# การพัฒนาเทคนิคการวิเคราะห์ แคดเมี่ยม ทองแคง ตะกั่วและสังกะสีในน้ำทะเล



นาย ณรงค์ ไชยสุด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต ภาควิชาเคมี บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย พ.ศ. 2522

000745

# DEVELOPMENT OF ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF CADMIUM, COPPER, LEAD AND ZINC IN SEA WATER

Mr. NARONG CHAIYASUT

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Master of Science

Department of Chemistry

Graduate School

Chulalongkorn University

1979

Thesis Title

Development of analytical techniques for

the determination of cadmium, copper,

lead and zinc in sea water.

Ву

Mr. Narong Chaiyasut

Thesis Advisor

Dr. Kantika Sirisena

Associate Professor Maen Amorasithi

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Master's degree.

S. Buuneg
..... Dean of Graduate School

(Associate Professor Supradit Bunnag, Ph.D.)

Thesis Committee

Prawan Shanthum Chairman

(Assistant Professor Pirawan Bhanthumnavin, Ph.D.)

Maen Amoresithi Member

(Associate Professor Maen Amorasithi)

.. Twenthdi bryakamebara ... Member

(Associate Professor Twesukdi Piyakarnchana, Ph.D.)

Kantika Amireuae Member

(Kantika Sirisena, Ph.D.)

Copyright of the Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนธ์

การพัฒนาเหคนิคการวิเคราะห์ แคคเมี่ยม ทองแคง ตะกั่ว

และสังกะสีในน้ำทะเล

40

นาย ณรงค์ ไชยสุด

อาจารย์ที่ปรึกษา

คร. กรรศิกา ศิริเสนา และ อ. แม้น อมรสิทธิ์

ภาควิชา

เคมี

ปีการศึกษา

2520



แคกเมี่ยม ทองแคง ตะกั่ว และสังกะสีในน้ำทะเล ซึ่งปรับคาความเป็นกรก คางให้เทากับ 7.6 แล้ว จะถูกคูกซับโคยวิธีการแลกเปลี่ยนอีออน (ion exchange) ได้คีบนคีเล็กซ์-100 (chelex-100) เมื่อใช้สารละลายกรดไนตริค 2m จะสามารถ ไสธาตุเหล่านี้ออกจากคอลัมน์ วัดความเข้มขันได้จากเครื่องอะตอมมิคแอบซอร์ปชั่น สำหรับโครโมซอร์บคับบลิว-ดีเอ็มซีเอส (chromosorb w-DMCS) สามารถดูกซับ สารประกอบเชิงซ้อนระหว่าง 1-ไพโรลิดีนไดไทโอคาร์บาเมท (1-pyrrolidine-dithiocarbamate) กับแคดเมี่ยม ทองแคง และสังกะสี ได้ดีประมาณ 80-100% สารประกอบเชิงซ้อนเหล่านี้ถูกขับจากคอ**ลั**มน์ของโครโมซอร์บค้วยคลอโรฟอร์ม หลังจาก สกัดกลับ (strip back) ค้วยกรดไนตริค 6m แ**ล้ว**วัดปริมาณธาตุก้วยเครื่อง อะตอมมิค แอบซอร์ปชั่น

ผลการวิเคราะห์ชาตุทั้ง 4 ในตัวอยางน้ำทะเล 5 ตัวอยาง หลังจากผาน กระบวนการทำให้เข้มข้นโดยวิธีทั้งสองใกล้เคียงกันดีมาก. Thesis Title Development of analytical techniques for

the determination of cadmium, copper,

lead and zinc in sea water.

Name Mr. Narong Chaiyasut

Thesis Advisor Dr. Kantika Sirisena

Associate Professor Maen Amorasithi

Department Chemistry

Academic Year 1977

#### ABSTRACT

Cd, Cu, Pb and Zn could be concentrated from sea water by adsorption on a column of chelex-100 at pH 7.6. After elution with 2M HNO<sub>3</sub> the content of the elements were determined by an atomic absorption spectrophotometer. The adsorption of the 1-pyrrolidinedithiocarbamate complexes of Cd, Cu and Zn on chromosorb W-DMCS was found to be between 80-100%. After elution with chloroform and strip-back with 6M HNO<sub>3</sub> the content of the elements were determined by an atomic absorption spectrophotometer. The analytical results of 5 samples through the two preconcentration methods agree well with one another.

#### ACKNOWLEDGEMENTS

The author would like to express his gratitude to
Dr. Kantika Sirisena and Mr. Vibul Leenanupan, whose advice
and encouragement during the course of this work were invaluable. He would like to thank Mr. Vicha Tangtermphol for
typing this thesis. Appreciation is conveyed to the Marine
fishery division, Department of Fishery for the supply of the
sea water samples.

This work was supported by the office of the Atomic Energy for Peace.



#### CONTENTS

|            |                                              | PAGE |
|------------|----------------------------------------------|------|
| ABSTRACT   | (in Thai)                                    | IV   |
| ABSTRACT.  | •••••••••••••                                | v    |
| ACKNOWLED  | GEMENTS                                      | VI   |
| LIST OF T  | ABLES                                        | VIII |
| LIST OF F  | IGURES                                       | XI   |
| CHAPTER    | SOUTHWAY SELL                                |      |
| ı ı        | NTRODUCTION                                  | 1    |
| II T       | HEORETICAL BACKGROUND                        | 4    |
| 2          | .1 Ion Exchange Chromatography               | 4    |
| 2          | .2 Reverse Phase Chromatography              | 10   |
| 2          | .3 Theory of Atomic Absorption Measurement   | 14   |
| III E      | XPERIMENTS                                   | 21   |
| 3          | .1 Materials                                 | 21   |
| 3          | .2 Apparatus                                 | 27   |
| 3          | .3 Preparation of Stripped Sea Water         | 29   |
| 3          | .4 Preconcentration by Chelex-100            | 33   |
| 3          | .5 Preconcentration by Reverse Phase Chroma- |      |
|            | tography                                     | 35   |
| 3          | .6 Calibration Curves                        | 39   |
| 3.         | .7 Determination of Detection Limits         | 42   |
| IV R       | ESULTS                                       | 44   |
| V D:       | ISCUSSION AND CONCLUSION                     | 91   |
| APPENDIX : | I                                            | 93   |
| REFERENCE  |                                              | 96   |
|            |                                              | 98   |

## LIST OF TABLES

| MADIE   |                                            | PAGE  |
|---------|--------------------------------------------|-------|
| TABLE   |                                            | THOS  |
| 2.1     | Selectivity coefficients of chelex-100 for |       |
|         | some cations                               | 7     |
| 3.1     | Preparation of sea water samples           | 24    |
| 3.2     | Reagents and the production sources        | 26    |
| 3.3     | Operation conditions for the analysis of   |       |
|         | Cd, Cu, Pb and Zn by the Varian-Techtron   |       |
|         | AA-6 atomic absorption spectrophotometer   | 29    |
| 3.4     | Absorbance and concentration of Cd, Cu, Pb |       |
|         | and Zn in stripped sea water at pH7.6      | 31    |
| 3.5     | Absorbance and concentration of Cd and Zn  |       |
|         | in stripped sea water at various pH        | 32    |
| 3.6     | Relation between absorbance and concent-   |       |
|         | ration                                     | 40    |
| 3.7     | Detection limits of the spectrophotometer  |       |
|         | of the elements Cd, Cu, Pb and Zn          | 43    |
| 4.1-4.5 | Effect of pH on the recovery yield of Cd,  |       |
|         | Cu, Pb and Zn through chelex-100           | 49-53 |
| 4.6     | Effect of flow rates on the recovery of    |       |
|         | Cd, Cu, Pb and Zn from sea water through   |       |
|         | chelex-100                                 | 55    |
| 4.7     | Effect of nitric acid concentration on the |       |
|         | stripping of Cd, Cu, Pb and Zn from        |       |
|         | chelex-100                                 | 56    |

| TABLE     |                                             | PAGE       |
|-----------|---------------------------------------------|------------|
| 4.8       | Elution patterns of Cd, Cu, Pb and Zn with  |            |
|           | 2M nitric acid                              | 58         |
| 4.9-4.17  | Effect of pH on the recovery yield of Cd,   |            |
|           | Cu, Pb and Zn by reverse phase chromato-    |            |
|           | graphy                                      | 60-70      |
| 4.10,4.1  | 4,4.18                                      |            |
|           | Effect of particle size of the solid        |            |
|           | support on the recovery yield of Cd, Cu,    |            |
|           | Pb and Zn by reverse phase chromato-        |            |
|           | graphy                                      | 61,66,72   |
| 4.10,4.19 | 9-4.21                                      |            |
|           | Effect of flow rates on the recovery yield  |            |
|           | of Cd, Cu, Pb and Zn by reverse phase       |            |
|           | chromatography                              | 61, 74, 76 |
| 4.24,4.25 |                                             |            |
|           | Effect of acid concentration on the strip-  |            |
|           | ping of Cd, Cu, Pb and Zn from chloro-      |            |
|           | form                                        | 81-86      |
| 4.26      | Concentration of Cd, Cu, Pb and Zn in 5     |            |
|           | samples of sea water after preconcentration |            |
|           | by chelex-100                               | 88         |
| 4.27      | Concentration of Cd, Cu, Pb and Zn in 5     |            |
|           | samples of sea water after preconcentration |            |
|           | by reverse phase chromatography             | 89         |

| TABLE |                                           | PAGI |
|-------|-------------------------------------------|------|
| 4.23  | Concentration of Cd, Cu, Pb and Zn in 5   |      |
|       | samples of sea water by chelex-100 and by |      |
|       | reverse phase chromatography              | 90   |
| 5.1   | Summary of the extent of interference of  |      |
|       | some cationic and anionic species in the  |      |
|       | determination of Cd, Cu, Pb and Zn by     |      |
|       | Atomic Absorption Spectrophotometer       | 92   |
| A-I   | Absorbance of aqueous and standard        |      |
|       | solution                                  | 93   |
| A-II  | Mean and deviation                        | 95   |

### LIST OF FIGURES

| FIGURE    |                                             | PAGE     |
|-----------|---------------------------------------------|----------|
| 3.1       | Location for sampling along the east coast  |          |
|           | of Thai Gulf                                | 22       |
| 3.2       | Varian-Techtron model AA-6                  | 28       |
| 3.3-3.6   | Calibration curves for Cd, Cu, Pb and Zn    | 41       |
| 4.1-4.4   | Effect of pH on the recovery yield of Cd,   |          |
|           | Cu, Pb and Zn through chelex-100            | 54       |
| 4.5-4.8   | Effect of nitric acid concentration on the  |          |
|           | stripping of Cd, Cu, Pb and Zn from chelex- |          |
|           | 100                                         | 57       |
| 4.9-4.12  | Elution patterns of Cd, Cu, Pb and Zn with  |          |
|           | 2M HNO <sub>3</sub>                         | 59       |
| 4.13-4.21 | Effect of pH on the recovery yield of Cd,   |          |
|           | Cu, Pb and Zn by reverse phase chromato-    |          |
|           | graphy                                      | 64,69,71 |
| 4.22-4.25 | Effect of particle size of the solid        |          |
|           | support on the recovery yield of Cd, Cu, Pb |          |
|           | and Zn by reverse phase chromatography      | 73       |
| 4.26-4.29 | Effect of flow rates on the recovery yield  |          |
|           | of Cd, Cu, Pb and Zn by reverse phase       |          |
|           | chromatography                              | 77       |
| 4.30-4.33 | Effect of Eluting agents on the recovery    |          |
|           | yield of Cd, Cu, Pb and Zn by reverse phase |          |
|           | chromatography                              | 80       |

| FIGURE    |        |     |      |        |         |          | 30.0             | PAGE |
|-----------|--------|-----|------|--------|---------|----------|------------------|------|
| 4.34-4.41 | Effect | of  | acid | concen | tration | on the   | stripping        |      |
|           | of Cd, | Cu, | Pb   | and Zn | from ch | loroform | No o o o o o o o | 84,8 |