CHAPTER II

MINIMUM PROPER CONGRUENCES

LQ 0' Carroll has shown‘in [8] that every inverse semigroup
has the minimum proper congruence and it is the congruence generated
by RN o, which is denoted by t(S) or t. In this chapte;, we give
an explicit form of T on some inverse semigroups, and also show an ex-
plicit relationship between the minimum proper congruences on an in-
verse semigroup and on its ideals. Morebver, a relation among the
minimum group congruence 0, the maximﬁm idempotent - separating con-
gruence u and the minimum proper éongruencé T on an inverse semigroup

is given.

: < -1
Let S be an inverse semigroup. ~If aeS, then a = aa a so

that

Sa [= Sa_la, aS = ,aa_ls,

and hence (a, a-la)e £ and (a, aa—l)eo\ . 'Let a, beS such that

1

aRb. Then aa 'R bb™ 1. '$inde CORN LINIVERSES idempotents of the
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inverse semigroup S and g Y5 = Bb S, we have aa-1 = bb~ [[11,

Theorem 1.17].

If p is .a group congruence on a semigroup S, then E(S) 1is
clearly contained in the p-class which represents the identity of
the group S/p, so for any e eE(S), ep is the identity of S/p, and

E(S)S ep for all eeE(S).



Recall that a congruence p on an inverse semigroup S is called

a proper congruence on S if S/p is proper. An inverse semigroup S is

proper if and only if for all aeS, eeE(S), ae = e implies a€&E(S).
However, the definition of proper inverse semigroups can be given in

many forms as follow :

2.1 Proposition. Let S be an inverse semigroup. Then the following
are equivalent :

(1) For aeS, ee E(S), ae

e’/implies ae E(S).

n

(2) For ae S, ee E(S), ea = e implies aeE(S).
(3) eo = E(S) for-all €€ E(S).
(4) RNo = 1, where /1 denotes the identity congruence on S.
(5) The mapping ¢/: S—> E(S)xS/c defined by
ay = (aa-l, a0) (a€ S)

is one-to-one.

(6) For any a, beS, if ac = bo and <R bb'l, then a = b.

Proof : That (1) & (2) & (3) is obvious. The equivalence
of (3) and (4) was shown by Reilly [9], and the equivalence of (3)
and (6) was shown in [6]. That (3) = (4) == (5) was shown by

Sait6 [10]. The equivalence of (5) and (6) is trivial. #

Let S be an inverse semigroup and p be a congruence on S. We
know that S/p is also an inverse semigroup and for any apeE(S/p),
there exists e e E(S) such that ap = ep. Hence

E(S/p) = {ep/eeE(S)}.
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The next proposition shows a specific property of the minimum

group congruence on an inverse semigroup.

2.2 Proposition. Let S be an inverse semigroup with the minimum
group congruence o, Let n be a congruence on S such that nEo.

Then for any a, be S, (a, b)eo if and only if (an, bn)e a(S/n).

Proof : Let (a, b)eo. Then ae = be for some ee E(S) so that
(an)(en) = (ae)n = (be)n = (bn)(en).
Since ene E(S/n), we have (an, bn) ea(S/n).

Conversely, let (an, bn)e o(S/n). Then there exists ee E(S)
such that (an) (en) = (bn)(en) and hence (ae)n = (be)n. But nco,
then (ae)o = (be)o and hence

ac = /(ae)a - = ube)o = bo,

so that (a, b)eo. #

The following theorem shows the existence of the minimum pro-

per congruence on any inverse semigroup [[8], L. O' Carroll].

2.3 Theorem [8]. Lét S be an inverse semigroup, v = RN o and
be the congruence generated by v. Then T is the minimum proper con-

gruence on S.

Proof : By Proposition 2.1 (3), to show S/t is proper, it
suffices to show that (et)o(S/t) = E(S/t) for all eeE(S). Let
ecE(S). Since o(S/t) is a group congruence on S/T,

E(S/t)< (et)o(S/t). Conversely, let tte (et)o(S/t). Then

tt e E(S) so that (et)o(S/T) = ((tt'l)r)o(S/r)a Then by
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tt'ls

>

L. -1 .
Proposition 2.2, (t, tt ") e o because t€o. Since tS

(t, tt'l)ef{. Therefore (t, tt'l)e\)gr, so that tt (tt'l)r

which is an idempotent of S/t. This proves (et)o(S/t) = E(S/1).
Hence S/t is proper. '
Next, let n be any proper congruence on S. To show that

ven, let (x, y)ev. Then (x, y)eR and (x, y)e o, so g = yy—1
and ex = ey for some ee E(S). Thus

)™ = e s gy = omom !
and

(em(xn) = (ex)n = (e¥n_ = (en)(yn).
Thus (xn, yn) e o(S/n), tha£ is/ (xn)o(S/n) = (yn)o(S/n). Now we
have (xn)o(S/n) = (yn)O(S/n) and (xn) en) T = (ym) () L. Since
S/n is proper, byv Porposition 2,1 (6), xn = yn so that (x, y)e n.

Hence ven, so 1&n. #

2.4 Proposition [8]. Following from Theorem 2.3, let n be any
congruence on S such that nco. Then n is a proper congruence on

S if and only if ven.

Proof : Since the minimp.m proper congrﬁence on S is the
smallest congruence containing v, we have ven if n is a proper
congruence on S.

Conversély, assume vEn. To show S/n is proper by Proposi-
tion 2.1 (3), let e€E(S) and ane (enjo(S/n)._ Since aa_le E(S),
(aa-l)n e E(S/n) so that (aa_l)n e (en)o(S/n). Hence

(an, (aa_l)n) € 0(S/n). By Proposition 2.2, we have (a, aanl)e .



But aﬂaa—l, so (a, aa—l) e RNo = vecn. Hence an = (aa-l)neE(S/n)o
This proves (en)o(S/n)E E(S/n). But o(S/n) is a group congruence on
S/n, so we have E(S/n) & (en)o(S/n). Hence E(S/n) = (en)o(S/n) for
all ec E(S). Therefore S/n is proper, and so n is a proper con-

gruence on S. #

A reformulation of the preceeding proposition is given as

follows :

2.5 Proposition [8]. Following Theorem 2.3, a congruence n on S
such that nco is a proper congruence if and only if En = Ec where

E denotes E(S).

Proof : Recall that E(S/m) % {en/ecE(S)}.

Let nc o be a congruence on S. Assume that n is a proper
congruence. Since nco, En&Eo; ~Let xeEoc. Let ee E(S). Then
eoc = Eo, so that x e eo, Hence by Propesition 2.2, (xn, en)e o(S/n).
Since S/n is proper, by'Proposition 2.1 (3), (en)o(S/n) = E(S/n)
and hence xne E(S/n) = {fn/fe E(S)}. Thus, xn = fn for some
fe E(S), that is, xe fn. This proves EcSEn. Therefore En = Eo.

Conversely, assume that En = Eo. Let ee E(S) and
xn e (en)o(S/n) . Then by Proposition 2.2, xeeoc< En, so xe fn for
some fe€ E(S) so that xn = fn eE(S/n). Hence E(S/n) = (en)o(S/n)
for all ee E(S). Therefore S/n is proper, so n is a proper con-

gruence on S. #

Let A be an ideal of an inverse semigroup S. Then for a€A,
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2.7 Lemma. Let A be an ideal of an inverse semigroup S. Let s,

teS. If st'(S)t, then csdt'(A)ctd for all c, deA.

Proof : Let s, teS, c, deA and st'(S)t. Then s = u,v,
t = u,v for some (ul, uz)e R (S)No(S) and ve Sl° Since R (S)N a(S)
is a left congruence and A is an ideal of S,
(cu,, CUZ)ER(S)F\ a(S)N (AxA) =R (A)no(A) [Lemma 2.6]. Since

vd €A, (cst, ctd) = (culvd,.cuzvd)e T CA). #

2.8 Theorem. Let A be an ideal of ‘an inverse semigroup S. Then

T(A) = 1(5)N (AxA).

Proof : For this proof, let.o, R, = and t' denote o(S),

R(S), T(S) and 1'(S); Tespectively. From Lemma 2.6,
S(ANR (A) /7= onR n(AxA) ST N (AXA).

Because T is a congruence on.S and A is a subsemigroup of S,
TN (AxXA) is a congruence on A. Hence 1(A)S 1 (AXA).

Since T is the comngruence generated'by RN o and RN o is a
left congruence, T ¢an be obtained from t' as follows :
For a, be S,

atb if and only if at'c,t'c, ... cnr'b

1 72

for some positive integer n and for some c s € in S,

1,
Let (a, b)e TN (AXA). Then (a_l, b-l)e TN (AXA). Hence there exist

Sy Sps ceees S tl, t2, ..... " tmts such that
arc's1 ,,,,,,,,,,,,,,,, sn_lr'snT'b @9
and a"lr"c1 .............. tm_lr'tmr'b-,l (2)

By compatibility of t', we get the following :
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we have a | = a~laa lc A. Hence A is an inverse subsemigroup of S,

so that the minimum proper congruence on A exists.

The next theorem shows a natural relation between the mini-
mum proper congruences on an inverse semigroup and on its ideals.

To give the theorem, we need the following two lemmas:

2.6 Lemma. Let A be any ideal of an inverse semigroup S. Then
R (A) =R (S)N (AxA) and o(A) = o(S)N (AxA) where R (S) and R (A)

denote the Green's relations R on S and on A; respectively.

Proof : Clearly, R (A)QR(S)(\ (AxA). Let
(a, b)e R (S)N (AxA). Then a/=:bx, b = ay for some x, ye S. Since
A is an ideal and a, be A, we get b-lbx, a-laye A, Thus a = b(b-lbx)
and b

R (A)

a(a'lay), so that” (2, b)e R (A). Therefore

K (S)N (AxA) .
Clearly, o(A)S o(S)A (AXA). Let(a, b)e o(S)N (AxA). Then
ae = be for some ee E(S’}-; Let feE(A). Then aef = bef and efe E(A),

so (a, b)e o(A). Therefore o(A) = o(S)N (AxA). #

For convenience, on an inverse semigroup S, let t'(S) denote

the set

{(ax, bx)|(a, B)e R (S)No(S) for all xe sty.

We note that in any inverse semigroup S,R M o is a left con-

gruence but not in general a congruence.
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From (2), we have

-1
a = aa ar'atlar'at a

2
g3} 1 1
ba bt btlbr bt2b
and by ar'btiadbt .a
m m
From (1), we have

ab—la

1

and

1

1]

ba "a i

© 000 00

© 00000000000 O0

aa_lab_lat'aa_ls b "a .

ba~tab bt 'ba~ D A

T'atmar'ab_la, (3)

r'btmbr‘bb-lb = b, (4)

Combining (3), (6), (5), (7),/(4) and Lemma 2.7, we obtain at(A)b.

Hence we get t(A) # TN (AXA) as required. #

If S is a commutative. inverse semigroup, then the Green's

relation R on S is a congruence so that 1 = RN o. A commutative

inverse semigroup is a semilattice of groups by Lemma 1.3, but the

converse is not true in general.

However, in a semilattice of

groups, its Green's relation R is also a congruence and so its mini-

mum proper congruence is R N o.

The next proposition gives an explicit form of T on a semi-

lattice of groups.

2.9 Proposition°

= {(a, b)e G&(Galae Y and ae

Let S be a semilattice Y of groups Ga’

Then

g = be8 for some Be Y}.

In particular, if Y has the zero 0, then

29

nnnnnn T'btlar‘ba—la° (5)
.. T'aa—lsnb_lar'aa_lbb-la = bb-la,
(6)
, T'ba_lsnb_lbr'ba—lbb-lb - ba~lb.
(7)



T ={(a, b)e GaXGalaeY and ae, = beo},

Proof : From Introduction page 11, S is an inverse semigroup,
E(S) = {eu|aeY} and €% = ®up for all a, BeY. Let
§ = {(a, b)e GaXGa|0LeY and ae, = beB for some BeY}.

Since X =R =¥ on s [Introduction page 11], R is a congruence on
S, and for each ac Y, G, is anR -class. Hence 1 = RN o = &,

Assume more that Y has the zero 0. Let (a, b)e o. Then

aeB = beB for some Be Y, so

ae, = aggeq) = beﬁeO = beo,
Therefore (a, b)e o implies ae, /= beo, so (a, b)eo if and only if
ae, = beoa Hence from the first part of the proof, we have

T = {(a, b)eGaXGalaeY and ae, = beo}ﬁ #

0

2.10 Corollary. Following Proposition 2.9, assume that Y has the

zero 0. Then T = o if and énly if S = Gy

Proof : Assume that 1 = 0. Let-s&€S. Since (s, seo) €0 =T,

by Proposition 2.9, we have s; seoeGa for some a €Y. But se, € G

0 0°

Then seGO, Therefore SQGO, so that S = GO"

Conversely, assume that S = G0° Then R is the universal

congruence, and thus t = RN o = 0. #

J.M. Howie [4] has proved the existence of the maximum idem-
potent-separating congruence on any inverse semigroup S, and denote
it by u(S) or u and

p = {(a, b)e SXSIa_lea = b_leb for all ee E(S)};
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equivalently,
v = {(a, b)€ S><S|aea-:l = beb-1 for all eeE(S)}.

Moreover, u ck.

On any inverse semigroup S, a relation among o, T and u is

as follows :

2.11 Proposition. Let S be an inverse semigroup. Then

HAT = HN O,

Proof : Since t€o, pAtTcuAo, Because nchH<s R , we have

HNoS RNoct. Then uNociM . Therefore uNt = uNo. #

From this fact, the next theorem follows immediately [[4],

Theorem 3.2].

2.12 Theorem. Let T be the minimum proper congruence and u be the
maximum idempotent-separating congruence on'S. Let

Ew = {xe S|x>e for some ecE(S)},
and C(E(S)) be the centralizer of E(S) in'S. Then tNu = 1 if and
only if EwNC(E(S)) = E(S), where 1 denote the identity congruence

on S,

Let A be an ideal of an inverse semigroup S. To show a
natural relation between u(S)N o(S) and u(A)N o (A), we need the fol-

lowing lemma :

2.13 Lemma. Let A be an ideal of an inverse semigroup S. Then

H(A) = u(S)N (AxA).
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Proof : Clearly, u(S)N (AXA)cu(A). Let (x, y)e u(A).

x lex = y-ley for all ee E(A). Let feE(S). Then xx Lexxle

so that
2 hgy = x-l(xx_lfxx_l)x = y_l(xx_lfxx_l)y.
Since (x, y)e n(A) SH@A)SR (A), xx ! = yy—l so that
o= oy Ty ey Thy =yl

Therefore (x, y)e u(S)N (AxA). Hence the proof is completed.

2.14 Theorem. Let A be an ideal of an inverse semigroup S.

HAA) N T(A) = (SN T(S)) N (AXA) .

Then

E(A)

#

Then
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Proof : It follows directly from Theorem 2.8 and Lemma 2.13. #
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