INTRODUCTION

Let S be a semigroup. An element a of S is an idempotent of
S if a2 = a, For a semigroup S, we denote by E(S) the set of all
idempotents of S, that is,
E(S) = {a.eS|a2 = al,

A semigroup S is a semilattice if for all a, b€S, a2 = a and
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ab = ba. An element z of a semigroup' S is a zero of S if xz = 2x
for all xe€S. An element & of a semigroup S is an identity of S if
for all x€ S, ex = xe = X«

Let S be a semigroup, and let 1 be a symbol not representing
any element of S. The notation S(1' denotes the semigroup obtained
by extending the binary operation on S to one is SU1 by defining
11 =1 and la = al = a for evér'y aeS. Throughout this thesis we
will adhere to the following notation

! i S if S has an identity,

SU1l otherwise.

Let S be a semigroup. An element a of S is regular if a = axa

for some x€ S, and S is called a regular semigroup if every element

of S is regular,
In any semigroup, S if a, xe S such that a = axa, then ax and
xa are idempotents of S. Hence if S is a regular semigroup, then

E(S) ¢t ¢.



Let a and x be elements of a semigroup S such that a = axa.
Then

(1) aS aS1 and Sla = Sa, and

(ii) aS axS and Sxa Sa.

Let a be an element of a semigroup S. An element x of S

is an inverse of a if a = axa, x = xax. A semigroup S is an

inverse semigroup if every element of S has a unique inverse,

and the unique inverse of the element a in S is denoted by a_1

A semigroup S is an inverse semigroup if and only if S is regular

and any two idempotents of § commute [[1], Theorem 1.17]. Hence,

if S is an inverse semigroup, then E(S) is a semilattice. For any
elements a, b of an inverse semigroup S and e ¢ E(S), we have

(a—l)—1 < /[a, (ab)—1 = b-la_1 amd & - = @
[[1],Lemma 1.18].

Let X be a set. By a one-to-one partial transformation of

the set X we mean a one-to-one mapping o of a subset of X onto a

subset of X. Let Ix be the set of all one-to-one partial trans-

formations of X. For aealx, let Ao and Vo denote the domain of

o and the range of a; respectively. Note that the mapping, whose
domain and range are the empty subset of X, is a member of IX’

which is called the empty transformation and will be denoted by 0.

The product aB of two elements a and B of IX is defined as follows:

If VaNAB = ¢, we define aB = 0. If VaNAR # ¢, we define aB to



be the iterate of a'(VuF\AB)u-l and Bl(VaFlAB) in the usual

sense. Under this operation, I, becomes an inverse semigroup

X

[[1]] and we call it the symmetric inverse semigroup on the set

X. It is clearly seen that the empty transformation is the zero

of IX and the identity mapping on X is the identity of IX“

Let T be a subset of a semigroup S. The centralizer of
T in S is
C(T) = {aeSlat ="ta for all teT}.
The centralizer of S in S is the center of S. It then follows

that if S is an inverse semigroup, E(S)S C(E(S)).

Let P be a nonempty set and < be a relation on P. If the
relation < is reflexive, antisymmetric and transitive, then < is

called a partial order on Py and (P; <) or P is called a

partially ordered set,

If a, b belong to an inverse semigroup S, then the follow-

ing are equivalent [[2], Lemma 7.1]



-1 -1

(1) aa = ab
(ii) ag " = A
(iti) 5 'a = ¢ ‘bs

(iv) a_la =1 .
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(v) ab "a = a,.

(vi) A = a

The relation < defined on an inverse semigroup S by
a<b if and only if aa Y # ap~1

is a partial order on S [[2], Lemma 7.2], and this partial order is

called the natural partial order on the inverse semigroup S. We

note that the restriction of the matural partial order < on an in-
verse semigroup S to E(S) is ‘as follows :
e<f if and /only if e = ef (= fe).

It then follows that if S is a semilattice, a<b in S if and only if
a = ab (= ba).

If S is an inverse semigroup S and a, beS, then the follow-
ing hold :

(1) a<b if and only if a = be for some ee E(S).

(ii) a<b if and only if a = fb for some fe E(S).

A reflexive, symmetric and transitive relation on a nonempty

set X is an equivalence relation on X.

Let S be a semigroup, A relation p on S is left compatible

if for all a, b, ceS, apb implies capcb. Right compatibility is

defined dually. By a congruence on S we mean an equivalence rela-

tion on S which is both right and left compatible.



Arbitary intersection of congruences on a semigroup S is a
congruence on S.

Let p be any relation on a semigroup S. Then the intersec-
tion of all congruencescontaining p is the congruence on S generated
by o.

Let p be an equivalence relation on a semigroup S, and the

relation p' on S be defined as follows :

1
p' {(xay, xby)|(a; b)ecp and x, ye S'}.
Let the relation p on S be defined from p' by the rule :
For a, beS,

apb if and only Af ) aplc.p'Ciie..nnnn.. p'c p'b

TR
for some Cis Cps wvnes O € S.” ' Then p is the congruence on S gener-

ated by p [[1], Theorem 1.8].

If p is a congruence on a semigroup S, then the set
Stpr. = {ap/aeS}
with the operation defined by
(ap) (bp) . = (ab)p (a, bes)

is a semigroup, and is called the quotient semigroup relative to the

congruence p.

Let p be a congruence on a semigroup S. Then the mapping
Y : S— S/p defined by
ay = ap (ae8)
is an onto homomorphism and ¥ will be denoted by pﬁ, and call it the

natural homomorphism of S onto §/p.




Conversely, if ¥ : S— T is a homomorphism from a semigroup
S into a semigroup T, then the relation p on S defined by
apb if and only if ay = by (a, beS)
is a congruence on S and S/p = Sy, and p is called the congruence
on S induced by ¥.
Let p be a congruence on an inverse semigroup S. Then S/p
1

. . . =il -
is an inverse semigroup, and for every ape S/p, (ap) =a p,

Hence for all a, be S

apb if and only if a_lpb_l,

A group G is called the maximum group homomorphic image of
a semigroup S if there exists a homoﬁofphism ¥ from S onto G such
that the following hold :/For any group H and for any homomorphism
® from S onto H, there exists a unique group homomorphism wl from

G onto H such that the diagram

commutes, that is, wwl = 0,

A congruence p on a semigroup S is called a group congruence

if S/p is a group. If p is a group congruence on a semigroup S,
then E(S) is contained in the p-class which represents the identity

of the group S/p and hence E(S)Sep for all ee€ E(S).



Let o be a group congruence on a semigroup S such that for
any group congruence p on S, ccp. Then o is called the minimum

group congruence on S.

If 0 is the minimum group congruence on a semigroup S, then
S/o is the maximum group homomorphic image of S.
Munn [7] has shown that any inverse semigroup S has a mini-

mum group congruence ¢ and

o = {(a, b)ecSxS|ae = be for some e eE(S)};
equivalently,
o = {(a, b)eSx8|ea = eb for some ecE(S)}.

Hence any inverse semigroup S has a maximum group homomorphic image.
Throughout this thesis, 0(S), ox ¢ if there is no danger of ambi-
guously, will be denoted for the minimum group congruence on the

inverse semigroup S.

Let S be a semigroup. A nonempty subset A of S is a left
ideal of S if saeA for all seS, acA. A right ideal of S is de-
fined dually. A nonempty subset of S is an ideal (or two-sided
ideal) of S if it is both a left ideal and a right ideal of S. An
arbitary intersection of left ideals, of right ideals and of ideals
of a semigroup S is a left ideal, a right ideal and an ideal of S;
respectively.

An ideal of an inverse semigroup S is an inverse subsemigroup
of S.

Let A be a nonempty subset of a semigroup S. The left ideal




of S generated by A is the intersection of all left ideals of S con-

taining A. The right ideal of S generated by A is defined dually.

The ideal of S generated by A is the intersection of all ideals of

S containing A. If A contains only one element, say a, the left

ideal of S generated by A is called the principal left ideal of S

generated by a, the principal right ideal of S generated by a and

the principal ideal of S generated by a are defined similarly.

Let a be an element of a semigroup S. Then we have Sla,
aS1 and SlaS1 are the principal left ideal of S generated by a, the
principal right ideal of S generated by a and the principal ideal
of S generated by a; respectively,
If S is a regular/semigroup, then
Sla = Sa, aS1 = aS and SlaS1 = SaS

for all aeS. If S is a semilattice, then an ideal I of S is prin-

cipal if and only if I '=-aS =Sa = SaS for some aeS.

Let S be a semigroup. The relationsd. ,ﬂ s ¥ on S are de-

fined as follow :
adb if and only if Sla = §7b.
aRb if and only if aS1 bSl;

- LR .

Note that i, R and & are equivalence relations on S and ?K.sét,

ReR . Moreover, &L is a right congruence on S andﬂ is a left

congruence on S. These relations are called Green's relations on

S. Equivalent definitionsof the Green's relations L and R on a

semigroup S are given as follow :



adb if and only if a = xb, b = ya for some x, ye€ Sl.

afb if and only if a = bx, b = ay for some x, yeSl.
Any H -class of S containing an idempotent is a subgroup of S

[[1], Theorem 2.16].

i

Let S be a regular semigroup and a, beS. Then

adb & Sa = Sb
> a = xb,b = ya for some x, yeS,
and
a®b e« as = bs

= /R | DXGRD ay for some x, yeS.
Let S be an inverse semigroup. For aeS, a = aa_la so that

Sa = Sa"la and aS = aa-]‘.S shd>Renes! afa™la and aRaa™l, Every

&L.-class and every R -class of the inverse semigroup S contains

exactly one idempotent [[1], Theorem 1.17]. Then for any a, beS,

we have the following :

b~1b.

_1.

ad b if and only if P

aRE 148 and only 108 da7ies bb

A congruence p on a semigroup S is called an idempotent-

separating congruence if each p-class contains at most one idempo-

tent of S. An idempotent-separating congruence u on a semigroup-

S is the maximum idempotent-separating congruence on S if it con-

tains every idempotent-separating congruence of S.
Howie [4] has proved that the maximum idempotent-separating
congruence u on an inverse semigroup S always exists and

v o= {(a, b)eSXS|a_1ea = b"eb for all e€eE(S)};



equivalently,
v = {(a, b)e S><S[aea_1 —beh ™ for alie ¢E(S)}.

Moreover, u;“ﬁ . The maximum idempotent-separating congruence on
an inverse semigroup will be denoted by u(S) or u.

A relation between u and o on an inverse semigroup S has been
given by Howie in [4] as follows :

On an inverse semigroup S, uno = 1 if and only if
C(E(S))N Ew = E(S) where 1 denotes the identity congruence on S,
Ew = {xeS|x>e for some ec E(S)} and C(E(S)) is the centralizer of

E(S) in S.

An inverse sgmigroup S is proper if for all aeS, eeE(S),
ae = e implies a e E(S). ~An inverse subsemigroup of a proper inverse
semigroup is clearly proper. . Every group is proper, also every semi-
lattice is proper.

Let S be an inverse semigroup. S is.-an F-inverse semigroup

if every o-class of S has a maximum element.

McFadden [5] has shown that any F-inverse semigroup is proper
and has an identity. But the converse is not generally true.

Let p be a congruence on an inverse semigroup S. p is called

a proper congruence on S if S/p is proper. An F-inverse congruence
-Ong

on an inverse semigroup is defined similary. The definitions of the

minimum proper congruence and the minimum F-inverse congruence on an

inverse semigroup are given as similary as the definition of the mi-

nimum group congruence on an inverse semigroup.
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Let Y be a semilattice and a semigroup S = gLYSa be a dis-
joint union of the subsemigroups Sa of S. S is a semilattice Y of
. i - A
semigroups Sa if Sass"sas for all a, BeY.

Let S = &é S, be a semilattice Y of semigroups S . If for

Y

each aeY, S is an inverse subsemigroup of S, then S‘=$€Ysa is

called a semilattice Y of inverse semigroups S, A semilattice of

groups, a semilattice of regular semigroups, etc. are defined simi-

larly.

A semilattice of inverse semigroups is an inverse semigroup
[[2], Theorem 7.5]. Then a semilattice Y of groups is an inverse
semigroup.

Let S =&éYGa be a semilattice'Y of groups G . To each aeY,
let e, denote the identity of the group Gu’ Then

E(8)~ "= {ea|aeY},

and E(S) is contained in the center of S [[1], Lemma 4.8]., Because

S is an inverse semigroup, e.8g = for all «, B in Y and hence

€8
E(S) = Y by the isomorphism Y 2 a(aeY). Moreover, S has an iden-

tity if and only if Y has an identity.

Let S = U G be a semilattice Y of groups G . Then for
oeY o o
each aeY, Ga is an ;@-class. Moreover, R =R = L , and then it

is a congruence on S.

An injective homomorphism ¢ : S—> T from an inverse semi-

group S into another inverse semigroup T is called a full o-embed-

ding of S into T if each o(T)-class contains exactly one o(Sy)-class,
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S is then said to be fully o-embedded into T.

L. O' Carroll [8] has shown how to construct an F-inverse
semigroup M(S) from an arbitary proper inverse semigroup S such
that S can be fully o-embedded into M(S), moreover, they have iso-
morphic maximum group homomorphic images.

Let S be a proper inverse semigroup. In the first chapter,
it is shown that if S is a semilattice of groups, then the exten-
sion M(S) is also a semilattice of groups. Moreover, we show that
this is true for the case of semilattices of inverse semigroups.

The minimum proper congruence on any inverse semigroup S
always exists, which will denoted by, t(S) or 7, and it is the con-
gruence generated by R Ao /[[8], O' Carroll]. An explicit form of
the minimum proper congruence on a semilattice of groups is given
in the second chapter. Including in this chapter, we show that the
minimum proper congruence on an ideal A of an inverse semigroup S
is the restriction of the minimﬁm proper congruence of S to A.
Moreover, a relation among o, p and T on an inverse semigroup is

given.

In the third chapter, minimum F-inverse congruences on in-
verse semigroups are studied. An example to show that the minimum
F-inverse congruence on an inverse semigroup need not exist is
given. Any inverse semigroup with zero and identity always has the
minimum F-inverse congruence and it is the minimum proper congruence.

It is proved that if an inverse semigroup S has the minimum F-inverse
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congruence n, then any congruence on S which lies between n and o is

an F-inverse congruence on S. Some kinds of inverse semigroups whose
their minimum F-inverse congruences always exist are studied in this

chapter.

In the last chapter, we construct a semilattice Y of proper
inverse semigroups from a given semilattice Y of inverse semigroups,
with a certain condition, such that the semilattice Y of proper in-
verse semigroups which we construct is, a homomorphic image of the
given semilattice Y of inverse semigroups. Moreover, the two semi-

groups have isomorphic maximum group homomorphic images.
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