CHAPTER IV
CONCLUSION AND DISCUSSION

4,1 Conclusion

In chapter II, the quantum mechanical methods used to find
the density of states in heavily doped semiconductors are introduced.
First Halperin and Lax use the minimum counting method which is based
on the full guantum theory of Schrodinger. The method assumes that
all the eigenstates of a given energy have the same shape, or equivalently,
that all the corresponding potential wells have the same shape. The
density of states deep in the tail is calculated by counting the number
of wells having a particular ground state energy. The best ground
state wave function f{;) is obtained by maximizing the density of

states. This procedure leads to an equation
TE(X) - f&as [ £(x))° wi(x-x') ax’ = E£(X) (4.1.1)

which looks like the Hartree equation for a particle bound in its own
self-consistent field, with an interaction -pw(;—;'}. The difference
between this eqguatipn and the Hartree equation is that u instead of
E plays the role of the eigehvalue to be found. Using the technique

developed by Hartree for solving the self-consistent equation38,
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Halperin and Lax have calculated the above equation numerically. The
results are presented in the form of numerical functions for a(v),
b(v), n(v), and T(v). Secondly, Sa-yakanit has used the
Feynman path integral technique to acheive an analytical form of
density of states. Because the density of states per unit volume is
expressed in terms of the diagonal part of the average propagator,
Gt;z' ;1, t) ; to obtain the density of states, one has to find an
approximate expression for G. To do this he approximated the action
S by a nonlocal harmonic trial action S which contains an unknown
parameter to be determined. After the process of calculation, the
density of states deep in the tail can be expressed in analytical
forms. For determining the Unknown parameter introduced in the trial
action S, he followed Halperin and Lax method, i.e. he maximized

the exponential factor of {2.2.23) and (2.2.46)

and obtained

x“ + x ~ 4v = 0 (4.1.2)
for the Gaussian impurity potential, and
3
z” 3 -2
D_;(2) = 3 (32 +v) D ,(2) (4.1.3)

for the screened Coulomb potential.
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The numerical results for the functions al(v), b(v), niv),
and T(v) fo; a screened Coulomb potential cbtained from Sa-yakanit -
theory can be compared with the numerical calculation by Halperin and
Lax. But for a Gaussian impurity potential (in three dimensions)
no such comparison can be made because no result calculated from
the minimum counting method is available. Therefore, in thislthesis
special attention is given to eyvaluate the density of states for the
case of Gaussian impurity potential by using the minimum counting
method. * Although it can be caleulated numerically as was cone by
Halperin and Lax but/ /the process of calculation isg CGw¥:ubersome since

it involves the Hartree-type equation.

In chapter /ILE, £he-simplified method is presented. The
simply guessed dinitial wave functions are used din the
expressions of Halperin and Lax theory. Analytical expressions of
density of states tail are easily obtained. This method is not only
the simple method but also givesthe excellent results. The
important point of this method is the guessing of an appropriated

trial wave function .
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4.2 Comparison of Results

4,2,1 Screened Coulomb Potential

For screened Coulomb potential, the results of Eymard and
Duraffourg method can be improved by using the trial wave function
in the form

2
1,2 rl/

¢ (x) = (284/3n) exp (=B r) (4.1.4)

An analytical expression of the density of states is easily obtained

o) = [ D 3762 1 atw) exP[-E;b(v]ﬂE] (4.1.5)
where
a(v) = 5468y ) t2yrty (2649 > +60y >+ 14y+1) 32 (4.1.6)
27) > 2ny> (11529 4728y 34244y 2 a2y43) /2
and

. 2.2
2
b(v) = 2 (2vi y ) (2y-# 1) (4.1.7)

y3(l152y4+728y3+244y2+42y+3)

The comparison of the numerical results for the dimensionless
functions a(v) and Db(v), and for the limiting values of al(v),

b(v), n(v), and T (v)/v obtained from Halperin and Lax theory,
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Sa-yakanit theory, Eymard and Duraffourg, and Present method is
presented in Table 4.1 , 4.2, and 4.3 respectively. The density
of states calculated from the four methods are plotted in the same
figure, such as Fig. 4.1 to 4.4 for £E' = 0.05, 0.5, 5 and

50 respectively. The function n(v) is plotted in Fig, 4.5.

It can be seen from Table 4.1 - 4.3 and from Fig, 4.1 - 4.4
that the results of present method are in very good agreement with the
computed Halperin and Lax results. Especially, for the large values
of v the function a(v) and b(v) obtained from present method
are closer to Halperin and Lax's results thanthose cbtained from Eymard
and Duraffourg method. For the large values of £' (for example
£' = 50) the density of states calculated by present method also
gives the better results than those calculated by the method éf Eymard and
Duraffourg. But for small values 6f £' (for example E' = 0.05)
present method yeilds the smaller value of pltE} than Eymard and
Duraffourg method and than Halperin and Lax theoxy. From Table 4.3
it is interesting to note that present method, Eymard and Duraffourg
method,‘ Sa-yakanit theory, and Halperin and Lax theory predict
identical limiting values for n(v) and T(v)/v but slightly
different values for al(v) and bi(v). From Fig 4.5, as v —9p = and
v—> O the values of n(v) obtained from the four methods tend to
2 and %. respectively. This result agrees with the experimental

results.
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Tsple 4.1 Comparison between the value of a(v) calculated from the present
method, Eymard and Duraffourg method, Sa-yakanit Theory and
Halperin and Lax Theory for the case of a screened Coulomb potential.
! - a(v)
v ! PRESENT METHOD | EYMARD-DURAFFOURG SA—YAKANITq HALPERIN AND LAX .
I METHOD THEORY THEORY
[ I
| 1.000x10% | 3.0379x108 3,1209x10° 2.9442x10° | 3.098x10®
5.623x102 | 4.6068x10’ 4.7703x10’ 4.4467x107 | 4.645x10’
3.162x10° | 7.1629x10° 7.4659x10° 6.8822x10° | 7.250x10°
1.778x102 | 1.1469x10° 1,2118x10° 1.0963x10° | 1.153x10°
1.00x10% 1.9008x10° 2.0321x10° 1.8063x10° | 1.888x10°
5.623x10 3.2779x10° 3.5525x10% 3.0954x10% | 3.223x10°
3.162x10 5.9174x10° 6.5109%10° 5.5499x10° | 5.781x10°
1.778x10 1.1252x10° 1.2588x10° 1.0479x10° | 1.094x10°
1.000x10 2.2683x10° 2,5833x10° 2.0975x10% | 2.197x10°
5.623 4.8783x10 5.6617x10 4.4800x10 4.689x10
3.162 1.1257x10 1.3322x10 1.0273x10 1.078x10
1.778 2.8011 3.3813 2.5424 2.793
1.000 7.5404%10" 9.2839x10 6.8151x10" " | 7.250x107%
5.623x10° Y | 2.1991x107% 2.7609x10" 1.9817x10" % | 2.157x107%
3.162x107 % 6.9419x10" 2 8.8843x10 2 6.2444x102 | 5.957x1072
1.778x10" % 2.3627x10" 2 3.0826x10 2 2.1232x10"2 | 2.423x1072
1.000x10" 1 8.6132x10 ° 1.1464x102 7.7327x10"° | 8.906x107>
5.623x10°2 | 3.3312x10°° 4.5307x10° 2.9851x10™° | 3.532x107°
R
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Table 4.1 (Continued)
a(v)
:
Y PRESENT METHOD EYMARD-DURAFFOURG SA-YAKANIT HALPERINAAND LAKl
THEORY THEORY |
3.162x10" 2 1.3509x10 > 1.8823x10° 1.2057x10"° 1.485x10™°
1.778x10 % | 5.6703x107% 8.1192x10™ 7 5.0249x10" % | 5.407x107%
1.000x10™2 2.4323x10"7 3.5878x10™ 4 2.1316x10™ % 2.834x10"
5.623x107 > | 1.0549x10 1.6034x10"° 9.1063x10™> | 1.290x10™°
3.162x10°° |  4.5914x107° 7.1686x10 > 3.8909x10™° | 5.890x107°
1.778x10" > 1.9959x10"° 3.1823x10°° 1.6578x10 >
1.000x10™> 8.6447x10"° 1.3976x10 > 7.0408x10-6
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Table 4.2 Comparison between the value of b(y) calculated from the present

method, Eymard and Duraffourg method, Sa-yakanit Theory and

Halperin and Lax Theory for the case of a screened Coulomb

potential.

b(v)
l f
v PRESENT METHOD | EYMARD AND DURAFFOURG SA-YAKANIT HALPERIN AND LAX
METHOD | THEORY THEORY

1.00x10° 1.4489x10° 1.4743x10° | 1.4378x10° | 1.444x10°
5.623x10° 4.9429%10° " 5,0454x10° | 4.8986x10° | 4.912x10°
3.162x10° 1.7114x10° Y Al7832%10° | 1.6938x10° | 1.702x10°
1.778x10° 6.0307x10% 6.2025%10" 35.9594;:104 6.000x10"
1.000x10° 2.1690x10" 2.2407x10% | 2.1401x10% | 2.150x10*
5.623x10 7.9897x10° 8.2931x10° 7.8716x10° | 7.808x10°
3.162x10 3.0252x10° 3.1558x10° 2.9765x10° | 2.988x10°
1.778x10 1.1821x10° 1.2393x10° 1.1619x10° | 1.167x10°
1.000x10 4.,7866x10° 5,0427x10° 4.7030x10% | 4.716x10%
5.632 2.0169x10° 2.1339x10° 1.9824x10° | 1.983x10°
2.162 8.8797x10 9.4260x10 8.7403x10 | 8.720x10
1.778 4.0995x10 4,3598x10 4,0465x10 4,043x10
1.000 1.9907x10 2.1169x10 1.9736x10 | 1.956x10
5.632x10" 1 1.0189x10 1.0808x10 1.0163x10 1.008x10
3.162x10" 5.5017 5.8065 5.5301 5.456
1.778x10™ % 3.1324 3.2799 3.1776 3.108
1.000x10" Y | 1.8766 1.9444 1.9232 1.846
5.632x10°% | 1.1789 1.2061 1.2210 1.151
3.162x1072 | 7.7275x107% 7.7958x10" * 8.0860x10" L | 7.516x107"
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Table 4.2 (Continued)

b(v) T
1 T 'j
W PRESENT METHOD EYMARD AND DURAFFOURG | SA-YAKANIT :HALPERIN AND LAX |
METHOD THEORY THEORY ll
1.778x16° 5.2529x10" 5.2238x10" % 5.5482x10" 1 |5.006x10™ "
1.000x10™ 2 3.6783x10 * 3.6086x10 3.9159x10" % |3.430x10™}
5.632x10" > 2.6351x10 2.5549x10" % 2.8228x10" " [2.464x107%
3.162x10"° | 1.9191x107} 1.8433x10"* 2.0652x10" " |1.806x107 %
1.778x107> | 1.4133x107 " 1.3482x107" 1.5258x10" "
1.000x10~> | 1.0484x10™ " 9,9557x10" % 1.1342x10"*
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Table 4.3 Comparison between the limiting values of a(v), b(v), n(v),
1; and T(v)/W calculated from the present method, Eymard and
Duraffourg method (ED), Sa-yakanit theory (VS) and Halperin

and Lax Theory (HL) for the case of a screened Coulomb

potential.
v << 1 v 3> 1
9 o = __,_ |.-~’
PRESENT ED Vs . HL PRESENT ED Vs HL
METHOD METHOD THEORY .. | TIHEORY METHOD METHOD THEORY 'HEORY
av) l0.20v372 l=0. 489372 |~0.23v /% |26 /4v¥/ % {~0.42x10" % /%0 5x1072, "/ F0.5x1072, /21072,

2 2 2
b(v) 3.26\;1/2 =3-07v1/2 “-'3.54\,1/2 '—'3\:1/2 = b =V = V =
e o~ i = l = 'l = & =
%3 n(v) g > 5 > =2 =2 2 2
T(v) /v = 3 = B = 3 = 3 =0 =0 =0 =0
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Since the Hydrogen-like wave finction and the present wave function,

/2 172

olr) = (B43m?! exp(-8r) give the better results in

different range of £' then their linear combination,
1/2

d(r) = C, exp(-or) + C2 r

1 exp(-r) might give the better results

for all range of £E'. But the calculation would be very tedious.

33 The other interesting point is the variational condition.
For very small values of v , and therefore b(v), the exponential
factor of pl{E) is not dominate. The correct procedure consists in
maximizing a(v) exp [ -Eéb(v)/zg] instead of minimizing b(Y) alone.
The results of this calculaﬁion are fortunately not very different from

those given above3l . The variational condition can be written :

3 0 = y2(4561920y8+3oaoa3zy7+1641024y6+586360y5+145764y4 +25314y°

6
+ 319ly2+270y+9}—2u(1824768y8+4024128y12235163y+776189y5+

+183264y4+31764y3+3826y2+2?0y+9) - %E,[(2u+y2)2(2y+1)7{264y3+6by2+14y

[v2 (9226y°+3828y +1472y 4344y +48y+3) -2y (6604y "+3392y >+068y°+144y+9)]

(1152y +728y°+244y°+a2y +3y%) ] (4.1.8)

342

’

1
which for v << 1 gives y = Y2 v /2, a(v) = 0.2v

1/2
b(v) = 4.12v / , compare to those obtained by minimizing b(v) alone

-
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3 1/2
which are y = (Gu}/z . af(v) = 0.29vy /2 , b(v) = 3.26v / « Ik

seems that the improvement in accuracy with the exact calculation is
not great enough to forbid the use of the very simple expressions
derived from ¢b/dy = 0, since the asymptotic dependences have been

shown to be the good ones.

The limiting of validity of.present method is the same with
Halperin and Lax theory, i.e., it is valid in the deep tail region due
to considering only the ground state energy. And the results of
present method are also in wvery good agreement with computed Halperin and
Lax results. The systematic difference between Halperin and Lax's results
and this work arises from the simplicity of an expression of the present

wave function.
.
4,2.2 Gaussian Potential
For a Gaussian impurity potential, a ground state Gaussian wave
function is tried,
> 3/4 -2
£ = @e/mY? exp-e2?) (4.1.9)
o o

It is found that the density of states deep in tail can be expressed

analytically as follows

3,2 2
p1®) = [ ® /w77 1 aw exp L-E"b(v) 2¢ ] (4.1.10)
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where

[ (1+16v) 3 ]3/2[ (l+16v)1/2+7 ]9/2 /212{2 2 (4.1.11)

a(v)

]

b(v) [ (1+16v) /21 12 [ (1416v) /2 + 7177228 (4.1.12)
These expressions are equivalent to the expressions (2.2.28) and

(2.2.29) derived by the path integral method. This means that for a
Gaussian impurity potential, the results obtained from present method

and Sa-yakanit theory are identical.

Obviously, the present method is more simple than Halperin and
Lax theory. It gives the simple expressions which can be calcu;ated by
scientific calculator. The density of states for each values of gi
are plotted on a semilog scale in Fig 4.6 to 4.9 and the function

n(v) is plotted on a log-log scale in Fig.4.10

Some advantages of present method for both screened Coulomb
potential and Gaussian impurity potential are as follows: (i) The
calculatién can be performed analytically with simple iﬁtegration by
using simple trial wave functions/ (ii) The numerical results for the
density of states are easily obtained because the solution of Hartree-Fock

like eigenvalue equation is reduced to just solving the simple polynomial

alge braic equations.
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4.2.3 The Application of the Impurity Potential Models.

For screened Coulomb potential the results can be used to study
in heavily doped semiconductors. The carrier screening length can be
determined by using self-consastent method3 . For a Gaussian
potential the results can be used to study the noncrystalline structures
such as poly-crystallines and amorphous semiconductors. Since one usually
does not know the detailed shape of the noncrystalline structure, the

autocorrelation length can be estimated from experiment,
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