CHAPTER II

CURRENT DISTRIBUTION AND IMPEDANCE

A. CURRENT DISTRIBUTION.

The method of calculating current distribution of a center-fed cylindrical antenna will be discussed. This method bases on the boundary-value problem, and follows nearly the same way as Hallen's (4) but with some considerations on antenna conductivity which causes the Hallen's Integral Equation becomes non-homogeneous.

Fig, 2.1 The center-driven cylindrical antenna and its cylindrical coordinates.

A cylindrical dipole antenna is shown in Fig. 2.1 The tangential component of the electric field must be continuous at the boundary, that is

$$E_{1z} = E_{z} \tag{3}$$

Where Elz = Electric field just inside the conductor

Ez = Electric field just outside the conductor

To simplify the problem it is assumed that I(z) is equal to zero at z = + h and the end effect will be neglected.

Consider the electric field inside the conductor

$$E_{z} = ZI_{z} \tag{4}$$

Where Z = The conductor impedance in ohms per meter length of conductor under consideration of skin effect.

I = Total current in the 2-component

The electric field outside the cylinder can be determined from the vector potential A

A Maxwell's equation can be written as

$$\nabla \times \overline{E} + \frac{\partial \overline{B}}{\partial t} = 0$$
 (5)
$$\overline{B} = \nabla \times \overline{A}$$
 (6)

Since
$$\overline{B} = \nabla \times \overline{A}$$
 (6)

Hence,
$$\nabla \times (\overline{E} + \frac{\partial \overline{A}}{\partial t}) = 0$$
 (7)

(8)

(9)

By vector identity: $\nabla x(-\nabla \phi) = 0$

Where Ø is a scalar potential.

Or

Comparison of eq.(7) and eq.(8) we may write

$$\overline{E} + \frac{\overline{A}}{\partial t} = -\nabla \emptyset$$

$$\overline{E} = -\nabla \emptyset$$

By vector condition $\nabla . \overline{A} = -j \quad w / 0$ (10)

Substitute eq. (10) into eq.(9) gives

$$\overline{E} = \frac{1}{jw\mu\epsilon} \nabla(\nabla \cdot \overline{A}) - jw\overline{A}$$

$$= -jw \left[\frac{c^2}{w^2} \nabla(\nabla \cdot \overline{A}) + \overline{A} \right]$$

$$= -j\frac{w}{k} 2 \left[\nabla(\nabla \cdot \overline{A}) + k^2\overline{A} \right] \tag{11}$$

Since the current has only z component, hence the vector potential

 \overline{A} has only A_z , then eq. (11) becomes $E_z = -j \frac{W}{k} 2 \left[\frac{\partial^2 A_z}{\partial z^2} + k^2 A_z \right] \qquad (12)$

From eq. (3), eq.(4) and eq.(12), we obtain

$$-j\frac{w}{k}2\left(\frac{\partial^{2}A_{z}}{\partial z^{2}} + k^{2}A_{z}\right) = ZI_{z}$$

$$\frac{\partial^{2}A_{z}}{\partial z^{2}} + k^{2}A_{z} = j\frac{k^{2}ZI_{z}}{w}$$
(13)

Eq.(13) may be written as

$$\frac{\partial^{2}_{z}}{\partial z^{2}} + k^{2}_{A_{z}} = F(z)$$
 (14)

Eq.(14) is a second order first degree wave equation which is homogeneous when Z is zero. But Z is not equal to zero, therefore the solution can be represented by the sum of a complimentary function (A_c) and a particular integral (A_c)

That is
$$A_z = A_c + A_p$$
 (15)

Consideration of eq.(14), we can write that

$$A_{c} = B_{1} \cos kz + B_{2} \sin kz$$
 (16)

Where B_1 and B_2 are constants

A can be found by using "The Method of Variation of Parameters" as follows,

Let
$$A_p = U_1(z)Y_1(z) + U_2(z)Y_2(z)$$
 (17)

Where $Y_1(z)$, $Y_2(z)$ are the solutions of eq.(13) for which Z=0

Hence
$$Y_1(z) = coskz$$
 (18)

$$Y_2(z)$$
 = sinkz (19)

 $\mathbf{U}_{1}(\mathbf{z})$, $\mathbf{U}_{2}(\mathbf{z})$ are two unknown functions of \mathbf{z} and can be obtained as follows,

$$U_1'(z) = -\frac{Y_2(z)}{Y_1(z) Y_2(z) - Y_2(\overline{z}) Y_1(z)} F(z)$$
 (20)

Substitute eq.(18) and eq.(19) into eq.(20), we have

$$U_{1}'(z) = -\frac{\sin kz F(z)}{k(\cos^{2}kz + \sin^{2}kz)}$$

$$= -\frac{\sin kz F(z)}{k}$$

$$U_{1}(z) = -\int_{0}^{z} \frac{\sin ks}{k} F(s) ds \qquad (21)$$

¹C.R. Wylie, Jr. "Advance Engineering Mathematics", 3rd Edition, pp 49-51, 1966.

Similarly
$$U_2(z) = \int_0^z \frac{\cos ks}{k} F(s) ds$$
 (22)
Substitute eq.(18),eq.(19), eq.(21),eq.(22) into eq.(17) we have

$$A_{p} = -\frac{\cos kz}{z^{k}} \int_{0}^{z} \sin ks \ F(s) \ ds + \frac{\sin kz}{k} \int_{c}^{z} \cos ks \ F(s) \ ds$$

$$= \frac{1}{k} \int_{c}^{z} (\cos ks \sin kz - \sin ks \cos kz) \ F(s) \ ds$$

$$= \frac{1}{k} \int_{c}^{z} \sin k(z-s) \ F(s) \ ds \qquad (23)$$

From eq.(13) and eq.(14), it can be shown that

$$F(s) = j \frac{k^2 ZI(s)}{w}$$

Hence
$$A_p = j\frac{kZ}{w} \int_{0}^{z} \sinh(z-s)I(s)ds$$
 (24)

A can be obtained from eq.(15), eq.(16) and eq.(24) as follows:

$$A_z(z) = B_1 \cos kz + B_2 \sin kz + j \frac{kZ}{w} \int_0^z \sin k(z-s)I(s)ds$$

Or
$$A_{\mathbf{z}}(\mathbf{z}) = -j/c \left[C_{1} \cos kz + C_{2} \sin kz - Z \int_{0}^{Z} \sin k(\mathbf{z} - \mathbf{s}) I(\mathbf{s}) \, d\mathbf{s} (\right]$$
 Where $C_{1}, C_{2} = \text{constants}$

For a center - driven antenna; the current and vector potential are symmetrical with respect to the origin.

Hence
$$I(z) = I(-z)$$

 $\overline{A}(z) = \overline{A}(-z)$

Then eq.(25) becomes:

$$A_{z} = -j/c \left[C_{1} \cos kz + C_{2} \sin k|z| - Z \int_{0}^{z} \sinh(z-s) I(s) ds \right]$$
 (26)

The applied voltage, V is defined as

$$V = \lim_{z \to 0} \left[\phi(z) - \phi(-z) \right]$$
 (27)

From eq.(10) when only z component is considered, we have

$$\frac{\partial A}{\partial z} = -jw\mu\epsilon D \tag{28}$$

Substitute eq.(28) into eq.(27), we get

$$V = \lim_{z \to 0} j \frac{1}{w \pi \epsilon} \left[\frac{\partial A_z(z)}{\partial z} - \frac{\partial A_z(-z)}{\partial z} \right]$$
$$= j_w^2 \left[\lim_{z \to 0} \frac{\partial A_z(z)}{\partial z} - \lim_{z \to 0} \frac{\partial A_z(-z)}{\partial z} \right]$$
(29)

From eq.(25), we can show that

$$\lim_{z \to 0} \frac{\partial A_z(z)}{\partial z} = -j/c \left[kC_2 \right]$$
 (30)

$$\lim_{z \to 0} \frac{\partial A_{z}(-z)}{\partial z} = -j/c \left[-kC_{2}\right]$$
 (31)

Substitute eq.(30) and eq.(31) into eq.(29), we obtain

$$V = 2C_{2} \tag{32}$$

The vector potential $\mathbf{A_z(z)}$ can also be expressed in term of the surface current $\mathbf{I(z_l)}$ as follows:

$$A_{z}(z) = \frac{u}{4\pi} \int_{h}^{h} \frac{I(z)e^{-jkR}}{R} dz_{1}$$
 (33)

$$R = \int (z-z_1)^2 + r^2 \int_{-\infty}^{\infty} (34)$$

The combination and the rearrangement of eq.(26), eq.(32) and eq.(33), result in

$$\frac{1}{4\pi} \int_{h}^{h} \frac{I(z_1)e^{-jkR}}{R} dz_1 = C_{coskz} + \frac{V}{2} sinkz - Z \int_{h}^{h} I(z)sink(z-s)ds$$
(35)

The integration on the left-hand side of eq.(33) can be written as

$$\int_{h}^{h} \frac{I(z_{1})e^{-jkR}}{R} dz_{1} = \int_{h}^{h} \frac{I(z)}{R} dz_{1} + \int_{h}^{h} \frac{I(z_{1})e^{-jkR} - I(z)}{R} dz_{1}$$
(36)

Integrating the right hand side of eq.(36) and putting r = a,

we thus obtain.
$$I(z) \int_{-h}^{h} \frac{dz_1}{R} = I(z) \int_{-h}^{h} \frac{dz_1}{\sqrt{(z-z_1)^2 + a^2}} = I(z) \ln \left[\frac{\left\{ (h-z)^2 + a^2 \right\}^{1/2} + (h-z)}{\left\{ (h-z)^2 + a^2 \right\}^{1/2} - (h+z)} \right] = I(z) \left[\Omega + \ln(1 - (\frac{z}{h})^2) + L(z) \right]$$

$$= \ln \left[\frac{2h}{a} \right]$$

$$= \ln \left[\frac{1}{4} \left\{ \left[1 + (\frac{a}{h-z})^2 \right]^{1/2} + 1 \right\} \left\{ \left[1 + (\frac{a}{h+z})^2 \right]^{1/2} + 1 \right\} \right]$$
(39)

From eq.(35),eq.(36) and eq.(37), it follows that

$$\frac{\text{jc } \mathcal{M}}{4 \, \text{TI}} \left[I(z) \left\{ \Omega + \ln(1 - (\frac{z}{h})^2) + \delta \right\} + \int_{-h}^{h} \frac{I(z_1) e^{-jkR}}{R} dz_1 \right] \\
= C_1 \cos kz + \frac{V}{2} \sin k|z| - Z \int_{0}^{I} I(s) \sin k (z-s) ds \\
I(z) = -\frac{j4 \, \text{TI}}{\mathcal{M} c \, \Omega} \left[C_1 \cos kz + \frac{V}{2} \sin k|z| - Z \int_{0}^{I} I(s) \sin k (z-s) ds \right] \\
- \frac{1}{\Omega} \left[I(z) \ln(1 - (\frac{z}{h})^2) + I(z) \delta + \int_{h}^{h} \frac{I(z_1) e^{-J(z)}}{R} dz_1 \right] (40)$$

At z = h, I(z) = I(h) = 0, Therefore eq.(40) becomes

$$0 = -\frac{j4 \pi}{Z_0 \Omega} \left[\left(\frac{C_1 \cos kh}{z} + \frac{V}{z} \sin kh \right) \right] - \frac{1}{\Omega} \left[-\frac{j4 \pi Z}{Z_0} \right]$$

$$\int_0^h \frac{J(z_1)e}{R_1} dz_1$$
(41)

Where $Z_0 = \sqrt{\frac{u_0}{\varepsilon_0}} = \text{intrinsic impedance of free space}$

$$R_1 = \left[(h-z_1)^2 + a^2 \right]^{1/2}$$

Subtracting eq.(41) from eq.(40), the result is as follows:

$$I(z) = \frac{-j4\pi}{Z_0\Omega} \left[C_1(\cos kz - \cosh k) + \frac{V}{2} (\sin kz - \sinh k) \right]$$

$$-\frac{1}{\Omega} \left[I(s) \ln(1 - (\frac{z}{h})^2) + I(z)\delta + \int_{h}^{h} \frac{I(z_1)e^{-jkR} - I(z) \int dz_1}{h} \right]$$

$$-\frac{j4\pi Z}{Z_0} \int_{0}^{z} I(s)\sin k(z-s)ds + \frac{1}{\Omega} \left[\int_{h}^{u} \frac{I(z)e^{-jkR_1}}{R_1} dz_1 \right]$$

$$-\frac{j4\pi Z}{Z_0} \int_{0}^{h} I(s)\sin k(k-s)ds$$

$$(42)$$

Eq.(42) is the integral equation for the total current distribution on the center-fed cylindrical dipole. The zero order approximation can be obtained by neglecting the terms in the last two brackets in eq.(42)

$$I_{o}(z) = -\frac{j}{30\Omega} \left[C_{1}F_{o}(z) + \frac{V}{2}G_{o}(z) \right]$$
 (43)

$$Z_{o} = \sqrt{\frac{u_{o}}{\epsilon_{o}}} = 120 \,\text{T}$$

$$F_{o}(z) = \cos kz - \cosh = f_{o}(z) - f_{o}(h) \qquad (43a)$$

$$G_{o}(z) = \sinh|z| - \sinh = g_{o}(z) - g_{o}(h)$$
 (43b)

Substituting $I_0(z)$ for I(z) on the right hand side of eq.(42) gives an approximation for the remaining term

$$I_{o1}(z) = \frac{-j}{30 \Omega} 2 \left[C_1 \mathbf{f}_1(z) + \frac{V}{2} G_1(z) \right]$$
 (44)

Where

$$F_{1}(z) = f_{1}(z) - f_{1}(h)$$

$$f_{1}(z) = -F_{0}(z)\ln(1-\frac{z^{2}}{h}2) - F_{0}(z)\delta - \int_{-h}^{h} \frac{F_{0}(z_{1})e^{-JkR}}{R} dz_{1}$$

$$+ \frac{j4 \sqrt{3} z}{z_{0}} \int_{0}^{z} F_{0}(s)\sin k(z-s) ds \qquad (45)$$

$$f_{1}(h) = - \int_{-h}^{h} \frac{F_{0}(z_{1}) e^{-jkR_{1}} dz}{R_{1}} dz_{1} + \frac{4 \pi z}{Z_{0}} \int_{0}^{h} F_{0}(s) \sin k(h-s) ds$$
(46)

 $G_1(z)$ is exactly like $F_1(z)$ with G written for F.

The first order approximation is them,

or
$$I_1(z) = I_0(z) + I_{01}(z)$$

 $I_1(z) = \frac{j}{30\Omega} \left[C_1 \left\{ F_0(z) + \frac{F_1(z)}{\Omega} \right\} + \frac{V}{2} \left\{ G_0(z) + \frac{G_1(z)}{\Omega} \right\} \right]$

Repeating these processes indefinitely, the final result will be obtained as follows:

$$I(z) = \frac{-j}{30\Omega} \left[C_1 \left\{ F_0(z) + \frac{F_1(z)}{\Omega}, \frac{F_2(z)}{\Omega^2} + \cdots \right\} + \frac{V}{2} \left\{ G_0(z) + \frac{G_1(z)}{\Omega^2} + \frac{G_2(z)}{\Omega^2} + \cdots \right\} \right]$$
(48)

The expression for C1 can be obtained by substituting eq.(48)

into eq.(41), therefore $C_{1} = -\frac{1}{2} V \left[\frac{g_{0}(h) + g_{1}(h)/\Omega + g_{2}(h)/\Omega^{2} + \dots}{f_{0}(h) + f_{1}(h)/\Omega + f_{2}(h)/\Omega^{2} + \dots} \right] (49)$

Substituting C, into eq.(48) and rearranging the terms, we get

$$I(z) = j \frac{V}{60\Omega} \left[\frac{\sinh(\mathbf{b}-z) + K_1/\Omega + K_2/\Omega^2 + \dots}{\cosh h + A_1/\Omega + A_2/\Omega^2 + \dots} \right]_{(50)}$$

Neglecting the higher order terms of eq.(50), the first order solution for the antenna current distribution becomes

$$I(z) = j \frac{V}{30\Omega} \left[\frac{\sin k(h-z) + K_1/\Omega}{\cos kh + A_1/\Omega} \right]$$
 (51)

Where

$$K_1 = f_1(z) \sin kh - f_1(h) \sin k|z| + g_1(h) \cos kz - g_1(z) \cos kh$$
 (52)
 $A_1 = g_1(h)$ (53)

When the cylindrical antennais infinitesimally thin $(\Omega \!
ightharpoonup \infty)$

$$I(z) = Nsin k(h-z)$$
 (51a)

Where

eq.(51) becomes

$$N = j \frac{V}{60\Omega \cos kh}$$

Hence the sinusoidal current distribution is obtained.

B. IMPEDANCE the input impedance of the center-fed cylindrical antenna can be obtained from eq.(51) by putting z=0

obtained from eq.(SI) by putting
$$z = 0$$

$$Z_{in} = \frac{V}{I(o)}$$

$$= j60\Omega \frac{(\cos kh + A_1/\Omega)}{(\sin kh + K_1/\Omega)}$$
(54)

The imput impedance of the cylindrical stub antenna over a perfectly ground plane is one-half of eq.(54), hence

$$Z_{in} = -j30\Omega \frac{\left(\cos kh + A_{1}/\Omega\right)}{\left(\sin kh + K_{1}/\Omega\right)}$$
(55)

Due to the complication of the expression of the input impedance, it is advisable to use a computer programmed for this solution.

C. DATA PRECALCULATED FOR NUMERICAL ANALYSIS

The purpose of this analysis is to compute the impedance of the cylindrical stub antenna over a perfect ground plane. In this thesis, the values of h = 50 cm and a = 3/2'' (therefore h/a= 13.1) are considered and the value of h/a = 75 is computed so that it can be compaired with the results obtained from the others. From eq. (55), it is shown that

$$Z_{in} = -j30\Omega \left[\frac{\cos kh + A_1/\Omega}{\sin kh + K_1/\Omega} \right]$$
 (56)

From eq.(43a), eq.(43b), eq.(45), eq.(46), eq.(52) and eq.(53), we obtain

$$K_1(0) = f_1(0) \sin kh + g_1(h) - g_1(z) \cos kh$$
 (57)

$$A_{3}(0) = f_{3}(h) \tag{58}$$

$$A_{1}(0) = f(h)$$

$$f_{1}(0) = \int_{-h}^{h} \frac{f(z)e^{-jkR} - Fo(0)}{R} dz_{1}, \text{ for } \delta(0) \ll 1$$

$$R = \int_{-h}^{2} \frac{f(z)e^{-jkR} - Fo(0)}{R} dz_{1}, \text{ for } \delta(0) \ll 1$$
(59)

$$R = \sqrt{z_1^2 + a^2}$$
 (60)

 $\mathbf{g}_{1}(h)$ and $\mathbf{g}_{1}(0)$ are exactly the same as $\mathbf{f}_{1}(h)$, $\mathbf{f}_{1}(0)$ with \mathbf{g} written for h

Considering the last term of eq.(61), we have

$$j \frac{2\pi Z}{Z_0} \int_0^h F_0(s) \sin k(h-s) ds = j \frac{Z}{30} M$$
 (62)

Where

$$Z_{o} = 120 \text{ T}$$

$$M = \int_{o}^{h} F_{o}(s) \sin k \text{ (h-s) ds}$$
(63)

Integrating eq.(63), we obtain

$$M = \frac{h}{z} \sin kh - \frac{\cos kh}{k} \quad (1-\cos kh) \tag{64}$$

For h = 0 to 1.0, k = 2π , it is clear from eq.(64) that

$$M \langle 1 \rangle$$
 (65)

For aluminium. f = 300 MHz

$$\delta$$
 =depth of penetration
 $\approx 4.76 \times 10^{-4}$ cm (66)

From eq.(66) therefore the antenna thickness, t is much greater than σ

Hence
$$Z = \frac{(1+j)}{2\pi a} \sqrt{\frac{\pi f u}{6}}$$
 ohms/m
$$|Z| = \sqrt{\frac{f u}{2\pi 6a^2}}$$
 ohms/m
$$0.033$$
 ohm, for h = 1.0, a = 0.0381m(67)

From eq.(65) and eq.(67), it can be seen that

$$\frac{|\mathbf{Z}|}{30} \cdot M \langle 0.0011 \text{ ohms.}$$
 (68)

Therefore, from eq.(62) and eq.(68)we can neglect the last term of eq.(61)

²Simon Ramo, "Field and waves in Communication Electronic"

John Willey & Sons, Inc., P 294, 1965

$$A_1 = AR + jAI$$

$$K_1 = KR + jKI$$

AR =
$$-\int_{h}^{h} \frac{\cos \theta_{1}(\cos kz - \cos kh)}{R_{1}} dz$$
AI =
$$\int_{h}^{h} \frac{\sin \theta_{1}(\cos kz - \cos kh)}{R_{1}} dz$$

$$z_{in} = ZR + jZI$$

$$ZR = -30.12 \frac{(KI\cos kh + AR.KI - AI.\sin kh - AI.KR)}{(\sin kh + KR)^2 + KI^2}$$

$$ZI = -30\Omega \frac{(\cos kh \sin kh + KR \cos kh + AR \sin kh + AR \cdot KR + AI \cdot KI)}{(\sin kh + KR)^2 + KI^2}$$

From eq.(57), let

K4 = Bsin kh + C - Dcos kh

KR = BRsin kh + CR - DRcos kh

KI = BIsin kh + CI - DIcos kh

From eq. (59), let
$$BR = -\int_{1}^{h} \frac{\cos\theta_{2}(\cos kz - \cos kh)dz - (1 - \cos kh)}{R_{2}} dz - \int_{1}^{h} \frac{\cos\theta_{2}(\cos kz - \cos kh)dz}{R_{2}} - (1 - \cos kh)\ln\left(\frac{h}{a} + \sqrt{\frac{h^{2} + 1}{a^{2}}}\right)$$

$$BI = \int_{-h}^{h} \frac{\sin\theta_{2}(\cos kz - \cos kh)dz}{R_{2}}$$

Similary

$$CR = -\int_{h_1}^{h} \frac{\cos \theta (\sin k|z| - \sinh)}{R_1} dz$$

$$CI = \int_{h_2}^{h_1} \frac{\sin \theta_1 (\sin k|z| - \sin kh)}{R_1} dz$$

$$DR = -\int_{h}^{h} \frac{\cos \theta_{2}(\sinh |z| - \sinh h) dz}{R_{2}} - \int_{h}^{h} \frac{\sinh h}{R_{2}} dz$$

$$DI = \int_{-h}^{h} \frac{\sin \theta_{2}(\sinh |z| - \sinh h) dz}{R_{2}}$$

$$R_{1} = \sqrt{(h-z)^{\frac{2}{4}} a^{2}}$$

$$R_{2} = \sqrt{z^{2} + a^{2}}$$

$$\theta_{1} = 2\pi R_{1}$$

$$\theta_{2} = 2\pi R_{2}$$

D. COMPUTER PROGRAM FOR THEORETICAL ANALYSIS

This theoretical analysis is run by the computer
NEAC-SERIES 2200 which is installed at The Computer Science
Center, Chulalongkorn University.

```
200
FORTRAN
                       STURCE LISTING A D DIAGNOSTICS
                                                                           DROGRAM: 0
              PROGRAM SILVING IMPEDANCE OF STUB CYLINDRICAL RADIATOR
       C
              ZR=RESISTALCE OF SILM CYLINDRICAL ANTENNA
       C
              ZI=REACTONCE OF STUB CYLINTRICAL ANTENNA
              XI = ALTENNA LENGTH
001
              EXTERNAL RIORZOFUNIOS SINOCOS
002
              PI=3.14155
003
              DO 40 I=102
004
              READ (2.5) AAA
            5 FORMAT(FI . 1)
005
(1)6
              DT = (1. 114
007
              XI = . ?
010
              WRITE (3.1 )
           1" FOR MATCHE , 8x , 38H MPFDANCE OF STUB CYLINDRICAL RADIATOR , ///)
011
012
              WRITE (3,15)
013
           15 FORMAT(1 X,14HANTENNE LENGTH, 10X, LOHRES! TANCE, 10X, 9HRFACTANCE,/
           2 CALL INTERESTINES, FUNE, X. - DT. PT. AAA, AR)
014
015
              CALL INTGIAL SINGTINION OF TOTOPT , AAA , AT)
016
              AA = > * AI ( G(AAA)
017
              El =- 311 + 14
020
              AAAA=AAA/
021
              RL=2.*ALCS(ASAA+SORT((ADAA)**2+1.1)
022
              AR=-AR/AA
023
              AI=AI/AA
024
              S=SIN(2.*P[*XL)
025
              C=COS(2.*FI*XL)
026
              CALL INTE (R2, COS, FUN) , X_, DT, PI, AAA, BR)
027
              CALL INTG(R2,SIN,FUN1,X1,DT,PI,AAA,RI)
030
              BR= (1.-C) *RL-BR
031
              CALL INTG (R1 + COS + FUN2 + XL + D1 + P1 + AAA + CR)
032
              CALL INTERPOSINOFINZOXLODIOPIOAAAOCI)
033
              CALL INTGIRZ, COS, FUN: , X . DT, PI, AAA, DR)
034
              CALL INTS FRASINOFINANX D PINAAA,DID
035
              DR=-PL*S-DR
036
              XKR=(BR*S-CR-DR*C)/AA
037
              XKI=(BI*S+CI-DI*C)/A4
040
              DV=S**2+2.*XKR*5+XKR**2+XK1**2
041
              ZR=EL*(XKI*C+XKI*AR-AI*S-AI*XKR)/DV
0.42
              ZI=FL*(S*C+AR*S+XYFXC+AP*XYR+AT*XKT)/DV
043
              WRITE (3,25) XL, ZP,71
044
           25 FORMAT(1 - Y , F5 , 2 , 20 X , F9 , 3 , 11 X , F9 , 3 , /)
045
              XL=XL+11 5
046
              IF (XL.LE. .7) GO TO 20
047
           40 CONTINUE
050
              STOP
051
              END
```

	FORTRAN	200	SOURCE LISTING AND	D DIAGNOSTICS	 PROGRA
	001 002 003 004		N R1(X, XL, AAA) ((XL-X)**2+(2,*XL/	AAA)**2)	
and Manager Street, and					
	FORTRAN	200	SOURCE LISTING AND	DIAGNOSTICS	PROGRA
	001 002 003 004		N R2(X, XL, AAA) (X**2+(2.*XL/AAA)*	*2)	 1 12. 2 1 2
	Ţ.				
unic .	T-4 (F		:		
(10)	FORTRAN	200	SOURCE LISTING AND	D DIAGNOSTICS	PROGRA
	001 002 003 004 005	PII=2.*	N FUN1(X,XL,PI) PI S(PII*X)-COS(PII*X	L)	
•	FORTRAN	200	SOURCE LISTING AN	D DIAGNOSTICS	PROGRA
	001 002 003 004 005	PII=2.	ON FUNZ(X,XL,PI) PI IN(PII*ABS(X))-SIN(PII*XL)	
				3	

FORTRAN	SOURCE LISTING AND DIAGNOSTICS	
001 002	SUBROUTINE INTG(F1,F2,F3,XL,DT,PI,AAA,SUM) X=-XL	
003 004	R=F1(X,XL,AAA) A=F2(2,*P1*R)	
005 006	B=F3(X,XL,PI) CL=A*B/R	
007 010	IF(X+XL)3,2,3 SUM=CL/2.	
011	GO TO 4 SUM=SUM+CL	
013 014	X=X+DT IF(X-XL)1,1,50	
015 016	SUM=SUM-CL/2. SUM=SUM*DT	
017 020	RETURN END	

0 4 6

IMPEDANCE OF STUB CYLINDRICAL RADIATOR

	h/a = 13.1		23.
	ANTENNA LENGTH	RESISTANCE	REACTANCE
	•20	16.113	-24.319
	• 25	27.751	5.929
	•30	45.156	30.956
	• 35	72.196	51.510
	• 40	117.162	61.459
	•45	181.515	29.593
	•50	187.358	-72.527
-	•55	101.970	-111.181
	•60	49.725	-82.757
	•65	31.967	-50.097
	•70	29.194	-23.867

IMPEDANCE OF STUB CYLINDRICAL RADIATOR h/a = 75

n	1a = 75		0.6
Α	NTENNA LENGTH	RESISTANCE	24. REACTANCE
7.11	TENGT	RESISTANCE	NEACT RIVE
	•20	17.347	-49.884
	• 25	31.274	12.575
	•30	56.243	74.569
	•35	102.979	142.786
	•:40	220.683	220.348
	• 45	511.262	155.350
	•50	443.014	-296.365
	• 55	150.832	-276.116
	•60	62.591	-174.047
	•65	37.242	-98.957
	.70	33.532	-40.307

