CHAPTER V

A QUASI-GROUP HYPERGRAPH WITH PRECRIBED NEIGHBOURHOOD STRUCTURES

In this chapter we define quasi-group hypergraphs and discuss the problem on realizability of the given family of hypergraphs by a quasi-group hypergraph.

5.1 Quasi-group Hypergraphs.

A <u>quasi-group</u> is an ordered pair (Q,*), where Q is a non-empty set and * is a binary operation on Q such that for any p,q in Q, there exist unique elements x and y such that

q * x = p

and

y * q = p.

In what follows we shall consider only finite quasi-groups, i.e. a quasi-group (Q,*) such that Q is a finite set. The number of elements of Q will be called the <u>order</u> of quasi-group (Q,*). A group is a quasi-group (G,*) which satisfies the associative law, for every a,b,c in G, (a*b)*c = a*(b*c).

For any subset A of Q and any q in Q, the set $\{q*a/a \in A\}$ will be denoted by q*A. Here, and in the sequal, r will be denoted a positive integer greater than 1. For any set A of (r-1)-subsets of Q, A will be said to be <u>admissible</u> if for each A in A, each a in A and each q in Q, there exists B, Q in A such that

$$(\{q\} \cup q*A) - \{q*a\} = (q*a)*B_{a,q}$$

Note that the empty set is an admissible set. In the sequal, any admissible set A we mean a non-empty admissible set. For each admissible set A of (r-1)-subsets of Q, we define A by

$$\mathcal{E}_{A} = \{\{q\} \cup q * A / q \in Q \text{ and } A \in A\}.$$

It can be verified that

$$|\{q\} \cup q*A| = r$$

for all q in Q and A in A. Hence \mathcal{E}_A is a set of r-subsets of Q and $\cup \mathcal{E}_A = \mathbb{Q}$. Therefore $(\mathbb{Q}, \mathcal{E}_A)$ is an r-uniform hypergraph. The hypergraph $H_{=}(\mathbb{Q}, \mathcal{E}_A)$ will be called the <u>hypergraph induced by the quasi-group</u> $(\mathbb{Q},*)$ and the <u>admissible set</u> A. In the remaining of this chapter, any hypergraph we mean an r-uniform hypergraph, and when we write $H = (\mathbb{Q}, \mathcal{E}_A)$, we mean that \mathbb{Q} has a binary operation * such that $(\mathbb{Q},*)$ is a quasi-group and A is an admissible set of (r-1)-subsets of \mathbb{Q} . A hypergraph $H = (V, \mathbb{Z})$ will be said to be a quasi-group hypergraph if there exists a binary operation * on V such that (V,*) is a quasi-group and there exists an admissible set

A of (r-1)-subsets of V such that $\mathcal{E} = \mathcal{E}_{A}$. If a binary operation * can be choosen such that (V,*) is a group, H will be called a group hypergraph.

The concept of quasi-group hypergraphs was introduced in [4]. Our notations differ from those in [4]. vv, $v\stackrel{\not}{\succeq}$ and vH are denoted in [4] by v_v , $\stackrel{\not}{\succsim}_v$ and H_v respectively. Proofs of the following propositions can be found in [4].

- 5.1.1 Proposition. Let H = (V, E) be a quasi-group hypergraph. If a hypergraph H' isomorphic to H, then H' is a quasi-group hypergraph.
- 5.1.2 Proposition. Let $H = (V, \mathcal{L})$ be a hypergraph induced by a quasi-group (V,*) and an admissible set A of (r-1)-subsets of V. Then the followings hold:
- (1) For each E in $\stackrel{\textstyle \mbox{$\cal E$}}{\mbox{$\cal A$}}$ and each v in E, there exists A in $\stackrel{\textstyle \mbox{$\cal A$}}{\mbox{$\cal A$}}$ such that E-{v} = v*A.
 - (2) For each v in V, $vV = \{v*a/a \in U \land \}$.
- (3) For each v in V, the function $\psi_{v}: vV \rightarrow \cup A$ defined by

$$\psi_{\mathbf{v}}(\mathbf{v}*\mathbf{a}) = \mathbf{a}$$

for all v*a in vV is a one-to-one correspondence.

5.1.3 Proposition. Let H = (V, E) be a quasi-group hypergraph. Then there exists a system $(\psi_{uv})_{u,v \in V}$ such that each ψ_{uv} is an iso-

morphism from uH to vH and for every u,v,v' in V if v \neq v' then $\psi_{\rm uv}(a) \neq \psi_{\rm uv}(a)$ for all a in uV.

In our work we shall also need the following:

5.1.4 Proposition. Let $H = (V, \mathcal{E}_{A})$ be a hypergraph induced by a quasi-group (V, *) and an admissible set A of (r-1)-subsets of V. Then

for all v in V.

 $\underline{\text{Proof.}}$ Let v be any element in V. From Proposition 5.1.2 , we know that

$$vV = \{v*a / a \in UA\}$$

and the function $\psi_{\mathbf{v}}$: $\mathbf{v}\mathbf{V} \rightarrow \mathbf{U}\mathbf{A}$, defined by

$$\psi_{\nabla}(v*a) = a$$

for all v*a in vV, is a one-to-one coresspondence.

We shall show that the function ψ_V is an isomorphism from vH to (UA,A). Let S be any subset of V. Suppose that S belongs to vEA . Hence

$$S = \mathbb{E} - \{v\}$$

for some E in \mathcal{E}_{A} such that v belongs to E and E-{v} $\neq \emptyset$. By Proposition 5.1.2 , we have

$$E-\{v\} = v*A$$

for some A in A . Hence

$$\psi_{\mathbf{v}}[S] = \psi_{\mathbf{v}}[E-\{\mathbf{v}\}],$$

$$= \psi_{\mathbf{v}}[\mathbf{v}*A],$$

$$= \{\psi_{\mathbf{v}}(\mathbf{v}*a)/a \in A\},$$

$$= A.$$

The last equality follows from the definition of $\psi_{\bf v}$. Hence $\psi_{\bf v}[{\bf S}]$ belongs to A . Therefore

$$s \in v \stackrel{\stackrel{\leftarrow}{\leftarrow}}{\rightarrow} \rightarrow \psi_{v}[s] \in A$$
(1)

Let $S \subseteq V$ be such that $\psi_{\mathbf{v}}[S]$ belongs to A. Hence

$$\psi_{\mathbf{v}}[S] = A$$

for some A in A . By the definition of $\psi_{\mathbf{v}}$, we have

$$\psi_{\mathbf{v}}[\mathbf{v} * \mathbf{A}] = \mathbf{A}$$

Hence

$$\psi_{\mathbf{v}}[S] = \psi_{\mathbf{v}}[\mathbf{v}*A]$$
.

Since ψ_v is one-to-one, hence $S = v_*A$. Since $\{v\} \cup v_*A$ belongs to ψ_v . Hence V_*A belongs to V_*A .

Therefore

From (1) and (2), we see that ψ_v is an isomorphism from vH to $(\cup A, A)$. Therefore vH $\underline{\circ}(\cup A, A)$.

5.1.5 Corollary. Let H = (V, E) be a quasi-group hypergraph. Then

for all u, v in V.

<u>Proof.</u> Let H = (V, E) be a quasi-group hypergraph. Hence there exists a binary operation * such that (V, *) is a quasi-group and there exists an admissible set A of (r-1)-subsets of V such that $E = E_A$. Hence

is a hypergraph induced by the quasi-group (V,*) and an admissible set A of (r-1)-subsets of V. Hence, by Proposition 5.1.4, for any u,v in V, we have

5.2 (Q,*)-realizable.

In this chapter we are interested in the followings problem: Given a family $\Gamma=(K_{\mbox{$V$}})_{\mbox{$V$}\in\mbox{$\mathbb{I}$}}$ of hypergraphs. Find a quasi-group

hypergraph $H = (V, \mathcal{E})$ which is a realization of Γ .

First, we observe that for H = (V, E) to be a quasi-group hypergraph, it is necessary that

uH 2 vH

for all u, v in V. Hence it is necessary that we have

K_u <u>~</u> K_v

for all u, v in I, i.e. all the hypergraphs in Γ are isomorphic. The above problem can be reformulated as follows: Given a hypergraph K and a non-empty set I, find a quasi-group hypergraph H = (I, E) such that

vн <u>~</u> к

for all v in I. A variant of this is the followings problem: Given an(r-1)-uniform hypergraph K and a quasi-group (I,*), find a hypergraph $H = (I, \mathcal{E}_{A})$ induced by (I,*) and an admissible set A of (r-1)-subsets of I such that

 $\mathbf{v}_{\mathrm{H}} \simeq \mathbf{K}$

for all v in I. In this section we shall be concerned with this problem.

Let K be an(r-1)-uniform hypergraph and (Q,*) be a quasigroup. We say that K is (Q,*)-realizable if there exists an admissible set A of (r-1)-subsets of Q such that H = (Q, A) has the property that

qH <u>~</u> K

for all q in Q.

5.2.1 Theorem Let K be an (r-1)-uniform hypergraph and (Q,*) be a quasi-group. Then K is (Q,*)-realizable if and only if there exists an admissible set of (r-1)-subsets of Q such that $K \cong (\cup A, A)$.

<u>Proof.</u> Let K be an (r-1)-uniform hypergraph and (Q,*) be a quasi-group. Assume that K is (Q,*)-realizable. Hence there exists an admissible set \not A of (r-1)-subsets of Q such that $H = (Q, \not \subseteq_A)$ has the property that

qH <u>∿</u> K

for all q in Q. By Proposition 5.1.4., we have

qH ~ (UA, A)

for all q in Q. Hence $K_{\underline{\lambda}}$ ($\cup A$, A).

Now, assume that there exists an admissible set A of (r-1)-subsets of Q such that $K \supseteq (\cup A, A)$. Let $H = (Q, \trianglerighteq_A)$ be a quasi-group hypergraph induced by the quasi-group (Q,*) and an admissible set A. By Proposition 5.1.4., we have

qH ≥ (∪A, A)

for all q in Q. Hence

 $\mathtt{qH} \quad \underline{ } \quad \mathtt{K}$

#

for all q in Q. Hence K is (Q,*)-realizable.

1 can be

The following examples illustrate how Theorem 5.2.1 can be applied.

5.2.2 Example. Let $Q = \{0,1,2,3,4\}$. Let * be defined on Q by

x*y = the least non-negative residue modulo 5 of x+y,
i.e. (Q,*) is the cyclic group of order 5. Let

$$K = (\{1,2,3,4\},\{\{1,2\},\{2,3\},\{3,4\}\}).$$

We shall determine whether K is (Q,*)-realizable. First, we determine all the admissible sets of 2-subsets of Q. By the method described in Appendix1, we find that all the admissible sets of 2-subsets of Q are

$$A_1 = \{\{1,2\},\{1,4\},\{3,4\}\},$$

$$A_2 = \{\{1,3\},\{2,4\},\{2,3\}\}$$

and

$$A_3 = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}\}$$
.

We have

$$(\cup A_1, A_1) = (\{1,2,3,4\}, \{\{1,2\}, \{1,4\}, \{3,4\}\}),$$

$$(\cup A_2, A_2) = (\{1,2,3,4\}, \{\{1,3\}, \{2,4\}, \{2,3\}\})$$

and

$$(\cup A_3, A_3) = (\{1,2,3,4\}, \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}).$$

Let $\psi: \{1,2,3,4\} \rightarrow \{1,2,3,4\}$ be defined by $\psi(1)=3$, $\psi(2)=4$, $\psi(3)=1$ and $\psi(4)=2$. It can be verified that ψ is an isomorphism from K to $(\bigcup A_1,A_1)$. Hence K $\underline{\wedge} (\bigcup A_1,A_1)$. Hence, by Theorem 5.2.1 , K is (Q,*)-realizable.

5.2.3 Example. Let (Q,*) be asgiven in Example 5.2.2.

$$K = (\{1,2,3,4\},\{\{1,2\},\{1,4\},\{2,3\},\{3,4\}\}).$$

To determine whether K is (Q,*)-realizable, we look for A_i , i=1,2,3, (as given in Example 5.2.2.) such that $K \cong (\cup A_i, A_i)$. It turns out that K is not isomorphic to any of $(\cup A_i, A_i)$, i=1,2,3. This can be seen by observing that the number of edges of K differs from those of $(\cup A_i, A_i)$, i=1,2,3. Hence, by Theorem 5.2.1, K is not (Q,*)-realizable.

5.3 Quasi-group Realizations.

Let K be a hypergraph and I be a finite non-empty set. We say that K is $\underline{\text{I-quasi-group}}$ ($\underline{\text{I-group}}$) realizable if there exists a binary operation * on I such that (I,*) is a quasi-group (group) and K is (I,*)-realizable.

In this section, we are interested in the following problem: Given a hypergraph K and a finite non-empty set I, determine whether K is I-quasi-group (I-group) realizable. The problem concerning I-quasi-group realizability can be answered by our results in Chapter 3 and Proposition 5.1.3. We illustrate this by an example:

5.3.1 Example, Let I = {1,2,3,4,5,6} and

$$K = (\{1,2,3,4,5\},\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{1,5\}\}).$$

We shall show that K is not T-quasi-group realizable. Let H be $^{\rm A}_{\rm I}$ of example 3.4.2 , i.e.

 $H = (\{1,2,3,4,5,6\}, \{\{1,2,3\}, \{1,3,4\}, \{1,4,5\}, \{1,5,6\}, \{1,2,6\}, \{2,3,5\}, \{2,4,5\}, \{2,4,6\}, \{3,4,6\}, \{3,5,6\}\}).$

It is shown there that H is the unique, up to isomorphism, hypergraph such that vH $\underline{\sim}$ K for all v in I. Hence to show that K is not I-quasi-group realizable it suffices to show that H is not a quasi-group hypergraph. To show, by Proposition 5.1.3, that H is not a quasi-group hypergraph we must show that there does not exist any system $(\psi_{uv})_{u,v\in I}$ such that each ψ_{uv} is an isomorphism from uH to vH and for every u,v,v' in I if $v \neq v'$ then $\psi_{uv}(a) \neq \psi_{uv'}(a)$ for all a in vI. It suffices to show that there does not exist any system $(\psi_{1v})_{v\in I}$ such that each ψ_{1v} is an isomorphism from 1H to vH and for every v,v' in I if $v \neq v'$ then $\psi_{1v}(a) \neq \psi_{1v'}(a)$ for all a in 1I. Note that

$$1H = (\{2,3,4,5,6\},\{\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{2,6\}\}),$$

$$2H = (\{1,3,4,5,6\},\{\{1,3\},\{1,6\},\{3,5\},\{4,5\},\{4,6\}\}),$$

$$3H = (\{1,2,4,5,6\},\{\{1,2\},\{1,4\},\{2,5\},\{4,6\},\{5,6\}\}),$$

$$4H = (\{1,2,3,5,6\},\{\{1,3\},\{1,5\},\{2,5\},\{2,6\},\{3,6\}\}),$$

$$5H = (\{1,2,3,4,6\},\{\{1,4\},\{1,6\},\{2,3\},\{2,4\},\{3,6\}\})$$

and

$$6H = (\{1,2,3,4,5\},\{\{1,5\},\{1,2\},\{2,4\},\{3,5\},\{3,4\}\}).$$

Suppose that there exists a system $S = (\psi_{1v})_{v \in I}$ such that each ψ_{1v} is an isomorphism from 1H to vH and for every v, v' in I if v = v' then $\psi_{1v}(a) \neq \psi_{1v}(a)$ for all a in 1I, 1I = {2,3,4,5,6}.

There are 10 isomorphisms from 1H to vH, v = 1,2,3,4,5,6. They are designated by ψ_{1v}^k , k = 1,2,...,10, v = 1,2,3,4,5,6, and are given in the followings tables:

Table 14.

		$\psi_{11}^2(\mathbf{x})$		ψ ₁₁ (x)	$\psi_{11}^{5}(x)$	ψ ₁₁ (x)	ψ ₁₁ (x)	ψ ₁₁ (x)	$\psi_{11}^{9}(x)$	ψ ₁₁ (x)
2 3 4	2	2	3	3	4	4	5	5	6	6
3	3	6		2	5	3	6	4	2	5
4	4	5	5	6	6	2	2	3	3	4
5	5	4	6	5 -	2	6	3	2	4	3
5	6	3	2	L _k	3	5	4	6	5	2

Table 15.

х	$\psi_{12}^{1}(x)$	$\psi_{12}^{2}(x)$	$\psi_{12}^{3}(x)$	ψ ₁₂ (π)	$\psi_{12}^{5}(x)$	$\psi_{12}^{6}(x)$	$\psi_{12}^{7}(x)$	$\psi_{12}^{8}(x)$	ψ ⁹ ₁₂ (x)	$\psi_{12}^{10}(x)$
2	1	1	3	3	4	4	5	5	6	6
3		6	5	1.	5	6	3	4	1	4
4	5	4	4	6	3	1	1	6	3	5
5	4	5	6	4	1	3	6	1	5	3
6	6	3	1	5	6	5	4	3	4	1

Table 16.

x	$\psi_{13}^{1}(x)$	$\psi_{13}^{2}(x)$	$\psi_{13}^{3}(x)$	$\psi_{13}^{4}(x)$	$\psi_{13}^{5}(x)$	$\psi_{13}^{6}(x)$	$\psi_{13}^{7}(x)$	$\psi_{13}^{8}(x)$	$\psi_{13}^{9}(x)$	43(x)
2	1	1	2	2	4	4	5	5	6	6
3	2	4	1	5	1	6	2	6	4	5
4	5	6	4	6	2	5	1	4	1	2
5	6	5	6	4	5	2	4	1	2	1
6	4	2	5	1	6	1	6	2	5	4

Table 17.

x	$\psi_{14}^{1}(x)$	√2 ₄ (x)	$\psi_{14}^{3}(x)$	ψ ₁ ⁴ (x)	$\psi_{14}^{5}(x)$	$\psi_{14}^{6}(x)$	$\psi_{14}^{7}(x)$	$\psi_{14}^{8}(x)$	9 ₄ (x)	10 44(x)
2	1	1	2	2	3	3	5	5	6	6
3	3	5	5	6	1	6	1	2	2	3
4	6	2	1	3	5	2	3	6	5	1
5	2	6	3	1	2	5	6	3	1	5
6	5	3	6	5	6	1	2	1	3	2

Table 18.

x	$\psi_{15}^{1}(x)$	$\psi_{15}^{2}(x)$	$\psi_{15}^{3}(x)$	$\psi_{15}^{4}(x)$	$\psi_{15}^{5}(x)$	$\psi_{15}^{6}(\mathbf{x})$	$\psi_{15}^{7}(\mathbf{x})$	$\psi_{15}^{8}(x)$	4 ₅ (x)	$\psi_{15}^{10}(x)$
2	1	1	2	2	3	3	4	4	6	6
3	6	4	3	4	6	2	1	2	1	3
4	3	2	6	1	1	4	6	3	4	2
5	2	3	1	6	4	1	3	6	2	4
5	4	6	4	3	2	6	2	1	3	1

Table 19.

x	ψ ₁₆ (x)	$\psi_{16}^{2}(x)$	ψ ₁₆ (x)	ψ ₁₆ (x)	$\psi_{16}^{5}(x)$	ψ ₁₆ (x)	ψ ₁₆ (x)	$\psi_{16}^{8}(x)$	ψ ₁₆ (x)	ψ ₁₆ (x)
2	1	1	2	2	3	3	4	4	5	5
3	5	2	4	1	4	5	2	3	1	3
4	3	4	3 .	5	2	1	1	5	2	4
5	4	3	5	3	1	2	5	1	4	2
2 3 4 5 6	2	5	1	<u>L</u> .	5	4	3	2	3	1

The isomorphism ψ_{11} in S must be one of the ψ_{11}^k , $k=1,2,\ldots,10$. Assume that $\psi_{11}=\psi_{11}^1$, i.e. ψ_{11}^1 is in S. Observe that

$$\psi_{11}^{1}(3) = \psi_{12}^{1}(3)$$
,

$$\psi_{11}^{1}(4) = \psi_{12}^{2}(4)$$
,

$$\psi_{11}^{1}(4) = \psi_{12}^{3}(4)$$
,

$$\psi_{11}^{1}(6) = \psi_{12}^{5}(6)$$
,

$$\psi_{11}^{1}(3) = \psi_{12}^{7}(3) ,$$

$$\psi_{11}^{1}(5) = \psi_{12}^{9}(5)$$
.

Hence ψ_{12}^1 , ψ_{12}^2 , ψ_{12}^3 , ψ_{12}^5 , ψ_{12}^7 and ψ_{12}^9 are not in S. Hence we can conclude the following

(2) ψ_{12} can be one of the following:

$$(2-1)$$
 ψ_{12}^{4} ,

$$(2-2)$$
 ψ_{12}^{6} ,

$$(2-3)$$
 ψ_{12}^{8} ,

$$(2-4)$$
 ψ_{12}^{10} .

Similarly for v = 3,4,5,6, it turns out that the following holds:

(3) ψ_{13} can be one of the following:

$$(3-1)$$
 ψ_{13}^{1} ,

$$(3-2)$$
 ψ_{13}^{6} ,

$$(3-3)$$
 ψ_{13}^{9} ,

$$(3-4)$$
 ψ_{13}^{10} ,

(4) ψ_{14} can be one of the following:

$$(4-1)$$
 ψ_{14}^2 ,

$$(4-2)$$
 ψ_{14}^{7} ,

$$(4-3)$$
 ψ_{14}^{8} ,

$$(4-4)$$
 ψ_{14}^{9} ,

(5) ψ_{15} can be one of the following:

$$(5-1)$$
 ψ_{15}^{1} ,

$$(5-2)$$
 ψ_{15}^{5} ,

$$(5-3)$$
 ψ_{15}^{7} ,

$$(5-4)$$
 ψ_{15}^{8} ,

(6) ψ_{16} can be one of the following:

$$(6-1)$$
 ψ_{16}^{1} ,

$$(6-2)$$
 ψ_{16}^{5} ,

$$(6-3)$$
 ψ_{16}^{6} ,

$$(6-4)$$
 ψ_{16}^{9} .

From (2), note that if $\psi_{12} = \psi_{12}^4$ then $\psi_{12}^4(a) \neq \psi_{16}(a)$ for all a in {2,3,4,5,6}. Since

$$\psi_{12}^{4}(5) = \psi_{16}^{1}(5),$$

$$\psi_{12}^{4}(2) = \psi_{16}^{5}(2),$$

$$\psi_{12}^{4}(2) = \psi_{16}^{6}(2),$$

$$\psi_{12}^{4}(5) = \psi_{16}^{9}(5),$$

hence ψ_{16} can not be one of ψ_{16}^1 , ψ_{16}^5 , ψ_{16}^6 and ψ_{16}^9 . Therefore we have a contradiction. Hence ψ_{12} can not be ψ_{12}^4 .

If $\psi_{12} = \psi_{12}^6$, then $\psi_{12}^6(a) \neq \psi_{15}(a)$ for all a in {2,3,4,5,6}. Since

$$\psi_{12}^{6}(3) = \psi_{15}^{1}(3),$$

$$\psi_{12}^{6}(3) = \psi_{15}^{5}(3),$$

$$\psi_{12}^{6}(5) = \psi_{15}^{7}(5),$$

$$\psi_{12}^{6}(2) = \psi_{15}^{8}(2),$$

hence ψ_{15} can not be one of ψ_{15}^1 , ψ_{15}^5 , ψ_{15}^7 and ψ_{15}^8 . Therefore we have a contradiction. Hence ψ_{12} can not be ψ_{12}^6 .

If $\psi_{12} = \psi_{12}^{8}$, then $\psi_{12}^{8}(a) \neq \psi_{14}(a)$ for all a in {2,3,4,5,6}. Since

$$\psi_{12}^{8}(6) = \psi_{14}^{2}(6) ,$$

$$\psi_{12}^{8}(2) = \psi_{14}^{7}(2) ,$$

$$\psi_{12}^{8}(2) = \psi_{14}^{8}(2) ,$$

$$\psi_{12}^{8}(5) = \psi_{14}^{9}(5)$$
,

hence ψ_{14} can not be one of ψ_{14}^2 , ψ_{14}^7 , ψ_{14}^8 and ψ_{4}^9 . Therefore we have a contradiction. Hence ψ_{12} can not be ψ_{12}^8 .

If $\psi_{12} = \psi_{12}^{10}$, then $\psi_{12}^{10}(a) \neq \psi_{13}(a)$ for all a in {2,3,4,5,6}. Since

$$\psi_{12}^{10}(4) = \psi_{13}^{1}(4)$$
,

$$\psi_{12}^{10}(4) = \psi_{13}^{6}(4)$$
,

$$\psi_{12}^{10}(2) = \psi_{13}^{9}(2)$$
,

$$\psi_{12}^{10}(2) = \psi_{13}^{10}(2)$$
,

hence ψ_{13} can not be one of ψ_{13}^1 , ψ_{13}^6 , ψ_{13}^9 and ψ_{13}^{10} . Therefore we have a contradiction. Hence ψ_{12} can not be ψ_{12}^{10} .

Hence ψ_{12} can not be one of ψ_{12}^4 , ψ_{12}^6 , ψ_{12}^8 and ψ_{12}^{10} . Therefore we have a contradiction. Hence ψ_{11} can not be ψ_{11}^1 .

By the same manner, we can show that ψ_{11} can not be one of ψ_{11}^k , $k=2,3,\ldots,10$. Therefore ψ_{11} can not be one of ψ_{11}^k , k=1,2, 3,...,10. Hence we have a contradiction to the existence of a system S. Therefore the system S does not exist.

It is much easier to determine whether a given hypergraph K is I-group realizable than to determine whether it is I-quasi-group realizable. This is because for each I there are fewer group structures that can be defined on I. Besides, it is not difficult to determine all the admissible sets of a given group.

Suppose that a hypergraph $K = (V, \mathcal{E})$ and a finite non-empty set I are given. To determine whether K is I-group realizable, we do the following:

- (1) Determine all non-isomorphic group structures on I.
- (2) For each group structure on I, we determine all the admissible sets A such that |A| = |E|.
- (3) For each A in (2) we determine whether $K \geq (\bigcup A, A)$.

 If A in (3) can be found, we know that K is I-group realizable, otherwise it is not.

We illustrate these by showing that K in the above example (Example 5.3.1) is not I-group realizable.

It is well-know that any group of order 6 must be of the form:

(1)
$$G_1 = (\{1, a, a^2, a^3, a^4, a^5\}, *)$$
, where $a^6 = 1$ and $a^i * a^j = a^{i+j}$ for all $i, j = 1, 2, 3, 4, 5$; or

(2)
$$G_2 = (\{1,a,b,b^2,ab,ab^2\}, \cdot)$$
, where $a^2 = 1 = b^3$ and $a^{-1}ba = b^2$.

Hence, if (I,*) is a group, then (I,*) must be isomorphic to exactly one of G_1 and G_2 . Hence to show that K is not I-group realizable, it suffices to show that K is neither G_1 -realizable nor G_2 -realizable.

First, we shall show that K is not G_1 -realizable. By the method described in Appendix I, we find that the followings are all the minimal admissible sets of 2-subsets of G_1 ;

$$A_1 = \{\{a, a^2\}, \{a, a^5\}, \{a^4, a^5\}\},\$$

$$A_2 = \{\{a, a^3\}, \{a^2, a^5\}, \{a^3, a^5\}\},\$$

$$A_3 = \{\{a, a^4\}, \{a^3, a^5\}, \{a^2, a^3\}\}$$

and

$$A_4 = \{\{a^2, a^4\}\}.$$

By Theorem 1 in Appendix I, any admissible set of 2-subsets of G_1 is a union of minimal admissible sets of 2-subsets of G_1 . Hence, if A is any admissible set of 2-subsets of G_1 , then A must have cardinality 1,3,4,6,7,9,10. Therefore it is not possible to find an admissible set A of 2-subsets of G_1 such that $K o (\cup A, A)$.

Hence, by Theorem 5.2.1, K is not G1-realizable.

Next, we shall show that K is not G_2 -realizable. We find that all the minimal admissible sets of 2 subsets of G_2 are

$$A_{1} = \{\{a,b\},\{a,ab\},\{b^{2},ab\}\},\$$

$$A_{2} = \{\{a,b^{2}\},\{a,ab^{2}\},\{b,ab^{2}\}\},\$$

$$A_{3} = \{\{ab,ab^{2}\},\{ab,b\},\{ab^{2},b^{2}\}\}$$

and

$$A_4 = \{\{b, b^2\}\}.$$

By the same arguments, it can be seen that there does not exist any admissible set A of 2-subsets of G_1 such that $K \simeq (\cup A, A)$. Hence, by Theorem 5.2.1, K is not G_2 -realizable.