EXISTENCE OF ROOM SQUARE OF ODD PRIME POWER.

7. 1 Existence of Room Square of odd prime power.

Theorem r.1.1 There exists a Room Square of side $p \neq 3$, 5 for all odd prime p.

Proof. Let p be any odd prime; $p \neq 3$ or 5 .

Since p is an pad prime, so by theorem A1 (see appendix)
p can be written in the form (I) $p=2^{k} t+1$; where k is a positive integer ; t is an odd integer greater than 1 , or (II) $p=2^{2^{k}}+1$; where k is a non -negative integer.

If p can be written in form (I), then by corollary 3.1 .6 , there is a Room Square of side p.

Chulalongkorn University

If p can be written in form (II), then by theorem 6.2 .6 , there is a Room Square of side p unless $k=0,1,3$.
However, when $k=3$, we have $p=2^{2^{k}}+1=257$, and we know from corollary 6.3.3 that a Room Square of side 257 exists.

Therefore the theorem follows.
Q.E.D.

Thooren 7.1.2 There are Room Scuares of rides 3^{n} and $5^{\text {n }}$ for $n \neq 1$. Proof. We first prove that there is a Ronn Square of side 3^{n} for $n=1$. se shall prove ky induction on $n \geqslant 2$.

If $n=2$, thon $3^{n}=9$ and by Lomma 6.3 .2 , wo knor that a Room Sevare of side 9 exists.
Ascume that there exiete a Room Souare or side 3^{k}.
Sinee $3^{k+1}=3\left(3^{k}\right)$. Fience by thonem 5.1 .2 , there cxister a Roon Square of ride 3^{k+1} Therefore, thero cxietr a Ronn square of Fide 3^{n} for all $0 \geqslant 2$. Next we shall khow that there existis a Roon Souare of side $5^{\text {n }}$ for $n \neq 1$ Obecrve that for $n \geqslant 2$, we can mrite

$$
5^{n}=\left(5^{2}\right)^{\alpha}\left(5^{3}\right)^{\beta} ; \alpha, \beta \text { are non-10getive integers. }
$$

Sinee $5^{2}=2^{3} \cdot 3+1$, henee by theoren 3.1 .5 there is a Room, Square of side 5^{2}. Wherefore by thonem 4.1.4, there is a Room Square of side $\left(5^{2}\right)^{\alpha}$
Similarly wo can show that Reon Square of gide $\left(5^{3}\right)^{\beta}$ exists by using theorm 3.2 .2 and theorem 4.1 .4. Therefore by theorem 4.1 .3 , there is a Room Square of side $\left(5^{2}\right)\left(5^{3}\right)^{\beta}=5^{n} \quad$ for $n \geqslant 2$ 。

Wherefore the theoren follows
Q.E.D.

Theorem 7.1 .3 There is a Room Square of side $p^{0} \neq 3,5$ for all odd prime p.

Proof. Let p be any odd prime and $p^{n} \neq 3,5$.
care 1. If $p \neq 3$, 5, then by theorom 7.1.1, thore is a Room Square of aide po ino, by theorem 4.1.4, there if a Roon fogare of ride r^{n}.
case 2. If $p=3,5$, then we murt have $n \geqslant 2$, hence by thoorom 7.1.2 Roon scuares of aides $3^{n .}$ and 5^{n} exiat .

