 =1
A

Substitute

compare them with the Loue equations (2.2.1

we will have

~ _— A-
¢ = ac(s - l)'-:'
A
SN N -
a = bo(s - i)=
A
r 8 ?.(7:,\ —_{)7:
A

-~

or we may substitute R/in the equation (2,

-\
the vector R in the equat

o
<
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eece (2.2.Gb )

(2.2.% ¢

can be written in the

see (26249)

ion (242.7), then

), (20202) and (20203)’

6), and get

- = A‘ _‘\v -:(
S =i = A ha«+ kb + 1lc
A
If CPRY is the reciprocal lattice vector and defined by
q = 1 = ha + kb + 1c
hkd: TUN
“ha
we can get

S -
S = i = 0

-—

i

In Fige2+4246, the incident beam

r
form the same angle g with the hkl plane.

>ja}

and the reflectsd beam
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diffracted beam

+incident beam
—

Fige2+2.6 Condition of refleotion based on a

reflection sphere,

1_,? - il = _Ldﬁkﬂ

and sin 6 - |5a i|
S|
S 28ing - FY
RITNOYR
%1 =4
bk,
therefore _
Zd.hkl sin @ . L] A eee (2.2010_)

which is the Bregg's law, Thus it is obvious that the three Laue
conditions are equivalent to the Bregg condition and both can be

related to the reciprocal lattice concept,
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2e3 The Fourier transiorn of the structure factor and the electron

density

4 crystal is periodic in three dimensions, it can be repre=-
sented by a three-dimensional lattice of ztoms in a unit cell,

The structure factor equation can be written in terms of
indices of reflection hkl and fractional co-ordinstes within the

wit cell(X,Y,2), as

-—
e
-

p (X¥Z) exp {2mi(hX+kY+1Z)} axdydz

soe (20301)
where P(XYZ) ie the electron density.
The structure with j atoms in the unit cell at the position

(x,, yJ, z ) has a PFourier transform which is the vesultant of J
]

waves scaztered incthe directicn of £he reflection hkl by the j

atoms, and can be written as

Pl]_kl = fj exp {a‘n'i(h.xji‘kyd‘*‘laj)} eoce (2.;.2

=1

cniM o

The structure factor, Fhkl’ is related %o the atomic poSie

tion Xy yj, zj of an atom j and its scattering factor fj » thus
P 7 A 1By sae e jud)
B N
where Ay = 2 fj c0321r(hxj+ky4+lzj)
j o
. see (243e4)
[>) = o i { )
and Bkl 3 fj SLnQﬂ-\hx5+kyj+lzj,

eéceen|
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The phase angle, « s associated with each structure
‘hkl

factor, is given by

© = tan™! (Ehkl) see (Zu3e5)

Apic1
The value of IFhkll’ the modulus of the structure fac-

tor, is expressed in terms of Ay Bnd Bbkl as follows,

| P | JAhkl + B €3+ (2e3.5)

Trom 2qe(2e344) , we find

Fcr” 7P| om0 e 1} ees (203.7)
These equations, /(2:3.1),(2.342) and (243¢3), can lead
to the determination of crysial ;structures, The structure
amplitudes, the |7 Ps, can-be derived from the obscrved inten-

sities of X~ray reflections, but the phase ansles « cannot

hkl
be directly deteriined, I the phases of the structure factors
are known, then the crystal structure is Imovm,

The electron density must be compuéed first, aond suﬁ -
sequently the atomic centers are located at the electron den-
sity peaks. In the unit cell the velue of the electyon den-
sity is nil except where there are atoms, Where there is an
atom j the electron density may te renresented by the fj value
which is the Fourier transfoim of the structure factors, and
vice versa, as shown in Eqe(2e342)s The relationship of the
structure factor, B hkl® and the electron density at a position

«y¥yZ in the unit cell, P(XYZ), is shown thus
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Il
o(xyz) = FILIZ

v Py xp {-2m i(hX+ky+12)}

eee (24348)
The electron density equation can take different forns
depending on the space group of the crystal structure. The
electron density equationsare given for each of the 230 space
groups in the Intermational Tables for X-ray Crystallography,
Vol.I. In the particular instance, the space group of Nb_As

3
is P42/n and the electron density is expressed as

® ® o hike2n .
p(XYZ) = %[z LI {P(1k1)cos2 7 ( hX+kY)+F(hkl)cos2 T (hX-kY)}
cLO OO
cos2 mlZ

o o o/ Ntk=2n+1 B
-5 Z {P(hkl) ' sin2 ﬂ(hX*l-kY)—F(hkl)SiIlZ m (hi=kY)}
00O

sin?2 ¢ IZJ



2¢4 Diffraction data collection

L-ray diffraction data are collected from the various tynes
of diffraction patterm that are obtained from single~crystal
cameras and pdwder cameras, The diffraction patterns are
related to the distribution of electrons irn the unit cell,

The size, shape and symmetry of the reciprocal and direct late
ticescan be calculated from the geometry of diffraction.

From a powder photograpi, tHe indices of a diffraction
line can be determined. It is used for determining unit cell
parameters accurately for a crystal structure, The line dif=-
fraction pattern is obtdined when a collimated beam of mono=
chromatic X-rays falls on. the 8pecimen.,

The other crystallographic.data can be obtained from
single~crystal cameras, The simplest type of single-crystal
camera in common use is the oscillation camera, The crystal
is flued to a fine glass fibre arnd this is attached to a rotat-

ing goniometer head. The X-ray beam is ;ollimated and is
perpendicular to the axis of rotation of the crystal. As the
crystal rotates so the X~-ray reflections are produced one by

one and are recorded by the film. The diffraction spots on the
oscillatién photograph, in Pige204e1, are found to lie on =

series of straight lines, called layer lines, Trom the distances
between these layer lines, the length of +the rotation axis of

the unit cell can be found.

There is a disadvantage of this method, because the



Pige2¢402 Weissenberg photograph with & and o
axial lines,

19
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information is contained, in a two-dimensional reciprocal lattice
plane that is condensed into an one-dimensional layer line,

It is rarely used for the collection of intensity data but is
more often used for the preliminary examination of crystals,

the determination of unit cell dimensions and the crystal system,
It is difficult to index reflections and many films are necess-
ary to avoid the possible overlapping of spotse.

iYelssenberg photographs give a view of an entire recip-
rocal lattice level, the vhole layer of information to be collected
at one time without difficulty caused by overlapping.

From a Veissenbérg photosraph in Fige2.4.2, a family of
lines parallel to a reciprocal axis, o set of similer noninter-
secting curves, called festoons; are produced at increasing
distances from the centér of the film. |

The Weissenberg photograph is a mep of the reciprocal
lattice layer. By jmeasuring the réciprocal lattice constants
and converting them into the direct. lattice ones , the cell
constants are obtained. .. The diffraction épots in Weissenberg
photographs can provide almost any information about that recip-
rocal lattice level, The systematic absences of certain tivpes
of reflections in the Weissenbers photograph will show the sym-
metry of the crystal structure.

In the diffraction vhotographs, the important information
is obtained from the intensities of the diffraction spobs.

There are two general methods for obtaining the intensities of

diffracted beam, such as diffractometyic and photogravhic methods,



Diffractometer can provide more Precise intensity data than go
photographie methods,

tographs involves the Systematic Comparison of the observed
reflection against a calibrateq density scale, Tr the spots on

the £ilm are similar to one another in appearance then one can

the diffraction spots ean be determined by comparison with
various reference spots 4in the intensity scale, The value is

then assigned as the observed intensity on an arbitrary Scale,
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‘2¢5 Intensity data correction.

Intensity data collected as described in Section 2.4 ,
is qbtained from physical measurements on the crystal, the
caléulation of a strucfure will depend on the skilful extraction
of the informetion from the observed intensities, From the
intensity measuring for the various indexed reflection can be
correlated, they must be multiplied by a Torentz factor rela-
ting to the velbcity and polarization factor (Lp)-1, and by

the absorption factor A for each reflection.
2¢5¢1 Lorentz and polarization correction fmctor(Lp)f1

The usual X=ray beam is unpolarized, i.eey the
electric vectors.oan point in any direction normal to the
direction of propagation, Consider the component of these
vectors that are shown in Fige2+5.1 in two directions, one
parallel to the surface of the reflecting ﬁlane, and the other
at right angle to the first, and the sums of these two com-
ponents will be equal.

Under the influence of a polarized wave of a given
anplitude, if the electric vector is perpendicular to the plane
containing the incident and scattered beams, an amplitude of a

coherent wave that is scattered at a distance r is e2 where

mcz

e and m are the charge and mass of electron respectively,c is

the velocity of light, IT the electric vector is parallel to
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the plane of the incident ang scattered beams, the amplitude

of the scattered radiation is ¢° 20820 , where 20 15 the
‘ rme

reflection angle,

Fige2.5.1 Unpolarizea X-ray beam with electrie vectors,
If the radiation is unpolarized, the mean ampli.

tude of the scattereq wave is 33_2‘1+coszze] %, and the temm
rme 2

{1+c05226} 1s called the polarization factor,
2
The other trigonometyic factor 1

8in

2§called the
Lorentz factor, L , arises be&ause the time required for a
reciprocal lattice point to pass through the sphere of reflece
tion is not constant but varies With 4%s/vosition in reciprocal
Space and the direction in which it approavhes. the sphers, 8o
the Lorentsz factor depends on the way in which the reciprocal
lattice point (hkl) passes through the reflecting sphere and also
on the precise measurement technique used,

As the Lorentz factor,L,and the polarization factor,
P, always oceur together, it is 4n practice convenient to be able
to correct them simultaneously..

As the quantity of the structure amplitudes }Fhkl‘
is related to the intensities

Pa | = [T e (2.5.1)



£
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for correcting data with Lorentz-factor and polarization factor

the equation can be written as

= z’: I ere (20502)

o hkl

Pl

The Lorentz and polarization factors, combined and
referred to as the Lp factor, are tabulated for various diffrac-

tion geometries in Vol., II of the International Tables for X=ray

Crystallography.
J/ ///
245.2 Absorption/correct:on*factor (A )
~7,
/ / / /

B 4 B ,
A rough/measurm$nt is'made of the dimensions of

the crystal from wh19h the &1ameter of the equivalent cylinder

SN
X

is estimated, and treated aa a perfect cylinder . The

i ’a'r — ol
absorption correction fadfbr “Will be calculated to correct
A 2

1e absorption error. After an—X=ray’ beam of intensity I

vasses through a thpgkness t of cryst;& the original beam is

reduced by a factor e T, Consequently

I = I Ml o ces (2.5.3)

where I is the intensity of the beam which has traversed
a thickness t,
M is the linear absorption coefficient of the crys:al.
For the crystal shown in Fige2.5.2, assumed ideally
imperfect, the small volume dv will contribute to the diffrac+~d
beam, an intensity proportional to e M(¥+X )dv. The total

intensity is reduced by absorption, then the fraction is given by
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5 =i Je' I"(‘*"l')dv;}/{Jdv}
A v

X

The atomic absorption coefficient, Hg o depends
on the element and it is a function of the wavelength of the
X-radiation. If a slab of material containsdn atoms and thick-
ness dx, tyen the total mass of material is At %E where At is
the atomic weight and NA is Avogadro's number, AThe density of
the material is given by t

A

o] - -'t (XX} (20504)
e

n = PN, dx
A

y=———f- =3

\
\
\
\
\
\
A
\
xﬁl
N
Q
¥

N

Fige2¢5¢2 The diffracted beam from asmall volume dv
is reduced by absorpti&n.
For the attenuation of a beam going through such
material one may write

Because 4l is equal to - hdx s SO W3 can write
I
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K dn. = fdx

a
and
ba o= ks
o NA
= gk cre (2.5.5)

A
where 1& = % is called the mass absorption coefficient,
which is used for mixed materials or compounds,
The linear absorption coefficients of mixtures of
elements or compounds can be determined by using the relation-

Shipa

ucompound 7/ W1 ement

= L %m‘&
where ﬁ% is the partial density of the element within the com-
pound and the summations are taken overall the elements in the
compound.,

The linear absorption coefficients can be deter-
mined when the atomic mass absorption coefficients and the density
and composition of the material are knovm, Ilass absorntion
coefficients are listed in Vol. IIT of the Internatiomnl Tables
for X-ray Crystallography. From the calculated value of Uy, HUp
is found where r is the estimated radius of the crystal that is
shaped by grinding into a sphere §r a cylinder, Then absorption
factors at various inclination angles of the beam to the crystal
can be expressed in the form of tables and these are given in

Vols II of the Intermatiomal Mablos for Z-ray Crystallography.
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2¢5¢3 The temperature factor

A crystal is consisted of atoms bound together
in a periodic pattern. Svery atom in a crystzl structure is
bound to the other atoms by bonding forces of various types,
The position of the atom is that corresponding to the minimum
potential energy. All the atoms are vibrating about their
mean positions with various anmplitudes which increase as does
the temperature of the solid. These vibrations will affect
the relative co-ordinates of the atoms and the diffraction
patter,

‘ihen we dssume that the thermal vibration are
isotropic,>the values of the temperature factor, B , are the
same for all atoms, then we have the structure factor as modi-
fied by the isotropic thermal vibration,

. . =7 exp '{ =Bsin%0 }

hkl T hkl --;5-_

or the intensities

SN
{Ihkl}T = I, exp {-c3s:.1;. 5 }
A{-

The observed intensities are reduced by thermal

(]
vibration with the factor exp {-2Bsin“6} which is kmown as the

2
Debye~liialler factor. A
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2e6 The determination of space groups

There are seven three-dimensional co-ordinate systems
which are the basis for their classification and useful in
describing crystalS. The crystal system is composed of 32 point
croups that are the combination of the possible symmetry elements,
Then the 32 point groups are combined with the 14 Bravais space
lattices to obtain 211 possible space groups which describe the
only way that identical objects may be arranged in an infinite
lattice, A space group is designated by a capital letter iden-
tifying the lattice type (P,C,etc.) followaed by the point-group
symbol modified by the dintroduction of ftranslationzl symmetry
elements if needed.‘

The list of 230 space groups is given in the Intermational
Table for Z-ray Crystallography, Vol.I.:

Space group determination is one of the preliminary stages
of a crystal-structure analysis, They can be determined from
the various types of the diffraction patt;rn.

Laue photographs are one type of Z-ray diffraction pho-
tographs. They are made by diffracting white X-rays from a
stationary crystal. They are suited to detecting symmetry axis
if the incident X-ray beam is directed along the symmetry axis.

From other kinds of X-ray photographs, sets of equivalent
reflections give information about symmetry elements in the crrstal.
If suchan oscillation photogreph is taken about an axis perpen=

dicular to a ror plane then the photosrarh will haove the zero
D X )
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layer as a line of mirror symmetry, When an oscillation photo=
graph shows a mirror line then it is the space group of monoclinic
system and if mirror lines are located about two different axis
the symmetry must be orthorhombic,

The information qbtained from Laue and other types of
photographs should nake possible the correct and unique as-
signment of the crystal system and even the crystal class, The
space group is determined when sufficient information is obtained

from the X-ray diffraction datae

Systematic absences are the disappearance of certain
reflections in the reciprocal lattice as found in Weissenberg
photographs, Systemati¢ absences such as = row extinction
can be detected when photographs. of successive levels are
superimposed, Systematic absences of reflection caused by
translation symmetry elements are given in Table 24641, where
n is an integer so 2n .and 2nt+1 are seneral representations for
the set of even and bdd numbers,

From the condition of systematic aﬁsences in the photo-
graph, we shall lknmow the symmetry element of the crystal and this

leads to the right space group,
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Table 2.6.1 Some translational symmetry elements and their

systematic absence condition

Symmetry element ffected Systematic absence-
reflection condition
Body-centered lattice(I) hkl hik+l = 2n+1
| {h+k = 2n+1 i.e,h,k,1
Face-centered lattice(T) hkl j htl = 2n+1 not all even
L k+1 = 2041 or all odd

A-centered lattice hkl k+1 = 2n+1
B~centered lattice hil h+l = 2n+1
C-centered lattice 2 R hek = 2n+1
n glide ' k+l = 2n+1
d glide | perpendicular/to a 0kl k+1l = 4n+1, 2 or 3
b glide k = 2n+1
¢ glide 1 = 2n+1
n glide | h+l = 2n+1
d glide f perpendicular to b hQl - b+l = 4u+1, 2 or 3
¢ glide 1= 2n+1
a glide‘ h = 2n++1
n glide | h+k = 2n+1
d glide ? perpendicular to ¢ hkC b+k = 4n+1, 2 or 3
a glide h = 2n+1
b glide‘ k = 2n+1
2-fold ccrew along ja h00 h = 2n+1

ib 0k0 k = 2n+1

Lg 001 1 = 2n+1
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2¢7 The @etermination of crystal structures

The intensity of L-ray beam scattered in any one diffracteddirec-
tion depends upon the atomic errangement and thepositions of the
atomic centers,. 4 crystel is considered as a continuous distribu=~
tion of eclectron density, reaching the maximum at the center
of atom and falling off to zero in the cpace between atoms.
Because the phases of structure factors are not directly knovm,
therefore the Patterson fumetion g Which is related to the eleec-
tron density, and includes no phase angle, is Very useful in the
structure determination of heavy-atom crystal, The electron
density at any point can be put’ in Patterson's funetion P(Uvi),
that is expressed as -

P(UVV) p(RYZ) ok E+T, Y+ Wy Z+W) AX dY a2

il

<
0\_—/’\—‘
QS =
Bof—~

eee (24701)
where an electron density distribution,

oy = l T ¥ - SV (oLl 7
p(X¥Z) = Y }% Ty OF o(=2 i) (hi+kY+1Z)

The Patterson function can be represented by the Fourier
series,
oY R ataldd 1 Z |F l2 exp.(_z T\'i)(hU+1iv+1W) XX} (2.7‘2)
.:.(u‘lu) = v {l
hkl
Physical interpretation of the fwiction P(UVW) is given
in tems of interatomic vector. From any point (x,y) in the

unit cell , that is shown in Iis.2;7.1, draw a vector with
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components U and ¥ that represent vectors Joining two atoms,
Atomic positions are derivable from the complete knowledge of

interatomic vectors.

(x'\«,yw)

fig.2.7.1 A crystal structure projected on to (x,¥y)
plane &nd the electron density being finite
within the circles,
Suppose the unit cell of the crystal containing N point
atoms, each of which is repeated on an infinite lattice , so
the Patterson function eonsists of N2 Patterson peaks repeated
in the same way, The Patterson functidn‘will be a superposition
of peaks derived from all of pairs of atoms in the unit cell,
It gives the vector distence between every‘pair of atoms, aﬁd
is related to the electron density i£ a Fourier series is summed
with the squares of the structure amplitudes as coefficients as
in Bqe(2.7+2)s The quantity |Fhk1|2 are directly derivable
from the measured X-ray intensities and so the ceries in Eqe(2.7.2)
can be summed, It 1s possible to determine the features of a

crystal-structure from its Patterson function.
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2¢8 Accuracy and refinement process

When a crystal structure is solved, the solution will
appear as a set of fractional co-ordinates, The accurate
positional parameters for the atoms can be determined from Fo
synthesis,

llore accurate determination is obtained by using Booth's
method which yields good results, Co-ordinates of a maximum
electron density value are located roughly by inspection or
graphical interpolation. An example is given here,.

Choose the electron density at 3x3 grid of points sur-
vounding the peak maxima and tabulate it in the form of Table

2.801 and 208.2 Where 91 >92 > 0

Table 2.8.1 Ap a5 a funchion of T=coordinate
X 1 2
Ap Py Py -
Table 20842 Apas a function of y-coordinate
y 1 2
Ap P4 Py

The electron density is given by

ax~ + bx

eee (24841)
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where the valuesof a and b are given by substituting the valuec

of % and p2 from Table 248.1 and 2.8.2. in the Eqe(2e841) which gives

Prom these equations, the marima Xﬁ and Yn are expressed

as
. e
B
) @l Y4
. = ,
2/ PR Y
7 7 TN v(/ o ees (24842
) | RE e (), -4 )
and Yﬁ B :

So the accurate positionsof atomsin the crystal are

obtained. %fT\\\‘“‘——*"”’///th

Least-squares nethod

A set of the observed structure factor, | Fol s and the

calculated structure factor, | @ [ » are obizined as function of

(o

the co-ordinates Kj’ Jsy 2, and the temperature factor, Bj Toxr
o

17 ’
. th ; :
the j aton. The correct porancters can be expresse

.
,
as {x. =

-2
o

o

B,y g+ Ay, , oz, + Az, , B + AB.)
- . ’ PY IO J - ’ -~ . - . , -’ . ~
SRR 35 SRR 3

The method of loast-squares, as applied to structure

refinement , involves varying the atomic parameters so zs %o
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ninimize the quantity.

L 2
o = hkl thl (IFOI - IK Fc| ) oo (2.8.3)

where thl is the weight of the observation.
lany weighting schemes have been propesed based on the

value of |F0] One such scheme suggested by Cruickshank et

al. (1961) is

W = 1/(& + IF l + C IF lz) XX (2-8.4)
) )
where a and ¢ - are abou# 2F iy 20d 2/Fmax respectively ,

F 1p 204 quxgre-the mlglmum and maximum observed
structure factors.

As previously mentioned the calculated structure factor,

n

z

(Fc)hkl fjexp {eﬂi(hx:j + kyj + lzj)}

Ji=1
where fj is the scattering factor for the jth atom in the
unit cell,

The parameters) x3 ’ yj, zj, Bj and the scale factors,
K y are considered as varizbles which may be adjusted to minimize
D.

The right side of Zge(2.8.3) is differentiated with respect
to each of the parameters and setting the derivative equal to zero,.

Therefore
b} 9

W - P (P : aove '  . g so e ) =
where pj is any of the scale, positional, and themal parameters,

- &sBume that Ap., = . w4,
. v ’ PJ Pa i

where aj is the initial approximation value of the parameters,
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then express the function IFCI 28 a Taylor series and neglect

second and higher powers of the series, This gives

hlfl whkl(| Fo.f-* lKFc(aj)I - '8-2-)1 [KP_| Ap1-...~g-pn| KT Apn) g-pjl'x F |
= 0 sse (248.5)
The partial derivatives .3_ IK'FOI:S are taken for each of
the m reflections, where m >n, j
From the set of Eqe(24845), the quantities Apjbare
solveds The combination of these values with the initial
approximation, the aj'é; as . in a% = aj+ Apj, zives better values
for the various parsmeters,

These may be used to repeat the process until the resi-

dual value R, that is de¢fined as

R = zffrfeiE ) cee (2.8.6)
2T

will be decreased to 'the minimum, When the R drops to the
ninimum, the crystal structure is more accurate by this refine~

ment,
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