CHAPTER IV

SEMILATTICES OF PROPER INVERSE SEMIGROUPS

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . There corresponds a semilattice Y of groups in a natural way as follows: To each $\alpha \in Y$, let σ_{α} denote the minimum group congruence on S_{α} . Set $T = \bigcup_{\alpha \in Y} S_{\alpha} | \sigma_{\alpha}$. It has been proved in [3] that under the operation \circ on T defined by

$$(a\sigma_{\alpha})\circ(b\sigma_{\beta}) = (ab)\sigma_{\alpha\beta}$$
 $(\alpha, \beta \in Y, a \in S_{\alpha}, b \in S_{\beta}),$

T becomes a semilattice Y of groups $S_{\alpha}/\sigma_{\alpha}$, and hence T is a homomorphic image of S under the homomorphism $a \mapsto a\sigma_{\alpha} \ (\alpha \in Y, \ a \in S_{\alpha})$. Moreover, the two semigroups have the same maximum group homomorphic image.

In this chapter, a similar version is studied. We construct a semilattice Y of proper inverse semigroups from a given semilattice Y of inverse semigroups, with a certain condition, such that the semilattice Y of proper inverse semigroups which we construct is a homomorphic image of the given semilattice Y of inverse semigroups.

Moreover, the two semigroups have isomorphic maximum group homomorphic images.

Let $S=\bigcup_{\alpha\in Y}S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . For each $\alpha\in Y$, we denote the Green's relation $\mathcal R$, the minimum group congruence and the minimum proper congruence of S_{α} by $\mathcal R_{\alpha}$, σ_{α} and τ_{α} ;

respectively. Set $\bar{S} = \bigcup_{\alpha \in Y} (S_{\alpha}/\tau_{\alpha})$ and define an operation * on \bar{S} by

$$(a\tau_{\alpha})*(b\tau_{\beta}) = (ab)\tau_{\alpha\beta}$$

for all α , β in Y, $a \in S_{\alpha}$, $b \in S_{\beta}$. We show that the operation * is well-defined if the Green's relation $\mathcal R$ of S is a congruence. To show this, we need the following lemmas:

4.1 <u>Lemma</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Assume that for each $\alpha \in Y$, R_{α} is a congruence on S_{α} . Then for α , $\beta \in Y$ and α , $\beta \in S_{\alpha}$, $\alpha \in S_{\beta}$, $\alpha \in S_{\beta}$ and $\alpha \in S_{\alpha}$ be implies $\alpha \in S_{\alpha}$ and $\alpha \in S_{\alpha}$.

Proof: Let α , $\beta \in Y$ and a, $b \in S_{\alpha}$ such that $a \mathcal{R}_{\alpha} b$. Then a = bx and b = ay for some x, $y \in S_{\alpha}$. Let $c \in S_{\beta}$. Then ca = cbx and cb = cay. Hence ca, $cb \in S_{\alpha\beta}$, and

$$ca = cb((cb)^{-1}cbx),$$

and

$$cb = ca(ca)^{-1}cay$$
,

so $\operatorname{ca} \mathcal{R}_{\alpha\beta} \operatorname{cb}$ because $(\operatorname{cb})^{-1} \operatorname{cbx}$, $(\operatorname{ca})^{-1} \operatorname{cay} \in \operatorname{S}_{\alpha\beta}$.

Since R_{α} is a congruence on S_{α} and a R_{α} b, we have $a^{-1}R_{\alpha}b^{-1}$, so by the above proof, we get $c^{-1}a^{-1}R_{\alpha\beta}c^{-1}b^{-1}$, that is, $(ac)^{-1}R_{\alpha\beta}(bc)^{-1}. \quad \text{Again, since } R_{\alpha\beta} \text{ is a congruence on } S_{\alpha\beta},$ ac $R_{\alpha\beta}$ bc. Hence the lemma is proved. #

4.2 <u>Corollary</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Then $\mathcal R$ is a congruence on S if and only if for each $\alpha \in Y$, $\mathcal R_{\alpha}$ is a congruence on S_{α} .

 $\frac{\text{Proof}}{\text{Proof}}: \text{ The necessary part is obvious.} \text{ To show the sufficient part, let } a\Re b. \text{ Assume } a \in S_{\alpha} \text{ and } b \in S_{\beta}. \text{ Since } a\Re b, \text{ there}$ exist $x, y \in S$, say $x \in S_{\gamma}$, $y \in S_{\lambda}$ such that

a = bx and b = ay.

From a = bx, we have $S_{\alpha} = S_{\beta\gamma}$ so that $\alpha = \beta\gamma$ which implies $\alpha \le \beta$ and $\alpha \le \gamma$. Similarly, from b = ay, we have $\beta \le \alpha$ and $\beta \le \lambda$. Hence $\alpha = \beta$. It then follows that

4.3 <u>Lemma</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If R is a congruence on S, then for $\alpha \in Y$, a, $b \in S_{\alpha}$, at $a \in Y$ b implies ac $\tau_{\alpha\beta}$ bc and ca $\tau_{\alpha\beta}$ cb for all $\beta \in Y$, $c \in S_{\beta}$.

 $\frac{\text{proof}}{\text{proof}}: \text{ Assume that } \Re \text{ is a congruence on } S. \text{ Then by Corollary 4.2, for each } \alpha \in Y, \ \Re_{\alpha} \text{ is a congruence on } S_{\alpha} \text{ . Hence}$ $\tau_{\alpha} = \Re_{\alpha} \cap \sigma_{\alpha} \text{ for all } \alpha \text{ in } Y.$

Let $\alpha \in Y$, a, $b \in S_{\alpha}$ and $a\tau_{\alpha}$ b. Then aR_{α} b and $a\sigma_{\alpha}$ b. Let $\beta \in Y$ and $c \in S_{\beta}$. By Lemma 4.1, $acR_{\alpha\beta}bc$ and $caR_{\alpha\beta}cb$. Since $a\sigma_{\alpha}$ b, ae = be and fa = fb for some e, $f \in E(S_{\alpha})$ so that cae = cbe and fac = fbc. Let $e' \in E(S_{\beta})$. Thus ee', $e' f \in E(S_{\alpha\beta})$,

$$ca(ee') = (cb)(ee'),$$

and (e'f)ac = (e'f)bc.

Hence ca $\sigma_{\alpha\beta}$ cb and ac $\sigma_{\alpha\beta}$ bc. Therefore act $\sigma_{\alpha\beta}$ bc and ca $\sigma_{\alpha\beta}$ cb. #

4.4 <u>Proposition.</u> Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} such that the Green's relation \Re on S is a congruence. Then the operation * is defined on $\overline{S} = \bigcup_{\alpha \in Y} S_{\alpha} / \tau_{\alpha}$ as before is well-

defined, and (\$\bar{S}\$, *) is a semilattice Y of proper inverse semigroups $S_{\alpha}/\tau_{\alpha}.$

<u>Proof</u>: Recall that the operation * on $\bar{S} = \bigcup_{\alpha \in Y} S_{\alpha}/\tau_{\alpha}$ is defined by

$$(a\tau_{\alpha})^*(b\tau_{\beta}) = (ab)\tau_{\alpha\beta}$$
 $(\alpha, \beta \in Y, a \in S_{\alpha}, b \in S_{\beta}).$

To show * is well-defined, let α , $\beta \in Y$, a, $c \in S_{\alpha}$ and b, $d \in S_{\beta}$ such that $a\tau_{\alpha} = c\tau_{\alpha}$ and $b\tau_{\beta} = d\tau_{\beta}$. By Lemma 4.3, $ab\tau_{\alpha\beta} = cb\tau_{\alpha\beta}$ and $cb\tau_{\alpha\beta} = cd\tau_{\alpha\beta}$, so $ab\tau_{\alpha\beta} = cd\tau_{\alpha\beta}$. Hence * is well-defined. Since $(S_{\alpha}/\tau_{\alpha})^*(S_{\beta}/\tau_{\beta}) \subseteq S_{\alpha\beta}/\tau_{\alpha\beta}$ for all α , $\beta \in Y$, and for each $\alpha \in Y$, S_{α}/τ_{α} is a proper inverse semigroup, we have $(\bar{S}, *)$ is a semilattice Y of proper inverse semigroups S_{α}/τ_{α} . #

By Proposition 4.4, we then have

4.5 Corollary. Following Proposition 4.4, \bar{S} is a homomorphic image of S by the homomorphism ψ : S \to \bar{S} defined by

$$a\psi = a\tau_0$$

for all $\alpha \in Y$, $a \in S_{\alpha}$.

Let δ be the congruence on S induced by the homomorphism $\psi \,:\, S \,\to\, \bar S \text{ defined in Corollary 4.5.} \quad \text{Then for all a, b} \in S,$

abb if and only if a, $b \in S_{\alpha}$ for some $\alpha \in Y$ and $a\tau_{\alpha}b.$

Therefore $S/\delta \cong (\bar{S}, *)$. Let σ be the minimum group congruence on S. To show $\delta \subseteq \sigma$, let a, $b \in S$ such that $a\delta b$. Then a, $b \in S_{\alpha}$ for some $\alpha \in Y$ and $a\tau_{\alpha}b$. Since $\tau_{\alpha} \subseteq \sigma_{\alpha}$, we have $a\sigma_{\alpha}b$, so ae = be for some

 $e \in E(S_{\alpha}) \subseteq E(S)$. Hence adb. Therefore, by Proposition 2.2, we then have

4.6 Lemma. Following Proposition 4.4, and let δ be as above. Then for all a, b \in S, (a, b) \in σ if and only if $(a\delta, b\delta) \in \sigma(S/\delta)$. Hence

$$S/\sigma(S) \cong (S/\delta)/\sigma(S/\delta),$$

and so S and $(\bar{S}, *)$ have the same maximum group homomorphic image.

The next theorem follows directly from Proposition 4.4, Corollary 4.5 and Lemma 4.6.

4.7 Theorem. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} such that the Green's relation \Re on S is a congruence. Then $(\bar{S}, *)$, defined from S as before, is a semilattice Y of proper inverse semigroups S_{α}/τ_{α} and it is a homomorphic image of S. Moreover, the two semigroups have isomorphic maximum group homomorphic images.

A semigroup S is <u>completely regular</u> if for every element a in S, there exists x in S such that a = axa and ax = xa. It follows that if an inverse semigroup S is completely regular, then $aa^{-1} = a^{-1}a$ for all $a \in S$. To see this, let S be an inverse semigroup which is completely regular. Let $a \in S$. Then there exists $x \in S$ such that a = axa and ax = xa. Hence

$$a = a(xax)a$$

and xax = (xax)a(xax).

Since S is an inverse semigroup, $a^{-1} = xax$ so that

$$aa^{-1} = axax = xaxa = a^{-1}a$$
.

Let an inverse semigroup S be completely regular. Let aRb in S. Since aRa⁻¹a and bRb⁻¹b, a⁻¹aRb⁻¹b. But a⁻¹a = aa⁻¹ and b⁻¹b = bb⁻¹. Then aa⁻¹Rbb⁻¹. Since R is left compatible on S, a⁻¹aa⁻¹Rb⁻¹bb⁻¹ so that a⁻¹Rb⁻¹. This proves for any a, b \in S, aRb if and only if a⁻¹Rb⁻¹. To show R is right compatible on S, let aRb in S and c \in S. Then a⁻¹Rb⁻¹ and c⁻¹ \in S. Since R is left compatible, c⁻¹a⁻¹Rc⁻¹b⁻¹, so (ac)⁻¹R (bc)⁻¹. From above proof, ac Rbc. Hence R is a congruence on S.

Thus, from the above proof and Proposition 4.4, we have

4.8 <u>Corollary</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If S is completely regular, then $(\bar{S}, *)$ defined as before, is a semilattice Y of proper inverse semigroups S_{α}/τ_{α} and $(\bar{S}, *)$ is a homomorphic image of S. Moreover,

$$S/\sigma(S) \cong \bar{S}/\sigma(\bar{S}).$$

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . It is clearly seen that if for each $\alpha \in Y$, S_{α} is completely regular, then S is completely regular.

Hence the following corollary follows:

4.9 <u>Corollary</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If for each $\alpha \in Y$, S_{α} is completely regular, then $(\bar{S}, *)$, defined from S as before, is a semilattice Y of proper inverse semigroups S_{α}/τ_{α} and it is a homomorphic image of S, and also

 $S/\sigma(S) = \bar{S}/\sigma(\bar{S}).$