CHAPTER II

MINIMUM PROPER CONGRUENCES

L. O' Carroll has shown in [8] that every inverse semigroup has the minimum proper congruence and it is the congruence generated by $\Re \cap \sigma$, which is denoted by $\tau(S)$ or τ . In this chapter, we give an explicit form of τ on some inverse semigroups, and also show an explicit relationship between the minimum proper congruences on an inverse semigroup and on its ideals. Moreover, a relation among the minimum group congruence σ , the maximum idempotent - separating congruence μ and the minimum proper congruence τ on an inverse semigroup is given.

Let S be an inverse semigroup. If $a \in S$, then $a = aa^{-1}a$ so that

$$Sa = Sa^{-1}a, \quad aS = aa^{-1}S,$$

and hence $(a, a^{-1}a) \in \mathcal{L}$ and $(a, aa^{-1}) \in \mathbb{R}$. Let $a, b \in S$ such that $a\mathbb{R}b$. Then $aa^{-1}\mathbb{R}bb^{-1}$. Since aa^{-1} and bb^{-1} are idempotents of the inverse semigroup S and $aa^{-1}S = bb^{-1}S$, we have $aa^{-1} = bb^{-1}$ [[1], Theorem 1.17].

If ρ is a group congruence on a semigroup S, then E(S) is clearly contained in the ρ -class which represents the identity of the group S/ρ , so for any $e \in E(S)$, $e\rho$ is the identity of S/ρ , and $E(S) \subseteq e\rho$ for all $e \in E(S)$.

Recall that a congruence ρ on an inverse semigroup S is called a <u>proper congruence</u> on S if S/ ρ is proper. An inverse semigroup S is <u>proper</u> if and only if for all $a \in S$, $e \in E(S)$, ae = e implies $a \notin E(S)$. However, the definition of proper inverse semigroups can be given in many forms as follow:

- 2.1 <u>Proposition</u>. Let S be an inverse semigroup. Then the following are equivalent:
 - (1) For $a \in S$, $e \in E(S)$, ae = e implies $a \in E(S)$.
 - (2) For $a \in S$, $e \in E(S)$, ea = e implies $a \in E(S)$.
 - (3) $e\sigma = E(S)$ for all $e \in E(S)$.
 - (4) $\Re \cap \sigma = 1$, where 1 denotes the identity congruence on S.
 - (5) The mapping $\psi: S \longrightarrow E(S) \times S/\sigma$ defined by $a\psi = (aa^{-1}, a\sigma) \qquad (a \in S)$

is one-to-one.

(6) For any $a, b \in S$, if $a\sigma = b\sigma$ and $aa^{-1} = bb^{-1}$, then a = b.

<u>Proof</u>: That $(1) \iff (2) \iff (3)$ is obvious. The equivalence of (3) and (4) was shown by Reilly [9], and the equivalence of (3) and (6) was shown in [6]. That $(3) \implies (4) \implies (5)$ was shown by Saitô [10]. The equivalence of (5) and (6) is trivial. #

Let S be an inverse semigroup and ρ be a congruence on S. We know that S/ρ is also an inverse semigroup and for any $a\rho \in E(S/\rho)$, there exists $e \in E(S)$ such that $a\rho = e\rho$. Hence

$$E(S/\rho) = \{e\rho/e \in E(S)\}.$$

The next proposition shows a specific property of the minimum group congruence on an inverse semigroup.

2.2 <u>Proposition</u>. Let S be an inverse semigroup with the minimum group congruence σ . Let η be a congruence on S such that $\eta \subseteq \sigma$. Then for any $a, b \in S$, $(a, b) \in \sigma$ if and only if $(a\eta, b\eta) \in \sigma(S/\eta)$.

Proof: Let $(a, b) \in \sigma$. Then ae = be for some $e \in E(S)$ so that (an)(en) = (ae)n = (be)n = (bn)(en).

Conversely, let $(a\eta, b\eta) \in \sigma(S/\eta)$. Then there exists $e \in E(S)$ such that $(a\eta)(e\eta) = (b\eta)(e\eta)$ and hence $(ae)\eta = (be)\eta$. But $\eta \subseteq \sigma$, then $(ae)\sigma = (be)\sigma$ and hence

 $\mathbf{a}\sigma \ = \ (\mathbf{a}\mathbf{e})\sigma \ = \ (\mathbf{b}\mathbf{e})\sigma \ = \ \mathbf{b}\sigma,$ so that $(\mathbf{a},\ \mathbf{b})\in\sigma.$ #

Since $en \in E(S/\eta)$, we have $(an, bn) \in \sigma(S/\eta)$.

The following theorem shows the existence of the minimum proper congruence on any inverse semigroup [[8], L 0' Carroll].

2.3 <u>Theorem</u> [8]. Let S be an inverse semigroup, $\nu = \Re \cap \sigma$ and τ be the congruence generated by ν . Then τ is the minimum proper congruence on S.

 $\underline{\operatorname{Proof}}: \text{ By Proposition 2.1 (3), to show S/τ is proper, it suffices to show that } (e\tau)\sigma(S/\tau) = E(S/\tau) \text{ for all } e \in E(S). \text{ Let } e \in E(S). \text{ Since } \sigma(S/\tau) \text{ is a group congruence on } S/\tau,$ $E(S/\tau) \subseteq (e\tau)\sigma(S/\tau). \text{ Conversely, let } t\tau \in (e\tau)\sigma(S/\tau). \text{ Then } tt^{-1} \in E(S) \text{ so that } (e\tau)\sigma(S/\tau) = ((tt^{-1})\tau)\sigma(S/\tau). \text{ Then by}$

Proposition 2.2, $(t, tt^{-1}) \in \sigma$ because $\tau \subseteq \sigma$. Since $tS = tt^{-1}S$, $(t, tt^{-1}) \in \mathbb{R}$. Therefore $(t, tt^{-1}) \in v \subseteq \tau$, so that $t\tau = (tt^{-1})\tau$ which is an idempotent of S/τ . This proves $(e\tau)\sigma(S/\tau) = E(S/\tau)$. Hence S/τ is proper.

Next, let η be any proper congruence on S. To show that $\nu \subseteq \eta$, let $(x, y) \in \nu$. Then $(x, y) \in \mathbb{R}$ and $(x, y) \in \sigma$, so $xx^{-1} = yy^{-1}$ and ex = ey for some $e \in E(S)$. Thus

$$(x\eta)(x\eta)^{-1} = (xx^{-1})\eta = (yy^{-1})\eta = (y\eta)(y\eta)^{-1}$$

and

$$(en)(xn) = (ex)n = (ey)n = (en)(yn).$$

Thus $(x\eta, y\eta) \in \sigma(S/\eta)$, that is, $(x\eta)\sigma(S/\eta) = (y\eta)\sigma(S/\eta)$. Now we have $(x\eta)\sigma(S/\eta) = (y\eta)\sigma(S/\eta)$ and $(x\eta)(x\eta)^{-1} = (y\eta)(y\eta)^{-1}$. Since S/η is proper, by Porposition 2.1 (6), $x\eta = y\eta$ so that $(x, y) \in \eta$. Hence $v \subseteq \eta$, so $\tau \subseteq \eta$. #

2.4 <u>Proposition</u> [8]. Following from Theorem 2.3, let η be any congruence on S such that $\eta \subseteq \sigma$. Then η is a proper congruence on S if and only if $\nu \subseteq \eta$.

 \underline{Proof} : Since the minimum proper congruence on S is the smallest congruence containing $\nu,$ we have $\nu\subseteq\eta$ if η is a proper congruence on S.

Conversely, assume $v \subseteq \eta$. To show S/η is proper by Proposition 2.1 (3), let $e \in E(S)$ and $a\eta \in (e\eta)\sigma(S/\eta)$. Since $aa^{-1} \in E(S)$, $(aa^{-1})\eta \in E(S/\eta)$ so that $(aa^{-1})\eta \in (e\eta)\sigma(S/\eta)$. Hence $(a\eta, (aa^{-1})\eta) \in \sigma(S/\eta)$. By Proposition 2.2, we have $(a, aa^{-1}) \in \sigma$.

But $aRaa^{-1}$, so $(a, aa^{-1}) \in R \cap \sigma = \nu \subseteq \eta$. Hence $a\eta = (aa^{-1}) \eta \in E(S/\eta)$. This proves $(e\eta) \sigma(S/\eta) \subseteq E(S/\eta)$. But $\sigma(S/\eta)$ is a group congruence on S/η , so we have $E(S/\eta) \subseteq (e\eta) \sigma(S/\eta)$. Hence $E(S/\eta) = (e\eta) \sigma(S/\eta)$ for all $e \in E(S)$. Therefore S/η is proper, and so η is a proper congruence on S. #

A reformulation of the preceeding proposition is given as follows:

2.5 <u>Proposition</u> [8]. Following Theorem 2.3, a congruence η on S such that $\eta \subseteq \sigma$ is a proper congruence if and only if $E\eta = E\sigma$ where E denotes E(S).

Proof: Recall that $E(S/\eta) = \{e\eta/e \in E(S)\}.$

Let $\eta \subseteq \sigma$ be a congruence on S. Assume that η is a proper congruence. Since $\eta \subseteq \sigma$, $E\eta \subseteq E\sigma$. Let $x \in E\sigma$. Let $e \in E(S)$. Then $e\sigma = E\sigma$, so that $x \in e\sigma$. Hence by Proposition 2.2, $(x\eta, e\eta) \in \sigma(S/\eta)$. Since S/η is proper, by Proposition 2.1 (3), $(e\eta)\sigma(S/\eta) = E(S/\eta)$ and hence $x\eta \in E(S/\eta) = \{f\eta/f \in E(S)\}$. Thus, $x\eta = f\eta$ for some $f \in E(S)$, that is, $x \in f\eta$. This proves $E\sigma \subseteq E\eta$. Therefore $E\eta = E\sigma$.

Conversely, assume that $E_{\eta} = E_{\sigma}$. Let $e \in E(S)$ and $x_{\eta} \in (e_{\eta})\sigma(S/\eta)$. Then by Proposition 2.2, $x \in e_{\sigma} \subseteq E_{\eta}$, so $x \in f_{\eta}$ for some $f \in E(S)$ so that $x_{\eta} = f_{\eta} \in E(S/\eta)$. Hence $E(S/\eta) = (e_{\eta})\sigma(S/\eta)$ for all $e \in E(S)$. Therefore S/η is proper, so η is a proper congruence on S. #

Let A be an ideal of an inverse semigroup S. Then for $a \in A$,

2.7 Lemma. Let A be an ideal of an inverse semigroup S. Let s, $t \in S$. If $s\tau'(S)t$, then $csd\tau'(A)ctd$ for all c, $d \in A$.

2.8 Theorem. Let A be an ideal of an inverse semigroup S. Then $\tau(A) = \tau(S) \cap (A \times A).$

 \underline{Proof} : For this proof, let σ, \mathcal{R} , τ and τ' denote $\sigma(S)$, $\mathcal{R}(S)$, $\tau(S)$ and $\tau'(S)$; respectively. From Lemma 2.6,

$$\sigma(A) \cap \mathcal{R}(A) = \sigma \cap \mathcal{R} \cap (A \times A) \subseteq \tau \cap (A \times A)$$
.

Because τ is a congruence on S and A is a subsemigroup of S, $\tau \cap (A \times A)$ is a congruence on A. Hence $\tau(A) \subseteq \tau \cap (A \times A)$.

Since τ is the congruence generated by $\Re \cap \sigma$ and $\Re \cap \sigma$ is a left congruence, τ can be obtained from τ' as follows : For a, b \in S,

arb if and only if
$$a\tau'c_1\tau'c_2 \dots c_n\tau'b$$

for some positive integer n and for some c_1, c_2, \ldots, c_n in S. Let $(a, b) \in \tau \cap (A \times A)$. Then $(a^{-1}, b^{-1}) \in \tau \cap (A \times A)$. Hence there exist $s_1, s_2, \ldots, s_n, t_1, t_2, \ldots, t_m \in S$ such that

$$a\tau$$
's₁......_{n-1} τ 's_n τ 'b

and
$$a^{-1}\tau't_{1}....t_{m-1}\tau't_{m}\tau'b^{-1}$$
 (2)

By compatibility of τ ', we get the following :

we have $a^{-1} = a^{-1}aa^{-1} \in A$. Hence A is an inverse subsemigroup of S, so that the minimum proper congruence on A exists.

The next theorem shows a natural relation between the minimum proper congruences on an inverse semigroup and on its ideals.

To give the theorem, we need the following two lemmas:

<u>Proof</u>: Clearly, \Re (A)⊆ \Re (S)∩ (A×A). Let (a, b)∈ \Re (S)∩ (A×A). Then a = bx, b = ay for some x, y∈S. Since A is an ideal and a, b∈A, we get b⁻¹bx, a⁻¹ay∈A. Thus a = b(b⁻¹bx) and b = a(a⁻¹ay), so that (a, b)∈ \Re (A). Therefore \Re (A) = \Re (S)∩ (A×A).

Clearly, $\sigma(A) \subseteq \sigma(S) \cap (A \times A)$. Let $(a, b) \in \sigma(S) \cap (A \times A)$. Then ae = be for some $e \in E(S)$. Let $f \in E(A)$. Then aef = bef and $ef \in E(A)$, so $(a, b) \in \sigma(A)$. Therefore $\sigma(A) = \sigma(S) \cap (A \times A)$. #

For convenience, on an inverse semigroup S, let $\tau^{\, {}^{\prime}}(S)$ denote the set

$$\{(ax, bx) | (a, b) \in \mathbb{R} (S) \cap \sigma(S) \text{ for all } x \in S^1\}.$$

We note that in any inverse semigroup $S, \mathcal{R} \cap \sigma$ is a left congruence but not in general a congruence.

From (2), we have

$$a = aa^{-1}a\tau'at_{1}a\tau'at_{2}a$$
 $\tau'at_{m}a\tau'ab^{-1}a$, (3)

$$ba^{-1}b\tau'bt_1b\tau'bt_2b \dots \tau'bt_mb\tau'bb^{-1}b = b, \quad (4)$$

and $bb^{-1}a\tau'bt_{m-1}a$ $\tau'bt_{1}a\tau'ba^{-1}a$. (5)

From (1), we have

$$ab^{-1}a = aa^{-1}ab^{-1}a\tau'aa^{-1}s_1b^{-1}a$$
 ... $\tau'aa^{-1}s_nb^{-1}a\tau'aa^{-1}bb^{-1}a = bb^{-1}a$,

(6)

and

$$ba^{-1}a = ba^{-1}ab^{-1}b\tau'ba^{-1}s_{1}b^{-1}b \dots \tau'ba^{-1}s_{n}b^{-1}b\tau'ba^{-1}bb^{-1}b = ba^{-1}b.$$
(7)

Combining (3), (6), (5), (7), (4) and Lemma 2.7, we obtain $a\tau(A)b$. Hence we get $\tau(A) = \tau \cap (A \times A)$ as required. #

If S is a commutative inverse semigroup, then the Green's relation $\mathbb R$ on S is a congruence so that $\tau = \mathbb R \cap \sigma$. A commutative inverse semigroup is a semilattice of groups by Lemma 1.3, but the converse is not true in general. However, in a semilattice of groups, its Green's relation $\mathbb R$ is also a congruence and so its minimum proper congruence is $\mathbb R \cap \sigma$.

The next proposition gives an explicit form of τ on a semi-lattice of groups.

2.9 <u>Proposition</u>. Let S be a semilattice Y of groups G_{α} . Then $\tau = \{(a, b) \in G_{\alpha}^{\times} G_{\alpha} | \alpha \in Y \text{ and } ae_{\beta} = be_{\beta} \text{ for some } \beta \in Y\}.$ In particular, if Y has the zero 0, then

$$\tau = \{(a, b) \in G_{\alpha} \times G_{\alpha} | \alpha \in Y \text{ and } ae_0 = be_0\}.$$

 $\frac{\text{Proof}}{\text{Proof}}: \text{ From Introduction page 11, S is an inverse semigroup,}$ $\text{E(S)} = \{e_{\alpha} \mid \alpha \in Y\} \text{ and } e_{\alpha}e_{\beta} = e_{\alpha\beta} \text{ for all } \alpha, \beta \in Y. \text{ Let}$

 $\delta = \{(a, b) \in G_{\alpha} \times G_{\alpha} | \alpha \in Y \text{ and } ae_{\beta} = be_{\beta} \text{ for some } \beta \in Y\}.$ Since $\mathcal{L} = \mathcal{R} = \mathcal{H}$ on S [Introduction page 11], \mathcal{R} is a congruence on S, and for each $\alpha \in Y$, G_{α} is an \mathcal{R} -class. Hence $\tau = \mathcal{R} \cap \sigma = \delta$.

Assume more that Y has the zero 0. Let $(a, b) \in \sigma$. Then $ae_{\beta} = be_{\beta}$ for some $\beta \in Y$, so

$$ae_0 = ae_\beta e_0 = be_\beta e_0 = be_0$$

Therefore $(a, b) \in \sigma$ implies $ae_0 = be_0$, so $(a, b) \in \sigma$ if and only if $ae_0 = be_0$. Hence from the first part of the proof, we have

$$\tau = \{(a, b) \in G_{\alpha} \times G_{\alpha} | \alpha \in Y \text{ and } ae_0 = be_0\}.$$

2.10 <u>Corollary</u>. Following Proposition 2.9, assume that Y has the zero 0. Then τ = σ if and only if S = G_0 .

 $\underline{\text{Proof}}: \text{ Assume that } \tau = \sigma. \text{ Let } s \in S. \text{ Since } (s, se_0) \in \sigma = \tau,$ by Proposition 2.9, we have $s, se_0 \in G_\alpha$ for some $\alpha \in Y$. But $se_0 \in G_0$. Then $s \in G_0$. Therefore $S \subseteq G_0$, so that $S = G_0$.

Conversely, assume that $S=G_0$. Then $\mathcal R$ is the universal congruence, and thus $\tau=\mathcal R\cap\sigma=\sigma$. #

J.M. Howie [4] has proved the existence of the maximum idempotent-separating congruence on any inverse semigroup S, and denote it by $\mu(S)$ or μ and

$$\mu = \{(a, b) \in S \times S | a^{-1}ea = b^{-1}eb \text{ for all } e \in E(S)\};$$

equivalently,

 $\mu = \{(a, b) \in S \times S | aea^{-1} = beb^{-1} \text{ for all } e \in E(S)\}.$ Moreover, $\mu \subseteq \mathcal{H}$.

On any inverse semigroup S, a relation among $\sigma, \; \tau$ and μ is as follows :

2.11 <u>Proposition</u>. Let S be an inverse semigroup. Then $\mu \cap \tau = \mu \cap \sigma$.

 $\frac{Proof}{}: \text{ Since } \tau \subseteq \sigma, \ \mu \cap \tau \subseteq \mu \cap \sigma. \quad \text{Because } \mu \subseteq \mathcal{K} \subseteq \mathcal{R} \text{ , we have}$ $\mu \cap \sigma \subseteq \mathcal{R} \cap \sigma \subseteq \tau. \quad \text{Then } \mu \cap \sigma \subseteq \mu \cap \tau. \quad \text{Therefore } \mu \cap \tau = \mu \cap \sigma. \quad \#$

From this fact, the next theorem follows immediately [[4], Theorem 3.2].

2.12 <u>Theorem</u>. Let τ be the minimum proper congruence and μ be the maximum idempotent-separating congruence on S. Let

 $E\omega = \{x \in S | x \ge e \text{ for some } e \in E(S)\},$

and C(E(S)) be the centralizer of E(S) in S. Then $\tau \cap \mu = \iota$ if and only if $E\omega \cap C(E(S)) = E(S)$, where ι denote the identity congruence on S.

Let A be an ideal of an inverse semigroup S. To show a natural relation between $\mu(S)\cap\sigma(S)$ and $\mu(A)\cap\sigma(A)$, we need the following lemma :

2.13 Lemma. Let A be an ideal of an inverse semigroup S. Then $\mu(A) = \mu(S) \cap (A \times A).$

 $\frac{P \operatorname{roof}}{x^{-1}} : \quad \operatorname{Clearly}, \ \mu(S) \cap \ (A \times A) \subseteq \mu(A) \, . \quad \text{Let} \ (x, y) \in \mu(A) \, . \quad \text{Then}$ $x^{-1} e x = y^{-1} e y \text{ for all } e \in E(A) \, . \quad \text{Let } f \in E(S) \, . \quad \text{Then } x x^{-1} f x x^{-1} \in E(A)$ so that

$$x^{-1}fx = x^{-1}(xx^{-1}fxx^{-1})x = y^{-1}(xx^{-1}fxx^{-1})y.$$

Since $(x, y) \in \mu(A) \subseteq \mathcal{H}(A) \subseteq \mathcal{R}(A)$, $xx^{-1} = yy^{-1}$ so that $x^{-1}fx = y^{-1}(yy^{-1}fyy^{-1})y = y^{-1}fy.$

Therefore $(x, y) \in \mu(S) \cap (A \times A)$. Hence the proof is completed. #

2.14 Theorem. Let A be an ideal of an inverse semigroup S. Then $\mu(A) \cap \tau(A) = (\mu(S) \cap \tau(S)) \cap (A \times A)$.

Proof: It follows directly from Theorem 2.8 and Lemma 2.13. #