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CHAPTER I 
 

INTRODUCTION 
 

 1.1 Amino acids 

 

       1.1.1 General structure 

 

       Alpha–amino acids are the building blocks of proteins. A protein forms via the 

condensation of amino acids to form a chain of amino acid "residues" linked by peptide 

bonds. [1] Proteins are defined by their unique sequence of amino acid residues; this 

sequence is the primary structure of the protein. Amino acids can be linked in varying 

sequences to form a huge variety of proteins. Twenty standard amino acids are used by 

cells in protein biosynthesis, and these are specified by the general genetic code. These 

20 amino acids are biosynthesized from other molecules, but organisms differ in which 

ones they can synthesize and which ones must be provided in their diet. The ones that 

cannot be synthesized by an organism are called essential amino acids. 

      As can be seen in Figure 1.1, R represents a side chain specific to each amino acid. 

The central carbon atom, called Cα, is a chiral central carbon atom (with the exception of 

glycine) to which the two termini and the R–group are attached. Amino acids are usually 

classified by the properties of the side chain into four groups. The side chain can make 

them behave like a weak acid, a weak base, a hydrophile if they are polar, and 

hydrophobe if they are nonpolar. 

N
C

H

C

O

O
R

HH

H

 
Figure 1.1 The general structure of amino acid. 
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        As amino acids have both a primary amine group and a primary carboxyl group, 

these chemicals can undergo most of the reactions associated with these functional 

groups. These include nucleophilic addition, amide bond formation and imine formation 

for the amine group and esterification, amide bond formation and decarboxylation for the 

carboxylic acid group. The multiple side chains of amino acids can also undergo 

chemical reactions. The types of these reactions are determined by the groups on these 

side chains and are discussed in the articles dealing with each specific type of amino acid. 

                  

          1.1.2 Conformation of amino acid and peptide  

 

          Protein folding has received intense study due to its fundamental importance in living 

organisms. The growing availability of protein sequences and increasing recognition are a 

result of misfolded proteins. Dipeptide models are increasingly used in peptide folding 

studies as they represent the smallest possible structural unit for the study of typical 

triamide conformations, such as β–turns, in protein folding. [2] The most popular models 

used in calculations are N–acetyl–Xxx–N'–methylamide or N–formyl–Xxx–N'–acetamide 

where Xxx is amino acid as shown in Figure 1.2. The conformations of peptide are 

defined by Ramachandran map [3,4], the details about the Ramachandran map are 

discussed in Chapter III.  

 

N
C

H

C
O

H

N

O

CH3H3C

R
HO

                          

N
C

H

C
O

H

N

O

HH

R
HO

 
                           (a)                                                                                 (b) 

Figure 1.2 Dipeptide models used in calculations (a) N–acetyl–Xxx–N'–methylamide (b) 

N–formyl–Xxx–N'–acetamide, R represent side–chain of the amino acid. 
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       1.1.3 Acid–base chemistry of amino acids 

 

       As amino acids have both the active groups of an amine and a carboxylic acid they 

can be considered both acid and base (though their natural pH is usually influenced by 

the R group). At a certain pH known as the isoelectric point, the amine group gains a 

positive charge (is protonated) and the acid group a negative charge (is deprotonated) as 

shown in Figure 1.3. The exact value is specific to each different amino acid. Like typical 

acidic compound, the acid strength of both amino and carboxylate groups are defined as 

association constants, Ka or the well–known form pKa. This phenomenon can be observed 

by the titration method combined with potentiometry, NMR and UV spectroscopy. [5] 

 

 

N
C

H

C

O

O
R

HH

H

H

            

N
C

H

C

O

O
R

HH

H

         

N
C

H

C

O

O
R

HH
 

pKa~3   pKa~9 

Figure 1.3 Acid–dissociation equilibria of amino acid. 

             

      Depending on the polarity of the side chain, amino acids vary in their hydrophilic or 

hydrophobic character. These properties are important in protein structure and protein–

protein interactions. The importance of the physical properties of the side chains comes 

from the influence this has on the amino acid residues' interactions with other structures, 

both within a single protein and between proteins. The distribution of hydrophilic and 

hydrophobic amino acids determines the tertiary structure of the protein, and their 

physical location on the outside structure of the proteins influences their quaternary 

structure. For example, soluble proteins have surfaces rich with polar amino acids like 

serine and threonine, while integral membrane proteins tend to have outer ring of 

hydrophobic amino acids that anchors them into the lipid bilayer, and proteins anchored 

to the membrane have a hydrophobic end that locks into the membrane. Similarly, 

proteins that have to bind to positively–charged molecules have surfaces rich with 

negatively charged amino acids like glutamate and aspartate, while proteins binding to 



 4

negatively–charged molecules have surfaces rich with positively charged chains like 

lysine and arginine. 

  

      1.1.4 Metal complex of amino acids 

 

      The metalation of amino acids, peptides and nucleic acids plays a crucial role in 

several phenomena. In particular, alkali metal cations; lithium, sodium and potassium 

have been found in biological systems. The cations interact with proteins and peptide to 

control the structure and regulate the properties [6–8], transport process through trans–

membrane channel.  [9,10] The cations can bind to a variety of sites on peptides, 

including the amino nitrogen at the N–terminus and the carbonyl oxygen atom at the C–

terminus as well as the binding atoms on the side chain of amino acids. The coordination 

modes of metal ions greatly influence their binding energies and to some extent their site 

of attachment to a ligand. Some cations have a strong preference for a particular 

coordination mode, while others can adopt different coordination geometries. These 

coordination preferences could play a significant role in the biological functions of 

metal–containing enzymes. The metal–specific binding sites of some proteins achieve 

their selectivity by providing a coordination environment preferred by only one metal ion 

naturally found in living system. The fact that a variety of metals can bind easily to 

peptides has been exploited in the field of mass spectrometry, where metal ions such as 

Li+, Na+, Cu+ and Ag+ have been used as ionizing agents for peptide sequencing. [11–13] 

Exploring the nature of these metal–ion peptide interactions will not only provide 

information on their binding energies to a class of biologically important molecules, but 

will also extremely useful in the interpretation of mass spectra of such complexes 

obtained either under metastable or via collision–induced dissociation conditions. 

 

1.2 Aspartic acid 

 

      Aspartic acid (abbreviated as Asp or D) is an α–amino acid with the chemical 

formula NH2CH(CH2COOH)COOH. Aspartic acid is non–essential in mammals, being 

produced from oxaloacetate by transamination. In plants and microorganisms, aspartic 
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acid is the precursor to several amino acids, including four that are essential: methionine, 

threonine, isoleucine, and lysine. The conversion of aspartic acid to these other amino 

acids begins with reduction of aspartic acid to its "semialdehyde," 

NH2CH(CH2COH)COOH. Aspartic acid is also a metabolite in the urea cycle and 

participates in gluconeogenesis. Aspartic acid donates one nitrogen atom in the 

biosynthesis of inositol, the precursor to the purine bases. Aspartate (the conjugate base 

of aspartic acid) stimulates NMDA receptors, though not as strongly as the amino acid 

neurotransmitter glutamate does. It serves as an excitatory neurotransmitter in the brain 

and is an excitotoxin. 

     Aspartic acid is classified as polyprotic acid. The chemical formula is 

NH2CH(CH2COOH)COOH. In equilibrium, cationic, zwitterionic, zwitter–anionic and 

dianionic species of aspartic acid were presented at the wide pH range of acidic to basic 

aqueous solution. [14,15]  The structure of the four ionic species and corresponding acid–

dissociation constants of aspartic acid are shown in Figure 1.4.  

 

 
 
Figure 1.4 pH dependence of four typical species of aspartic acid in aqueous solution and 

protonation reversible mechanism. 

           

1.3 Literature reviews 

 

      The experimental acid–dissociation constants pKa1 = 2.10, pKa2 = 3.86, pKa3 = 9.82 

obtained by potentiometric titration method and pKa1 = 2.00, pKa2 = 3.90, pKa3 = 9.80 

obtained by NMR titration method. [16,17]  
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      The lithium and sodium affinities of aspartic acid have been experimentally 

determined using mass spectrometry with kinetic method. [18–20] The vanadium (III) 

complexes of various species of aspartic acid in a wild pH range have been determined 

using UV-Vis spectrometry. [21] The single crystal structures of zinc (II), nickel (II) and 

copper (II) complexes of aspartate (asp2–) have also been solved. [22–24] The results 

show that aspartate ligand forms tri-coordinate structure with zinc or nickel ions using 

three binding atoms; amino-N, α- and β-carbonyl-O, respectively. Bi-coordinate structure 

is found for copper complex which aspartate ligand use only amino-N and α-carbonyl-O 

bind with the cation. 

      The conformations of dipeptide models of aspartic acid, N–acetyl–aspartic–N'–

methylamide and N–formyl–aspartic–N'–acidamide have been studied using density 

functional theory and γL conformation is found to be the most stable form of aspartic acid 

in both peptide models. [25,26] 

 

1.4 Objectives 

 

       This research is focused on three topics based on density functional calculation. 

Firstly, the gas phase conformations of various aspartic species including cationic 

(H3asp+), zwitterionic (H2asp), zwitteranionic (Hasp−) and dianionic (asp2−) are explored 

using potential energy surface (PES) method. Secondly, the complexations between alkali 

cations; lithium, sodium and potassium and species asp2−, Hasp−, H2asp of aspartic acid 

are investigated. Finally, acid–dissociation constants, pKa of aspartic species in aqueous 

solution are determined using Polarize continuum model (PCM) as solvent–effect 

calculation.  



CHAPTER II 
 

THEORETICAL METHOD 
 

2.1 Introduction to quantum mechanics 

       

      The word quantum comes from Latin and first used by Max Plank in 1900 to donate 

the constrained quantities or amounts in which energy can be emitted or adsorbed. 

“Mechanics” as used in Physics is traditionally the study of the behavior of bodies under 

the action of forces. The Term “quantum mechanics” is apparently first used by Born (the 

Born-Oppenheimer approximation) in 1924. Because of molecules are consisted of nuclei 

and electrons, quantum chemistry deals with the motion of electron under the influence of 

the electromagnetic force exerted by nuclear charges. An understanding of the behavior 

of electrons in molecules, structures and reactions of molecules, rest on quantum 

mechanics and in particular on the adornment of quantum chemistry, the Schrödinger 

equation. [27] 

 

2.2 Solution of the Schrödinger equation of molecular systems 

       

      2.2.1 The Schrödinger equation 

       

      The ultimate goal of most quantum chemical approaches is the approximate solution 

of the time-independent, non-relativistic Schrödinger equation: 

                  ),.....,,,.....,(),.....,,,.....,(ˆ
21212121 MNiMNi RRRxxxiΨRRRxxxΨH

rrrrrrrrrrrr
=              2.1 

      where Ĥ is the Hamiltonian operator for a molecular system consisting of M nuclei 

and N electrons in the absence of magnetic or electric fields. Ĥ is a different operator 

representing the total energy: 
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     Here, A and B run over the M nuclei while i and j denote the N electrons in the 

systems. The first two terms describe the kinetic energy of the electrons and nuclei 

respectively, where the Laplacian operator  is defined as a sum of differential operator 

(in Cartesian coordinates) 

2∇

     MA is the mass of nucleus A in multiples of mass of an electron. The remaining thee 

terms define the potential parts of the Hamiltonian and represent the attractive 

electrostatic interaction between the nuclei and electrons and the repulsive potential due 

to the electron-electron and nucleus-nucleus interactions, respectively. Rpq (and similarly 

Rqp) is the distance between the particles p and q, i.e. rpq = qp rr rr
− . 

),.....,,,.....,( 2121 MNi RRRxxx
rrrrrrψ  stands for the wave function of the ith state of the system, 

which depends on the 3N spatial coordinates{ ir
r }, and the N spin coordinates {SI}of 

electrons, which are collectively termed { ixr }, and the 3M spatial coordinates of the 

nuclei { iR
r

}. The wavefunction Ψi contains all information that can be possibly known 

about the quantum system at hand. Finally, EI is the numerical value of the energy of the 

state described by Ψi. 

     All equations given in this text appear in a very compact form, without any 

fundamental physical constants. We achieve this by employing the so-called system of 

atomic units, which is particularly adapted for working with the atoms and molecules. In 

this system, physical quantities are expressed as multiplies of fundamental constants and 

if necessary, as combinations of such constants. The mass of an electron, me, the modulus 

of its charge, ׀  e׀, Plank’s constants h divided by 2π, ħ, and 4π, ε0, the permittivity of the 

vacuum, are all set to unity. Mass, charge, action etc. are then expressed as multiples of 

these constants, which can therefore be dropped from all equations. [27] 

 

    2.2.2 Born-Oppenheimer approximation 

     

    The Schrödinger equation can be further simplified if we take advantage of the 

significant difference between the masses of nuclei and electrons. Even the lightest nuclei, 

proton (1H), weight roughly 1800 times more than an electron. Thus, the nuclei move 

much more slower than the electrons. The practical consequence ids that we can at least 
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to a good approximation take the extreme point of view and consider the electrons as 

moving in the field of fixed nuclei. This is the famous Born-Oppenheimer or clamped 

nuclei approximation. If the nuclei fixed in space and do not move, their kinetic energies 

are zero and the potential energy due to nucleus-nucleus repulsion is merely a constant. 

Thus, the complete Hamiltonian give in equation 2.4 reduces to the so-called electronic 

Hamiltonian: 

                                     ∑∑∑∑∑
= >= ==
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     The solution of the Schrödinger equation with  is the electronic wavefunction 

Ψ

elecĤ

elec and the electronic energy Eelec. Ψelec depends on the electron coordinates, while the 

nuclear coordinates enter only parametrically and do not explicitly appear in Ψelec. The 

total energy Etotal is then the sum of Eelec and the constant nuclear repulsion term:  

                                                      ∑∑
= >
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                                                    2.5 

and                                                  

                                                                                                        2.6 elecelecelecelec ΨEΨH =ˆ

then                                                  

                                                        Etotal = Elec + Enuc                                                       2.7 

      The attractive potential exerted on the electrons due to the nuclei-the expectation 

value of the second operator  in the equation 2.4 is the often termed the external 

potential, V

eNV̂

ext, in the density functional theory, even though the external potential is not 

necessarily limited to the nuclear field but may include external magnetic or electric field 

etc. From now on we will only consider the electronic problem of equation 2.4-2.6 and 

the subscript “elec” will be dropped. [28] 

 

     2.2.3 The Hartree-Fock Method 

 

      The Hartree-Fock Method seeks to approximately solve the electronic Schrödinger 

equation, and it assumes that the wavefunction can be approximated by a single Slater 

determinant made up of one spin orbital per electron. Since the energy expression is 
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symmetric, the variation theorem holds, and so we know that the slater determinant with 

the lowest energy is as close as we can get to the true wavefunction for the assumed 

functional form of the single determinant.  The Hartree-Fock equation determines the set 

of spin orbitals which minimize the energy and gives us this best single determinant. So, 

we need to minimize the Hartree-Fock energy expression with respect to changes in the 

orbitals: 

                                                             χi → χi + δχI                                                        2.8 

      We have also been assuming that the orbitals are orthonomal, and we want to ensure 

that our variation procedure leaves them orthonormal. The Hartree-Fock equation can be 

solved numerically (exact Hartree-Fock), or they can be solve d in the space spanned by a 

set of basis set functions (Hartree-Fock-Roothaan equation). In either case, note that the 

solution depends on the orbitals. Hence, we need to guess some initial orbitals and then 

refine our guess iteratively. For this reason, Hartree-Fock is called self-consistent-field 

(SCF) approach. 

      The first term above in the square brackets: 

                                                  [ ] )()( 1
1

12

2

22 xrxdx i
ij

j χχ∑ ∫
≠

−                                             2.9 

 gives the Coulomb interaction of an electron in spin orbital χi with the average charge 

distribution of the other electrons. Here we see in what sense Hartree-Fock is a mean 

field theory. This is called Coulomb term and it is convenient to define a Coulomb 

operator as: 

                                                 ∫ −1
12

2

221 )()( rxdxxJ jj χ                                                  2.10 

this gives the average local potential point x1 due to the charge distribution from the 

electron in orbital χj. We can define an exchange operator in terms of its action on an 

arbitrary spin orbital χi: 

                                       [ ] )()()()()( 12
1

122
*

211 xxrxdxxxK jijij χχχχ ∫ −=                         2.11 

      Introducing a basis set transforms the Hartree-Fock equation into the Roothaan 

equation. Denoting the atomic orbital basis functions as χ , we have the expression: 

                                                        ∑ =
=

K
ii c

1µ µµ χχ                                                      2.12 

for each spin orbital i. This leads to: 



 11

                                                        ∑∑ =∈
v

vii
v

vi xcxcxf )(~)(~)( 111 χχ                           2.13 

This can be simplified by introducing the matrix element notation: 

                                                          )()( 11
*

1 xxdxS vv χχ µµ ∫=                                       2.14 

                                                          )()( 11
*

1 xxdxF vv µµ χχ∫=                                       2.15 

Now the Hartree-Fock-Roothaan equation can be written in matrix form as: 

                                                        ∑ ∑=∈
v

viviviv CSCF µµ                                          2.16 

or even more simply as matrices: 

                                                                FC = SC∈                                                       2.17 

where ∈  is a diagonal matrix of orbital energies i∈ . This is like an eigenvalue equation 

except for the overlap matrix S. One performs a transformation of basis to go to an 

orthogonal basis to make S vanish. Then it’s just a matter of solving an eigenvalue 

equation well, not quite. Since F depends on it’s own solution (through the orbitals), the 

process must be done iteratively. This is why the solution of Hartree-Fock-Roothaan 

equation is often called the self-consistent-field procedure. 

 

      2.2.4 Basis sets 

 

      The approximate treatment of electron-electron distribution and motion assigns 

individual electron to one-electron function, termed spin orbital. These consist of product 

of spatial functions, termed molecular orbitals (MO), ψ1 (x,y,z), ψ2 (x,y,z), ψ3 

(x,y,z),….and either α or β spin components. The spin orbitals are allowed complete 

freedom to spread throughout the molecule. Their exact forms are determined to 

minimize the total energy. In the simplest level of theory, a single assignment of electron 

to orbital is made by used ψ as atomic orbital wavefunction based on the Schrödinger 

equation for the hydrogen atom. This is not a suitable approach for molecular calculation. 

This problem can be solved by representing MO as linear combination of basis functions. 
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      In practical calculation, the molecular orbitals ψ1, ψ2,…..ψN are further restricted to 

be linear combinations of a set of N known one-electron function φ1 (x,y,z), φ2 (x,y,z), φ3 

(x,y,z),…., φN (x,y,z): 

                                                              ∑
=

=
N

ii c
1µ

µµ φψ                                                     2.18 

      The functions φ1, φ2,….., φN which are defined in the specification of the model, are 

known as one-electron basis function called basis function. The set of basis function is 

called basis set. If the basis functions are the atomic orbitals for the atoms making up the 

molecule, function is equation 2.18 is often described as linear combination of atomic 

orbitals (LCAO). There are two types of basis function which commonly used in the 

electronic structure calculations, Slater type orbitals (STO) and Gaussian type orbitals 

(GTO). 

       The Slater orbitals are primarily used for atomic and diatomic systems where high 

accuracy is required and semi empirical calculations where all three- and four-center 

integrals are neglected. The Slater type orbitals have the function form: 

                                                                                                    2.19 ),(1* φθξ
lm

nr YrAeb −−=

Where parameter n* and ξ are chosen to make the larger part of the orbitals look like 

atomic Hartree-Fock orbitals. There are a lot like hydrogen orbitals, but without the 

complicated nodal structure. 

     The Gaussian type orbitals can be written in terms of polar or cartesian coordinates: 

                                                                                                2.20 ),(
2

φθα
lm

rcba Yezyxg −=

in which a, b, c are integers and α is a parameter that is usually fixed. Primitive Gaussian 

function is shown in equation 2.20. Normally, several of these Gaussian functions are 

summed to defined more realistic atomic orbital basis functions, as shown below: 

                                                        ∑=
p

pp gkb µµ                                                          2.21 

        The coefficient kµp in this expression are chosen to make the basis functions look as 

much like Slater orbitals as possible. Slater functions are good approximation to atomic 

wavefunctions but required excessive computer time more than Gaussian functions, while 

single-Gaussian functions are poor approximation to nearly ideal description of an atomic 
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wavefunction that Slater function provides. The solution to the problem of this poor 

functional behavior is to use several Gaussians to approximate a Slater function. In the 

simplest version of this basis, n Gaussian functions are superimposed with fixed 

coefficients to form Slater type orbital. Such a basis is denoted STO-nG, and n = 3, 4. 

         The limit of quantum mechanics involves an infinite set of basis function. This is 

clearly impractical since the computational expense of molecular orbital calculations is 

proportional to the power of the total number of basis functions. Therefore, ultimate 

choice of basis set size demands on a compromise between accuracy and efficiency. The 

classification of basis sets is given below.  

 

                2.2.4.1 Minimal basis sets 

   

                The minimum basis set is a selected basis function for every atomic orbital that 

is required to describe the free atom. For Hydrogen atom, the minimum basis set is just 

one 1s orbital. But for carbon atom, the minimum basis set consists of a 1s, 2s and the 

full set of three 2p orbitals. For example, the minimum basis set for the methane 

molecule consists of 4 1s orbitals, one per hydrogen atom, and the set of 1s, 2s and 2p 

orbitals described above for carbon. Thus, total set comprises of 9 basis functions. 

    Several minimum basis sets are used as common basis sets especially the STO-nG 

basis sets because they are available for almost all elements in the periodic table. The 

most common of basis sets is STO-3G, where a linear combination of three Gaussian 

type orbitals (GTOs) is fitted to Slater type orbital (STO). The individual GTOs are 

called primitive orbitals, while the combined functions are called contracted functions. 

For example, the STO-3G basis set for methane consists of total of 9 contracted functions 

built from 27 primitive functions.  

          

           2.2.4.2 Scaled orbital by splitting the minimum basis set 

 

                In the early calculation on the hydrogen molecule, it is discovered that STO 1s 

orbitals do not give the best result in the molecular environment when the Schrödinger 

equation is solved, because electron is attracted to both nuclei rather than just one nucleus. 
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In each molecular orbital, both large and small sets of orbital appear and they are mixed 

in the ratio that gives the lowest energy. The combination of a large orbital and a small 

orbital is essentially equivalent to an orbital of intermediate size. The result orbital is a 

size that best fit for the molecular environment since it is obtained from minimizing the 

energy. The advantage of this procedure is that the mixing coefficients in the molecular 

orbitals appear in a linear function.  The simplest dodge is equivalent to scaling the single 

minimal basis set orbitals. The minimum basis set can scaled not only the valence orbitals 

of the minimal basis set (split valence basis set) but also all the orbitals of the minimal 

basis set (double zeta basis sets). 

 

                2.2.4.3 Split valence basis sets 

 

                A split valence basis sets uses a number of different sizes of basis functions per 

atomic orbital. They effectively account for change in size of atomic orbitals (but not the 

shape) to fit the molecular structures. The 6–31G basis set is an example of a double split 

valence basis set which uses 6 primitive Gaussians to form the basis function of the core 

orbitals. The 31 in 6–31G indicates the outer valence orbitals are split into two sets of 

basis functions, where 3 primitive Gaussians form basis function of more inner valence 

orbitals and 1 primitive Gaussian form basis function of the outermost orbitals. The 

alterations in the sizes of the outer orbitals in split valence basis sets allow for accurate 

descriptions of bonding interactions within the molecular structures. 

 

                 2.2.4.4 Polarized basis sets 

 

                 Polarization functions are used to describe a change in shape of atomic orbitals. 

They do this by adding orbitals with angular momentum to particular atoms depending on 

the set of polarization functions assigned.  An example of this is 6–31G(d) (also denoted 

as 6–31G*), where the d orbital function are added to the 2nd row atoms such as carbon or 

oxygen, which contain only p orbitals. The 6–31G(d,p) basis sets (or 6–31G**) goes a 

step further by adding p orbital functions to the hydrogen atoms. This function tends to 

yield a greater accuracy of electron density and bonding interactions.  
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                2.2.4.5 Diffuse basis sets 

 

                Species with significant electron density far from removed from the nuclear 

centers e.g. anions, lone pairs and excited states require diffuse functions to account for 

the outermost weaker bound electrons. Diffuse basis sets are recommended for 

calculations of electron affinities, proton affinities, inversion barriers and bond angle in 

anions. The addition of diffuse s– and p–type Gaussian functions to non–hydrogen atoms 

is denoted by plus sign–as 6–31+G. Further addition of diffuse functions to both 

hydrogen and larger atoms is indicated by a double plus. [28,29] 

       

2.3 Density functional theory (DFT) 

 

       2.3.1. The Hohenberg–Khon theory 

             

       Within a Born–Oppenheimer approximation, the ground state of the system is a 

result of the position of the nuclei. In quantum mechanic Hamiltonian equation, the 

kinetic energy  and the electron–electron interaction adjust themselves to the 

external potential to obtain the lowest total energy. Thus, the external potential can 

be uniquely determined from the knowledge of the electron density. The Hohenberg–

Khon theory states that if N interacting electrons move in an external potential V

ˆ( )eT ˆ( eeV )

)ˆ( extV

ext, the 

ground state electron density ρ0(r) minimizes the functional 

                                            [ ] [ ] drrVrrFE ext )()(ρρ ∫+=                                              2.22 

In equation 2.7, F[ρ] is a universal functional of  ρ0(r) and the minimum value of the 

functional E is E0, the exact ground state electronic energy. 
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and the density can be obtained by using the variation principle. 
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         2.3.2. The Khon–Sham (KS) equation 

             

         Khon and Sham introduced a method based on the Hohenberg–Khon theorem that 

allows one to minimize the functional E[n(r)] by varying ρ(r) over all densities 

containing N electrons. They derives the couple set of differential equations enabling the 

ground state density ρ0(r) to be found. Khon and Sham separated F[ρ(r)] in the equation 

2.7 into three distinct parts. The functional E becomes  

        [ ] [ ] [ ] drrVrrrEdrdr
rr

rrrTrE extXCs )()()('
'

)'()(
2
1)()( ∫++

−
∫∫+= ρρρρρ       2.24 

Where Ts[ρ(r)] is defined as the kinetic energy of a non–interacting electron gas with 

density ρ(r),  

                                                 [ ] drrrrT ii
i

s )()(
2
1)( 2* ψψρ ∇∑−=         2.25 

and EXC[ρ(r)] is the exchange–correlation energy functional. Introducing a normalization 

constraint on the electron density,  by the Lagrange’s method of 

undetermined multiplier can obtain  

Ndrr =∫ )(ρ

                                            [ ] [ ]{ } 0)()( =−∫− NdrrrE ρµρδ            2.26 

where µ is an undetermined Largrange multiplier. The number of electron in the system 

is constant so δN = 0. Then equation 2.11 is reduced to 

                                                [ ] ( ) 0)()( =∫− drrrE ρµδρδ                                             2.27 

Using the definition of the differential of the functional dxxf
xf

FF )(
)(
δ

δ
δδ ∫=  is the fact 

that the differential and the integral signs can be interchanged, 
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Equation 2.14 can now be written in terms of an effective potential, Veff(r),  
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where 

                )('
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rrVrV XCexteff +

−
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ρ                          2.31 

and  

                                               
[ ]
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r

rE
rV XC

XC δρ
ρδ

=                                     2.32 

To find the ground state energy, E0(r), and the ground state density, ρ0(r), the one 

electron Schrödinger equation 

                                                  )()()(
2
1 2 rrrV iiieffi φεφ =⎟

⎠
⎞

⎜
⎝
⎛ +∇−                                   2.33 

should be solved self–consistently with 

 2

1
)()( rrr i

N

i
φ

=
∑=                                                   2.34 

similar to the SCF procedure in the Hartree–Fock method. Then the density ρ(r) can be 

solved iteratively. A self–consistent solution is required due to the dependence of           

Veff(r) on ρ(r). 

 

         2.3.3 DFT exchange and correlations 

 

         The form of EXC is generally unknown and its exact value has been calculated only 

for a few very simple systems. In the density functional theory, the exchange energy is 

defined as    

                                                   [ ] [ ] [ ] [ ]ρρφρφρ UVE eeX −=
∧

                                   2.35 

when U[ρ] is the Hartree piece of the columbic potential. The correlation term is defined 

as the remaining unknown piece of the energy:  

                                                 [ ] [ ] [ ] [ ] [ ]C sE F T U EXρ ρ ρ ρ ρ= − − −                             2.36 

Due to the definition of F[ρ], the correlation energy consists of two separate 

contributions: 
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                                                  [ ] [ ] [ ]C CE T Uρ ρ ρ= +                                                    2.37 

When TC[ρ] and UC[ρ] are respectively the kinetic contribution and the potential 

contribution of the correlation energy. 

          In electronic structure calculations, EXC is the most commonly approximation 

within the local density approximation or generalized–gradient approximation. In the 

local density approximation (LDA), the value of EXC[ρ(r)] is approximated by exchange–

correlation energy of an electron in homogeneous electron gas of the same density ρ(r), 

i.e. 

[ ] drrrrE XC
LDA
XC )())(()( ρρρ ∈∫=                                    2.38 

The most accurate data for ))(( rXC ρ∈  is calculated from Quantum Monte Carlo 

calculation. For the systems with slowly varying charge densities, this approximation 

generally gives very good results. An obvious approach to improve the LDA, so called 

generalized gradient approximation (GGA), is to include gradient corrections by making 

EXC a function of the density and its gradient as shown below 

          [ ] [ ]drrrFdrrrrE XCXC
GGA
XC )(),()())(()( ρρρρρ ∇∫+∈∫=                        2.39 

where FXC is a correction chosen to satisfy one or several known limits for EXC . Clearly, 

there is no unique equation for the FXC, and several functions have been proposed. The 

development of the improved functions is currently a very active area of research 

although incremental improvements are likely. It is ambiguous whether the research will 

be successful in providing the substantial increase in accuracy that is desired. 

 

          2.3.4 Hybrid functions 

                       

           From the Hamiltonian equation and the definition of the exchange–correlation 

energy, an exact connection can be made between the EXC and the corresponding 

potential connecting with the non–interacting reference and the actual system. The 

resulting equation is called the Adiabatic Connection Formula (ACF) and involves an 

integration over the parameter λ which turns on the electron–electron interaction 

λψλψ λλ dVE XCXC )(
1

0
∫=                                                           2.40 
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In the λ=0 limit, the electrons are non–interacting and there is consequently no 

correlation. Since the KS wave function is simply the single Slater determinant of orbitals 

and the KS orbitals are identical to the HF orbitals, the exact exchange energy is precisely 

the HF exchange energy: 

        [ ] exact
X

jiji
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λφ                   2.41 

The approximation of the exchange–correlation can be made by summing EXC terms of 

different values of λ within the limitation λ = 0 to 1. The choice of terms is arbitrary. The 

approximation of the exchange–correlation can be made by summing EXC terms of 

different values of λ within the limitation λ = 0 to 1. The choice of terms is arbitrary. 

Hybrid functions include the mixture of Hartree–Fock exchange with DFT exchange–

correlation.  

       B3LYP function uses Becke’s exchange functional with a part of the mixed Hartree–

Fock exchange and a scaling factor on the correlation part but using the LYP correlation 

function. The exchange–correlation energy has the form of   

                  (1 ) (1 )Slater HF Beck VWN LYP
X X X C CAE A E B E C E C+ − + ∆ + − + E                                  2.42 

where the exchange includes the Slater exchange , or local spin density exchange, 

along with correlations involving the gradient of the density and the correlation is 

provided by the LYP and VWN correlations. The constants A, B and C are determined by 

fitting to the G1 molecule set. The values of the three parameters are determined by 

fitting to the 56 atomization energies, 42 ionization potentials, 8 proton affinities, and 10 

first–row atomic energies in the G1 molecule set, computing values of A=0.80, B=0.72 

and C=0.81. [27-29] 

Slater
XE

 

2.4 Potential energy surface (PES); minima and transition state 

 

      The Potential energy surface (PES) is a central concept in computational chemistry. A 

PES is the relationship–mathematical or graphical–between the energy of a molecule and 

its geometry. Stationary points on a PES are points where 0=
∂
∂

q
E for all q, where q is a 



20

geometric parameter. The stationary points of chemical interest are minima 0
2

ji qq
E  for

all q and transition states or first order–saddle point; 0
2

ji qq
E for one q along the reaction 

coordinate (IRC), and > 0 for all other q. chemistry is the study of PES stationary points

and the pathways connecting them as shown in Figure 2.1. 

Figure 2.1 Potential energy surface describes energy of a molecule in terms of its

structure. The minimum corresponds to an equilibrium structure  first order saddle point 

corresponds to a transition state for a reaction a reaction path is the steepest descent path 

connecting a transition state to minima.

Geometry optimizations is the process of starting with an input structure “guess” and 

finding a stationary point on the PES. The stationary point found will normally be the one 

closet to the input structure, not necessarily the global minimum. A transition state 

optimization usually requires a special algorithm, since it is more demanding than that 

required to find a minimum. Modern optimization algorithms use analytic fist derivatives 

and second derivatives.  It is usually wise to check that a stationary points ids the desired 

species (a minimum or a transition state) by calculating its vibrational spectrum (its 

normal mode vibrations). The algorithm for this work by calculating Hessian (force

constant matrix) and diagonalizing it to give a matrix with the “direction vectors” of the 
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normal modes, and a diagonal matrix with the force constants of these modes. A 

procedure of “mass weighting” the force constants gives the normal–mode vibrational 

frequencies. For a real minimum all the vibrational are real, while a transition state has 

one imaginary vibration, corresponding to the motion along the reaction coordinate. The 

criteria for transition state are appearance, the present of one imaginary frequency 

corresponding to the reaction coordinate, and energy above that of the reactant and the 

product. Besides serving to characterize the stationary point, calculation of vibrational 

frequencies enables one to predict IR spectrum and provides the zero point energy (ZPE). 

[30] 

2.5 Rate constant 

 

      An activated complex AB‡ or transition state is formed at the potential energy 

maximum as shown in Figure 2.2. The high-energy complex represents an unstable 

molecular arrangement, in which bonds break and form to generate the product AB or to 

degenerate back to the reactants A and B as shown in equation 2.28. In the simple form 

of transition state theory, it is supposed that the transition state (TS) is in equilibrium with 

the reactants, and that its abundance in the reaction mixture can be expressed in terms of 

an equilibrium constants, which is normally denoted K:         

                                                            A + B       AB         

                                                                   
[A][B]
[AB]

=K                                                   2.43 

TS
k

                 

 

 

 

 

 

 

Figure 2.2 Energy profile E: Potential energy reaction coordinate for A and B via TS 

[AB]‡.      
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 Then, if we supposed that the rate at which products are formed is proportional to the 

concentration of the TS, we can write 

                                               Rate of formation of products = k[TS] 

we see that the rate constant k is proportional to the equilibrium constants K‡ for the 

formation of the TS. We have already seen that an equilibrium constant may be express 

in term s of the standard reaction Gibbs energy, which in this case is the activation Gibbs 

energy, ∆‡G, for the formation of the TS from the reactants. It follows from the equation 

2.28 that   

                                                                                                                2.44 RTGeK /
‡

∆−=

Furthermore ∆‡G is given by  

                                                                                                         2.45 STHG ‡‡‡ ∆−∆=∆

Combining equation 2.29 and the equation 2.30 and solving for ln k yields 

                                                               
R

S
RT

H ‡‡

Kln ∆−
+

∆−
=                                     2.46 

The Eyring equation: is found by substituting equation 2.31 into equation 2.29 

                                                    R
S

RT
H

B ee
h
Tkk

‡‡ ∆∆
−

=   or  RT
G

B e
h
Tkk

‡∆
−

=                         2.47          

 

2.6 Thermochemistry 

 

      The term energy in chemistry can mean potential energy, enthalpy, or Gibbs energy. 

The potential energy on a computed Born-Oppenheimer surface represents 0K enthalpy 

difference without ZPE. Enthalpy difference ∆H and free energy difference ∆G are 

related through the entropy difference:  

                                                            ∆G = ∆H – T ∆S                                                2.48 

      To get an intuitive feel for ∆H, ∆G and ∆S we can regard it as essentially measure of 

the reaction enthalpy between product and reactant: 

                                                          ∆H = Hproduct – Hreactant                                        2.49 

                                                         ∆G = Gproduct – Greactant                                         2.50 

                                                         ∆S = Sproduct – Sreactant                                            2.51 
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        2.6.1 Partition functions 

  

        The first step in determining the thermal contributions to the enthalpies and 

entropies of a molecule id to determine its partition function, Q which is a measure of the 

number of accessible to the molecule (translational, rotational, vibrational and electronic 

states) at a particular temperature. 

       Why given the energies is Ei of the available quantum states of a molecule, Q is 

defined as:  

                                                                       ∑
∞

=

−
=

1i
iE

eigQ
β

                                     2.52 

Where gi is the degeneracy of the  ith state and 
TkB

1
=β  

                                                 

Where kB is Boltzmann’s constants ant T is the temperature of interest. The summation in 

Equation 2.37 is over all possible quantum states of the system. 

      It is assumed that the translational (T), rotational (R), vibrational (V) and electronic 

(E) modes of the system can be separated, thus allowing the energy of each level, Ei, to 

be separated into T, R, V and E contributions as 

                                                                                                2.53 E
i

V
i

R
i

T
i EEEEE +++=

      While the translational modes are truly independent from the rest, the separations of 

other modes are based on an approximation, in particular the Bohn–Oppenheimer 

approximation for electronic and vibrational motion and the rigid rotor approximation 

which assumes (that the geometry of the molecule does not change as it rotates) for 

vibrational and rotational modes. Within these approximations, the total molecular 

partition function can therefore be factorized into translational, rotational, vibrational and 

electronic contributions: 

                                                                                                            2.54 EVRT QQQQQ =

The translational partition function is given by: 

                                                                   3Λ
=

VQT                                                       2.55 
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2/1

2
⎟
⎠
⎞

⎜
⎝
⎛=Λ

m
h

π
β                                              2.56 

Where h is Planck’s constants, m is the mass of the molecule and V is the available 

volume to it. For a gas phase system this is the molar volume (usually determined by the 

ideal gas equation) at the specific temperature and pressure. 

      The formulation for rotational partition functions depends on whether or not the 

molecule is linear. For linear molecules 

                                                                     
hcB

TBk
Q R

σ
=                                                2.57 

and for non linear 

                                                             
2/12/31

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

ABChc
TkQ BR π

σ
                             2.58 

Where σ is the rotational symmetry number of the molecule, c is the speed of light and A, 

B, C are the rotational constants. The vibrational partition function in the harmonic 

approximation is  

                                                              ∏ −−
=

i vhce
QV

~
1

1
β                                         2.59 

Where v~ is the harmonic vibrational frequencies (expressed as wave numbers) and the 

product is taken over all (3N–6 or 3N–5) vibrational modes (excluding the reaction 

coordinate for transition states). For the electronic partition function it is usually assumed 

that there is no thermal excitation into the higher electronic states. Then the partition 

function, QE, is simply given by the degeneracy of the appropriate electronic state. 

 

        2.6.2 Thermodynamic properties 

 

        The thermal contributions to thermodynamic properties such as enthalpy, entropy, 

free energy, heat capacity, etc. are all derived from the molecular partition functions. For 

a system of N molecules the internal energy (relative to energy at 0 K) is given by 

                                                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−=−

β
QNUUT

ln0
0

0                                         2.60 

where the derivative is taken at constant volume. The enthalpy is therefore 
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                                                                                        2.61 VpUUHH TT ∆+−=− )( 0
0

00
0

0

                                                                                                      2.62 TNkUU BT +−= )( 0
0

0

The entropy of system is given by 

                                                      QNk
T

US B
TT ln)0( 00

0 +
−

=                                       2.63 

Then the change in Gibbs free energy is  

                                                                                          2.64 00
0

00
0

0 )( TSHHGG TT −−=−

                                                               QTNkTNk BB ln−=                                        2.65 

The Gibbs free energy change for a reaction is, of course, related to the equilibrium 

constant for the reaction: 

                                                                                                    2.66 eqBr KTNkG ln0 −=∆

 

2.7 Chemical indices and Frontier orbital 

 

       The Mulliken electronegativity (χ), chemical hardness (η) and electronic chemical 

potential (µ) for compound were computed using orbital energies of the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The 

chemical hardness, electronic chemical potential and Mulliken electronegativity were 

derived from the first ionization potential (I) and electron affinity (A) of the N–electron 

molecular system with a total energy (E) and external potential )(rv r using the relations  

                                         )(2/1)()/( AIrvNE +≅−=∂∂= µχ r                                   2.67 

                                            )(2/1)()/( 2 AIrvNE −≅∂∂=
rη                                        2.68  

and the first ionization potential and electron affinity are I=E(N−1)−E(N) and 

A=E(N)−E(N+1). [31] According to the Koopmans theorem, I and A were computed from 

the HOMO and LUMO energies using the relations: I=−EHOMO and A=−ELUMO. 

 

2.8 Polarized continuum solvation model 

 

      The Polarizable Continuum Model (PCM) by Tomasi and coworkers is one of the 

most frequently used continuum solvation methods and has seen numerous variations 
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over the years. The PCM model (Figure 2.3) calculates the molecular free energy in 

solution as the sum over three terms 

                                                        Gsol = Ges + Gdr + Gcav                                             2.69 

      These components represent the electrostatic (es) and the dispersion–repulsion (dr) 

contributions to the free energy, and the cavitation energy (cav). All three terms are 

calculated using a cavity defined through interlocking van der Waals–spheres centered at 

atomic positions. The reaction field is represented through point charges located on the 

surface of the molecular cavity (Apparent Surface Charge (ASC) model). The particular 

version of PCM that will be discussed here is the one using the United Atom for Hartree–

Fock (UAHF) model to build the cavity. In this model the vdW–surface is constructed 

from spheres located on heavy (that is, non–hydrogen) elements only (United Atom 

approach). The vdW–radius of each atoms is a function of atom type, connectivity, 

overall charge of the molecule, and the number of attached hydrogen atoms. In evaluating 

the three terms in equation 2.69 this cavity is used in slightly different ways. 

While calculation of the cavitation energy Gcav uses the surface defined by the van der 

Waals–spheres, the solvent accessible surface is used to calculate the dispersion–

repulsion contribution Gdr to the solution free energy. The latter differs from the former 

through additional consideration of the (idealized) solvent radius. The electrostatic 

contribution to the free energy in solution Ges uses an approximate version of the solvent 

excluding surface constructed through scaling all radii by a constant factor e.g. 1.2 for 

water and then adding some more spheres not centered on atoms in order to arrive at a 

somewhat smoother surface. Localization and calculation of the surface charges is 

approached through systematic division of the spherical surface in small regions 

(tesserae) of known area and calculation of one point charge per surface element. [32] 
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Figure 2.3 Solvent accessible surface (SAS) traced out by the center of the probe 

representing a solvent molecule. The solvent excluded surface (SES) is the topological 

boundary of the union of all possible probes that do not overlap with the molecule. 

 

2.9 Basis set super position error (BSSE) 

 

                 A consequence of using finite atom–centered basis sets in calculations of 

interaction energies including covalent bonding, hydrogen bonding and van der Walls 

interactions is the presence of basis set super position error. This is the phenomenon 

whereby, given an interacting system AB, the moiety A can be stabilized by the nearby 

presence of the basis functions belonging to the moiety B (in addition to any true 

interaction between A and B) and vice versa. This is because these additional basis 

functions compensate for the incompleteness of A’s own basis, thus improving the 

description of A and lowering its energy.   Thus the system is not only stabilized by any 

true interactions between A and B but also by this superposition effect.  

        An estimate of the magnitude of this effect (and hence a possible correction involves 

for it) can be obtained by the counterpoise method of Boys and Bernadi. This involves 

calculating the energy of each moiety (atom or fragment) of both with its own basis 

functions, EA, EB and in the presence of the basis functions of the entire system EA[B], 

E[A]B the counterpoise corrections for A and B are given by 
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                                            [ ]
CP
A A B AE A E∆ = −                                                                2.70 

                                                                                                           2.71 [ ]
CP
B A BE A E∆ = − B

BThe sum of these counterpoise corrections, CP CP
AE E∆ + ∆ , therefore represents the total 

correction to the interaction energy and then the counterpoise corrected interaction 

energy is give by 

                             corrected CP CP
AB A B AB A BE E E E E E∆ = + − + ∆ + ∆                                          2.72 

It should be noted that EA[B] and E[A]B and are evaluated at the geometry optimization for 

AB that the geometry is used to calculate EAB. If A and/ B are molecular fragments, these 

geometries can be different from their equilibrium geometries (those used to calculate EA 

and EB), this can be a potential source of inaccuracy in CP CP
A BE E∆ + ∆ . This is a further 

highlight of the approximate nature of the counterpoise correction. [30] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29

CHAPTER III 
 

DETAILS OF THE CALCULATIONS 

 
     All computations were performed with the GAUSSIAN 03 program. [33] The 

molecular graphics of all molecular structures were generated with the MOLEKEL 4.3 

program. [34] There are three area studied in this work. Details of each area are presented 

below: 

 

      3.1 Conformation of cationic, zwitterionic and anionic species of aspartic acid  

and  their protonation 

      

               3.1.1 Definitions and Ramachandran map 

 

               Definition of atomic numbering for H3asp+ as representation of aspartic acid and 

definition of dihedral angles ω (H1–O1–C1–C2), ψ (O1–C1–C2–N1),  φ (H4–N1–C2–

C1), χ1 (N1–C2–C3–C4), χ2 (C2–C3–C4–O3) and χ3 (C3–C4–O3–H2) are shown in 

Figure 3.1. The dihedral angles χ3 and ω were obtained from full optimizations and χ3 is 

used to indicate the endo and exo conformational types of carboxylic group; the endo and 

exo forms are defined as χ3=0 and 180°, respectively. E and Z isomerism of the dihedral 

angle ω was applied for conformational nomenclature. Due to the endo/exo and E/Z 

definitions, all aspartic acid structures of various forms can be categorized into species 

H3asp+–endo–E, (b) H3asp+–endo–Z, (c) H3asp+–exo–E, (d) H3asp+–exo–Z, (e) H2asp–

endo, (f) H2asp–exo, (g) Hasp– and (h) asp2− as shown in Figure 3.2.  
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Figure 3.1 Definition of atomic numbering for H3asp+ as representative of aspartic acid 

and definition of dihedral angles ω (H1–O1–C1–C2), ψ (O1–C1–C2–N1),  φ (H4–N1–

C2–C1), χ1(N1–C2–C3–C4), χ2 (C2–C3–C4–O3) and χ3 (C3–C4–O3–H2).  

                                                                   

                       
Figure 3.2 Aspartic acid species (a) H3asp+–endo–E, (b) H3asp+–endo–Z, (c) H3asp+–

exo–E, (d) H3asp+–exo–Z, (e) H2asp–endo, (f) H2asp–exo, (g) Hasp– and (h) asp2− species.  
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               All geometric minima for each species of aspartic acid on the conformational 

PES are represented by Ramachandran and IUPAC maps as shown in Figure 3.3. To 

combine the conformational convention and each species of aspartic acid, its full name 

has been therefore specified as ‘species type–endo/exo–Z/E’ of ‘BB [SC]’ such as 

conformer of H3asp+–endo–Z of γD [g+ g−]. Energies for each structural conformers of 

H3asp+ and H2asp species are therefore the functions of E(ψ, φ, χ1, χ2, ω) and E(ψ, φ, χ1, 

χ2, χ3), respectively. For the anionic species of Hasp− and asp2−, their energies are a 

function of E(ψ, φ, χ1, χ2). 

 
Figure 3.3 A schematic representation of relation between a backbone (BB) 

conformation Ramachandran map (top) and a side−chain (SC) conformation map 

designated by IUPAC convention (bottom). The Ramachandran and IUPAC−SC 

conformation maps, defined as ‘BB[SC]’ conformational notation of aspartic acid.  

 

               3.1.2 Potential energy surface 

 

               The PESs of all species (H3asp+–endo–E, H3asp+–endo–Z, H3asp+–exo–E, 

H3asp+–exo–Z, H2asp–endo, H2asp–exo, Hasp– and asp2−) of aspartic acid were computed 

with 30° increments along four dihedral angles (ψ, φ , χ1, χ2) using the hybrid density 

functional theory (DFT) at B3LYP/6–31G(d) level of theory. [35,36] 
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      3.2 Complexation between alkali cations and aspartic acid species 

 

               3.2.1 Geometry optimization 

  

               The geometry optimizations of [asp–M]-, [asp–M2], [Hasp–M] and [H2asp–M]+ 

complexes (M = Li+, Na+ and K+) were carried out using density function theory (DFT). 

The DFT computations have been performed with Becke's three parameters hybrid 

density functional using the Lee, Yang and Parr correlation functional (B3LYP). [35,36] 

The B3LYP/6–311++G(d,p) level of theory has been employed for all geometry 

optimizations and their thermodynamic properties were derived from the vibrational 

frequency computations at the same level. Counterpoise corrections were applied for 

energy improvement by eliminating the basis set superposition error (BSSE) [37,38] for 

the most stable complex conformers. 

 

              3.2.2 Metal ion affinities (MIAs) and Deprotonation energies (DPEs) 

  

              As metal ion affinity (MIA) is defined as the negative of the reaction enthalpy 

(∆H°), the MIA for the complexations of [asp–M]−, [asp–M2], [Hasp–M] and          

[H2asp–M]+ described by following equations: 

              [asp–M]− complexes: 2 +asp  + M   [asp M]− −→ −                                             3.1 

                                      M                                 3.2 2 +[asp-M] asp M
IA(1) = [   (  + )]H H H− −− −o o o

+
2asp M]  + M  [asp M ]−− → −

+
2[asp M ] [asp M] M

MIA(2) = [   (  + )]H H H−− −
− −o o o

+
2 (p) (q)

p [asp M ] [asp M ] M
MIA(2)  = [   (  + )]H H H−− −

− −o o o

+
2 (q) (p)

q [asp M ] [asp M ] M
A(2)  = [   (  + )]H H H−− −

− −o o o

M][HaspMHasp −→+ +−

              [asp–M2] complexes: [                                      3.3 

                                                                 3.4 

As different complexes, [asp–M(p)]− and [asp–M(q)]− defined as the components based on 

the binding mode types p and q, the two possible MAI(2)s can therefore be evaluated 

from the following formulas: 

                                                           3.5  

                                      MI                      3.6 

              [Hasp–M] complexes:                                          3.7 
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                                      MIA                                     3.8           )] (  [ MHaspM][Hasp +− +−−= −
ooo HHH

++ −→+ M]asp[HMasp 22

)] (  [ MaspHM]asp[H 22
++ +−−= −

ooo HHH

]  )  [(  DPE M][HaspHM][asp −− −+= +− ooo EEE

]  )  [(  DPE M]asp[HHM][Hasp 2
++ −− −+= ooo EEE

+−M]asp[H 2
oE M][Hasp−

oE −−M][asp
oE ][H+oE

              [H2asp–M]+ complexes: H                                    3.9 

                                      MIA                                 3.10 

             where the [asp–M]−, [asp–M2], [Hasp–M] and [H2asp–M]+ complexes are formed 

from the asp2-, Hasp− and H2asp species and M+ alkali metal cations. The standard 

enthalpy ∆H°298 and Gibbs free energy changes ∆G°298 of complexation reactions were 

obtained by the thermodynamical analysis at 298 K, 1 atmosphere using the vibrational 

frequency calculations at the B3LYP/6–311++G(d,p) level of theory.  

             Because of Hasp− and H2asp species can be deprotonated, thus deprotonation 

energy (DPE) of their alkali complexes is determined. DPEs of [Hasp–M] and [H2asp–

M]+ complexes are defined as the reaction energy described by equations 3.11 and 3.12 

                                                                           3.11 

                                                                        3.12 

              where the , , and are energies of [H2asp–M]+, 

[Hasp–M]+,  [asp–M]− complex species and free proton, respectively.  

 

     3.3 Aqueous acid–dissociation constants (pKa) of aspartic acid 

     

              3.3.1 Quantum chemical and PCM solvation model 

 

               Structure optimizations of all species of aspartic acid were carried out using 

density functional theory (DFT) method. The calculations have been performed with 

hybrid density functional B3LYP, the Becke’s three–parameter exchange functional [35] 

with the Lee–Yang–Parr correlation functional. [36] The structure optimization of species 

H3asp+, H2asp, Hasp– and asp2– and their n−hydrated ((H2O)n, n= 3–6) have been carried 

out at the B3LYP/6–31+G(d,p) level of theory. The single–point calculations at the same 

level of theory have been employed for solvent–effect computation using the polarizable 

continuum model (PCM) of Tomasi and co–workers. [39-44] The conductor–like 

polarizable continuum model (CPCM) [45–48] and Integral–Equation–Formalism 

Polarizable Continuum Model (IEFPCM) have been used in single–point calculations for 
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the PCM solvent effect. [45,48] The molecular cavity models used in the PCM models 

are the united atom for Hartree–Fock (UAHF) and the united–atom Kohn–Sham 

topological model (UAKS). [43] 

      Gibbs free energies (Ggas) of various species of aspartic acid in gas phase were 

obtained from the frequency calculations of the B3LYP/6–31+G(d,p).  The solvation free 

energies (∆Gsolv) of the various species of aspartic acid in aqueous solution were obtained 

from the single–point B3LYP/6–31+G(d,p) calculations combined with the PCM models 

CPCM  and IEFPCM with dielectric constant ε = 78.37 and using with the cavity models 

UAKS and  UAHF. 

       

              3.3.2 Thermodynamic cycles and acid–dissociation models 

 

              Thermodynamic cycles for calculations of the theoretical pKa1, pKa2 and pKa3 for 

acid dissociations of aspartic acid species Hasp, H2asp+ and asp– are shown in the 

Scheme 3.1 as representative for the bare structure system and in the Scheme 3.2 as 

representative for the n–hydrated structures, respectively. These thermodynamic cycles 

are modified from the cycles which are taken from ref. 51. The first (pKa1), second (pKa2) 

and third (pKa3) dissociation constants are defined using the well known thermodynamic 

equation 3.14 

                                                   pKa1 = ∆Gaq /2.303RT                                                  3.13  

        The Gibbs free energies of aqueous acid dissociation reactions are computed by 

adding a solvation contribution to the gas phase value using the following equations 

                               ∆Gaq = ∆Ggas + ∆∆Gsolv                                                                                     3.14 

                              ∆Ggas = Ggas(A) + Ggas(H+) – Ggas(HA+)                                 3.15 

                              ∆∆Gsolv = ∆Gsolv(A) + ∆Gsolv(H+) – ∆Gsolv(HA+)                   3.16  

where HA+ and A are species for HA+ to A dissociation as representative for dissociations 

of  H3asp+ to H2asp, H2asp to Hasp–,  and Hasp– to asp2–. Thermodynamic cycles for 

calculations of the theoretical pKa1, pKa2 and pKa3 for acid–dissociation of aspartic acid 

species H2asp,  Hasp– and asp2– are shown in Scheme A1, A2 and A3 for their bare 

structures and Scheme A4, A5 and A6 for their n–hydrated, n=3–6, structures, 

respectively. As experimental derivation, ∆Ggas(H+) = –6.28 kcal/mol (at the reference 
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state of  1 atm)  [51] and ∆∆Gsolv(H+) = –264.61 kcal/mol (at the reference state of 1 M) 

[52]  were used in the calculations. 

 

 
Scheme 3.1  Acid−dissociation equilibria of aspartic acid. 

 

                         HA+
(gas)      A (gas)    +   H+

(gas)

                                                                                             

–∆Gsolv(HA+) ∆Gsolv(H+) ∆Gsolv(A) 

                         HA+
(aq)       A (aq)    +   H+

(aq)

Scheme 3.2 Thermodynamic cycle for calculation of theoretical pKa of bare–structure of 

aspartic acid. 

 

HA+.(H2O)n(gas)      A.(H2O)n (gas)    +   H+.(H2O)n (gas)

                                                                                         

∆Gsolv(A) +.(H2O)n–∆Gsolv(HA+)+.(H2O)n ∆Gsolv(H+).(H2O)n

HA+.(H2O)n (aq)         A .(H2O)n (aq)    +   H+.(H2O)n (aq)

Scheme 3.3 Thermodynamic cycle for calculation of theoretical pKa of n–hydrated 

structure of aspartic acid. 



CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

4.1 Conformation of cationic, zwitterionic and anionic species of aspartic acid and           

their water-added forms 

 

      4.1.1 PES of various forms of aspartic acid and their geometrical conformations 

           

      As the stabilities of bare structure of all species were examined, the proper 

zwitterionic structures of the species H2asp and Hasp− are not stable because their amino 

proton can easily transfer to their carboxylate oxygen. Due to the stability test of hydrated 

structures of the species H2asp and Hasp−, it was found that these two species are 

stabilized by at least three water molecules. The PESs for the species H2asp and Hasp− 

were therefore computed as their trihydrated forms but for the species H3asp+ and asp2−, 

their bare structures were employed. 

      Conformational structures of H3asp+–endo–E, H3asp+–endo–Z, H3asp+–exo–E, 

H3asp+–exo–Z, H2asp–endo, H2asp–exo, Hasp− and asp2− species optimized at B3LYP/6–

31G(d) level of theory are shown in Tables B1, B2, B3, B4, B5, B6, B7 and B8, 

Appendix B. Classifications of the types of internal hydrogen bonding for aspartic acid 

are shown in Figure 4.1. Two types of backbone/backbone (BB/BB) and five types of 

side–chain/backbone (SC/BB) hydrogen bonding were defined. The types and distances 

of existing hydrogen bonding for various H3asp+ forms of aspartic acid is shown in Table 

4.1 and for various H2asp, Hasp− and asp2− forms are shown in Table 4.2. Bond distances 

of the internal hydrogen bonding of types 1a, 1b, 2a, 2b, 2c, 2d and 2e found in all 

conformations are within 1.768–1.949, 1.724–2.158, 1.875–1.910, 1.690–1.916 Å, at 

2.010 Å and 1.706–1.760 Å, respectively. The numbers of stable conformers for H3asp+–

endo–E, H3asp+–endo–Z, H3asp+–exo–E, H3asp+–exo–Z, H2asp–endo, H2asp–exo, Hasp− 

and asp2−  are 8, 13, 5, 8, 4, 7, 9 and 3 conformers and their conformational structures are 

shown in Figures A1, A3, A5, A7, A9, A11, A13 and A15 as contained in Appendix A, 

respectively. The landscape representations of the side–chain conformational PESs, 
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E=E(χ1,χ2) associated with the backbone conformations of H3asp+–endo–E, H3asp+–

endo–Z, H3asp+–exo–E, H3asp+–exo–Z, H2asp–endo, H2asp–exo, Hasp− and asp2− are 

shown in Figures A2, A4, A6, A8, A10, A12, A14 and A16, respectively. The bottoms of 

the Figures A2, A4, A6, A8, A10, A12, A14 and A16 show integrated scatter–plot 

diagrams of the existing conformations which correspond to the PESs located at the top 

of the figures.  

 
Figure 4.1 Classification of the types of internal hydrogen bonding for various species of 

aspartic acid.  

 

        Based on the geometrical parameters of the conformations of species H3asp+, H2asp 

or Hasp−, their conformations are identical when their dihedral angles χ1 and χ2 are the 

same value and if their dihedral angles differ by 120° or ψ differ by 180°. In case of the 

species asp2−, their conformations are identical when their dihedral angles χ2 or ψ differ 

by 180°. 

 



 38

Table 4.1 The present hydrogen bonding, its type and distance for conformations of the 

aspartic acid H3asp+ species 
Hydrogen bond Conformer 
BB/BB 
types 

BB/BB 
Distances (Ǻ) 

SC/BB 
types 

SC/BB 
Distances (Ǻ) 

H3asp+–endo–E form 
γD [a a]a1 1a 1.768 2d 1.780 
γD [g– a]b1 1a 1.620 2b 1.910 
γD [g– g–] 1a 1.901 2c 1.820 
γD [g– g+]c1 1a 1.949 2a 1.750 
αD [a g+] 1a 1.734 2c 1.694 
αD [g+ a]d1 – – 2b 1.879 
αD [g+ g–]e1 – – 2a 1.750 
βL [g– g+] – – 2a 1.759 
H3asp+–endo–Z form 
γD [a g–]a2 – – – – 
γD [g– a]b2 – – 2b 1.875 
γD [g– g+]c2 – – 2a 1.662 
δD [g+ a]d2 – – – – 
εD [g+ g–]e2 – – 2b 1.888 
εD [a g–]f2 – – 2a 1.760 
εD [a g–]g2 1b 2.153 – – 
εD [g– g+]h2 – – 2a 1.750 
εD [g– a] 1b 1.882 2b 1.882 
εL [a a] 1b 2.158 – – 
αD [a g+]i2 – – – – 
αD [g+ a]j2 1b 1.883 2a 1.868 
αD [g+ g–]k2 – – 2a 1.750 
H3asp+–exo–E form 
γD [g– g+]a3 – – 2a 1.688 
εD [g– g+] – – 2a,2c 1.864,1.867 
αD [g– a]b3 – – 2d 2.010 
αD [g+ g–]c3 – – 2a 2.133 
δL [a g+]d3 1a 1.724 2c 1.690 
H3asp+–exo–Z form 
γD [a g–]a4 – – – – 
γD [g– g+]b4 – – 2a 2.236 
δD [g+ g–] – – 2a 1.722 
εD [a g–]c4 1b 1.724 – – 
εD [g– g+]d4 1b 2.156 2a 2.156 
βL [g+ g–]e4 – – 2a 1.722 
αD [g– a]f4 – – 2c 1.916 
αD [g+ g–]g4 – – 2a 1.712 
a1 Identical to δD [a a] and αL [a a]. b1 Identical to δD [g− a] and αL [g− a]. c1 Identical to δD [g− g+] and αL [g− 
g+]. d1 Identical to δL [g+ a] and γL [g+ a]. e1 Identical to γL [g+ g−]. a2 Identical to δD [a g−] and αL [a g−]. b2 

Identical to δD [g− a] and αL [g− a]. c2 Identical to δD [g− g+]. d2 Identical to αL [a a]. e2 Identical to εL [g+ a]. f2 
Identical to βL [g+ g−] and εL [g+ g−]. g2 Identical to εL [a g−]. h2 Identical to βL [g− g+] and εL [g− g+]. i2 
Identical to δL [a g+]. j2 Identical to δL [g+ a] and γL [g+ a]. k2 Identical to δL [g+ g−] and γL [g+ g−]. a3 Identical 
to δD [g− g+] and αL [g− g+]. b3 Identical to δL [g− a] and γL [g− a]. c3 Identical to δL [g+ g−] and γL [g+ g−]. d3 

Identical to γL [a g+]. a4 Identical to δD [a g−] and αL [a g−]. b4 Identical to δD [g− g+] and αL [g− g+]. c4 

Identical to βL [a g−] and εL [a g−]. d4 Identical to βL [g− g+] and εL [g− g+]. e4 Identical to εL [g+g−]. f4 Identical 
to δL [g− a] and γL [g− a]. g4 Identical to γL [g+g−]. 
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       As the bare structures of the species H3asp+ and asp2− and the trihydrated forms of 

the species H2asp and Hasp− were employed in the PESs computations using the 

B3LYP/6–31G(d) theoretical level. The most stable conformers of H3asp+, H2asp(3H2O), 

Hasp−(3H2O) and asp2− of aspartic acid in gas phase are γD [g− g+] which is identical to δD 

[g− g+] (see Table B2 and Figure A2), αL [a g−] (see Table B6 and Figure A6), εL [g+ a] 

which is identical to βL [g+ a] (see Table B7 and Figure A7) and βL [g+ a] which is 

identical to βL [g+ g−], δL [g+ a] and δL [g+ g−] (see Table B8 and Figure A8), respectively. 
 
 
Table 4.2 The present hydrogen bonding, its type and distance for conformations of the 

aspartic acid H2asp, Hasp– and asp2– species 
Hydrogen bond Conformer 
BB/BB 
types 

BB/BB 
Distances (Ǻ) 

SC/BB 
types 

SC/BB 
Distances (Ǻ) 

H2asp–endo form 
αD [g+ g–] 1a 1.570 – – 
εD [g+ g–] 1a 1.839 – – 
δD [g+ g–] 1a 1.635 – – 
εL [g– g+] – – – – 
H2asp–exo form 
γD [a g–] – – – – 
γD [g– a] 1a 1.855 – – 
γD [g– g+] – – 2e 1.760 
δD [g+ a] 1a 1.733 – – 
εD [g+ g–] 1a 1.655 – – 
εD [a g–] 1a 1.602 – – 
εD [a g–] – – 2e 1.706 
Hasp– form 
αD [g+ a]a1 – – 2a 1.470 
δD [a g–] – – – – 
εD [g+ g+]b1 – – 2a 1.737 
εD [g+ a] – – 2a 1.532 
εD [g+ g–] 1a 1.850 2a 1.438 
γL [g+ g+]c1 – – 2a 1.658 
γL [g– g+] 1a 1.801 2a 1.446 
εL [g+ a]d1 – – 2a 1.552 
εL [g+ g–] – – 2a 1.632 
asp2– form 
γD [g+ a]a2 – – 2a 2.250 
αL [g– g+]b2 – – 2a 1.947 
βL [g+ a]c2 – – 2a 2.027 
a1 Identical to γL [g+ a]. b1 Identical to βL [g+ g+]. c1 Identical to δL [g+ g+]. d1 Identical to βL [g+ a]. a2 Identical 
to γD [g+ g−], εD[g+ a], εD [g+ g−]. b2 Identical to αL [g− a], εL [g− g+], εL [g− a]. c2 Identical to βL [g+ g−], δL [g+ 
a], δL [g+ g−]. 
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Table 4.3 B3LYP/6–31+G(d,p)–optimized conformations of various species of 

trihydrated and tetrahydrated forms of aspartic acid, their selected geometrical data and 

total energies              
Optimized parameters Species Conformation 
φ ψ χ1 χ2 χ3 ω 

Trihydrated form 
H3asp+ γD [g– g+]     25.36   –18.98   –50.18     27.13     0.68 0.76 
H2asp αL [a g–]   –72.92   –18.69   145.70 –106.50 166.30 – 
Hasp– εL [g+ a]   –36.74 –149.30    43.77   143.40 – – 
asp2– βL [g+ a] –169.70 –163.70    58.26   167.41 – – 
Tetrahydrated form 
H3asp+ γD [g– g+]     30.30   –34.67   –54.37     26.65     0.23 0.62 
H2asp αL [a g–]   –79.39   –19.14   148.89 –108.89 166.20 – 
Hasp– εL [g+ a]   –39.11 –150.30     47.47   134.33 – – 
asp2– βL [g+ a] –165.20 –153.60     58.87   157.00 – – 
 

Table 4.4 B3LYP/6–31+G(d,p)–optimized conformations of various species of aspartic 

acid in gas phase  
Conformation   Species 
Bare Trihydrated Tetrahydrated 

H3asp+ γD [g– g+]a γD [g– g+]a γD [g– g+]a 
H2asp – αL [a g–] αL [a g–] 
Hasp– – εL [g+ a] εL [g+ a]c 
asp2– βL [g+ a]d βL [g+ a] βL [g+ a] 
a Identical to δD [g−g+]. b Unstable species. c Identical to βL [g+a]. d Identical to βL [g+g−], δL [g+a] and δL 

[g+g−]. 

 

Table 4.5 Stabilization energies of protonation reaction of tri– and tetrahydrated forms of 

species asp2−, Hasp− and H2asp of aspartic acid 

  
Protonation/reaction steps ∆Ea,b ∆Ha ∆Ga 
Trihydrated    
∆E1: asp2−(3H2O)  + H+  →  Hasp−(3H2O) –235.56 –234.12 –236.87 
∆E2: Hasp−(3H2O) + H+  →  H2asp(3H2O) –300.45 –299.32 –301.95 
∆E3: H2asp(3H2O) + H+  →  H3asp+(3H2O) –368.48 –367.75 –369.12 
Tetrahydrated    
∆E1: asp2−(4H2O)  + H+  → Hasp−(4H2O) –244.68 –243.54 –246.85 
∆E2: Hasp−(4H2O) + H+  → H2asp(4H2O) –308.57 –307.88 –309.13 
∆E3: H2asp(4H2O) + H+  →  H3asp+(4H2O) –379.97 –378.10 –381.03 
a In kcal/mol. b With ZPVE corrections. 
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      4.1.2 Water–added structures and their protonation 

           

      The B3LYP/6–31+G(d,p)–optimized structures of various trihydrated and 

tetrahydrated species of aspartic acid and their selected geometrical data are tabulated in 

Table 4.3. The B3LYP/6–31G(d)–optimized structures of the bare molecule of species 

H3asp+ and asp2−, trihydrated (H3asp+(3H2O), H2asp(3H2O), Hasp−(3H2O) and 

asp2−(3H2O)) and tetrahydrated (H3asp+(4H2O), H2asp(4H2O), Hasp−(4H2O) and 

asp2−(4H2O)) species were fully reoptimized at B3LYP/6–31+G(d,p) level as shown in 

Figure 4.2. Conformations of the B3LYP/6–31+G(d,p)–optimized geometries of all 

aspartic acid species are shown Table 4.4. The most stable conformation for each aspartic 

acid species existing as trihydrated and tetrahydrated forms and their protonation and 

deprotonation schemes are shown in Figure 4.5. The stabilization energies of protonation 

of tri– and tetrahydrated form of aspartic acid derived from their total energies computed 

at B3LYP/6–31+G(d, p) level of theory with zero–point vibrational energy (ZPVE) are 

listed in Table 4.5. Three protonation steps are exothermic reactions and their 

stabilization energies of the stepwise protonation are −244.68, −308.57 and −379.97   

kcal/mol, respectively.  

 

 
 

Figure 4.2 The B3LYP/6−31+G(d,p) optimized structures of the most stable conformers 

of four species of aspartic acid as (a) trihydrated and (b) tetrahydrated forms and their 

protonation schemes. The hydrogen bond distances are in Å.  
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Figure 4.3 Superimpose pictures of the geometrical changes of the most stable 

conformers of species (a) asp2−, (b) Hasp−, (c) H2asp and (d) H3asp+. For clarity, water 

molecules are not displayed. 

              

         Based on the B3LYP/6–31+G(d, p) computations of different structural models (the 

bare, trihydrated and tetrahydrated structures), the conformation for the species H3asp+ 

(γD [g− g+]), H2asp (αL [a g−]), Hasp− (εL [g+ a]) and asp2− (βL [g+ a]) are not changed as 

shown in Table 4.4. As compared to other species, the geometrical change of the species 

Hasp− has obviously occurred as shown in Figure 4.3. Due to the change of trihydrated to 

tetrahydrated system, Figure 4.3 (c) illustrates that the side–chain carboxylic group of the 

species Hasp− is the main cause of its geometrical change; the change of its dihedral 

angles χ1 and χ2 are 4 and 9°, respectively. [37] 
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4.2 Complexation between alkali cations and aspartic species 

       

        4.2.1 Conformational analysis of alkali metal complexes of dianionic species of 

aspartic acid  

 

       The possible binding modes shown in Figure 4.4 are defined as six binding types. As 

the binding mode is defined as the ratio of the number of metal ions (NM) to the number 

of binding sites of the ligand (NL), the NM:NL ratios are 1:1 for binding mode types I and 

II, 1:2 for types III, VI and V and 1:3 for type VI. For a dinuclear complex, the type of 

the binding mode is defined as a combination of the types of the mononuclear complexes 

(types I, II, III, IV, V and VI).        

 

 
Figure 4.4 The proposed possible sites for binding mode of interaction between cation 

and aspartate (asp2–) moiety.  
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                 4.2.1.1 Lithium complexes 

 

                 The B3LYP/6–311++G(d,p)–optimized structures of [asp–Li]− and [asp–Li2] 

complexes are shown in Figure A17. Nine and seven conformers of the mono and di–

lithium complexes with aspartate anion, respectively, were found. The most stable 

conformer for [asp–Li]− and [asp–Li2] were shown in Figure 4.5. The most stable 

structure for the [asp–Li]− and [asp–Li2] complexes are the conformers 9 and 16. The 

relative B3LYP/6–311++G(d,p)–computed energies of [asp–Li]− and [asp–Li2] 

complexes, respectively, compared to the complexes 9 and 16 and the Ramachandran/ 

IUPAC [3,4] nomenclatures for conformations of aspartic acid species are given at the 

bottom of each molecule are tabulated in Table 4.6. The monolithium complexes 1, 2, 4, 

5, 7 and 9 are single mode of types I, II, III, IV, V and VI, respectively, but 3, 6 and 8 are 

combination modes of types I + II, I + V and II + V, respectively. The di–lithium 

complexes 10, 11, 12, 13, 14, 15 and 16 are all combination modes. The MIA(1)s of the 

lithium complexes with aspartate anion are shown in Table 4.6. Due to the most stable 

conformer 9, the aspartate ligand prefers to bind with the lithium using its amino nitrogen 

and carboxylate oxygen atoms. For dinuclear complex 16, a doubly tri–coordinated 

structure is formed by interaction between the asp2− ligand and the two lithium cations. 

The lithium cation firstly forms a tri–coordinated structure which is similar to 9, then the 

second lithium cation forms a tri–coordinated structure using two α–carboxylate and one 

β–carboxylate oxygen atoms as shown in Figure 4.5. Comparing the asp2− complex with 

two lithium cations to the [asp–Zn·3H2O] [43] and [asp–Ni(im)3] [44] complexes, the N–

M+, O1–M+ and O3–M+ bond lengths of both transition metal complexes are slightly 

longer than those of the lithium complexes.                                   

       The relative stabilities of the [asp–Li]− and [asp–Li2] complexes are in decreasing 

orders: 9 > 7 > 6 > 8 > 4 > 3 > 5 > 1 ≈ 2 and 16 > 13 > 10 > 14 ≈ 12 ≈ 15 > 11, 

respectively. The MIA(1)s of the [asp–Li]− complexes are within 226.30–

254.86 kcal/mol. The relative lithium ion affinities of the aspartate dianion are in 

decreasing order: 9 > 7 > 6 ≈ 8 ≈ 4 > 3 > 5 > 1 ≈ 2. Based on the lower values of the 

MIA(2)s of the [asp–Li]− complexes, their relative lithium ion affinities are in decreasing 
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order: 10 > 15 ≈ 16 ≈ 12 ≈ 14 > 13 > 11. The most preferable feature of the 

conformational reaction of the lithium/asp2− complex can therefore be proposed as: 

                                 
+ + + ++ D DL

MIA(1)=254.86 MIA(2)=155.88
2 +

[g g ] [g g ][g a]
asp  + Li   9   16

δ δβ

− → →                             4.1                          

           Due to Equation 4.1, the aspartic acid conformations based on the Ramachandran 

nomenclature [3,4] of the free–form (asp2−), mono (9) and dinuclear (16) complexes are 

βL[g+ a], δD[g+ g+] and δD[g+ g+], respectively. The aspartic acid features either in the 

complex 9 or 16 are the same conformation.  

        

 
Figure 4.5 The most stable conformer of (a) [asp–M]– and (b) [asp–M2] (M = Li+, Na+, 

K+) complexes. Distances are in Å. 
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Table 4.6 Relative B3LYP/6–311++G(d,p) energies and MIAs of minima for [asp–M]– 

and [asp–M2] complexes, M=Li+, Na+, K+ 

Complexes/ 
systems Aspartate conformers Binding mode ∆Ea MIAsa 

[asp–Li]– 
1 γL[g– g–]b I 28.09 226.30 
2 γD[g– g+]c II 28.41 226.07 
3 γD[g– g+]c I+III 17.31 237.46 
4 γD[g– a]d III 15.23 239.46 
5 δD[g– g+]e IV 19.11 235.69 
6 γD[g– g+]f I+V 5.05 249.60 
7 γD[g– a]g V 2.71 251.93 
8 γD[a g+]h II+V 6.27 248.40 
9 δD[g+ g+]i VI 0.00 254.86 
[asp–Li2]m 
10 γL[g– g–]b I+II 16.48 167.20 (167.43) 
11 γD[g– a]d I+III 30.57 153.41 (140.25) 
12 δD[g– g+]e I+IV 17.24 166.69 (155.53) 
13 δD[g+ g+]i I+VI 6.65 177.50 (148.94) 
14 γD[g– a]d II+III 17.10 153.55 (166.95) 
15 γD[g– g+]c I+II+III 17.40 157.14 (166.75) 
16 δD[g+g+]i II+V+VI 0.00 162.23 (155.88) 
 
[asp–Na]– 
1' γL[g– g–]b I 21.73 197.10 
2' γD[g– g+]c II 21.97 197.43 
3' γD[g– g+]c I+III 12.51 206.80 
4' γD[a g–]j I+V 3.34 219.00 
5' γD[a g–]j V 0.26 215.84 
6' δD[g+ g+]i VI 0.00 219.40 
[asp–Na2]n 
7' γL[g– g–]b I+II 20.51 145.76 (167.43) 
8' δD[g– g+]e I+IV 24.85 141.50 (–p) 
9' δD[g+ g+]i I+VI 20.36 146.03 (123.73) 
10' γD[g– g+]c I+II+III 20.13 145.96 (136.59) 
11' δD[g+ g+]i II+V+VI 0.00 148.02 (144.46) 
 
[asp–K]– 
1'' γD[g– g+]c II 19.80 177.21 
2'' γD[g– g+]c I+II 10.11 187.15 
3'' γD[g– g–]k I+IV 3.08 193.94 
4'' γD[a g–]l VI 0.00 197.09 
[asp–K2]o 
5'' γL[g– g–]b I+II 16.90 –p (128.66) 
6'' δD[g– g+]e I+IV 22.31 –p 
7'' δD[g+ g+]i I+VI 19.65 –p (106.10) 
8'' γD[g– g+]c I+II+III 15.17 116.04 (–p) 
9'' δD[g+ g+]i II+V+VI 0.00 130.54 (126.04) 

a In kcal/mol with ZPE corrections. b Identical to δL[g– g–]. c Identical to δD[g– g+]. d Identical to αL[g– a]. e 
Identical to αL[g– g+]. f Identical to αL[a g–]. g Identical to αL[g– g–]. h Identical to αL[a g+]. i Identical to 
αL[g+ g+]. j Identical to αL[a g–]. k Identical to αL[g– g–]. l Identical to αL[a g–]. m based on the [asp–Li]– 
complex components, types p and q in parenthesis, as presented in Figure A17. n based on the [asp–Na]– 
complex components, types p and q in parenthesis, as presented in Figure A18. o based on the [asp–K]– 
complex components, types p and q in parenthesis, as presented in Figure A19.  r No corresponding [asp–
M]– complex components is found. 
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                  4.2.1.2 Sodium complexes 

 

                  The B3LYP/6–311++G(d,p)–optimized structures of [asp–Na]− and [asp–Na2] 

complex conformers are shown in Figure A18. Six and five conformers for mono and 

dinuclear complexes of the Na+/asp2− system were found. The most stable conformer for 

[asp–Na]− and [asp–Na2] were shown in Figure 4.5. The relative energies of [asp–Na]− 

and [asp–Na2] complex conformers, respectively, related to the complex conformers 6' 

and 11′ are listed in Table 4.6. The monosodium complexes 1′, 2′, 5′ and 6′ are single 

mode of types I, II, V and VI, respectively, but 3′ and 4′ are combination modes of types 

I + II and I + V, respectively. The disodium complexes, 7′, 8′, 9′, 10′ and 11′ are all the 

combination modes. The relative stabilities of the [asp–Na]− and [asp–Na2] complex 

conformers are in decreasing order: 6′ > 5′ > 4′ > 3′ > 1′ ≈ 2′ and 11′ > 10′ ≈ 9′ ≈ 7′ > 8′, 

respectively. The MIAs of the [asp–Na]− and [asp–Na2] complex conformers are within 

the narrow ranges of 195.62–17.92 and 124.91–55.58 kcal/mol, respectively. The most 

preferable feature of the conformational reaction of the Na+/asp2− complex system can 

therefore be proposed as: 

                                      
+ ++ ++ DDL

MIA(1)=219.40 MIA(2)=144.46
2 + / /

[g g ][g g ][g a]
asp  + Na   6   11

δδβ

− → →                     4.2 

 

                 4.2.1.3 Potassium complexes 

 

                 The B3LYP/6–311++G(d,p) optimized structures of [asp–K]− and [asp–K2] 

complex conformers are shown in Figure A19.  The most stable conformer for [asp–K]− 

and [asp–K2] were shown in Figure 4.5. All mono and di–potassium complexes except 1″ 

and 4″ are combination modes. The relative stabilities of [asp–K]− and [asp–K2] complex 

conformers are in decreasing order: 4″ > 3″ > 2″ > 1″ and 9″ > 8″ > 5″ > 7″ > 6″, 

respectively. The relative energies of [asp–K]− and [asp–K2] complex conformers, 

respectively, related to the complex conformers 4″ and 9″ are listed in Table 4.6. The 

MIAs of the [asp–K]− and [asp–K2] complex conformers are within the narrow ranges of 

177.21–197.09 and 106.10–130.54 kcal/mol, respectively. The most preferable feature of 

the conformational reaction of the K+/asp2− complex system can therefore be proposed as: 
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+ + + ++ D DL

MIA(1)=197.09 MIA(2)=126.04
2 + / / / /

[g g ] [g g ][g a]
asp  + K   4   9

δ δβ

− → →                         4.3  

 

                  4.2.1.4 Binding energies of aspartate complexes 

 

                   Relative binding energies of the complexation reactions of [asp–M]− and 

[asp–M2] are in decreasing order: [asp–Li]− > [asp–Na]− > [asp–K]− and [asp–

Li2] > [asp–Na2] > [asp–K2], respectively. The pre–organization energies of aspartate 

anion based on based on the structure changes from the isolated to the [asp–M]− complex 

forms and [asp–M]− to [asp–M2] complexes forms computed at the B3LYP/6–

311++G(d,p) level are reported in Table 4.7. Thermodynamic quantities of the formation 

reaction of the most stable complex conformers of [asp–M]− and [asp–M2] complexes 

computed at the B3LYP/6–311++G(d,p) level are shown in Table 4.8. The BSSE–

corrected energies of the most stable complex formers were obtained and shown that they 

are not very different from their non–corrected energies. The EHOMO, ELUMO and Frontier 

molecular orbital energy gap, ∆EHOMO–LUMO of the alkali cations, free ligand, and all the 

most stable complex conformers for [asp–M]− and [asp–M2] complexes computed at the 

B3LYP/6–311++G(d,p) level are shown in Table 4.9. Relative reactivities of [asp–M]− 

and [asp–M2] complexes are in order: [asp–K]− > [asp–Na]− > [asp–Li]− and [asp–

K2] > [asp–Na2] > [asp–Li2], respectively, but their absolute values are not very different. 

As the energy gap for K+ and Na+ cations are, respectively, lower than Na+ and Li+ 

cations by 0.38 and 0.88 eV, their relative reactivities are correspondingly in decreasing 

order: K+ > Na+ > Li+.  
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Table 4.7 Pre–organization energies of aspartate dianion (asp2–) in the formation reaction 

of the most stable [asp–M]– and [asp–M2] complexes 

Reaction ∆Epreog
a ∆EZPE,preog

a,b ∆H°preog
a ∆G°preog

a 
asp2– → [asp2–]9

 28.44 30.08 28.98 32.17 
asp2– → [asp2–]6' 21.42 22.36 21.69 22.29 
asp2– → [asp2–]4'' 20.64 21.70 21.02 23.00 
[asp2–]9    → [asp2–]16 14.21 13.99 14.30 13.83 
[asp2–]6'   → [asp2–]11' 16.39 16.68 17.18 17.49 
[asp2–]4''  → [asp2–]9'' 13.50 13.58 14.12 12.82 

a In kcal/mol. b The ZPVE corrected energies. 

 

Table 4.8 Thermodynamic quantities of the formation reaction of the most stable 

complex conformers for [asp–M]– and [asp–M2] complexes 

 

Reaction ∆Ea BSSEa ∆EBSSE
a MIAsa ∆G°298

a 
asp2– + Li+   → [asp–Li]– –253.76 1.79 –251.97 254.86 –245.46 
asp2– + Na+ →  [asp–Na]– –218.76 2.35 –216.41 219.40 –210.25 
asp2– + K+  →  [asp–K]– –193.55 1.50 –192.05 197.09 –185.45 
[asp–Li]–     →  [asp–Li2]    –154.77 2.65 –152.12 155.88 –146.57 
[asp–Na]–   →  [asp–Na2]    –143.79 0.70 –143.09 144.46 –135.12 
[asp–K]–      →  [asp–K2]    –125.52 2.61 –122.91 126.04 –117.32 

a In kcal/mol. b 2 +[asp-M] asp M
MIA(1) = [   (  + )]H H H− −− −o o o for [asp–M]– complexation and 

+
2[asp M ] [asp M] M

MIA(2) = [   (  + )]H H H−− −
− −o o o  for [asp–M2] complexation. 

 
                  Bond distances between the alkali metal cation and the amino–nitrogen atom 

of the aspartate ion of the most stable complex conformers of [asp–M]− and [asp–M2] are 

2.073 and 2.049 Å for the lithium, 2.427 and 2.410 Å for sodium and 2.786 and 2.789 Å 

for potassium complex systems, respectively (see Table 4.10). Bond distances between 

the alkali metal cations and the oxygen atoms of the aspartate ions are within 1.804–

1.909 Å for the lithium, 2.199–2.453 Å for sodium and 2.501–2.784 Å for potassium 

complex systems. Relative bond distances between the alkali metal cation M+ and the 

binding atoms of the aspartate ion in [asp–M]− and [asp–M2] complexes are in decreasing 

order: K+ > Na+ > Li+. [40] 
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Table 4.9 The EHOMO, ELUMO and frontier molecular orbital energy gap, ∆EHOMO–LUMO of 

free ligand, and various most stable complex conformers for [asp–M]– and [asp–M2] 

complexes 

 
Species ∆EHOMO–LUMO

a ηa,b µa,c χa,d 
Li+ 2.026 1.013 –1.018   1.018 
Na+ 1.142 0.571 –0.590   0.590 
K+ 0.754 0.377 –0.439   0.439 
asp2– 0.161 0.080   0.146 –0.146 
[asp–Li]– 0.237 0.118 –0.134   0.134 
[asp–Na]– 0.227 0.114 –0.128   0.128 
[asp–K]– 0.220 0.110 –0.128   0.128 
[asp–Li2]    0.250 0.125 –0.140   0.140 
[asp–Na2]    0.236 0.118 –0.135   0.135 
[asp–K2]    0.218 0.109 –0.133   0.133 

a In eV. b Chemical hardness, η = ∆EHOMO–LUMO/2. c Electronic chemical potential, µ = (EHOMO+ELUMO)/2. d 
The Mulliken electronegativity, χ = –(EHOMO+ELUMO)/2.  
 

Table 4.10 Bond distances of alkali metal cations and binding atoms of  aspartate ions  in 

the most stable complex conformers [asp–M]– and [asp–M2] 

 
Complex/Distances a Bonds [asp–Li]− [asp–Na]− [asp–K]− [asp–Li2] [asp–Na2] [asp–K2] 

M+–N b 2.073 2.427 2.786 2.049 2.410 2.789 
M+–O1

 b 1.853 2.199 2.517 1.909 2.263 2.588 
M+–O3

 b 1.804 2.206 2.543 1.894 2.202 2.508 
M+–O1

 c − − − 1.959 2.453 2.784 
M+–O2

 c − − − 2.174 2.298 2.591 
M+–O3

 c − − − 1.888 2.194 2.501 
a In Angstrom. b Refers to the M+

q of complex [asp−M2] c Refers to the M+
p of complex [asp−M2]. 
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Figure 4.6 Plot of complexation free energies of the (a) [asp–M]– (–□––□––□–) and (b) 

[asp–M2]  (–○––○––○–) against sizes of  the alkali metal ions M (M= Li+, Na+ and K+). 

 

     4.2.2 Conformational analysis of alkali metal complexes of anionic species of 

aspartic acid 

 

             

 
 

Figure 4.7 The possible binding modes of Hasp– ligand toward cations.  
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               The B3LYP/6–311++G(d,p)–optimized structures of free–form zwitter–anionic 

conformers (Hasp−) based on two conformational types of α–

[NH2·CH(CH2·COOH)COO−] and β–[NH2·CH(CH2·COO−)COOH] are shown in Figure 

A24. It shows that there are at least seven types of free–form conformers of [Hasp–M], 

M = Li+, Na+, K+ complexes as four α–[Hasp–M] and three β–[Hasp–M] complexes 

species. Possible binding modes of Hasp− aspartate binding atoms toward the alkali metal 

cations, M = Li+, Na+, K+ are defined as displayed in Figure 4.7. As 10 possible binding 

modes, five for α–[Hasp–Li] and another five for β–[Hasp–Li] are defined as single 

binding mode, others combined modes can be possibly defined as combination of these 

single modes such as a combined mode of α1 + α2. As the binding mode is defined as the 

ratio of the number of metal ion (NM) to the number of binding site of the ligand (NL), the 

NM:NL ratios are 1:1 for binding mode types α1 and β1, 1:2 for types α2–α4 and β2–β4, 

and 1:3 for types α5 and β5.  

 

 

               4.2.2.1 Lithium complexes 

 

               The B3LYP/6–311++G(d,p)–optimized structures of α– and β–[Hasp–Li] 

complex conformers and their conversion reactions are shown in Figures A25 and A26, 

Appendix, respectively. At least a transition state for interconversion between two 

[Hasp–Li] complex conformers has been found. Eleven and seventeen interconversion 

equilibria for α– and β–[Hasp–Li] complexes conformers were found respectively and 

categorized as five single–step and three double–steps reactions for α–[Hasp–Li] 

complex system, and two single–step, two double–steps, one tetra–steps and one hepta–

steps reactions for β–[Hasp–Li] complex system as shown in Figures A25 and A26. The 

most stable conformer of [Hasp–Li] complex system is the conformer 19 as shown in 

Figure 4.8. The relative B3LYP/6–311++G(d,p) energies, MIAs and DPEs for [Hasp–Li] 

complex species are tabulated in Table 4.13. It shows that [Hasp–Li] complex conformers 

are mostly in the single binding mode, except conformers 7–11 for α–[Hasp–Li] complex 

type, conformers 28, 29, 37–39 for β–[Hasp–Li] complex type.  
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Figure 4.8 The most stable conformer of [Hasp–Li], [Hasp–Na] and [Hasp–K] 

complexes. Distances are in Å.  

 

               The relative stabilities of [Hasp–Li] complexes are in decreasing order: 

19 > 39 ≈ 8 > 33 ≈ 11 > 6 > 22 ≈ 36 ≈ 25 ≈ 3 > 17 > 18 > 15 ≈ 2 > 4 ≈ 32 ≈ 20 > 38 ≈ 14 

≈ 21 ≈ 5 ≈ 9 ≈ 24 > 28 > 10 ≈ 29 ≈ 7 ≈ 27 > 1 > 26 > 35 > 37 > 16  >34 > 13 > 31 > 12 > 

30. Maximum values of MIA and DPE are found in the conformers 19 and 11, 

respectively. The MIAs and DPEs of all [Hasp–Li] complexes are within 129.15–

169.76 kcal/mol and 302.56–344.05 kcal/mol, respectively. Interconversion reactions 

between 2 of 39 [Hasp–Li] complexes with their transition states and their energies, 

thermodynamic properties, rate and equilibrium constants are shown in Table 4.12. Based 

on our previous work on dianionic–cation [asp–M]− complexes [40], the most stable 

complex conformer of [Hasp–Li] is similar to [asp–Li]−. The Hasp− in the complex form 

adopted to be tri–dentate ligand binding with lithium cation by using N–amino, α– and β–

oxygen atoms, respectively. The aspartic acid ligand in either [Hasp–Li] or [asp–Li]− 

complexes are similar in backbone conformation (δD) but slightly different in side–chain 

conformation (g+a for [Hasp–Li] and g+g+ for [asp–Li]−). MIA of [Hasp–Li] 

(169.76 kcal/mol) is very lower than that of [asp–Li] (254.86 kcal/mol).  
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Table 4.11 Relative B3LYP/6–311++G(d,p) energies, MIAs and DPEs for α–[Hasp–Li] 

and β–[Hasp–Li] complexes 

Complexes/ 
systems 

Aspartate 
conformations 

Binding 
Mode 

∆Ea MIA a DPE a 

α–[Hasp–Li]      
1 γL [g+g–]b α1 10.80 148.11 336.70 
2 γL [g– g–]c α1 7.30 161.92 340.20 
3 γL [g–  a]d α1 5.65 163.90 341.84 
4 γD [a a]e α1 7.33 161.85 340.16 
5 αD [a g+]f α1 8.27 161.17 339.23 
6 αD [a g–]g α1 4.20 147.31 343.29 
7 αL [g+g–]h α1+α4 9.18 150.49 316.17 
8 γD [g+  a]i α1+ α4 2.70 166.86 322.66 
9 γD [g+g+]j α1+α4 8.47 160.55 316.89 
10 γD [a  g–]k α1+α4 9.14 160.86 338.35 
11 γD [a  g+]l α1+α4 3.44 166.65 344.05 
12 γL[g– g+]m α2 31.72 138.08 302.59 
13 γD [g–  g–]n α2 24.07 145.55 310.24 
14 δD[g–g+]o α3 8.16 142.75 330.03 
15 δD [g– a]p α3 7.24 162.41 330.95 
16 γL [a  g–]q α4 13.52 156.36 308.16 
17 γL [a   g+]r α4 6.44 163.24 315.24 
18 δD[g+ g–]s α5 6.72 163.22 312.36 
19 δD [g+  a]t α5 0.00 169.76 319.09 
      
β–[Hasp–Li]      
20 εD[g–g+]a1 β1 7.46 154.65 339.71 
21 γD[g– g+]b1 β1 8.24 155.06 338.94 
22 δD[g–g+]c1 β1 5.00 140.34 342.17 
23 γD[a  g–]d1 β1 9.22 153.96 337.95 
24 εD [a a]e1 β1 8.55 153.44 338.63 
25 εD[a g–]f1 β1 5.30 149.03 341.88 
26 γD[g–g+]g1 β2 11.42 152.02 322.90 
27 γD[g–g+]h1 β2 9.24 153.03 327.16 
28 εD[g–g+]i1 β1+ β2 9.02 153.41 327.37 
29 γD[g–g+]j1 β1+β2 10.83 152.79 336.35 
30 δD[g–g+]k1 β3 34.48 129.15 303.72 
31 βL[g–g+]l1 β3 27.74 134.83 310.45 
32 δD[g+g+]m1 β5 7.43 156.31 311.66 
33 βL[g+g+]n1 β5 3.09 159.46 315.99 
34 βL[a g+]o1 β4 19.12 142.92 302.56 
35 δD[a g+]p1 β4 11.98 151.37 309.70 
36 δD[a g–]q1 β4 5.04 149.44 316.64 
37 βL[a g–]r1 β1+β4 12.53 149.60 311.61 
38 δL[a g–]s1 β1+β4 7.94 155.72 316.20 
39 αD[a g–]t1 β1+β4 2.20 152.50 321.94 
      
a In kcal/mol with ZPE correction, b Identical to δL [g– g+], c Identical to δL [g– g+], d Identical to δL [g– a], e 
Identical to αL [a a], f Identical to γL [a g+], g Identical to γL [a g–], h Identical to δD [g+ g–], i Identical to γD [g+ 

a], j Identical to γD [g+ g+], k Identical to αL [a g–], l Identical to δL [a g+], m Identical to γL [g– g+], n Identical 
to γL [g– g–], o Identical to αL [g–  g+], p Identical to δD [g– a], q Identical to εL [a g–], r Identical to εL [a g+], s 
Identical to βL [g+ g–], t Identical to βL [g+ a], a1 Identical to γD [g– g+], b1 Identical to εD [g– g+], c1 Identical to 
βL [g– g+], d1 Identical to εD [a g–], e1 Identical to γD [a a], f1 Identical to γD [a g–], g1 Identical to δD [g– g+], h1 
Identical to βL [g+ g+], i1 Identical to δD [g+ g+], j1 Identical to δD [a g+], k1 Identical to βL [a g+], l1 Identical to 
βL [a g–], m1 Identical to δD [a g–]. 
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Table 4.12 Thermodynamic quantities, equilibrium and rate constants of conversion 

reactions of the [Hasp–Li] complex systems, computed at B3LYP/6–311++G(d,p) level 

of theory 
Reactions a/systems ∆‡E b ∆‡Gb ∆E298

b ∆H298
b ∆G298

b K298 k298
c 

1 →   TSr1_2 →  2 31.15 31.30 –3.50 –3.26 –3.74 5.51 x 102 7.05 x 10–11 
2 →   TSt2_3 →  3 10.06 11.00 –1.65 –1.70 –1.42 1.09 x 101 5.35 x 104 
4 →   TSt4_5 →  5 32.61 32.92 0.94 0.97 0.73 2.90 x 10–1 4.56 x 10–12 
5 →   TSr5_6 →  6 6.30 7.58 –4.07 –4.73 –1.52 1.30 x 101 1.72 x 107 
7 →   TSr7_8 →  8 27.69 28.51 –5.77 –5.83 –4.76 3.09 x 100 7.19 x 10–9 
8 →   TSt8_9 →  9 10.47 10.88 6.49 6.60 6.38 2.09 x 100 6.62 x 104 
10 →   TSt10_11 →  11 27.92 28.31 –6.72 –6.82 –6.19 3.43 x 104 1.09 x 10–8 
12 →   TSt12_13 →  13 27.72 27.83 –5.70 –5.81 –5.64 1.34 x 104 2.47 x 10–8 
14 →   TSt14v15 →  15 33.73 34.34 –0.92 –1.70 –0.18 1.34 x 100 4.14 x 10–13 
16 →   TSt16_17 →  17 27.38 27.45 –7.65 –7.76 –7.56 3.50 x 105 4.66 x 10–8 
18 →   TSt18_19 →  19 10.60 11.00 –1.65 –1.70 –1.42 1.09 x 101 5.35 x 104 
20 →   TSt20_21 →  21 32.98 32.98 0.77 0.80 0.71 3.06 x 10–1 4.16 x 10–12 
21 →   TSr21_22 →  22 10.62 10.80 –3.23 –3.60 –2.50 6.82 x 101 7.46 x 104 
23 →   TSt23_24 →  24 31.16 31.67 –0.68 –0.66 –0.62 2.86 x 100 3.76 x 10–11 
24 →   TSr24_25 →  25 7.16 7.98 –3.25 –3.54 –2.24 4.39 x 101 8.77 x 106 
26 →   TSt26_27 →  27 32.27 32.39 –2.18 –2.20 –2.15 3.76 x 101 1.12 x 10–11 
27 →   TSr27_29 →  29 2.61 3.70 –0.21 –0.38 0.65 3.30 x 10–1 1.20 x 1010 
28 →   TSt28_29 →  29 34.03 33.94 1.80 1.81 1.68 5.83 x 10–2 8.21 x 10–13 
26 →   TSr26_28 →  28 2.47 3.49 –0.59 –0.77 0.19 7.31 x 10–1 1.72 x 1010 
30 →   TSt30_31 →  31 28.97 29.25 –6.74 –6.87 –6.44 5.25 x 104 2.24 x 10–9 
32 →   TSt32_33 →  33 30.73 30.87 –4.33 –4.35 –4.31 1.45 x 103 1.45 x 10–10 
34 →   TSt34_35 →  35 26.74 26.72 –7.41 –7.26 –6.80 9.74 x 104 1.60 x 10–7 
35 →   TSr35_36 →  36 8.82 9.31 –6.94 –7.19 –6.53 6.12 x 104 9.29 x 105 
35 →   TSr35_38 →  38 0.54 1.87 –4.04 –4.34 –2.71 9.64 x 101 2.63 x 1011 
34 →   TSr34_37 →  37 0.0013 1.61 –6.59 –6.68 –5.64 1.35 x 104 4.09 x 1011 
37 →   TSt37_38 →  38 32.86 32.88 4.59 4.93 3.88 1.44 x 10–3 4.91 x 10–12 
38 →   TSr38_39 →  39 12.85 12.02 –5.74 –5.91 –5.51 1.10 x 104 9.64 x 103 
36 →   TSr36_39 →  39 13.31 14.24 –2.83 –3.06 –1.69 1.73 x 101 2.26 x 102 
a The letters ‘r’ and ‘t’ specify for the rotational (about Cβ–CO2 bond) transition–state and proton–transfer 
transition–state, respectively. b In kcal/mol. c In s–1. 
 
 
 
               4.2.2.2 Sodium complexes 

 

               The B3LYP/6–311++G(d,p)–optimized structures of [Hasp–Na] complex 

conformers and their conversion reactions are shown in Figures A27 and A28, 

respectively.  At least a transition state for interconversion between two [Hasp–Na] 

complex conformers has been found. Seven and six interconversion equilibria for α– and 

β–[Hasp–Na] complexes conformers were found respectively and categorized as three 

single–step and two double–steps reactions for α–[Hasp–Na] complex system, and four 

single–step and one double–steps for β–[Hasp–Na] complex system as shown in Figures 
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A27 and A28. The most stable conformer of [Hasp–Na] complex system is the conformer 

6′ as shown in Figure 4.8. The gas and aqueous phase relative B3LYP/6–311++G(d,p) 

energies, MIAs and DPEs for [Hasp–Na] complex species are tabulated in Table 4.13. It 

shows that [Hasp–Na] complex conformers are mostly in the single binding mode, except 

conformers 4′–6′, 9′ and 10′ for α–[Hasp–Na] complex type, conformers 18′, 19′, 22′ and 

23′ for β–[Hasp–Na] complex type.     

               The relative stabilities of [Hasp–Na] complexes are in decreasing order: 

6′ > 23′ > 5′ > 10′ > 3′ = 17′ > 12′ > 8′ > 15′ > 1′ > 22′ > 2′ = 21′ ≈ 13′ > 7′ > 14′ > 16′ = 1

9′ > 9′ > 4′ > 18′ > 11′ > 20′. Maximum values of MIA and DPE are both found in the 

conformer 5′. The MIAs and DPEs of all [Hasp–Na] complexes are within 121.58–

142.21 kcal/mol and 317.95–348.91 kcal/mol, respectively. Interconversion reactions 

between 2 of 23 [Hasp–Na] complexes with their transition states and their energies, 

thermodynamic properties, rate and equilibrium constants are shown in Table 4.14. 

Interestingly, the most stable complex conformer of [Hasp–Na] is different to its 

corresponding dianionic complex [asp–Na]−. The aspartic ligand adopted as γD conformer 

either in [Hasp–Na] or [asp–Na]− but different in binding mode of interaction. For the 

anionic complex, the asp2− ligand binds preferentially with sodium cation as tridentate 

binding mode using N–amino, α– and β–oxygen atoms, respectively. But for anionic 

complex [Hasp–Na], the Hasp− ligand preferred to bind with the cation using two α–

oxygen and one β–oxygen atoms, respectively.  
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Table 4.13 Relative B3LYP/6–311++G(d,p) energies, MIAs and DPEs of  minima for 

 α–[Hasp–Na] and β–[Hasp–Na] complexes  

Complexes/ 
systems 

Aspartate 
conformations 

Binding 
Mode 

∆Ea 

 
MIAsa 

 
DPEa 

 
α–[Hasp–Na]      
1´ γL [g–  a]b α1 4.40 139.49 346.48 
2´ γL [g– g–]c α1 6.09 137.92 344.69 
3´ γL [g+g–]d α1 2.53 131.17 348.26 
4´ αD [a g–]e α1 8.41 135.78 342.37 
5´ αD [a g+]f α1 1.88 142.21  348.91 
6´ γD [a a]g α1 0.00 133.88 329.05 
7´ αL [g+g–]h α1+ α4 6.24 137.59 344.54 
8´ γD [g+g+]i α1+α4 4.12 121.58 346.66 
9´ γD [a  g–]j α1+ α4 8.12 135.86 321.19 
10´ γD [a g+]k α1+α4 2.36 142.02 326.95 
11´ δD[g+ g–]l α5 10.72 133.41 318.33 
12´ δD[g+  a]m α5 3.76 140.69 325.29 
      
β–[Hasp–Na]      
13´ εD[g–g+]b1 β1 6.14 136.88 344.88 
14´ γD[g– g+]c1 β1 6.72 137.47 344.31 
15´ δD[g–g+]d1 β1 4.33 130.68 346.69 
16´ εD [a a]e1 β1 7.87 134.98 343.16 
17´ εD[a g–]f1 β1 2.53 123.17 348.50 
18´ γD[g–g+]c1 β1+ β2 9.72 134.58 331.85 
19´ εD[g–g+]b1 β1+ β2 7.87 135.26 333.70 
20´ βL[g+g+]g1 β5 11.11 133.87 317.95 
21´ δD[g+g+]h1 β5 6.09 137.17 322.96 
22´ δL[a g–]i1 β1+β4 5.73 138.59 326.67 
23´ βL[a g–]j1 β1+β4 1.41 133.66 330.99 
      
a In kcal/mol with ZPE correction, b Identical to δL [g– g+], c Identical to δL [g– g+], d Identical to δL [g– a], e 
Identical to γL [a g+], f Identical to αL [a a], g Identical to γL [a g–], h Identical to δD [g+ g–], i Identical to γD [g+ 

g+], j Identical to αL [a g–], k Identical to δL [a g+], l Identical to βL [g+ g–], m Identical to βL [g+ a], b1 Identical 
to γD [g– g+], c1 Identical to εD [g– g+], d1 Identical to βL [g– g+], e1 Identical to γD [a a], f1 Identical to γD [a g–], 
g1 Identical to βL [g+ g+], h1 Identical to δD [g+ g+], i1 Identical to βL [a g–], j1 Identical to δD [a g–]. 
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Table 4.14 Thermodynamic quantities, equilibrium and rate constants of conversion 

reactions of the [Hasp–Na] complex systems 

 
Reactions a/systems ∆‡E b ∆‡Gb ∆E298

b ∆H298
b ∆G298

b K298 k298
c 

1´ →   TSt1´_2´ →  2´ 32.42 32.40 1.69 1.86 1.33 1.06 x 10–1 1.11 x 10–11 
2´ →   TSr2´_3´ →  3´ 8.33 8.57 –3.56 –4.08 –2.72 9.82 x 101 3.22 x 106 
4´ →   TSt4´_5´ →  5´ 26.50 27.05 –6.54 –6.71 –6.06 2.78 x 104 9.25 x 10–8 
5´ →   TSr5´_6´ →  6´ 9.09 9.64 –1.88 –2.22 –1.04 5.82 x 100 5.34 x 105 
7´ →   TSr7´_8´ →  8´ 8.02 8.84 –2.12 –2.29 –1.46 1.18 x 101 2.06 x 106 
9´ →   TSt9´_10´ →  10´ 27.53 27.81 –5.76 –5.87 –5.45 9.96 x 103 2.53 x 10–8 
11´ →   TSt11´_12´ →  12´ 26.97 27.01 –6.96 –6.99 –6.85 1.05 x 105 9.90 x 10–8 
13´ →   TSt13´_14´ →  14´ 32.30 32.25 0.57 0.58 0.36 5.42 x 10–1 1.42 x 10–11 
14´ →   TSr14´_15´ →  15´ 10.83 10.90 –2.38 –2.60 –2.08 3.35 x 101 6.35 x 104 
16´ →   TSt16´_17´ →  17´ 6.27 7.23 –5.34 –5.59 –4.38 1.62 x 103 3.11 x 107 
18´ →   TSt18´_19´ →  19´ 31.85 31.91 –1.85 –1.85 –1.73 1.84 x 101 2.51 x 10–11 
20´ →   TSt20´_21´ →  21´ 33.93 34.40 5.01 4.47 6.15 3.10 x 10–5 3.74 x 10–13 
22´ →   TSr22´_23´ →  23´ 11.93 11.60 –4.32 –4.47 –4.38 1.63 x 103 1.96 x 104 

a The letters ‘r’ and ‘t’ specify for the rotational (about Cβ–CO2 bond) transition–state and proton–transfer 
transition–state, respectively. b In kcal/mol.c In s–1. 
 
 
 
              4.2.2.3 Potassium complexes 

 

              The B3LYP/6–311++G(d,p)–optimized structures of [Hasp–K] complex 

conformers and their conversion reactions are shown in Figure A29 and A30. At least a 

transition state for interconversion between two [Hasp–K] complex conformers has been 

found. Six interconversion equilibria for α–[Hasp–K] and six equilibria for β–[Hasp–K] 

complexes conformers were found and categorized as four single–step and one double–

steps reactions for α–[Hasp–K] complex system, and four single–step and one double–

steps for β–[Hasp–K] complex system as shown in Figure A29 and A30. The most stable 

conformer of [Hasp–K] complex system is the conformer 3″ as shown in Figure 4.8. The 

relative B3LYP/6–311++G(d,p) energies, MIAs and DPEs for [Hasp–K] complex species 

are tabulated in Table 4.15. It shows that [Hasp–K] complex conformers are mostly in the 

single binding mode, except conformers 1″– 3″, 8″, 9″ for α–[Hasp–K] complex type, 

conformers 17″, 18″, 21″ and 22″ for β–[Hasp–K] complex type.  
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Table 4.15 Relative B3LYP/6–311++G(d,p) energies, MIAs and DPEs of  minima for  

α–[Hasp–K] and β–[Hasp–K]  complexes 

Complexes/ 
systems 

Aspartate 
conformations 

Binding 
Mode 

∆Ea 

 
MIAa 

 
DPEa,b 

 
α–[Hasp–K]      
1´´ αD [a g–]b α1+ α4 8.69 119.77 346.49 
2´´ αD[a g+]c α1+α4 3.37 124.91 351.81 
3´´ γD [a a]d α1+α4 0.00 118.05 338.60 
4´´ γL [g–  a]e α1 7.91 120.00 347.27 
5´´ γL [g– g–]f α1 7.57 120.77 347.61 
6´´ αL [g+g–]g α1 8.03 119.98 347.14 
7´´ γD [g+g+]h α1 4.57 105.14 350.43 
8´´ γD [a  g–]i α1+α4 9.05 119.34 346.13 
9´´ γD [a g+]j α1+α4 3.94 124.28 351.24 
10´´ δD[g+ g–]k α5 14.97 113.26 320.41 
11´´ δD[g+  a]l α5 8.38 120.14 326.99 
      
β–[Hasp–K]      
12´´ εD[g–g+]b1 β1 8.08 119.11 347.09 
13´´ γD[g– g+]c1 β1 8.68 119.69 346.50 
14´´ δD[g–g+]d1 β1 5.85 113.34 349.33 
15´´ εD[a a]e1 β1 9.90 117.11 345.28 
16´´ εD[a g–]f1 β1 3.39 106.52 351.79 
17´´ εD[g–g+]b1 β1+β2 10.43 117.99 335.05 
18´´ γD[g–g+]c1 β1+β2 8.63 118.62 336.85 
19´´ δD[g+g+]g1 β5 10.67 116.73 324.70 
20´´ βL[g+g+]h1 β5 6.85 121.70 328.52 
21´´ δL[a g–]i1 β1+β4 7.29 121.17 331.31 
22´´ βL[a g–]j1 β1+β4 3.01 116.18 335.59 
      
a In kcal/mol with ZPE correction, b Identical to γL [a g–], c Identical to γL [a g+], d Identical to αL [a a], e 
Identical to δL [g– g+], f Identical to δL [g– a], g Identical to δD [g+ g–], h Identical to γD [g+ g+], i Identical to αL 

[a g–], j Identical to δL [a g+], k Identical to βL [g+ g–], l Identical to βL [g+ a], b1 Identical to γD [g– g+], c1 
Identical to εD [g– g+], d1 Identical to βL [g– g+], e1 Identical to γD [a a], f1 Identical to γD [a g–], g1 Identical to 
βL [g+ g+], h1 Identical to δD [g+ g+], i1 Identical to βL [a g–], j1 Identical to δD [a g–]. 
 
 
 
               The relative stabilities of [Hasp–K] complexes are in decreasing order: 

3″ > 22″ > 2″ ≈ 16″ > 9″ > 7″ > 14″ > 20″ > 21″ > 5″ > 4″ ≈ 6″ ≈ 12″ > 11″ > 18″ ≈ 13″ ≈

1″ > 8″ > 15″ > 17″ > 19″ > 10″. Maximum values of both MIA and DPE are found in the 

conformer 2″. The MIAs and DPEs of all [Hasp–K] complexes are within 105.14–

124.91 kcal/mol and 320.41–351.81 kcal/mol, respectively. Interconversion reactions 

between 2 of 22 [Hasp–K] complexes with their transition states and their energies, 

thermodynamic properties, rate and equilibrium constants are shown in Table 4.15. As 

well as sodium complex, the aspartic ligand binds preferentially with potassium cation as 
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tri–dentate mode. MIA difference between [Hasp–K] (118.05 kcal/mol) and [asp–K]− 

(197.09 kcal/mol) is not very much when compare to sodium and lithium complexes. [40] 

 

Table 4.16 Thermodynamic quantities, equilibrium and rate constants of conversion 

reactions of the [Hasp–K] complex systems 

 
Reactions a/systems ∆‡E b ∆‡Gb ∆E298

b ∆H298
b ∆G298

b K298 k298
c 

1´ ´→   TSt1´´_2´´ →  2´´ 27.39 27.96 –5.32 –5.43 –4.80 3.28 x 103 1.98 x 10–8 
2´´ →   TSr2´´_3´´ →  3´´ 8.44 8.87 –3.37 –3.69 –2.74 1.01 x 102 1.95 x 106 
4´´ →   TSt4´´_5´´ →  5´´ 30.75 30.61 0.34 0.48 0.01 9.82 x 10–1 2.25 x 10–10 
6´´ →   TSr6´´_7´´ →  7´´ 8.01 8.36 –3.28 –3.46 –2.65 8.82 x 101 4.61 x 106 
8´´ →   TSt8´´_9´´ →  9´´ 29.19 30.66 –5.11 –5.23 –4.50 1.99 x 103 2.07 x 10–10 
10´´ →   TSt10´´_11´´ →  11´´ 26.85 26.87 –6.59 –6.60 –6.53 6.17 x 104 1.25 x 10–7 
12´´ →   TSt12´´_13´´ →  13´´ 31.80 31.02 0.59 0.60 0.33 5.76 x 10–1 1.13 x 10–10 
13´´ →   TSr13´´_14´´ →  14´´ 10.42 10.34 –2.82 –3.05 –2.50 6.80 x 101 1.63 x 105 
15´´ →   TSr15´´_16´´ →  16´´ 4.28 6.30 –6.51 –6.80 –5.37 8.58 x 103 1.50 x 108 
17´´ →   TSt17´´_18´´ →  18´´ 31.35 31.58 –1.80 –1.81 –1.62 1.55 x 101 4.43 x 10–11 
19´´ →   TSt19´´_20´´ →  20´´ 29.92 30.05 –3.82 –3.80 –3.74 5.49 x 102 5.81 x 10–10 
21´´ →   TSt21´´_22´´ →  22´´ 10.09 10.26 –4.28 –4.41 –4.81 3.34 x 103 1.87 x 105 

a The letters ‘r’ and ‘t’ specify for the rotational (about Cβ–CO2 bond) transition–state and proton–transfer 
transition–state, respectively. b In kcal/mol. c In s–1. 
 
 

              4.2.2.4 Comparative reactions of aspartate complexes 

 

              Formation energies, Gibbs free energies of reaction, MIAs and pre–organization 

of aspartate conformers to form each complex are shown in Table 4.17. Relative 

stabilities of [Hasp–M] complexes are in order: [Hasp–Li] > [Hasp–Na] > [Hasp–K]. The 

BSSE energies for [Hasp–M] complexations are very small. Magnitudes of MIAs of 

[Hasp–M]–aspartate ligands are in order: [Hasp–Li]–aspartate > [Hasp–Na]–

aspartate > [Hasp–K]–aspartate. The complexation reactions in gas phase are more 

preferable than in aqueous system by 155.47, 125.84 and 111.20 kcal/mol for lithium, 

sodium and potassium complexes, respectively. The pre–organization energies of [Hasp–

M]–aspartate ligands are within a range of 10.20–17.01 kcal/mol (2.82–7.59 kcal/mol in 

aqueous system) and in order: [Hasp–Li] > [Hasp–Na] > [Hasp–K]. The energy gaps of 

free form aspartate conformers and their most stable complexes conformers are shown in 

Table 4.18. Based on the energy gaps, relative reactivities of seven conformers of 

[Hasp−]–ligands are in decreasing order: 



 61

 HaspIV
− > HaspV

− > HaspI
− > HaspII

− > HaspVII
− > HaspVI

− > HaspIII
−. Reactivities of 

[Hasp–M] complexes are in order: [Hasp–Li] > [Hasp–K] > [Hasp–Na].  

 

Table 4.17 Quantities for the formation reactions of the most stable conformers for 

[Hasp–M] complexes and pre–Organization for their aspartate structures 

 

Reaction E∆ a, b BSSE a BSSEE∆ a MIA a o
298G∆ a 

Complexation:      

19]ag[]ag[ ]LiHasp[Li]Hasp[
DD

++ →+ +−
δα

 –168.53 1.49 –167.03 169.76 –160.24 

'6]aa[]gg[
]NaHasp[Na]Hasp[

DL
γγ

→+ +−
−+

 –133.34 0.81 –132.53 133.88 –124.77 

''3]aa[]gg[ ]KHasp[K]Hasp[
DL

γγ
→+ +−

−+  –117.68 0.36 –117.32 118.05 –109.39 

Pre–organization: 
    

19]ag[]ag[ DD
]Hasp[]Hasp[ ++

−− →
δα

 17.01 – – 15.74 c 19.07 

'6]aa[]gg[ DL
]Hasp[]Hasp[ γγ

−− →−+  13.67 – – 13.71 c 14.12 

''3]aa[]gg[ DL
]Hasp[]Hasp[ γγ

−− →−+  10.20 – – 10.22 c 10.58 

a In kcal/mol. b The ZPVE corrected energies. c Enthalpy in kcal/mol. 

 

Table 4.18 The frontier molecular orbital energy gap, ∆EHOMO–LUMO and various 

chemical indices of cations, free ligand, and various most stable complex conformers for 

[Hasp–M]  

species ∆EHOMO–LUMO 
a η a,b µ a,c χ a,d 

Hasp–
I e 4.408 2.204 −3.745 3.745 

Hasp–
II

 f 4.299 2.150 −3.624 3.624 
Hasp–

III
 g 3.864 1.932 −3.362 3.362 

Hasp–
IV

 h 5.442 2.721 −3.938 3.938 
Hasp–

V
 i 4.572 2.286 −3.821 3.821 

Hasp–
VI

 j 4.027 2.014 −3.487 3.487 
Hasp–

VII
 k 4.136 2.068 −3.554 3.554 

[Hasp–Li]19 4.789 2.395 −3.954 3.954 
[Hasp–Na]6´ 5.742 2.871 −4.532 4.532 
[Hasp–K]3´´

  5.606 2.803 −4.465 4.465 
a In eV. b Chemical hardness, η = ∆EHOMO–LUMO/2. c Electronic chemical potential, µ = (EHOMO + ELUMO)/2. d 

The Mulliken electronegativity, χ = –(EHOMO + ELUMO)/2. e Belongs to γL [g+ g–] conformation, f Belongs to 
γL [g+ g+] conformation, g Belongs to αD [g+ a] conformation, h Belongs to γL [a g–] conformation, i Belongs 
to δD [g– g+] conformation, j Belongs to αD [g+ g+] conformation, k Belongs to γD [g+ g+] conformation.  
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               4.2.2.5 Binding mode and ion size effects 

 

               The most stable [Hasp–M] complexes were found as tri–coordinated form (α5 

mode) for the lithium complex and as bi–coordinated form (α1 + α4 combine mode) for 

the complexes of sodium and potassium as shown Figure 4.8. Table 4.19 shows that the 

average bond–distances of M+–O bond for the [Hasp–M] complexes are in order: [Hasp–

K]–bond > [Hasp–Na]–bond > [Hasp–Li]–bond which corresponds to the order of ionic 

size: potassium (rK = 1.548 Å) > sodium (rNa = 1.1 Å) and lithium (rLi = 0.76 Å). The ion 

sizes of potassium and sodium ions obviously affect the coordination of the complexes 

with Hasp− (see Figure 4.8). This ionic size effect has never occurred in their complexes 

with aspartate dianion (asp2− species). [40] 

 

Table 4.19 Bond distances of alkali metal cations and binding atoms of aspartate ions in 

the most stable conformers of [Hasp–M] complexes 

 

Bonds/distancesa Complexes 

 [Hasp–Li]b [Hasp–Na]c [Hasp–K]c 

M+–N 2.060 – – 

M+–O1 1.815 2.357 2.670 

M+–O2 – 2.275 2.614 

M+–O4 1.945 2.354 2.734 
a In Å. b Defined as α5 binding mode. c Defined as α1 + α4 binding mode. 

 

               4.2.2.6 Reaction paths to form [Hasp–M] complexes 

 

               As complexation based on the asp2− species is considered, the [Hasp–M] 

complexes, M = Li+, Na+ and K+ can be formed via protonation and complexation 

processes using two reaction pathways as shown in Figure 4.9. It shows that top and 

bottom paths belong to reaction sequences of complexation → protonation and 

protonation → complexation, respectively. The protonation of asp2− species to form 

Hasp− species being more likely to occur than the complexation of [asp–M]– to form 

[Hasp–M] complex. Therefore, protonation → complexation sequence is predicted to be 



 63

the most preferable pathway of the [Hasp–M] complex formation. The energies of overall 

reactions to form complexes with lithium, sodium and potassium are −572.82, −547.81 

and −532.55 kcal/mol, respectively. The conformers of asp2−, Hasp−, [asp–M]− and 

[Hasp–M] shown in Figure 4.9 are significant because they correspond to their structural 

reaction coordinates. [41] 

 

 
 

Figure 4.9 The reaction pathways for complexation and protonation of asp2– species to 

form [Hasp–M] complexes of (a) Lithium, (b) Sodium and (c) Potassium.  Energies are in 

kcal/mol. 

 

      4.2.3 Conformational analysis of alkali metal complexes of zwitterionic species of 

aspartic acid 

 

 
Figure 4.10 The possible binding modes of H2asp ligand toward cations.  
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      Eight possible binding modes are found for [H2asp–Li]+, two for SB and six for CS 

structures as shown Figure 4.10. As the binding mode is defined as the ratio of the 

number of metal ion (NM) to the number of binding site of the ligand (NL), the NM:NL 

ratios are 1:1 for binding mode types S1, S2, C1, C2,  1:2 for types C3, C4, C5 and 1:3 

for types C6.  

 

              4.2.3.1 Lithium Complexes 

  

              Fifteen [H2asp–Li]+ complex conformers obtained from structure optimization 

using the B3LYP/6–311++G(d,p) calculations and their relative energies are shown in 

Figure A27. The most stable conformer for SB and CS structures of [H2asp–Li]+ 

complexes are shown in Figure 4.11. The most stable [H2asp–Li]+ complex conformer is 

the charge–solvated, CS11 conformer which is the only one of the tri–coordination 

structure. The MIAs of H2asp, DPEs of [H2asp–Li]+ complex and their conformations are 

shown in Table 4.20. It shows that the relative stabilities of these complexes are in order: 

CS11 > CS8 > CS9 ≈ CS10 > SB1 > SB3 > CS7 > CS6 ≈ CS5 > CS2 > SB4 ≈ CS1 ≈ 

CS4 > SB2 > CS3. The complex conformer CS11 is also found to possess the maximum 

values of MIA and DPE. The MIAs of H2asp conformer and DPEs for all conformers of 

their lithium complexes are within the range of 43.41–73.26 and of 208.78–252.08 

kcal/mol, respectively. The most stable complex conformer of [H2asp–Li]+
CS11 possess 

the charge–solvated tri–coordination structure as same as the most stable conformers 

[asp–Li]–
9 [40] for di–anionic system and [Hasp–Li]19 [41] for mono–anionic systems as 

reported in our previous work of which the aspartic acid binds preferentially to lithium 

ion using amino nitrogen, α– and β–carbonyl oxygen atoms. 
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Figure 4.11 The most stable conformer of (a) SB and (b) CS structures of [H2asp–M]+ 

(M = Li+, Na+, K+) complexes. Distances are in Å. 
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Table 4.20 Relative energies, MIAs and DPEs of the B3LYP/6–311++G(d,p)–optimized 

[H2asp–M]+ complex conformers 

Complex Aspartate conformation Binding mode ∆Erel
a 

 
MIAsa 

 
DPEa 

 
[H2asp–Li]+ 
SB1 γD [g– g+]b S1 11.96 60.58 236.68 
SB2 γL [a g+]c S1 27.80 43.41 214.24 
SB3 γD [g– a]d S2 12.61 59.48 230.23 
SB4 γL [a a]e S2 20.96 50.51 222.18 
CS1 εD [g– g–]f C1 21.19 49.65 221.89 
CS2 αD [a g–]g C1 20.37 55.37 224.87 
CS3 εD [a a]h C1 34.36 51.09 220.85 
CS4 εL [a a]i C2 21.60 53.20 222.77 
CS5 εL [a a]i C2 18.62 55.70 208.78 
CS6 αD [a g–]g C3 18.55 55.16 226.53 
CS7 δD [g– g+]j C3 13.02 60.17 232.07 
CS8 εD [a g–]k C4 7.02 65.69 237.27 
CS9 εD [a g–]k C4 9.43 63.43 234.86 
CS10 γD [g– g+]b C5 9.84 63.08 237.84 
CS11 γD [g+ g–]l C6 0.00 73.26 252.08 
[H2asp–Na]+ 
SB1´ γD [g– g+]b1 S1 7.92 43.71 238.37 
SB2´ γL [a g+]c1 S1 21.12 28.87 224.94 
SB3´ γD [g– a]d1 S2 7.97 42.93 238.35 
SB4´ γL [a a]e1 S2 16.06 34.15 230.21 
CS1´ εD [g– g–]f1 C1 7.98 43.36 240.68 
CS2´ αD [a g–]g1 C1 13.98 38.38 232.36 
CS3´ εD [a a]h1 C1 11.36 38.83 233.10 
CS4´ γD [g– a]d1 C2 12.39 42.94 233.87 
CS5´ εL [a a]i1 C2 12.68 38.15 231.78 
CS6´ εL [a a]i1 C2 15.11 24.73 219.35 
CS7´ αD [a g–]j1 C3 8.71 43.57 236.99 
CS8´ δD [g– g+]k1 C3 9.68 41.94 236.02 
CS9´ εD [a g–]l1 C4 5.90 45.30 232.38 
CS10´ εD [a g–]l1 C4 7.46 39.80 238.39 
CS11´ γD [g– g+]b1 C5 7.72 43.97 238.24 
CS12´ γD [g+ g–]m1 C6 0.00 51.71 245.70 
[H2asp–K]+ 
SB1´´ γD [g– g+]b2 S1 5.56 30.43 237.05 
SB2´´ γL [a g+]c2 S1 17.02 17.85 225.59 
SB3´´ γD [g– a]d2 S2 4.65 31.02 243.81 
SB4´´ γL [a a]e2 S2 13.15 21.92 235.31 
CS1´´ εD [g– g–]f2 C1 8.65 27.91 242.13 
CS2´´ αD [a g–]g2 C1 7.72 29.39 242.93 
CS3´´ εD [a a]h2 C1 18.25 16.49 229.11 
CS4´´ γD [g– a]d2 C2 3.62 31.98 244.85 
CS5´´ εL [a a]i2 C2 6.60 28.41 241.86 
CS6´´ εL [a a]i2 C2 8.75 31.71 239.71 
CS7´´ αD [a g–]g2 C3 9.35 27.92 241.64 
CS8´´ δD [g– g+]j2 C3 7.52 28.89 243.47 
CS9´´ εD [a g–]l2 C4 3.52 32.49 243.03 
CS10´´ εD [a g–]l2 C4 4.80 31.42 241.75 
CS11´´ γD [g– g+]b2 C5 6.99 29.32 244.00 
CS12´´ γD [g+ g–]m2 C6 0.00 36.45 250.99 
a In kcal/mol with ZPE correction. b  Identical to γD [g– g+]. c  Identical to γL [a g+]. d  Identical to γD [g– a]. e  Identical to 
γL [a a]. f  Identical to εD [g– g–]. g  Identical to αD [a g–]. h  Identical to εD [a a]. i  Identical to εL [a a]. j  Identical to δD 
[g– g+].  k  Identical to εD [a g–]. l  Identical to εD [g+ g–]. b1 Identical to γD [g– g+]. c1  Identical to γL [a g+]. d1  Identical to 
γD [g– a]. e1  Identical to γL [a a]. f1  Identical to εD [g– g–]. g1  Identical to αD [a g–]. h1  Identical to εD [a a]. i1 Identical to 
εL [a a]. j1 Identical to δD [g– g+].  k1 Identical to βL [g– g+]. l1  Identical to εD [a g–]. m1  Identical to εD [g+ g–]. b2  Identical 
to γD [g– g+]. c2  Identical to γL [a g+]. d2  Identical to γD [g– a]. e2  Identical to γL [a a]. f2  Identical to εD [g– g–]. g2  
Identical to αD [a g–]. h2  Identical to εD [a a]. i2 Identical to εL [a a]. j2  Identical to δD [g– g+].  k2  Identical to βL [a g+].  
l2  Identical to εD [a g–]. m2  Identical to εD [g+ g–]. 
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              The conformation structure of aspartic acid ligand in the [H2asp–Li]+
CS11 

complex, γD is  slightly different from those in the [asp–Li]–
9 and [Hasp–Li]19 complex 

conformers which possess the δD conformation. The binding preferences for lithium 

complexes in terms of MIAs are in decreasing order: C6 > C4 > C5 > S1 ≈ S2 ≈ C3 > C2 

≈ C1 as shown in Figure 4.12.  It shows the same binding mode C6 lead to the highest 

MIAs values of H2asp species for lithium, sodium and potassium. The relation between 

the MIAs of various species of aspartic acid for lithium, sodium and potassium against 

charge of their species as shown in Figure 3.20 shows that the MIAs of aspartic species 

for [H2asp–Li]+
CS11 (73.26 kcal/mol) is less favorable one and lower than that for [Hasp–

Li]19 (169.76 kcal/mol) [41] and [asp–Li]–
9

  (254.86 kcal/mol) [40] by 96.44 and 181.60 

kcal/mol, respectively. Increasing orders of MIAs values of aspartic acid species of ether 

lithium or sodium or potassium are  species are the same sequence as asp2– > Hasp– > 

H2asp, see Figure 3.20. Based on the MIA of zwitterionic species H2asp, the MIA for 

lithium ion of this work (73.26 kcal/mol) is seemly overestimated by approximately 20 

kcal/mol as compared to the experimental result of which the MIA is 51.5 kcal/mol by 

kinetic method [18]; this experimental value is relatively close to the MIAs obtained by 

kinetic method of N–gly–asp (54.9 kcal/mol) and of N–acetyl–asp (54.9 kcal/mol). [19] 

 

 
Figure 4.12 The MIAs of H2asp for the complexation of [H2asp–M]+, M= lithium ( – –

), sodium ( – – ) and potassium ( – – ) against binding mode. 
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              4.2.3.2 Sodium Complexes  

 

              Sixteen [H2asp–Na]+ complex conformers obtained from structure optimization 

using the B3LYP/6–311++G(d,p) calculations are shown in Figure A33 and their relative 

energies are shown in Table 4.20. The most stable conformer for SB and CS structures of 

[H2asp–Na]+ complexes are shown in Figure 4.11. The most stable [H2asp–Na]+ complex 

conformer is the charge–solvated, CS12' conformer which is the only one of the tri–

coordination structure. The MIAs of H2asp, DPEs of [H2asp–Na]+ complex and their 

conformations are shown in Table 4.20. The relative stabilities of sodium complexes are 

in decreasing order, CS12' > CS9' > CS10' > CS11' > SB1' ≈ SB3' ≈ CS1' > CS7' > 

CS8' > CS3' > CS4' > CS5' > CS2' > CS6' > SB4' > SB2'. The most stable complex 

conformer CS12' is also found to possess the maximum values of MIA and DPE. The 

MIAs of H2asp conformer and DPEs for all conformers of their sodium complexes are 

within the range of 24.73–51.71 and of 219.35–245.70 kcal/mol, respectively. The most 

stable complex conformer of [H2asp–Na]+
CS12′ possess the charge–solvated tri–

coordination structure as same as the most stable conformers [asp–Na]–
6′ [40] for di–

anionic system and [Hasp–Na]6′ [41] for mono–anionic systems as reported in our 

previous work. 

             All the conformation structures of aspartic acid ligand in the [H2asp–Na]+
CS12′, 

[asp–Na]–
6′ and [Hasp–Na]6′ complex conformers possess the same  conformation, γD. 

The binding preferences for sodium complexes in terms of MIAs are in decreasing order: 

C6 > C4 > C5 > S1 ≈ C3 ≈ C1 ≈ C2 ≈ S2 as shown in Figure 4.12.  It shows the same 

binding mode C6 lead to the highest MIAs values of H2asp species for lithium, sodium 

and potassium. The relation between the MIAs of various species of aspartic acid for 

lithium, sodium and potassium against charge of their species is shown in Figure 4.13. It 

shows that the MIAs of aspartic species for [H2asp–Na]+
CS12′ (51.71 kcal/mol) is less 

favorable one and lower than that for [Hasp–Na]6′ (133.88 kcal/mol) [41] and [asp–Na]–
6′

  

(219.40 kcal/mol) [40] by 82.17 and 167.69 kcal/mol, respectively. Increasing orders of 

MIAs values of aspartic acid species of either lithium or sodium or potassium are  species 

are the same sequence as asp2– > Hasp– > H2asp, see Figure 4.13. Based on the MIA of 

zwitterionic species H2asp, the MIA for sodium ion of this work (51.71 kcal/mol) is 
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pretty close to the experimental result of which the MIA is 48.2 kcal/mol by kinetic 

method [16]; this experimental value is relatively close to the MIAs obtained by Cook 

method of N–gly–asp (38.5 kcal/mol) and of N–acetyl–asp (34.9 kcal/mol). [20] 

 

              4.2.3.3 Potassium Complexes 

 

              Sixteen [H2asp–K]+ complex conformers obtained from structure optimization 

using the B3LYP/6–311++G(d,p) calculations are shown in Figure A34 and their relative 

energies are shown in Table 4.20. The most stable conformer for SB and CS structures of 

[H2asp–K]+ complexes are shown in Figure 4.11. The most stable [H2asp–K]+ complex 

conformer is the charge–solvated, CS12'' conformer which is the only one of the tri–

coordination structure. The MIAs of H2asp, DPEs of [H2asp–K]+ complex and their 

conformations are shown in Table 4.20. The relative stabilities of potassium complexes 

are in decreasing order: CS12'' > CS10'' > CS4'' > SB3'' > CS11'' > SB1'' > CS5'' > 

CS12'' > CS2'' > CS8'' > CS1'' > CS6'' > CS7'' > SB4'' > SB2'' > CS3''. The most 

stable complex conformer CS12'' also possess the maximum values of MIA and DPE. 

The MIAs of H2asp conformer and DPEs for all conformers of their potassium complexes 

are within the range of 16.49–36.45 and of 225.59–250.99 kcal/mol, respectively. The 

most stable complex conformer of [H2asp–K]+
CS12'' possess the charge–solvated tri–

coordination structure as same as the most stable conformers [asp–K]–
4'' [40] for di–

anionic system and [Hasp–K]3'' [41] for mono–anionic systems as reported in our 

previous work.  

               All the conformation structures of aspartic acid ligand in the [H2asp–K]+
CS12'', 

[asp–K]–
3'' and [Hasp–K]4'' complex conformers possess the same  conformation, γD. The 

binding preferences for potassium complexes in terms of MIAs are in decreasing order: 

C6 > C4 > C2 > S2 ≈ S1 > C1 ≈ C3 ≈ C5 as shown in Figure 4.12.  It shows the same 

binding mode C6 lead to the highest MIAs values of H2asp species for lithium, sodium 

and potassium. The relation between the MIAs of various species of aspartic acid for 

lithium, sodium and potassium against charge of their species is shown in Figure 4.13. It 

shows that the MIAs of aspartic species for [H2asp–K]+
CS12'' (36.45 kcal/mol) is less 

favorable one and lower than that for [Hasp–K]4'' (118.05 kcal/mol) [41] and [asp–K]–
3''
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(197.09 kcal/mol) [40] by 81.60 and 160.64 kcal/mol, respectively. Increasing orders of 

MIAs values of aspartic acid species of ether lithium or sodium or potassium are  species 

are the same sequence as asp2– > Hasp– > H2asp, see Figure 4.13.    

        

              4.2.3.4 Comparative reactions of aspartate complexes    

   

              As consideration for binding modes S1, S2, C1, C2, C3, C4, C5 and C6, the 

binding preferences of  aspartic acid species in terms of MIAs were obtained as shown in 

Figure 4.12.  It shows that trend of their values are in order: [H2asp–Li]+ > [H2asp–Na]+ > 

[H2asp–K]+. Table 4.21 shows that complexation energies of charge–solvated aspartic 

acid conformers with lithium, sodium and potassium ions are larger than their salt–bridge 

conformers and their relative energies are in order: [H2asp–Li]+ > [H2asp–Na]+ > [H2asp–

K]+. All the complexation of [H2asp–M]+ complexes are found as spontaneous reaction. 

Pre–orgainzation energies for charge–solvated system are larger than those for salt–

bridge system and relative values for pre–orgainzation energies depend on sizes of 

alkaline metal ions namely Li+ > Na+ > K+. Relation between charge of aspartic acid 

species in its corresponding complex with alkaline metal ions and the MIA shows 

remarkable linear trend as shown in Figure 4.13.  

 

 
Figure 4.13 The MIAs of various species of aspartic acid of lithium ( – – ), sodium 

( – – ) and potassium ( – – ) against charge of their species. 
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Table 4.21 Quantities for the formation reactions of the most stable conformers of salt–

bridge and charge–solvated structures for [H2asp–M]+ complexes, and pre–organization 

for  their corresponding aspartic acid structures 

 

Reactions E∆ a,b BSSE a BSSEE∆ a MIAa o
298G∆ a 

Complexation: 
CS structures 

CS115  ]g[g2 ]g[g2 D
D

Li]asp[H  Li  asp][H +−
+−

++ −→+ δδ
 –71.78 1.4517 –70.33 73.26 –62.74 

CS12'5  ]g[g2 ]g[g2 D
D

Na]asp[H  Na  asp][H +−
+−

++ −→+ δδ
 –50.84 1.3685 –49.47 51.71 –41.99 

CS13''5  ]g[g2 ]g[g2 D
D

K]asp[H  K  asp][H +−
+−

++ −→+ δδ
 –35.86 0.3027 –35.56 36.45 –27.36 

SB structures 
SB11  ]g[g2 ]g[g2 D

D
Li]asp[H  Li  asp][H +−

−−
++ −→+ gε

 –58.51 0.5647 –57.95 59.29 –51.14 

SB1'1  ]g[g2 ]g[g2 D
D

Na]asp[H  Na  asp][H +−
−−

++ −→+ gε
 –41.56 0.3765 –41.18 42.42 –33.32 

'SB1'1  ]g[g2 ]g[g2 D
D

K]asp[H  K  asp][H +−
−−

++ −→+ gε
 –28.99 0.2510 –28.04 29.14 –21.82 

Pre–organization: 
CS structures 

CS115  ]g[g2 ]g[g2 D
D

Li]asp[H   asp][H +−
+−

+−→ δδ
 13.78 – – 12.18c 16.56 

CS12'5  ]g[g2 ]g[g2 D
D

Na]asp[H   asp][H +−
+−

+−→ δδ
 10.64 – –  9.60 c 12.47 

'CS13'5  ]g[g2 ]g[g2 D
D

K]asp[H   asp][H +−
+−

+−→ δδ
  8.30 – –  7.16 c 10.53 

SB structures 
SB11  ]g[g2 ]g[g2 D

D
Li]asp[H   asp][H +−

−−
+−→ gε

 21.77 – – 21.26 c 22.50 

SB1'1  ]g[g2 ]g[g2 D
D

Na]asp[H   asp][H +−
−−

+−→ gε
 18.17 – – 18.11 c 18.19 

'SB1'1  ]g[g2 ]g[g2 D
D

K]asp[H   asp][H +−
−−

+−→ gε
 14.54 – – 14.07 c 15.07 

a In kcal/mol. b The ZPVE corrected energies. c Enthalpy in kcal/mol.  

  

               4.2.3.5 Relation between aspartic acid species and their complexes  

 

               Based on complexation and protonation processes of asp2– and Hasp– species as 

reported in our previous work [40,41], the [H2asp–M]+ complexes, M=Li+, Na+ and K+ 

can be formed via reaction pathways as shown in Figure 4.14. The reactions at bottom 

and on top of each complexation processes in Figure 4.14 corresponds to the protonation 

of aspartic acid species and of their complexes with alkaline metal ions, respectively. As 

the Figure 4.14 presents reactions for relation between all three aspartic acid species 

(asp2–, Hasp– and H2asp) and their complexes with three alkaline metal cations (Li+, Na+ 

and K+), this diagram is useful for description of their existing in relevant system. There 
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are three reaction pathways for complexation of alkaline metal reacting with dianion form 

of aspartic acid (asp2–). The most preferable path is the protonation of asp2– to form Hasp–, 
Hasp–

 to form H2asp and complexation of H2asp and M+ to form [H2asp–M]+ complex.  

The second most preferable path is a sequence of protonation of asp2– to Hasp–, 

complexation of Hasp– and M+ to form [Hasp–M], and protonation of [Hasp–M] complex 

to form [H2asp–M]+.  The third reaction pathway is therefore the least preferable path. 

 

 
Figure 4.14 The reaction pathways for complexation and protonation of asp2– and Hasp– 

species to form [H2asp–M]+ complexes of (a) lithium (b) sodium and (c) potassium. 

Energies are in kcal/mol. 

 

 



 73

      4.3 Aqueous acid–dissociation constants (pKa) of aspartic acid 

 

            The B3LYP/6–31+G(d,p)–optimized geometries of bare and n–hydrated ((H2O)n, 

n = 3 to 6)  structures of aspartic acid species H3asp+, H2asp,  Hasp– and asp2– were 

obtained and their superimposed structures are shown in Figure 4.15. The base structures 

for species H2asp and Hasp– are not included in Figure 4.15, because their gas–phase 

structures are in the conformations of δL[a g–] and γL[a g–] which are different from the 

aqueous phase. The acid dissociation equilibria of aspartic acid in gas phase as the bare 

and hydrated species are shown in Figure 4.16. It shows the conformations defined by 

Ramachandran [3] and IUPAC [4] nomenclatures of aspartic acid species in gas phase 

and aqueous systems which is represented by hexahydrated system. Conformations of  

the bare structures for the hydrated forms of aspartic acid species H3asp+, H2asp,  Hasp– 

and asp2– are δD[g– g+], δD[g– a], δD[g– g+] and βL[g– g+], respectively.  

 

 
Figure 4.15 Superimposition of the B3LYP/6–31+G(d,p)–optimized structures of various 

states of the most stable species of aspartic acid as forms:(a) H3asp+ (b) H2asp (c) Hasp–

(d) asp2–.  
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Figure 4.16 The acid−dissociation equilibria of aspartic acid in gas phase presented as (a) 

the bare structures and (b) hexahydrated species. For clarity, the six water molecules for 

hexahydrated species are not shown.  

 

              The conformations of free structures aspartic acid species H3asp+, H2asp,  Hasp– 

and asp2– are the same conformations of their corresponding species of n–hydrated (n = 3 

to 6) structures. The conformations of free forms of aspartic acid species H2asp (δL[a g–]), 

and Hasp–
 (γL[a g–]) are different from their n–hydrated (n = 3 to 6) structures. All the n–

hydrated structures of various species of aspartic acid and their equilibria are shown in 

Figure 4.17. The computed pKa values and Gibbs free energy contributions for 

corresponding acid dissociation equilibria of aspartic acid in gas phase of the bare, water–

excluded hydrated and n–hydrated structures as shown in Scheme 3.3 are listed in Tables 

4.22, 4.23 and 4.24, respectively.  
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Figure 4.17 Acid–dissociation equilibria of aspartic acid based on their (a) tri– (b) tetra– 

(c) penta– (d) hexahydrated structures. 

         

               Based on the bare molecular system, the cavity models (UAKS and UAHF) 

cause different pKa values, rather than the PCM models (CPCM and IEFPCM) and the 

PCM/UAHF model results the predicted  pKa values are very close to the experimental 

results, as shown in Table 4.22.  
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Table 4.22 Gibbs free energy contributions ∆Ggas, ∆∆Gsolv and ∆Gaq (kcal/mol) for the 

acid dissociation equilibria of aspartic acid in gas phase 

 
CPCM  IEFPCM  pKa Deprotonation ∆Ggas 
∆∆Gsolv

a ∆Gaq
b  ∆∆Gsolv

a ∆Gaq
b  Calc.c Calc.d Exp.e 

H3asp+ → H2asp + H+ 211.82 –208.66 
(–208.83) 

3.16 
(2.99) 

 –208.66 
(–208.83) 

3.16 
(2.99) 

 1.93 
(1.42) 

1.92 
(1.42) 

2.10 

H2asp → Hasp– + H+ 311.24 –304.49 
(–304.10) 

6.75 
(7.14) 

 –304.49 
(–304.10) 

6.75 
(7.14) 

 4.10 
(5.18) 

4.11 
(5.19) 

3.86 

Hasp– → asp2– + H+ 415.95 –399.91 
(–404.42) 

16.04 
(11.53) 

 –399.91 
(–404.42) 

16.04 
(11.53) 

 9.75 
(9.18) 

9.75 
(9.17) 

9.82 

a The ∆∆Gsolv values  were obtained from single–point calculation at the B3LYP/6–31+G(d,p) level with 
UAKS and UAHF (in parenthesis) cavity models. b The ∆Gaq values were computed according to the 
thermodynamic cycles as shown in Schemes 1, 2 and 3. c Due to the CPCM with UAKS and UAHF (in 
parenthesis) cavity models. d Due to the IEFPCM with UAKS and UAHF (in parenthesis) cavity models. e 
Taken from ref. 17. 
 

              The correlation coefficient (r2) of the computed and measured pKa values of 

aspartic acid species are shown in Table B1, Appendix. As the high correlations of the 

computed pKa values for the bare structures of free form system with the experimental 

values taken from ref. 13 were considered, the small different pKa values, ∆pKa1 = –0.17 

(1.93–2.10), ∆pKa2 = 0.24 (4.10–3.86) and ∆pKa3 = –0.07 (9.75–9.82) with r2 = 0.9972 

for CPCM/UAHF model and ∆pKa1= –0.18 (1.92–2.10), ∆pKa2= 0.25 (4.11–3.86) and 

∆pKa3 = –0.07 (9.75–9.82) with r2 = 0.9970 for IEFPCM/UAHF model.  Based on the 

equilibrium systems of the water–excluded hydrated structures, the computed pKa values 

for the tri– and tetra–hydrated systems are mostly closed to the experimental values.   

             The different pKa values of water–excluded tri–hydrated system are ∆pKa1= 0.09 

(2.19–2.10), ∆pKa2= –0.14 (3.72–3.86) and ∆pKa3= 0.01 (9.83–9.82) with r2 = 0.9992 for 

CPCM/UAHF model and ∆pKa1= –0.12 (1.98–2.10), ∆pKa2= 0.16 (4.02–3.86) and 

∆pKa3= –0.04 (9.78–9.82) with r2 = 0.9987 for IEFPCM/UAHF model. The most 

accurate prediction of water–excluded tetra–hydrated system was found that the different 

pKa values are ∆pKa1= 0.07 (2.17–2.10), ∆pKa2= – 0.11 (3.75–3.86) and ∆pKa3= 0.01 

(9.83–9.82) with r2 = 0.9995 for CPCM/UAHF model and ∆pKa1= 0.07 (2.17–2.10), 

∆pKa2= –0.09 (3.77–3.86) and ∆pKa3 = 0.02 (9.84–9.82) with r2 = 0.9996 for 

IEFPCM/UAHF model.  
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Table 4.23 Gibbs free energy contributions ∆Ggas, ∆∆Gsolv and ∆Gaq (kcal/mol) for the 

acid dissociation equilibria of aspartic acid of various water–cluster models in gas phase 

 

a The ∆∆Gsolv values  were obtained from single–point calculation at the B3LYP/6–31+G(d,p) level with 
UAKS and UAHF (in parenthesis) cavity models. b The ∆Gaq values were computed according to the 
thermodynamic cycles as shown in Schemes 1, 2 and 3. c Due to the CPCM with UAKS and UAHF (in 
parenthesis) cavity models. d Due to the IEFPCM with UAKS and UAHF (in parenthesis) cavity models.    
 

 

 

 

 

 

 

 

 CPCM IEFPCM Hydrated system/Reaction 

∆Ggas ∆∆Gsolv
a ∆Gaq

b pKa
c ∆∆Gsolv

a ∆Gaq
b pKa

d 

Tri–hydrated        

H3asp+.(H2O)3 →  H2asp.(H2O)3  + H+ 248.70 –234.92 
(–235.63) 

13.78 
(13.07) 

6.02 
(7.84) 

–234.93 
(–235.65) 

13.77 
(13.05) 

6.04 
(4.75) 

H2asp.(H2O)3  →  Hasp–.(H2O)3
   + H+ 303.33 –294.93 

(–297.54) 
8.40 
(5.79) 

7.44 
(2.50) 

–294.91 
(–297.50) 

8.42 
(5.83) 

7.41 
(6.51) 

Hasp–.(H2O)3  →  asp2–.(H2O)3    + H+ 381.32 –361.33 
(–360.60) 

19.99 
(20.72) 

12.22 
(13.44) 

–361.56 
(–360.70) 

19.76 
(20.62) 

12.06 
(12.46) 

Tetra–hydrated        

H3asp+.(H2O)4 →  H2asp.(H2O)4  + H+ 243.60 –231.02 
(–232.76) 

12.58 
(10.84) 

6.79 
(6.20) 

–231.00 
(–232.74) 

12.60 
(10.86) 

6.80 
(5.26) 

H2asp.(H2O)4  →  Hasp–.(H2O)4
   + H+ 309.18 –297.42 

(–299.51) 
11.76 
(9.67) 

7.76 
(5.34) 

–297.44 
(–299.51) 

11.74 
(9.67) 

7.75 
(6.58) 

Hasp–.(H2O)4  →  asp2–.(H2O)4    + H+ 375.83 –358.08 
(–357.90) 

17.75 
(17.93) 

11.06 
(11.40) 

–358.20 
(–358.03) 

17.63 
(17.80) 

10.98 
(11.02) 

Penta–hydrated        

H3asp+.(H2O)5 →  H2asp.(H2O)5  + H+ 240.14 –234.62 
(–235.71) 

5.52 
(4.97) 

1.16 
(1.90) 

–234.59 
(–235.14) 

5.55 
(5.00) 

1.17 
(0.27) 

H2asp.(H2O)5  →  Hasp–.(H2O)5
   + H+ 303.15 –296.85 

(–298.69) 
6.30 
(4.46) 

4.36 
(1.53) 

–296.86 
(–298.67) 

6.29 
(4.48) 

4.36 
(3.69) 

Hasp–.(H2O)5  →  asp2–.(H2O)5    + H+ 377.74 –354.14 
(–353.77) 

23.60 
(23.97) 

15.22 
(15.83) 

–354.23 
(–353.87) 

23.51 
(23.87) 

15.15 
(15.26) 

Hexa–hydrated        

H3asp+.(H2O)6 →  H2asp.(H2O)6  + H+ 243.05 –234.36 
(–235.22) 

8.69 
(7.83) 

3.02 
(3.99) 

–234.37 
(–235.24) 

8.68 
(7.81) 

3.03 
(1.74) 

H2asp.(H2O)6  →  Hasp–.(H2O)6
   + H+ 301.60 –294.15 

(–296.55) 
7.45 
(5.05) 

5.79 
(1.96) 

–294.12 
(–296.50) 

7.48 
(5.10) 

5.79 
(4.89) 

Hasp–.(H2O)6 →  asp2–.(H2O)6    + H+ 374.44 –350.71 
(–349.79) 

23.73 
(24.65) 

15.17 
(16.32) 

–350.81 
(–349.91) 

23.63 
(24.53) 

15.11 
(15.57) 
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Table 4.24 Gibbs free energy contributions ∆Ggas, ∆∆Gsolv and ∆Gaq (kcal/mol) for the 

acid dissociation equilibria of aspartic acid of bare structure of different water cluster 

models in gas phase 

a The ∆∆Gsolv values  were obtained from single–point calculation at the B3LYP/6–31+G(d,p) level with 
UAKS and UAHF (in parenthesis) cavity models. b The ∆Gaq values were computed according to the 
thermodynamic cycles as shown in Schemes 1, 2 and 3. c Due to the CPCM with UAKS and UAHF (in 
parenthesis) cavity models. d Due to the IEFPCM with UAKS and UAHF (in parenthesis) cavity models.  
        

       Complete sets of the computed pKa values for n–hydrated systems (Table 4.24) are 

really different from the experimental results. This must be the limitation of these two 

cavity models of solvent–effect calculation on the water–added system.  Deviation of the 

pKa values of all sets of the hydrated structures of various aspartic acid species from their 

experimental values corresponds to the inaccurate results of solvent–effect calculation for 

the tri–hydrated system of 5–hydroxytryptamine as reported in ref. 56.             

  CPCM  IEFPCM Hydrated system/Reaction 

∆Ggas  ∆∆Gsolv
a ∆Gaq

b pKa
c  ∆∆Gsolv

a ∆Gaq
b pKa

d 

Tri–hydrated          

H3asp+ →  H2asp  + H+ 233.23  –235.44 
(–233.29) 

–2.21 
(–0.06) 

1.74 
(2.19) 

 –233.29 
(–235.44) 

–0.06 
(–2.21) 

1.67 
(1.98) 

H2asp  →  Hasp–   + H+ 314.74  –311.12 
(–307.89) 

3.62 
(6.85) 

4.18 
(3.72) 

 –307.89 
(–311.12) 

6.85 
(3.62) 

4.54 
(4.02) 

Hasp–  →  asp2–    + H+ 390.34  –370.29 
(–371.37) 

20.05 
(18.97) 

9.24 
(9.83) 

 –371.37 
(–370.29) 

18.97 
(20.05) 

9.57 
(9.78) 

Tetra–hydrated          

H3asp+ →  H2asp  + H+ 228.29  –230.11 
(–228.02) 

–1.82 
(0.27) 

1.83 
(2.17) 

 –228.02 
(–230.11) 

0.27 
(–1.82) 

1.84 
(2.17) 

H2asp  →  Hasp–   + H+ 320.63  –317.62 
(–314.28) 

3.01 
(6.35) 

4.21 
(3.75) 

 –314.28 
(–317.62) 

6.35 
(3.01) 

4.21 
(3.77) 

Hasp–  →  asp2–    + H+ 389.62  –368.25 
(–369.44) 

21.37 
(20.18) 

9.69 
(9.83) 

 –369.44 
(–368.25) 

20.18 
(21.37) 

9.61 
(9.84) 

Penta–hydrated          

H3asp+ →  H2asp  + H+ 226.79  –231.75 
(–229.50) 

–4.96 
(–2.71) 

2.52 
(2.67) 

 –229.50 
(–231.75) 

–2.71 
(–4.96) 

2.52 
(2.67) 

H2asp  →  Hasp–   + H+ 304.43  –306.82 
(–303.69) 

–2.39 
(0.74) 

3.38 
(3.24) 

 –303.69 
(–306.82) 

0.74 
(–2.39) 

3.38 
(3.24) 

Hasp–  →  asp2–    + H+ 404.42  –376.35 
(–377.54) 

28.07 
(26.88) 

9.87 
(9.87) 

 –377.54 
(–376.35) 

26.88 
(28.07) 

9.88 
(9.87) 

Hexa–hydrated          

H3asp+ →  H2asp  + H+ 229.46  –233.79 
(–231.44) 

–4.33 
(–1.98) 

2.65 
(2.78) 

 –231.44 
(–233.79) 

–1.98 
(–4.33) 

2.66 
(2.78) 

H2asp  →  Hasp–   + H+ 304.19  –306.88 
(–303.79) 

–2.69 
(0.40) 

3.26 
(3.14) 

 –303.79 
(–306.88) 

0.40 
(–2.69) 

3.25 
(3.14) 

Hasp–  →  asp2–    + H+ 402.13  –373.73 
(–375.09) 

28.40 
(27.04) 

9.87 
(9.86) 

 –375.09 
(–373.73) 

27.04 
(28.40) 

9.87 
(9.86) 



CHAPTER V 

 

CONCLUSIONS 
 

5.1 Conformational study of cationic, zwitterionic and anionic species of aspartic 

acid and their water-added forms 

        

        The potential energy surfaces for the bare structures of species H3asp+ and asp2− 

and for the trihydrated structures of species H2asp and Hasp− of aspartic acid have 

been performed at the DFT/B3LYP/6–31G(d) level of theory. Conformations of 34, 

11, 9 and 3 were found from 324, 162, 81 and 81 possible conformers for species 

H3asp+, H2asp, Hasp− and asp2−, respectively. Based on the B3LYP/6-31+G(d,p) 

computations of different structural models (the bare, trihydrated and tetrahydrated 

structures), the conformation for the species H3asp+ (γD[g− g+]), H2asp (αL [a g−]), 

Hasp− (εL [g+ a]) and asp2− (βL [g+ a]) are not changed. In gas phase, the species H2asp 

and Hasp− must be stabilized by at least three water molecules but the bare structures 

of the species H3asp+ and asp2− are stable. Three protonation steps due to the 

tetrahydrated species of asp2−, Hasp− and H2asp of aspartic acid computed at 

B3LYP/6-31+G(d,p) level of theory with zero-point vibrational energy corrections are 

exothermic reactions and their stabilization energies of the stepwise protonation are 

−244.68, −308.57 and −379.97 kcal/mol, respectively. 

 

5.2.1 Conformational analysis of alkali metal complexes of dianionic species of 

aspartic acid 

 

       The B3LYP/6−311++G(d,p)−optimized structures of mono and dinuclear 

complexes of dianionic species (asp2−) of aspartic acid with Li+, Na+ and K+ cations 

were obtained. The most stable conformers mono- and dinuclear complexes of asp2− 

with Li+, Na+ and K+ are 9 and 16, 6′ and 11′ and 4″ and 9″, respectively. The metal 

ion affinities of the most stable complex conformers are MIA(1) = 254.86 and 

MIA(2) = 155.88 kcal/mol for the asp2−/Li+ complex system, MIA(1) = 219.40 and 

MIA(2) = 144.46 kcal/mol for the asp2−/Na+ complex system, and MIA(1) = 197.09 

and MIA(2) = 126.04 kcal/mol for the asp2−/K+ complex system. The asp2− complex 
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components of the most stable complex conformer exist as δD [g+ g+]           

conformation. The relative energies of complexation reaction of [asp−M]− and                       

[asp−M2] are in decreasing order: [asp–Li]– > [asp–Na]– > [asp–K]– and 

[asp−Li2]   > [asp−Na2] > [asp−K2], respectively. The relative reactivities of [asp−M]− 

and [asp−M2] complexes are in order: [asp−K]− > [asp−Na]− > [asp−Li]− and 

[asp−K2] > [asp−Na2] > [asp−Li2], respectively, but their absolute values are not very 

different. As the energy gap for K+ and Na+ cations are, respectively, lower than Na+ 

and Li+ cations by 0.38 and 0.88 eV, their relative reactivities are correspondingly in 

decreasing order: K+ > Na+ > Li+.  

 

5.2.2 Conformational analysis of alkali metal complexes of anionic species of 

aspartic acid  

 

      The B3LYP/6−311++G(d,p)−optimized structures of all conformers of α− and 

β−[Hasp−M] complexes were obtained. Numbers of 39 conformers for [Hasp−Li], 23 

conformers for [Hasp−Na] and 22 conformers for [Hasp−K] complexes were found. 

Based on their single−step interconversions, numbers of 28 equilibria for [Hasp−Li], 

13 equilibria for [Hasp−Na] and 12 equilibria for [Hasp−Li] complex systems were 

found and their corresponding transition−state structures were obtained. The most 

stable conformers of [Hasp−M] complexes are α−[Hasp−Li]19, α−[Hasp−Na]6′ and 

α−[Hasp−K]3″ of which binding energies are −168.53, −133.34 and −117.68 kcal/mol, 

respectively. Relative stabilities and reactivities of [Hasp−M] complexes are in 

orders: [Hasp−Li] > [Hasp−Na] > [Hasp−K] and [Hasp−Li] > [Hasp−K] > [Hasp−Na], 

respectively. Magnitudes of MIAs of [Hasp−M]–aspartate ligands are in order: 

[Hasp−Li]–aspartate > [Hasp−Na]–aspartate > [Hasp−K]–aspartate. Relative 

reactivities of seven conformers of [Hasp−]−ligands are in decreasing order: 

HaspIV
− > HaspV

− > HaspI
− > HaspII

− > HaspVII
− > HaspVI

− > HaspIII
−. The average 

bond−distances of M+–O bonds of the [Hasp−M] complexes are in order: 

[Hasp−K]−bond > [Hasp−Na]−bond > [Hasp−Li]−bond. The most stable complex 

conformer as a tri−coordinated form for aspartate complex with Li+ and 

bi−coordinated form for aspartate complexes with Na+ and K+ were found.  
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5.2.3 Conformational analysis of alkali metal complexes of zwitterionic species of 

aspartic acid  

 

The B3LYP/6–311++G(d,p)–optimized structures of [H2asp–M]+ where M=Li+, 

Na+, K+ were obtained. Numbers of [H2asp–Li]+, [H2asp–Na]+ and [H2asp–K]+ 

conformers of 11, 12 and 12 were obtained respectively and their structures as 

charge–solvated and salt–bridge structures were found. The most stable form of all 

[H2asp–M]+ complex conformers are charge–solvated tri–coordination structures in 

which M+ alkali metal cation is preferably coordinated to amino nitrogen, α– and β–

carbonyl oxygen atoms of aspartic acid.  MIAs of aspartic acid conformers are in 

order: [H2asp–Li]+ > [H2asp–Na]+ > [H2asp–K]+. Complexation energies of charge–

solvated aspartic acid conformers with lithium, sodium and potassium ions are larger 

than their salt–bridge conformers and their relative energies are in order: [H2asp–Li]+ 

> [H2asp–Na]+ > [H2asp–K]+. All the complexation of [H2asp–M]+ complexes are 

found as spontaneous reaction. Pre–orgainzation energies for charge–solvated system 

are larger than those for salt–bridge system and relative values for pre–orgainzation 

energies depend on sizes of alkali metal ions namely Li+ > Na+ > K+. 

 

5.3 Aqueous acid–dissociation constants (pKa) of aspartic acid 

 

Acid dissociation constants of aspartic acid in aqueous solution were determined 

using the DFT with two different solvation models of CPCM and IEFPCM based on 

two different cavity models of UAKS and UAHF. We found that the pKa values 

derived from the CPCM and IEFPCM with UAHF cavity model of the bare 

B3LYP/6−31+G(d,p)−optimized structures of tetra−hydrated aspartic acid species are 

mostly closed to the experimental pKa values.  These two different solvation models 

of CPCM and IEFPCM are excellent methods for determination of acid dissociation 

constants of the system of bare structures of aspartic acid as the conformations of 

δD[g– g+] for H3asp+, δD[g– a] for H2asp,  δD[g– g+] for Hasp– and βL[g– g+] for asp2– 

species. 
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Figure A1: B3LYP/6–31G(d) optimized structures of species H3asp+–endo–E and their 
conformations. Relative energy, ∆E is relative to the most stable species of H3asp+(αD [g+ 
g–] = γL [g+ g–] = δL [g+ g–]), in kcal/mol. 
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Figure A2:  Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of H3asp+–endo–E and integrated 
scatter–plot diagram of their PESs (bottom) ( = γD [a a] = δD [a a] = αL [a a], = γD [g– 
a] = δD [g– a] = αL [g– a],  = γD [g– g–],  = γD [g–g+] = δD [g– g+] = αL [g– g+],  = αD [a 
g+],  = αD [g+ a] = δL [g+ a] = γL [g+ a],  = αD [g+ g–] = γL [g+ g–] = δL [g+ g–],  = βL [g– 
g+]). 
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Figure A3: B3LYP/6–31G(d) optimized structures of species H3asp+–endo–E and their 
conformations. Relative energy, ∆E is relative to the most stable species of H3asp+ (αD 
[g+ g–] = γL [g+ g–] = δL [g+ g–]), in kcal/mol. 
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Figure A4:  Landscape representations (top) of the side–chain conformational PESs,  
E=E(χ1,χ2) associated with a backbone conformations of H3asp+–endo–Z and integrated 
scatter–plot diagram of their PESs (bottom) (  = γD [a g–] = δD [a g–] = αL [a g–],  = γD 
[g– a]= δD [g– a]=αL [g– a],  = γD [g– g+] = δD [g– g+],  = δD [a a] = αL [a a],  = εD [g+ 
a]= εL [g+ a] = βL [g+ a],  = εD [g+ g–] = βL [g+ g–]= εL [g+ g–],  = εD[a g–] = εL [a g–],  
=εD [g– g+] = βL [g– g+] =εL [g– g+],  = εD [g– a],  = εL [a a] = βL [a a],  = αD [a g+] = 
δL [a g+],  = αD [g+ a] = δL [g+ a] = γL [g+ a],  = αD [g+ g–] = δL [g+ g–] = γL [g+ g–]). 
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Figure A5: B3LYP/6–31G(d) optimized structures of species H3asp+–exo–E and   their 
conformations. Relative energy, ∆E is relative to the most stable species of H3asp+(αD [g+ 
g–] = γL [g+ g–] = δL[g+ g–]), in kcal/mol. 
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Figure A6:  Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of H3asp+–exo–E and integrated 
scatter–plot diagram of their PESs (bottom) (  = γD [g– g+] = δD [g– g+] = αL [g– g+],  = 
εD [g– g+],  = αD [g– a] = δL [g– a] = γL [g– a],  = αD [g+ g–] = δL [g+ g–]= γL [g+ g–],  
= δL [a g+] = γL [a g+]).  
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Figure A7: B3LYP/6–31G(d) optimized structures of species H3asp+–exo–Z and their 
conformations. Relative energy, ∆E is relative to the most stable species of H3asp+(αD [g+ 
g–] = γL [g+ g–] =  δL [g+ g–]), in kcal/mol. 
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Figure A8:  Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of H3asp+–exo–Z and integrated 
scatter–plot diagram of their PESs (bottom) (  = γD [a g–]= δD [a g–] = αL [a g–],  = γD 
[g– g+] = δD [g– g+] = αL [g– g+],  = δD [g+ g–],  = εD [a g–] = βL [a g–] = εL [a g–],  = 
εD [g– g+] = βL [g– g+] = εL [g– g+],  = βL [g+ g–] = εL [g+ g–],  = αD [g– a] = δL [g– a] = 
γL [g– a],  = αD [ g+ g–] = γL [g+ g–]). 
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Figure A9: B3LYP/6–31G(d) optimized structures of trihydrated form of H2asp–endo   
species and their conformations. Relative energy, ∆E is relative to the most stable species 
of H2asp (αL[a g–]), in kcal/mol. 
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Figure A10: Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of trihydrated form of H2asp–endo 
species and integrated scatter–plot diagram of their PESs (bottom) (  = εD [g+ g–],  = αD 
[g+ g–],  = δD [g+ g–],  = εL [g– g+]).  
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Figure A11:  B3LYP/6–31G(d) optimized structures of trihydrated form of H2asp–exo 
species and their conformations. Relative energy, ∆E is relative to the most stable species 
of H2asp (αL [a g–]), in kcal/mol. 
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Figure A12:  Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of trihydrated form of H2asp–exo 
species and integrated scatter–plot diagram of their PESs (bottom) (  = εD [g+ a],  = εD 
[g+ g–],  = εD [a g–],  = εD [g– g+],  = δD [g+ g–] = αL [g+ g–],  = γL [g+ g–],  = αL [a 
g–]).  
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Figure A13: B3LYP/6–31G(d) optimized structures of trihydrated form of Hasp– species 
and their conformations. Relative energy, ∆E is relative to the most stable species of 
Hasp– (εL [g+ a]), in kcal/mol. 
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Figure A14: Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of trihydrated form of Hasp– 
species and integrated scatter–plot diagram of their PESs (bottom) (  = αD [g+ a] = γL [g+ 
a], = δD [a g–],  = εD [g+ g+] = βL [g+ g+],  = εD [g+ a],  = εD [g– g+],  = γL [g+ g+] = 
δL [g+ g+],  = γL [g– g+],  = εL [g+ a] = βL [g+ a],  = εL [g+ g–]). 
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Figure A15: B3LYP/6–31G(d) optimized structures of species asp2– and their 
conformations. Relative energy, ∆E is relative to the most stable species of asp2– (βL [g+ 
a]), in kcal/mol. 
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Figure A16: Landscape representations (top) of the side–chain conformational PESs, 
E=E(χ1,χ2) associated with a backbone conformations of asp2– and integrated scatter–plot 
diagram of their PESs (bottom) (  = γD [g+ a] = γD [g+ g–] = εD [g+ a] = εD [g+ g–],  = αL 
[g– g+] = αL [g– a] = εL [g– g+] = εL [g– a] ,  = βL [g+ a] = βL [g+ g–] = δL [g+ a] = δL [g+ g–]).  
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Figure A17: The B3LYP/6–311++G(d,p)–optimized structures of (a)  [asp–Li]– and (b) 
[asp–Li2] complexes.  Bond distances are in Å. 
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Figure A18: The B3LYP/6–311++G(d,p)–optimized structures of (a) [asp–Na]– and (b) 
[asp–Na2]    complexes.  Bond distances are in Å. 
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Figure A19: The B3LYP/6–311++G(d,p)–optimized structures of  (a) [asp–K]– and (b) 
[asp–K2] complexes.  Bond distances are in Å. 
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Figure A20:  The B3LYP/6–311++G(d,p)–optimized structures of Hasp– ligand.  
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Figure A21: The B3LYP/6–311++G(d,p)–optimized structures of α–[Hasp–Li] 
complexes.  Bond distances are in Å. 
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Figure A22: The B3LYP/6–311++G(d,p)–optimized structures of β–[Hasp–Li] 
complexes.  Bond distances are in Å. 
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Figure A23: The B3LYP/6–311++G(d,p)–optimized structures of α–[Hasp–Na] 
complexes.  Bond distances are in Å. 
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Figure A24: The B3LYP/6–311++G(d,p)–optimized structures of β–[Hasp–Na] 
complexes.  Bond distances are in Å. 
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Figure A25: The B3LYP/6–311++G(d,p)–optimized structures of α–[Hasp–K] 
complexes.  Bond distances are in Å. 
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Figure A26: The B3LYP/6–311++G(d,p)–optimized structures of β–[Hasp–K] 
complexes.  Bond distances are in Å. 
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Figure A27:  The B3LYP/6–311++G(d,p)–optimized structures of H2asp ligand. Bond 
distances are in Å. 
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Figure A28: The B3LYP/6–311++G(d,p)–optimized structures of [H2asp–Li]+ 
complexes.  Bond distances are in Å. 
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Figure A29: The B3LYP/6–311++G(d,p)–optimized structures of [H2asp–Na]+ 
complexes.  Bond distances are in Å. 
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Figure A30: The B3LYP/6–311++G(d,p)–optimized structures of [H2asp–K]+ complexes.  
Bond distances are in Å. 
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Scheme A–1. Thermodynamic cycles for calculation of the first pKa corresponding to the 
deprotonation reaction of H3asp+ → H2asp as bare structure.  

 

 

 

 
Scheme A–2. Thermodynamic cycles for calculation of the second pKa corresponding to 
the deprotonation reaction of H2asp → Hasp– as bare structure. 

 
 
 

 
Scheme A–3. Thermodynamic cycles for calculation of the third pKa corresponding to the 
deprotonation reaction of Hasp–  → asp2– as bare structure. 
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Scheme A–4. Thermodynamic cycles for calculation of the first pKa corresponding to the 
deprotonation reaction of H3asp+ → H2asp as n–hydrated structure.  
 

 

 

 

 
Scheme A–5. Thermodynamic cycles for calculation of the second pKa corresponding to 
the deprotonation reaction of H2asp → Hasp– as n–hydrated structure. 
 

 

 

 

 
Scheme A–6. Thermodynamic cycles for calculation of the third pKa corresponding to the 
deprotonation reaction of Hasp–  → asp2– as n–hydrated structure. 
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Table B1 Optimized conformers of aspartic acid in H3asp+–endo–E form for all stable 

backbone conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 χ3 ω ∆E(kcal/mol) 

γD [a a]a      2.97     –0.34 159.02 –158.99   178.63     1.07 16.43 
γD [g– a]b   24.01   –15.42 –67.08 –129.15 –176.66     3.41 16.53 
γD [g– g–]   27.25   –29.94 –80.27   –70.85   178.22 –34.49 16.99 
γD [g– g+]c   21.35     –8.07 –50.44     33.94 –176.66     3.41 10.85 
αD [a g+] 119.52       0.65 166.60    20.86 –177.63   –2.03   9.55 
αD [g+ a]d   86.18     18.17   64.26  131.91   176.27     7.41 16.27 
αD [g+ g–]e   83.25     19.11   51.99  –31.03   176.26     7.36   9.75 
βL [g– g+] 164.47 –127.29  –54.14       9.88 –178.86    17.04 17.45 

a Identical to δD [a a] and αL [a a]. b Identical to δD [g– a] and αL [g– a]. c Identical to δD [g– g+] and αL [g– g+]. d Identical to δL [g+ a] and 
γL [g+ a]. e Identical to γL [g+ g–] and δL [g+ g–]. 
 
 
 
 
Table B2 Optimized conformers of aspartic acid in H3asp+–endo–Z form for all stable 

backbone conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer  
φ ψ χ1 χ2 χ3 ω ∆E(kcal/mol) 

γD [a g–]a    19.93  –12.31  150.77   –20.03   177.61   177.30   9.65 
γD [g– a]b    26.96  –15.09  –62.81 –145.70   178.11   177.23   6.58 
γD [g– g+]c    27.92  –16.88  –50.95     26.53 –176.70   176.72   0.00 
δD [a a]d  138.52  –9.51  167.57   141.50   177.61   177.32 12.25 
εD [g+ a]e    60.24 166.13    65.09   150.43 –178.60 –177.75 10.34 
εD [g+ g–]f    64.94 164.28    54.33   –24.83   177.41 –177.73   3.05 
εD [a g–]g    44.84 150.33  154.72   –21.51   178.54 –176.68 13.40 
εD [g– g+]h    41.12 149.06  –53.97     23.78 –177.88 –177.92   2.54 
εD [g– a]    42.91 152.13  –63.49 –155.98   179.13 –177.17   9.95 
εL [a a]i  –72.93 153.12  168.10   148.72 –178.64 –177.10 16.13 
αD [a g+]j    79.57   36.05 –165.99     43.33 –176.15 –174.98   9.65 
αD [g+ a]k    83.72   14.49     63.87   136.94 –177.43 –177.73   6.82 
αD [g+ g–]l    80.96   13.06     51.94   –30.06   176.66 –178.08   0.00 

a Identical to δD [a g–] and αL [a g–]. b Identical to δD [g– a] and αL [g– a]. c Identical to δD [g– g+], the most stable form of H3asp+. d 
Identical to αL [a a]. e Identical to εL [g+ a] and βL [g+ a]. f Identical to βL [g+ g–] and εL [g+ g–]. g Identical to εL [a g–]. h Identical to βL 
[g– g+] and εL[g– g+]. i Identical to βL [a a]. j Identical to δL [a g+]. k Identical to δL[g+ a] and γL [g+ a]. l Identical to δL [g+ g–] and γL [g+ 
g–], the most stable form of H3asp+. 
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Table B3 Optimized conformers of aspartic acid in H3asp+–exo–E form for all stable 

backbone conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 χ3 ω ∆E(kcal/mol) 

γD [g– g+]a     20.00     –4.02 –47.03   29.43   3.68   9.25   7.27 
εD [g– g+]     43.02 –128.70 –53.95   10.72   0.69 –3.58   9.24 
αD [g+ a]b     59.00    34.67 –33.70 140.69   5.06   8.34   7.27 
γD [g+ g–]c     81.64    22.12   51.83 –26.50   2.35   3.87   7.44 
εD [a g+]d –120.68      3.59 166.81   14.97 –2.33   9.84 18.27 

a Identical to δD [g– g+] and αL [g– g+]. b Identical to δL [g– a] and γL [g– a]. c Identical to δL [g+ g–] and γL [g+ g–]. d Identical to γL [a g+]. 
 
 
 
 
Table B4 Optimized conformers of aspartic acid in H3asp+–exo–Z form for all stable 

backbone conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 χ3 ω ∆E(kcal/mol) 

γD [a g–]a      20.50 –13.05 146.66 –19.49   2.98 –178.05 18.16  
γD [g– g+]b      29.44 –19.30 –52.13   25.46   3.69   178.28   7.27  
δD [g+ g–]  –159.82 –12.12   51.69 –28.28 –3.46 –178.62   7.44  
εD [a g–]c     45.57 150.25 148.23 –24.62 –6.02 –176.26 18.16  
εD [g– g+]d     39.89 149.35 –54.31   26.65   5.98 –178.33 24.24  
βL [g+ g–]e  –173.41 162.62   54.13 –24.05 –3.62 –177.65   9.97  
αD [g– a]f     54.91   34.67 –33.70 140.69 –5.09 –178.26 32.37  
αD [g+ g–]g     80.45   22.12   51.82 –26.50   6.89 –178.57 17.72  

a Identical to δD [a g–] and εD [a g–]. b Identical to δD [g– g+] and αL [g– g+]. c Identical to βL [a g–] and εL [a g–]. d Identical to βL [g– g+] 
and εL [g– g+]. e Identical to εL [g+ g–]. f Identical to δL [g– a] and γL [g– a]. g Identical to γL [g+ g–]. 
 
 
 
 
 
Table B5 Optimized conformers of aspartic acid in H2asp–endo form for all stable 

backbone conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 χ3 ∆E(kcal/mol) 

εD [g+ g–]   33.81 149.84   80.09 –40.46 179.71   0.66 
αD [g+ g–] 115.95     5.40   64.95 –89.23 179.15 17.72 
δD [g+ g–] 128.80   –8.71   75.46   –6.27 179.48 13.47 
εL [g– g+] –50.78 167.60 –53.17   76.60 179.48   0.26 
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Table B6 Optimized conformers of aspartic acid in H2asp–exo form for all stable 

backbone conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 χ3 ∆E(kcal/mol) 

εD [g+ a]    78.19 –165.00   57.60 –136.90   7.64 89.29 
εD [g+ g–]    33.96   149.12   79.25     –9.13 –2.07  4.67 
εD [a g–]    54.79   174.48 135.55 –108.10 –7.62  9.35 
εD [g– g+]      3.27   170.30 –77.09   111.62 11.56 12.17 
δD [g+ g–]a  128.95     –9.57   61.49     –4.86 –2.31 16.70 
γL [g+ g–]    –0.10       5.15   66.52   –84.32   4.97 22.09 
αL [a g–]b  –71.08   –19.73 144.52 –105.19 –8.35   0.00 

a Identical to αL [g+ g–]. b The most stable form of H2asp. 
 
 
 
 
 
Table B7 Optimized conformers of aspartic acid in Hasp– form for all stable backbone 

conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 ∆E(kcal/mol) 

αD [g+ a]a    85.88     32.23   49.40 135.30  3.26 
δD [a g–]  157.67   –23.35 128.43 –49.75  3.07 
εD [g+ g+]b   49.57 –168.87   33.90   24.53 15.14 
εD [g+ a]   62.60 –170.82   43.36 162.08 10.78 
εD [g– g+]   14.86   168.32 –35.69   21.30 10.40 
γL [g+ g+]c –51.39     58.53    37.37    9.19  6.64 
γL [g– g+] –11.67     21.36 –17.52   33.47 17.17 
εL [g+ a]d –42.27 –134.08   49.61 134.99   0.00 
εL [g+ g–] –50.95 –167.48   56.36 –54.84 13.20 

a Identical to γL [g+ a]. b Identical to βL [g+ g+]. c Identical to δL [g+ g+]. d The most stable form of Hasp–, identical to βL [g+ g–]. 
 
 
 
 
 
Table B8 Optimized conformers of aspartic acid in asp2– form for all stable backbone 

conformation computed at the B3LYP/6–31G(d) level of theory 

Optimized parameters   Conformer 
φ ψ χ1 χ2 ∆E(kcal/mol) 

γD [g+ a]a     43.85  –32.57   65.94 175.46 3.50 
αL [g– g+]b   –98.65    –6.80 –44.81   19.96 5.10 
βL [g+ a]c,d  –145.52 –151.20   55.81 123.71 0.00 

a Identical to γD [g+ g–], εD [g+ a] and εD [g+ g–]. b Identical to αL [g– a], εL [g– g+] and εL [g– a]. c Identical to βL [g+ g–], δL [g+ a] and δL 
[g+ g–]. d The most stable form of asp2–. 
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Table B9 Fitted linear equations of acid dissociation constants, pKa1, pKa2 and pKa3 of 

aspartic acid and their correlation coefficients based on different solvent effect models 

against the experimental data 
CPCM a  IEFPCM a Structure model Equation r2  Equation r2 

Model I b      
Bare structure of free form y=0.8280x–0.0165 0.9972  y=0.8295x +0.0002 0.9970 
  (y=1.2435x–1.3611) (0.9205)  (y=1.2397x–1.3012) (0.9190) 
Model II c    
Bare structure of tri–hydrated form y=0.5876x + 1.3971 0.9890  y=0.5667x + 1.6926 0.9784 
  (y =0.5003x + 2.4112) (0.9992)  (y=0.4778x + 2.7539) (0.9987) 
Bare structure of tetra–hydrated form y=0.5317x + 1.7616 0.9936  y=0.5392x + 1.7309 0.9931 
  (y=0.4457x + 2.7892) (0.9995)  (y=0.4511x + 2.7747) (0.9996) 
Bare structure of  penta–hydrated form y=0.3366x + 3.1986 0.9876  y=0.3391x + 3.1967 0.9875 
  (y=0.2951x + 3.7535) (0.9780)  (y=0.2971x + 3.7559) (0.9780) 
Bare structure of  hexa–hydrated form y=0.3358x + 3.1589 0.9794  y=0.3390x + 3.1523 0.9790 
   (y=0.2924x + 3.7221) (0.9703)  (y=0.2947x + 3.7211) (0.9698) 
Model III d    
Tri–hydrated structure y=0.8025x + 4.3376 0.5834  y=0.7791x + 4.4069 0.5748 
  (y=1.0091x + 2.6183) (0.5567)  (y=0.9990x + 2.6516) (0.5560) 
Tetra–hydrated structure y=0.5540x + 5.6246 0.8840  y=0.5410x + 5.6639 0.8790 
  (y= 0.7610x + 3.6442) (0.8819)  (y=0.7463x + 3.6945) (0.8788) 
Penta–hydrated structure y=1.8214x – 2.6692 0.9676  y=1.8104x – 2.6285 0.9670 
  (y=1.9558x – 3.8694) (0.9425)  (y=1.9428x – 3.8135) (0.9422) 
Hexa–hydrated structure y=1.5741x – 0.2849 0.9195  y=1.5636x – 0.2495 0.9204 
  (y=1.8040x – 2.0663) (0.8820)  (y=1.7916x – 2.0230) (0.8835) 
      
a The PCMs with UAKS and UAHF (in parenthesis) cavity models. b No water molecule is associated. c 
Based on single–point calculation of bare structures of n–hydrated forms. d Based on single–point 
calculation of n–hydrated structures. 
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