CHAPTER II

SOME SEMIGROUPS OF NUMBERS

The purpose of this chapter is to characterize all congruence-
free congruences on the semigroup of integers under multiplication,
the semigroup of nonnegative integers under addition and the semigroup

of nonnegative real numbers r such that r < 1 under multiplication.

Let the notations N ’ Z and R denote the set of positive

integers, the set of integers and the set of real numbers, respectively.

Let S be a semigroup with zero O and identity 1. Then the con-
gruence p on S is a universal congruence on S if and only if Opl.

Let p be a congruence on a semigroup S with zero 0. It is
clear that Op is an ideal of the semigroup S. However, it need not be
completely prime eventhough S has an identity and is commutative. The
identity congruence on a semigroup obtained by adjoining an identity

to a nontrivial zero semigroup is an example.

2.1 Proposition. Let S be a commutative semigroup with zero 0 and
identity 1. If p is a congruence on S such that S/p is O-simple, then

the p-class Op is a completely prime ideal of the semigroup S.

Proof : Let a, b € S such that ab € 0Op. Assume aé Opis Let
A=0pUsa. since Op and Sa are ideals of S, A is an ideal of S.

Let A= {xp | x € A}. Then ap # Op and ap€ A. Thus A is a nonzero

ideal of the semigroup S/p. Because S/p is O-simple, A= S/p. Then
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1p = xp for some x & A. If 1p = Op, then p = w, the universal con-

gruence on S and hence ap = 0p, a contradiction. Thus 1lp = sap for

some s € S. It then follows that bp = 1bp = sabp = spabp spOp = Op.

Hence b € Op. #

2.2 Corollary. mtSMacmmmﬂwsmmethmmOam
identity 1. If p is a congruence-free congruence on S, then the

p-class Op is a completely prime ideal of S.

Proof : Since S/p is a semigroup with zero and it is con-
gruence-free, S/p is either a O-simple semigroup or a zero semigroup
with |s/p| < 2. 1f |s/p| = 2, then s/p = {0Op, 1p} and Op # 1lp and
therefore S/p is a O-simple .semigroup. Hence either S/p is O-simple

or Op = S. By Proposition 2.1, Op is a completely prime ideal of S.

2.3 Proposition. Let S be a commutative semigroup with zero 0 and
- identity 1, and p be a congruence on S. Then p is a congruence-free
congruence on S if and only if |S/p| <2; or equivalenﬁly, s/p =

{Opl 10}.

Proof : Assume that p is a nonuniversal congruence-free
congruence on S. By Corollary 2.2, Op is a completely prime ideal of
5. Let § = {(0p, 0p)} U [(s/0\ {0p}) x (s/p\{0p})]. Because Op is
completely prime, § is a congruence on the semigroup S/p. But § is
not the universal congruence on the semigroup s/p which is congruence-

free. Hence § is the identity congruence on S/p which implies that

|s/o\ {0p}| = 1 and therefore |8/pl = 2.
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The converse is trivial. #

Under usual multiplication, Zis a commutative semigroup
having 0 and 1 as its zero and identity, respectively. For the re-
mainder of this chapter, whenever we say the semigroupZ, the usual

multiplication is considered as its operation.

Let p be a congruence on the semigroupz, let z 6Z. Then

the following obviously follow :

. (1) 2zp0 if and only if -2zpO0.
(2) 2zpl implies znpl for all neN %
It follows from Proposition 2.3 that p is a congruence-free
congruence on the semigroupZ if and only if IZ/p| ic 2.
Let p be a congruence-free congruence on the semigroupZ.
Then by Proposition 2.3, Z/p = {0p, 1p}. 1If -1 € Op, then 1 € Op
<& and therefore -lp = Op = 1p. If -1 € 1p, then -1p = 1lp. Therefore,

for any xéZ, xpl implies that -xp-1 and hence -x € -1p = 1p.

Thus if xpl, then -xpl. Therefore , for any er, -xpl iff. I xpls

A characterization of all congruence-free congruences on the
semigroup Z is given in the next theorem. To prove the theorom, the

following lemmas are required :

2.4 Lemma. Let p be a congruence-free congruence on the semigroup

Z. Let a, béZ,. Then abpl if and only if apl and bpl.

. 000394
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Proof : It is obvious for the case p = w, the universal con-
gruence on S. Assume p # w. By Corollary 2.2 and Proposition 2.3,
Op is completely prime ideal of S and s = (Op) U (1p) which is a dis-
joint union. Then 1p = S\ (0Op) is a filter of S. Hence the lemma

follows. #

Let P be the set of prime numbers. For each subset A of P, let
r r r
1 72 n N
* = . ;
A {tpl Py «++ Py | p, € A, r & N U {0}, neN}
Then 1 € A* for all nonempty subsets A of P and A* C;Z for all AC P.
For each subset A of P, let pA be the relation on the semigroup

Z defined by

(x, v) € pA if and only if either x, y & A* or x, y% A%,
A
that is, p° = (a* x a%) U [(Z\a%) x (Z\a"].

ot A X . Z
2 Trivially, p is an equivalence relation on for every subset A of P.
¢ _ . A
Note that p = w, the universal congruence on %

Let AC P, A# ¢. To show A* is a filter of the semigroup Z,
r X r

1 2
let a, bé Z such that ab &€ A*, Then ab = (—l)mpl Py - pkk

for

some primes Py, Pyr ««-s pké a, kéN and Yy, Ly ey rkeN U {o}

i ) , - m, sl S, S,
and for some m & {1, 2}. Hence a = (-1) p, P, ... pij for some
% A 3
il' iz, Ly ijé{l, 2, ..., k} and for some Sy Syr ...,sjéNU{O}

and m, € {1, 2}. By the definition of A*, we have that a € A*. Simi-
larly, b e A*. Hence A* ig a filter of the semigroupZ . Thus,

Z\A* is a completely prime ideal of the semigroup Z
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A
2.5 Lemma. For each subset A of P, p is a congruence-free congruence

on the semigroup Z .

Proof : Let A be a subset of P. Then .7 \ A* is a completely
prime ideal of the semigroup Z Thus it follows that
A :
p (= (a* x A*) U [(2\A*) x (Z\A*)]) is a ‘cengruence’ o.nZ and

A A, :
|Z/p | < 2. Hence p is a congruence-free congruence on the semigroup

Z.. #

2.6 Theorem. Let p be a congruence on the semigroup Z Then p is

A
congruence-free if and only if p = p for some subset A of P.

Proof : Assume that p is a congruence-free congruence on the
semigroupZ. Then by Proposition 2.3, Z/p = {op, 1p}. If Op = 1p,
then p = w = (¢ x ¢) U [(Z\$) x (Z\ 9] = p¢. Suppose Op # 1p.

A
Let A =P M (1p). Claim that p =p . SinceZ/p = {0p, 1p} and

A
o7 = (a* x a%) U[ (Z\A*) x (Z\A*)], it suffices to show that lp = A*.

Let x € 1p* Then x # 0. Assume without loss of generality
r A

that x > 0 (because xpl if and only if -xpl). Then x = Pll p22...pnn

for some néN , some primes Pyr Pyr +eer Py and
r Y r
; 1 2
Xy Tyr eeer T € N U {0}. since 1p P;” Py .- pnn and by Lemma 2.4,

lpp; for all i, 1 < i<n, sop &P N (1p) for all i € {1, 2, ... n}

which implies that for each i € {1, 2, ..., n}, p. € A, hence by the
r, r r .
Vg 1 2 n
definition of A*, x = Py p2 ... P & A%,
n
r. T r

Next, let x & A*. Then|xl= pll p22... pnn for some n€ N ’

Pyr Por eer pne Aand ris Ty eey rn&N U {0}. Because

1
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A=P ﬂ (lp), p. & 1lp for all i, hence lppi for all i, thus,
i

s TR r r, T r
1pp1 by wEw Pnn and so lD'P1 P, ... pnn. Therefore

x e (1lp).

The converse follows from Lemma 2.5. #

Let N denote the set of all nonnegative integers; that is,
N- = {0, 1, 2, 3, ...}. Then, under the usual addition,& is a semi-
group without zero, but having 0 as its identity. In this chapter,
by the semigroup N we mean it is the semigroup under usual addition.

For each néN, let In = {n, n+l, n+2, ...}. Then for each
nEN ’ In is clearly an ideal of the semigroup& . Moreover,

{In | n 6&} is the set of all ideals of the semigroupN . To show
this, let I be an ideal of N . Let m be the minimum element of I.
Therefore I € {m, m+l, m+2, ...} = im. Because m &€ I and I is an
ideal of the semigroup N, m+k & T for éll ké'-\-l . Thus Img-_ I and
so I =1,

m -—

Let p be a congruence on the semigroupN . Then p is a Rees
congruence if and only if there exists m€& N such that
o= 10,0 | keN, k<mtU{ax v | % yeN, x, y > nl.

Let p be a congruence on the semigroup& . It is then easily
seen that either Op = {0} or Op contains infinitely many elements of
N.

For n GN , K€ & , let p: be the relation on the semigroup

N defined as follows : For x, yeN y
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g x =y if x, y < k,
(x,y)epn¢:~._—_-.—}

X

y (mod n) if x, y > k.

Hence p]; is a congruence on the semigroup N for all ne€ N s k& N .
Moreover, a congruence p on the semigroup N is a Rees congruence if
. k N 0, .
and only if p = pl for some k€& N . Note that pl is the universal

: N N k
congruence on the sem:.groupN . For neN ’ keN 7 pn has k + n
classes.
: N\ k
The following proposition shows that the congruences pn,

né& N , k€& N and the identity congruence on N are all the con-

gruences on the semigroup A

-
2.7 Proposition. Let p be a relation onN . Then p is a congruence

on the semigroup N if and only if either p is the identity congruence

onN or p =p]; for some nEN, keN :

Proof : Let p be a congruence on the semigroup N such that
p is not the identity congruence on& . Then there exists x & & such
that prl > 1. Let k be the minimum element of the set
{xe& | || > 1}. Then ip = {i} for all ié&l such that i < k
and Ikpl > 1. Let m be the smallest positive integer such that
kp (k+m) . That is, m is the minimum element of the set
{x-k | x € ko, x # k}. Hence kp (k+m)p (k+2m)p (k+3m)p ... . Thus by
the transitivity of p, kp (k+jm) for all je& .
Claim that p = p:\. We already have that ip = {i} = ip:‘ for

all iéN such that i < k. ILet a, béN such that a > b k and
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apib. Then a b (mod m), so a - b = tm for some t &FQ.. Thus
Xk +a-b=%k+ tm. But (k + tm)pk, so (k + a - b)pk. Since
b—keN,ap=(k+a-—b+(b—k))p=(k+b-k)p=bp, therefore

(a, b) € p. This proves that p:\c p. Hence we have the following :

< ook b
ip = {i} = ip
m

for all i < k and
N k
kp2{k+nm|neN}=kp "

(k + Dp2{(x +1) +nn | neN} = (k¢ 1)p’;,

) N k
and (k+(m-l))p?_{(k+(m—l))+nm|néN}=(k+(m—l))pm.
/

Suppose p # pk. From (*) and since AN

N = « U ih U Uk +1+mm | neN }) and it is a disjoint union,
O<isk i=0

there exist r, s belong to {0, 1, ..., m - 1} such that r > s and

(k + r)p(k + s). Because m - séN, (k +r+m-=-s8)p =

(k + s +m-8)p (k + m)p. But (k + m)pk, so kp = (k + r +m = s)p =

(k +m+1xr - s)p (k + (r - s))p. Since0§s<r<m,0<r-s<m.
Then the equality of kp and (k + r - s)p contradicts to the property

of m.

k g
Hence p = pm, as required. #

Let n, k be positive integers. Then Op]:1 = {0}. Because the
semigroup 'il has no nontrivial unit, the relation

5 = (0", 001U TN/oEN\ 100k x (N/ok N (opk ]
is clearly a congruence on the semigroup N/p: and 6§ is not the uni-

6l ..k N k
versal congruence on N/pn. Therefore if N Vi pn is congruence-free,
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1 /K : ! :
then § is the identity congruence on Fg/pn which implies that
0 1
The congruences pl and pl are congruence-free congruence on
: ; 0
Let n be a composite number such that n > 1. Claim that pn

is not congruence-free. Since n is a composite number and n > 1,

n = mj for some m, j € N such that 1 < m, j < n. Therefore for

- , 0 0
a, beN, if a = b (mod n), then a = b (mod m), so png. pm. But
0 0 =0 0 0 0 -0
n>m thus p_Gp . Letp = {(apn, bp ) | @, p)e pm}. Then p_

; 4 N SO 0 0 =0 .
is a congruence on the semigroup N/p . Because p E P, P _lsSTNOot
A n n m- s
; : N 0 \ 0 !
the identity congruence on /pn. Since m > 1, pm is not the univer-
N =By ,
sal congruence on and hence pm is not the universal congruence on
FQ 0 ; 3 0,
/pn, This proves that pn is not a congruence-free congruence on
the semigroum>F“ if n is a composite number and n > 1.
= : 3 O,
Hence, for any positive integer n, if p,isa congruence-free
congruence on Rﬂ, then n is either 1 or a prime number. The converse
is true and a proof is given as follows : Let p be a prime. Let p

be a congruence on PS such that p23 pg. By Proposition 2.7 we have

that p = p:l for some me N , xeN. ex> 0, then Op:‘ {0} which

" 0
does not contain Opp = {0, Pr 2P; 3Pi svsls  Therefora k = 0, B0

.9 0 B 0 0
B Because ppc: 0 and (0, p) € pp, (0, p) & P Then

-

Pp=0 (mod m) and som | p. But p is a prime, then m = 1 or p.
0 ; : ; N
Hence p = p_, which is the universal congruence on N or p = pg.

B 5

0 .
Therefore, the congruence pp and the universal congruence on N are

N ; : 0 ; ; ;
the only congruences on Bﬁ which contain pp. But there is an inclusion
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preserving one-to-one correspondence between the set of congruences on
" O - : N /o°
F& which contain p and the set of congruences on /pp. Hence, the
P
identity congruence and the universal congruence are the only congruences
. N ,/.© B
on the semigroup /pp. Therefore pp is a congruence-free congruence
on the semigroup N.

Hence, the following theorem is obtained :

(= {0, U (NxN))

A 1
2.8 Theorem. The universal congruence, pl

r andpg (={(a,b)€N XN|a

b (mod p)}) for any prime p are all

-
the congruence-free congruences on the semigroup N .

Under usual multiplication the set of real numbers x such that
0<x <1 is a commutative semigroup with zero O and identity 1. Next,
the characterization of congruence-free congruences on this semigroup
is considered.

By the semigroup [0, 1] we mean the semigroup xeR | o << 1}
under usual multiplication.

The next proposition shows that any congruence p on the semi-
group [0, 1] is a Rees congruence if Op contains more than one element.
The characterization of ideals on [0, 1] is required to prove the pro-

position.

2.9 Lemma. Let A be a nonempty subset of [0, 1]. Then A is an ideal
of the semigroup [0, 1] if and only if A is either [0, a) for some

a € [0, 1] or [0, b] for some b € [0, 1].
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Proof : Let A be an ideal of the semigroup [O,_l]. if
A = {0}, then A = [0, b] where b = 0. Assume that A # {0}. Then
there exists x € A such that x # 0. Let b be the supremum of A.
Thus b # 0 and AC [0, b]. We claim that if b € A, then A = [0, b]
and if b & A, then A = [0, b). sSuppose first, b& A. To show
A=[0, b], let x € [0, b]. Then O < x < b, and so 0 < E < 1. There-
fore E ¢ [0, 1]. since x = gb and b belongs to the ideal A of the
semigroup [0, 1], x € A. Thus A = [0, b]. Next, suppose that b§ A.
To show [0, b)& A, let x € [0, b). Then x < b. Since b is the su-
premum of A, there exists y &€ A and x <y < b, so 3 € [0, 1]. Hence
X == y & A, Therefore A = [0, b). This proves the lemma, as

y
desired. #

2.10 Proposition. Let p be a congruence on the semigroup [0, 1)+ %8

0p # {0}, then p is a Rees congruence on the semigroup [0, ).

Proof : Let p be a congruence on the semigroup [0, 1] such
that Op # {0}. Then Op = [0, a] for some a & (0, 1] or Op = [0, b)
for some b €& (0, 1]. To show that p is a Rees congruence on the semi-

group [0, 1], it is enough to show that for all c, d * Op if cpd,

then ¢ = 4. Let ¢, d &€ [0, 1] such that c, d* Op and cpd. Assume
that ¢ < 4.

case Op = [0, a] for some a € (0, 1]. Then 0 < a <cand 0 <a < g,

a

so 0 < 2 <1 and 0 < g <1 and hence 2, 2 belong to [0, 1]. Now,

a
d
suppose that ¢ # d. Then ¢ < d and thus 3 < E, so there exists

h & [0, 1] such that g <h < i—‘ Claim that ch € Op and dh & Op.
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Sinceg<h<2,cg<ch<aanda<dh<d2. Thus ch € Op and
dht“E Op. since cpd and h & [0, 1], chpdh. It contradicts that
ch € Op but dh* Op. Therefore, c = d. .

Case Op = [0, b) for some b € (0, 1]. Then 0 < b < cand 0 < b < g,

so 0 < 2 <1landO < g < 1 which imply that E, g € [0, 1]. suppose

b b
that ¢ < d. Then g < 2, so there exists h such that 3 < h < 5 and

b
hence h& [0, 1]. Because g < h < 13., cg < ch <bandb < dn<ds,
¢
thus ch € Op and dh & Op, contradicting to that cpd. Hence c¢ = d.
Therefore, p is a Rees congruence on the semigroup [0, 1],

so this proves the proposition. #

The relation {(0, 0)} U ((0, 1] x (0, 1]) is clearly a con-
gruence on the semigroup [0, 1]. A congruence on any semigroup S
having exactly two classes is a nonuniversal congruence-free congruence
on S. Then the congruences {(0, 0)} U ((0, 1] x (0, 1]) and O[O' 1)
(the Rees congruence on [0, 1] induced by the ideal [0, 1) of the
semigroup [O, 1]) are nonuniversal congruence-free congruences on the
semigroup [0, 1]. We show in the next theorem that these two con-
gruences are the only nonuniversal congruence-free congruences on the

semigroup [0, 1].

Since the semigroup [0, 1] is a commutative semigroup having
O and 1 as its zero and identity, respectively, by Proposition 2.3,
it follows that a congruence p on the semigroup [O, 1] is congruence-

free if and only if [0, 1]/p| < 2.



2.11 Theorem. Let p be a nonuniversal congruence on the semigroup
[0, 1]. Then p is congruence-free if and only if either

o = {(0, 0)MJ((o, 1] x (0, 1]) or p = ([0, 1) x [0,'1)) U {1, DI}

Proof : Let p be a nonuniversal congruence-free congruence
on the semigroup [0, 1]. Then |[0, 1]/p| = 2. 1If Op = {0}, then
o ={(, 00} U (0, 1] x (0, 1]) because |[O, 1]/p| = 2. Assume
Oop # {0}. Then by Proposition 2.10, p is a Rees congruence. But

| [0, 11/p| = 2, then p = (fe=xx [0, 1)) U {(1, D}

el T

The converse is trivial. #
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