CITHER IV

A RECURSIVE CONGITUCJTOH

4.1 Construction of Room Square of side $v_{1}\left(v_{2}-v_{3}\right)+v_{3}$ from a Room Square of side v and a Room Square of side v ?rich contains a subsquare of side v_{3} where $v_{2} v_{3} \neq ? .6$

Definition 4.1.1 Let R be a finite set. An arras I based on a set R is said to be a Latin square if every member of R appears precisely onerin each row and once in each colum. The number of elements of of will be called the order of the latin Square.

Suppose that $I=\left(1_{i f}\right)$ and $M=\left(m_{i,}\right)$ are two Isatin Squares of same order. We write (I, M) to senate the array whose the (i,i) entry is ($\left.1_{i, j}, m_{i j}\right)$. Two Latin Squares $H_{\text {, }}$, are called orthoronel ir all entries of (I, M) are distinct.

Theorem 4.1 .2 Suppose there exists a Mom scuare R_{1} af side ${ }^{V} 1$, a Rom Square \mathcal{R}_{2} of side v_{2} frith a subsquare R_{3} of side v_{3} such that $n=v_{2}-v_{3} \neq 2$ or f. Then there is a Rom souare \mathcal{R} of side

$$
v=v_{1}\left(v_{2}-v_{3}\right)+v_{3},
$$

with subsquare isomorphic to R_{1}, R_{2} and R_{3}.
Proof. Assume that R_{1} is standardized based on $\left\{0,1,2, \ldots, v_{1}\right\}$.
Let \mathcal{R}_{2} be a standardized Room Square based on $\{0,1,2, \ldots, n, n * 1, \ldots, v$? $\}$ We relabel the objects so that R_{3} based on $\left\{0, n+1, n+2, \ldots, v_{2}\right.$?
and then reorder rows and columns so that R_{3} occupied the last v_{3} rows and columns of R_{2} as follows

Since $n \neq 2,6$, by Theorems 13.2.2 and 13.4 .1 of $[1]$, a pair of orthogonal Latin Squares exist.

Let L and M be a pair of orthogonal Latin Squares of order n based on $\{1,2, \ldots, n\}$. We arrange the first column of L and M to the form (1, 2, ..., n). For each $i, j=1,2, \ldots, v_{\eta}$, where $i \neq j$, let L_{i} be the array obtained from L with each entry x replaced by x_{i}. Similarly, let Mg be the array obtained from M with each entry x replaced by x_{j}.

Let $Z_{i j}$ be the array obtained from $\left(L_{i}, M_{j}\right)$ by replacing each ordered pair $\left(x_{i}, y_{j}\right)$ by the unordered pair $\left\{x_{i}, y_{j}\right\}$. Now for each $j=1,2,3 ; i=1,2, \ldots, v_{1}$, let $A_{(i)}^{(j)}$ be obtained from $A^{(j)}$ by replacing the pair $\{x, y\}$ in $A^{(j)}$ by $\left\{g_{i}(x), g_{i}(y)\right\}$; where

$$
g_{i}(x)= \begin{cases}x_{i} ; & \text { if } 1 \leqslant x \leqslant n \\ x & ; \\ \text { otherwise } .\end{cases}
$$

We shall construct a Room Square \mathcal{R} of side v based on the set

$$
\begin{aligned}
s= & \left\{0,1_{1}, 1_{2}, \ldots, 1_{v_{1}}, 2_{1}, 2_{2}, \ldots, 2_{v_{1}}, \ldots . n_{1}, \ldots .,\right. \\
& \left.n_{v_{1}}, n+1, n+2, \ldots, v_{2}\right\},
\end{aligned}
$$

which consists of $v+1$ symbols.

We first convert R_{1} into nv, $\times n v_{1}$ array \& by replacing each of its cells by an $n x n$ array. An empty cell is replaced by an empty n $x n$ array, the entry $\left\{0, j\right.$, is replaced by $A_{i}^{(1)}$ and the entry $\{j, k\}$; $j \neq 0 ; k \neq 0$ is replaced by 31 .

We now arrange arrays is, $A_{i}^{(2)}, A{ }_{i}^{(3)}$ and R_{3} in a master array of side $\left(n v_{1}+v_{3}\right) \times\left(\begin{array}{ll}v_{1}+v_{3}\end{array}\right)$ as follows :-

Figure 4.2

We shall show that \mathcal{K} is a Room Square of side $n v_{4}+v_{3}$ based on S. It is clear from the construction of R that each cell of R may contain an unordered pair of distinct elements of $\$$ or may be empty. Now we shall show that each row of R contains all elements of S precisely once.

First consider the last v_{3} row of R. orhese v_{3} rove comprise the following subarray of $h_{\text {. }}$.

-

Observe that each row of $A(3)$ contains elements of $\left\{1_{i}, 2_{i}, \ldots, n_{i}\right\}$ precisely once and each row of \mathcal{R}_{3} contains elements of $\left\{\mathcal{O}_{1}, \ldots+1, \ldots v_{2}\right\}$ precisely once hence each row of these subarrays $A_{1}^{(3)} A_{2}^{(3)} \cdots A_{V_{1}}^{(3)} R_{3}$ contains elements of s precisely once.

It remains toke verified that for each $i=1,2 \ldots, n v$, the $i^{\text {th }}$ row of γ contains all elements of s precisely once.

Let i be such that $1 \leqslant i \leqslant n v_{1}$. Let of an arbitrary
element of S. We shall show that s appears in row i of
Observe that we may write

$$
i=\left(i^{\prime}-1\right) n+i^{\prime \prime} \text { there } 1 \leqslant i^{\prime \prime} \leqslant n \text { and } 1 \leqslant i^{\prime} \leqslant 0 \text {. }
$$

case 1. If $s=x_{i}$, for some $x=1,2, \ldots, n$ and $i^{\prime}=1,2, \ldots, v_{1}$ Then s appears exactly once in every row of

| $A_{i}^{(1)}$ | $A_{i}^{(2)}$ |
| :---: | :---: |. In particular, $s=x_{i}$ appears in the $i^{n t h}$ row of | (1) | $A_{i}^{(2)}$ |
| :---: | :---: |
| i^{\prime} | . | It can be seen from the construction of R that the $i^{\text {th }}$ row of χ contains the $i^{\text {"th }}$ row of | $A^{(1)}$ | $A_{i}^{(2)}$ |
| :---: | :---: |. . Hence $s=x_{i}$ appears in the $i^{\text {th }}$ row of \times. Note also that s appears exactly once in this row, since it appears exactly once/ in

in any of ${ }^{3}{ }_{j k}$.
case $2 \quad s=x_{j}$ where $j \neq i$ and $\} \in\left\{1,2, \ldots, v_{1}\right\}$. Since j appears in the $i^{\text {,th }}$ row of R $_{1}$ hence there exists $k \neq j$ such that $\{j, k\}$ is an entry of the $i^{\text {th }}$ row of χ_{1}. Since x appears in the $i^{\text {"th }}$ row of both L and M, hence there exist y, z such the (x, y) and (z, x) appears in the $i^{\text {nth }}$ row of (L, M). Hence $\left\{x_{j}, y_{k}\right\}$ and $\left\{z_{j}, x_{k}\right\}$ appears in the $i^{1{ }^{\text {th }}}$ row of $z_{j k}$. From the construction of γ, we see that the $i^{\text {th }}$ row of R contains the $i^{\text {nth }}$ row of $z_{j k}$. Hence x_{j} appears in the $i^{\text {th }}$ row of $民$. It may happen that $(x, y)=(z, x)$
or $(x, y) \neq(z, x)$. If $(x, y)=(z, x)$, then (x, x)
appeare only once in (L, M). Since $j \neq k$, henco x_{j}
appears exactly snoe in $i^{1 \text { th }}$ sou $Z_{j k}$.
If $(x, y) \neq(z, x)$, then tho order pairs (x, y) and (z, x). give ries to the paire $\left\{x_{j}, y_{k}\right\}$ and $\left\{z_{j}, x_{k}\right\}$ in the $i^{\text {th }}$ row of $z_{j k}$. Sinco $j \neq 1 k$, hanco x_{j} appeare only onco in the $i^{\text {th }}$ roun of $z_{j k}$. From the conctruction of R, x_{j} may 12nt appoare olscuhcre in the $i^{\text {th }}$ rwof R. Honco $s=x_{j}$ appoars procisely pneo in the $\dot{i}^{\text {th }}$ rov คf K.

Chulalongkorn University

casc 3 $n+1 \leqslant s \leqslant v_{2}$ or $s=0$.
Oberve that $\mathrm{F}=0$, appears exactly onee in the $\mathrm{i}^{\text {th }}$
rov or $\mathbb{A}^{(1)}{ }_{i}$).

Therefore $a=0$ appears precisely once in tho $i^{\text {th }}$ rove of R 。 Let $\varepsilon=n+1, n+2, \ldots, v_{2}$. Observe that each row of $A(1)$ contains all elements $\left\{0,1,2, \ldots, n, n+1, \ldots, v_{2}\right\}$ precisely moe. Hence each roy of | (1) | $A_{i}^{(2)}$ |
| :--- | :--- |\quad contains all elements of $\left\{0, y_{i}, 2_{i}, \ldots, n_{i}, n+1, \ldots, v_{2}\right\}$ precisely once. Therefore s appears exactly once in $i^{\text {th }}$ rove of $A_{i}^{(1)} A_{i \prime}^{(2)}$. Hence a appear e precisely once in the it row of R.

Therefore all elements $\in S$ appear e precisely ne in each row of R 。

A similar proof appied to column.
next, we shall show that every unordered pair of elements of s appears precisely once in R.

Consider the whole of R. Since L, M are orthogonal Latin Square, hence every (x, y) appears in (L, M). since R_{1} is a Rom Square, hone ovary $\{j, k\}, j \neq k ; 1 \leqslant j, k \leq v$, appears in R_{1}. IIcnee for each $x, y=1,2, \ldots, n$ and distinct $j, k=1, \ldots, v_{1}$, the pair $\left\{X_{j}, X_{k}\right\}$ appears in $Z_{j k}$, which is a cubarray of \mathcal{R}. Hence for each $x, y=1,2, \ldots$ n and all distinct $j, k=1,2$, v_{1}, the pair $\left\{\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{k}}\right\}$ appears in R.

Tor distinct $x, y=1,2, \ldots, v_{1}$, wo sec that $\left\{x_{i}, y_{i}\right\}$ appears in $A_{i}^{(1)}$ or $A_{i}^{(2)}$ or $A_{i}^{(3)}$ which are aubarray of X.

Hence all pairs of distinct elements of the form $\left\{x_{j}, y_{k}\right\}$, $x, y=1,2, \ldots, n, j, k=1,2, \ldots, v_{1}$, appear in some cell of

Note that any pair of the form $\{z, t\}$ where $z \neq t ; n+1 \leq z$, $t \leqslant v_{2}$, appears in ℓ_{3}, which is a subarray of . Hence all such pairs appear in R. It remains to be verify that all pairs of the form $\left\{x_{i}, z\right\}$ where $i=1,2, \ldots, y / v ; x=1,2, \ldots, n$ and $z=n+1, \ldots$, $v_{2}, 0$, appear in γ.

Since R_{2} is a Room square based on $0,1,2, \ldots, n, n+1, \ldots v_{2}$ hence each pair $\{x, z\}$ where $\} \leq x \leq n ; z=n+1, \ldots, v_{2}, 0$ appears in R_{2}.
By definition of $A^{(j)}$, we see that such pair appears in some $A^{(j)}$, Hence $\left\{x_{i}, z\right\}$ appears in $A_{i}^{(j)}$ where $A_{i}^{(j)}$ is a subarray of ℓ. Hence all unordered pains of elements of S appears in ℓ.

By counting the number of pairs that appear in each row of $A_{i}^{(j)}$ and $z_{j k}$ we find that ; each row of

| $A_{i}^{(1)}$ | $A_{i}^{(2)}$ | contains $\frac{1}{2}\left(v_{2}+1\right)$ |
| :--- | :--- | :--- | pairs, each row of $z_{j k}$ contains n pairs, each row of $A_{i}^{(3)}$ contains $\frac{1}{2} n$ pairs and \mathcal{R}_{3} has $\frac{1}{2}\left(v_{3}+1\right)$ pains per row. so the number of pairs in R is

$$
\begin{aligned}
& v_{1} n\left[\frac{1}{2}\left(v_{1}-1\right) n+\frac{1}{2}\left(v_{2}+1\right)\right]+v_{3}\left[\frac{1}{2} v_{1} n+\frac{1}{2}\left(v_{3}+1\right)\right] \\
= & \frac{1}{2}\left[v_{1} n\left(v_{1} n-n+n+v_{3}+1\right)+v_{3}\left(v_{1} n+v_{3}+1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\left(v_{1} n+v_{3}\right)\left(v_{1} n+v_{3}+1\right)\right] \\
& =\frac{1}{2} v(v+1) .
\end{aligned}
$$

This is the number of unordered pairs which can be chosen from S, so each pair must appear precisely once in R. Therefore γ is a Room Square based on S.

Note that

is a subsquare of which is isomorphic to R_{2}. X_{3} is exhibited as a subsquare in the lastiverows and column .

To show that R_{1} is a subsquare of γ, take the intersection of rows $1, n+1,2 n+1, \ldots, n\left(v_{1}-1\right)+1$ and corresponding columns. The array formed has entry $\left\{0,1_{i}\right\}$ where \hat{R}_{1} has $\{0, i\}$ and entry $\left\{I_{j}, I_{k}\right\}$ where R_{1} has $\{j, k\}$, so it is isomorphic to R_{1}

Therefore the theorem follows .
Q.E.D.

Theorem 4.1 .3 If there are Room Squares of sides v_{1} and v_{2}, then there is a Room Square of side $\mathrm{v}_{1} \cdot \mathrm{v}_{2}$ with subsquares of sides v_{1} and V_{2} which are isomorphic to the original squares.

Proof. The construction 8 in the proof of theorem 401.2 is carried out with $n=V_{2}$ and with X_{2} replacing $A^{(1)}$. By method described in that proof, it may be seen that 8 is a Room Square with the required properties.

Theorem 4.1.4 If there artist Room Squares of sides $v_{1}, v_{2}, \ldots, v_{k}$, then there is a Room Square of side V , $\mathrm{v}_{1} \cdot \mathrm{v}_{2} \ldots \ldots \mathrm{v}_{\mathrm{k}}$ with subsquares of sides

Q.E.D.

จุฬาลงกรณ์มหาวิทยาลัย

Proof. This theorem follows from theorem 4.1 .3 by induction on k.

