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In this thesis, the case of two anyons in a harmonic potential in two dimensions is
studied by using Feynman path integration. Following Wilczek's ideas, in the concept of the
anyon the extraordinary spin and statistics are fractional. Significant applications of anyons
are to the fractional quantum Hall effect and anyon superconductivity. Moreover, the
configuration space of anyonic systems is muitiply connected, and then the path integral is
very useful to solve such problems. Nevertheless, there is the alternative approach that can
be applied to the same problem, namely, the Chern-Simons construction. 8y adding the
Chern-Simons term into the ordinary Lagrangian, norma!l parlicles, particles with the usual

statistics, can become anyons.

In this thesis we show that the ground-state energy of two anyons in a harmonic
potential can be evaluated both by applying the path integral technique and by the use of
the Chern ~ Simons theory. We show that the complexity of the topology of the anyonic

system can be handled readily. It is shown that the ground - state energy of two anyons in a

harmonic potential depends on the stalistical parameter, O, representing the statistics of the

anyon.
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CHAPTER 1
INTRODUCTION

In classical physics, particles are considered as distinguishable
particles and their interactions come from conventional forces only (no
intrinsically statistical effect). But quantum particles regarded as
indistinguishable particles can feel exotic interactions coming from the
inherent property, their statistics. The statistics can help us classify identical
particles into two classes, bosons and fermions, for three or more spatial

dimensions.

Firstly, in the early days of quantum mechanics, identical particles,
influenced not only by ordinary forces but also by the particle statistics, have
exclusively two families, bosons and fermions, considered in just three
spatial dimensions. In other words, since one or two spatial dimensions were
neglected in those days, it was considered that only bosons and fermions are
logical 1dentical particles in the physical world. Moreover, 1t is well know
that spin and statistics of particle have a close relation. At first, in 1925, S.
N. Bose[1] introduced the new quantum concept that more than one particle
can be in the same quantum state before W. Pauli[2] introduced his famous
exclusion principle stating that there can never be two or more equivalent
electrons in an atom. While Pauli’s particles are electrons (1/2-spin
particles), Bose’s particles are photons (spinless particles). These concepts
can be extended to cover that particles with integral spin. Unfortunately,
even though the spin-statistics connection[3] is crucial in quantum physics,
especially quantum field theory, we have not enough time to spend on this
subject here. However, many useful details and papers on this topic are
collected in Ref.[3].



Twenty three years ago, in 1977, however, J. M. Leinaas and J.
Myrheim[4] studied the classical configuration space of a system of identical
particles. They showed also that two possibilities, corresponding to
syminetric and anti-symmetric wave functions, appear in a natural way in the
formalism. But this is only the case when the particles move in a three-or
higher-dimensional space. For one and two dimensional spaces a continuum
of possible intermediate cases connects the boson and fermion cases.
Furthermore, they proposed that particle spin can take on exotic values in a
two dimensional world. Unfortunately, there was no wide interest in this
subject at that time since no important physical situation in one or two

dimension was known until the quantum Hall effect was discovered[5]

The exotic phenomenon of two-dimensional particle was regenerated
by Frank Wilczek[6] in 1982. Although he realized that practical
applications of these phenomena seemed remote, he thought that they have
considerable methodological interest and shed light on the fundamental spin-
statistics connection. In that work, he proposed that the flux-tube-charged-
particle composites have unusual statistics. Since quantum statistics of this
composite, defined by the phase of amplitude associated with slow motion of
distance particle around one another, can take on any value, he called them
generically “anyons”. Especially, for two anyons, their energy levels are not
simply related to the single anyon energy levels, as will be stated in detail
later.

It is well known that the physical realization of a two-dimensional
electron system are inversion layers formed at the interface between a
semiconductor and an insulator or between two semiconductors, with one of

them acting as an insulator. This system, shown in Fig.1, in which the



quantum Hall effect (QHE) was discovered by Ando and et. al.[7] has Si for

the semiconductor, SiO, for the nsulator.
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Fig. 1 Schematic side view of a silicon MOSFET[7].

In the above picture the insulating oxide layer is made relatively thick
(e.g., 5000 A®) and a metallic electrode (Al) plated over it. This electrode is
positively charged by application of an external gate voltage. The resulting
device is called a MOSFET. Metal oxide semiconductor field effect

transistor.

In 1982, Tsui, Stormer, and Gossard[8] discovered the new quantum
phenomenon, the fractional quantum Hall effect (FQHE), in high quality ,
GaAs-AlxGal-x As heterostructures. The primary phenomenon is
considerably, if not deceptively, similar to the integer quantum Hall effect
(IQHE) discovered by Klaus von Klitzing[5]. It is found that in a high
quality sample (examplified by large carrier mobility at zero B fields) as
very high magnetic fields are applied at very low temperatures, Hall plateaus
and deep minimal structures in py, the resistivity tensor, develop at
fractional fillings v=1/3[8] and 2/3[9], of the lowest Landau level, in a
manner analogous to the development of the IQHE at integral fillings. The

experimental results are shown in Fig.2 for v=1/3 and in Fig.3 for v=2/3
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Fig.2 The FQHE at 1/3 filling of the lowest Landau level[8].
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Fig.3 The FQHE at 2/3 filling of the lowest Landau Level[9].



-
MBHUANDTY frn1uY2 yuuT 01y
s - -
DODINTIMI nerae 5

The existence of the QHE at fractional fillings came as a great surprise
since 1t could not be understood within the framework of the then developing
theory of the QHE. It immediately suggested the possibility of fractionally
charged excitations, perhaps reminiscent of the predicted fractional charges
in quasi-one-dimensional systems, However, in 1982, the theory that can
describe this phenomenon was developed by Laughlin[10] with important
contributions from Haldane[11] and from Halperin[12].At the foundation of
the theory is the idea that the new states are best described as incompressible
quantum liquids, around which the low-energy excitations are located quasi-
particles with non - customary quantum numbers, including strikingly
fractional statistics. Using this idea, Halperin was able to augur the values of
the allowed fractions in the FQHE hierarchy in a simple and convincing , as
well as observationally successful way. Arovas, Schrieffer, and Wilczek[13]
using the Berry phase technique[14], showed directly that the quasi-particles
had the properties assumed by Halperin. They also suggested that because
the statistical interaction, together of course with ordinary electromagnetism,
is the dominant interaction of the quasi-particles at long distances it should
be possible to write an effective Lagrangian for the long-wavelength
behavior of the quasi-particle gas, using just these interactions. The formal
implementation of this idea was carried through in the above mentioned
paper by Arovas, Schrieffer, Wilczek, and Zee[15]. An important element of
that paper, which has played a key role in the further development of the
subject, is the introduction of a local implementation of fractional quantum

statistics, through the Chern-Simons interaction.

Moreover, it is a very attractive problem, to figure out the behavior of
such as new quantum ideal gas. The high temperature, low density behavior
was addressed several years ago in a paper by Arovas, Schneffer, Wilczek,

and Zee[15]. They calculate, in particular, the value of the second virial



coefficient. A simple result was discovered , that interpolates continuously
between bosons and fermions. While this result was significant as a check of
the consistency of the whole circle of ideas, and as an exercise for
sharpening techniques, it hardly addressed the key questions regarding the
new quantum ideal gases. The most important effects of quantum statistics,
of course, occur only at low temperatures or high density. The existence of a
cusp in the virial coefficient at Bose statistics was one of several indications
that the behavior of anyon gases at low temperatures would be interesting
and probably far from smooth. However, it has proved quite difficult to
extend the calculations starting from the high-temperature end, and since the

problem seemed both esoteric and inaccessible it was largely abandoned.

At this point it would be disingenuous not to remark that much of the
stimulus for the recent upsurge in interest in the anyon gas are some
theoretical speculations that quasi-particles in CuO planes, which
presumably are the main actors in high temperature superconductivity, are in
fact anyons. These speculations were motivated by the analysis of
excitations around certain types of ordered states (chiral spin liquids)[16]
that have been proposed for the electronic ground state in the planes.
Needless to say, it is a fact that in models of relevance to high-temperature

superconductivity there will always be an even number of anyon species.

Immediately after the experimental discovery of the new
superconductors, Anderson[17] stressed their essentially two-dimensional
character, the importance of strong magnetic ordering, and the possible
existence of excitations with exotic quantum numbers. A relatively concrete
proposal embodying one form of Anderson’s vision was put forward by
Kivelson, Rokshar, and Sethna[18]. They showed that the division of

valence bonds on a square lattice occupied by approximately one valence



electron per site into localized dimers, as suggested by the phase “ resonating
valence bond , could plausibly support excitations — specifically , defects in
the pair — bonding of electrons, trapping a single unpaired site — which are
charged, spinless bosons. The initial thought was that Bose condensation of
such charged excitations was the mechanism of superconductivity. However,

the microscopic basis of this picture was never clear until now.

Unfortunately, the most immediate natural consequence of all these
suggestions 1s that, since one has direct Bose condensation instead of
pairing, the flux quantum should be h/e. Experimentally, it appears to be
h/2e, at least in the regimes where it has been studied so far. Various
modifications of the ideas have been proposed[18], but it 1s difficult to know
what conclusions to trust when such a seemingly straightforward one must
be abandoned. Also , with the loss of the compellingly simple concept of
Bose condensation as a2 mechanism of superconductivity, the motivation for

the suggestion of exotic quantum numbers becomes much less clear.

An essentially new set of ideas was added by Laughlin and
collaborators[19-22]. Kalmeyer and Langhlin[19] made an approximate
mapping of certain frustrated spin models onto Bose gases with short range
repulsive interactions situation and subject to strong external magnetic field.
The latter situation is completely analogous to that in the quantized Hall
effect, and one can therefore take battle-tested knowledge of the ground state
and low-lying excitations in the Hall system over into the spin models.
Given the previous discussion of the FQHE, it should not seem surprising
that the quasi-particles are then found to obey fractional statistics. Wen,
Wilczek, and Zee[16] have given a more abstract solution of the problem,
not relying on the details of a specific wave function, indicating what sort of

spin ordering is essential to obtain fractional statistics quasi-particles.



Once one has a chiral spin liquid, it is plausible that charged particles
doped into the system induce or bind to the fractional statistics quasi-
particles, thus themselves acquiring fractional statistics. Laughlin and his
collaborators have argued, in several papers, that fractional statistics in and
of itself leads to superconductivity. Later, Chen, Wilczek, Witten, and
Halperin[23] extended and verified these arguments. The new concept of

superconductivity described here is called “anyon superconductivity”

An important feature of most models concerning anyons is the discrete
symmetries P and T violations. This is quite basic for the FQHE, taking
place in an external magnetic field. It would also have to occur
spontaneously in high-temperature superconductors, if they can be described
by anyon models. It is, of course, characteristic of chiral spin liquids. That
such symmetry breaking could occur, and can have important experimental
consequences, was first emphasized by March-Russell and Wilczek[24], and
considerably elaborated by these two together with Halperin[25]. Some of
the issues have also been discussed after that by Wen and Zee[26]. The
considerations of this paper suggest some additional possibilities, and allow

us to begin to discuss them quantitatively.

Calculations of the energy of the undoped spin systems using
variational wave functions of the Kalmeyer-Laughlin type have not yielded
particularly good energies for simple model Hamiltonians, such as
Heisenberg antiferromagnets with any combination of couplings to a few
near neighbors. Moreover, for the undoped parent compounds of the actual
copper-oxide superconductors (e.g., La,CuQy) there is compelling evidence
that the planes of copper spins are well described by a nearest-neighbor
Heisenberg model on a square lattice, with a ground state that has

conventional antiferromagnetic order[27]. It is certainly possible that the



holes also induce an effective multispin-interaction which favors a chiral
spin state for the remaining copper spins. If this is the case, then it is
reasonable to approach the superconducting state by starting with a model
Hamiltonian where the spins form a chiral spin liquid even in the absence of
free charges. Laughlin bas shown that there exists in fact a model
Hamiltonian (with long-range-four-spin interactions, and with explicitly
broken time-reversal and chiral symmetries) for which the quantum-Hall-
effect wave function is the exact ground state[28)]. There is little reason to
doubt that there exists also a class of Hamiltonians which only have finite
range interactions, and are invariant under P and T, for which the ground

state 15 a chiral spin liquid.

Unfortunately, up to the present there is no experimental evidence of
the violation of discrete symmetries P and T. In the future, new technology
may make it possible to observe this violation and after that the realization of
anyons will be proved. Although the directly experimental proof is not yet
realized, the concept may still be useful in low dimensional physics,

especially FQHE and high-temperature superconductivity

Since the configuration space of quantum (identical) particles is
multiply connected space, the quantization rules require unusual phase factor
[29-31]. From mathematical point of view, the configuration space of
identical particles in three dimensions consists of two classes; boson and
fermion, but in the two - dimensional world there are infinite families of
quantum particles; anyons . More technically , in three dimensional space the
first homotopy group or the fundamental group [32] comprises two
homotopy classes only, yet there are infinitely many homotopy classes in the
fundamental group for two dimensional space. Therefore | the Feynman path

integration is very useful for this case[29-31). In path integrals, the
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propagator comes from summing over all possible paths, then in 2 multiply
connected configuration space system we have to sum over all a historical
paths and possible homotopy classes. That 1s why the path integral

formalism helps us understand the anyon system very well [31].

Although the case of two anyons m a harmonic potential is quite
simple, it 1s a very vital step to first understand the single anyon. Thus, the
Feynman path integration is used to study this problem in this work. Even
though the configuration space of anyon systems is multiply connected space
and in this case has to be treated in the way stated above, there is an
equivalent approach, the Chern-Simons technique, to solve this problem too.
In conclusion, in this work the Feynman path integration technique will be
combined with the Chern-Simons theory to solve the problem of two anyons

in a harmonic potential.



CHAPTER 2
FEYNMAN PATH INTEGRAL

Since we will formulate our problem in the form of Feynman path
integrals [30,33,34] we will devote this chapter to introduce and clarify this
approach. Furthermore we emphasize specifically the Feynman path
integrals for multiply connected space [29,30] since the configuration space
of anyon systems [31] described in chapter 3 is multiply connected too.
However, to understand the last topic we need a topological background,
especially the homotopy theory [30,32]. Therefore it is briefly introduced in
Appendix B.

Feynman Path Intesration in Elementary Quantum Mechanics

In 1926 the new great mechanics, quantum mechanics, was
developted. At the time, there were two quite different mathematical
formulations, the wave mechanics of Schroedinger and the matrix mechanics
of Heisenberg, proved to be mathematically equivalent by Schroedinger.
Later, Dirac developed the transformation theory that can transform one
approach to another. Nearly two decades later, a young graduate student at
Princeton University, R.P. Feynman, noted Dirac’s remarks concerning the

relation of classical action to quantum mechanics [33] proposing that
“cxp[if’%Lc,(t,x,k)} corresponds to the kerel (x,,t,|x,.t,) [35]".

Consequenly, he proposed an intuitive formulation of quantum mechanics,
the third approach, which is mathematically equivalent to two former
approaches. This Feynman path integration is based on the following two

postulates [33].
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(4]

1) If an ideal measurement is performed to determine whether a
particle has a path lying in a region of space-time, then the probability
that the result will be affirmative 1s the absolute square of a sum of
complex contributions, one from each path in the region.

2) The paths contribute equally in magnitude, but the phase of
their contribution is the classical action (in units of £); 1.e., the time

integral of the Lagrangian taken along the path. ”

From the second postulate, Feynman could show that the contribution

of any path x(t) [33] is

®[x(t)] = (const )cxp[;i— JLx(t), x(t),t)dt} (2.1)

where L(x(t),x(t),t) is the classical Lagrangian taken along the path in
question. In addition, from the first postulate we will have the probability
amplitude, K(b, a), as the sum over paths of contribution <I>[x(t i] from each
path. That is

Kb.2)= > @x(t)

over allpaths
from ato b

= Y (const cxp[ fL(x(t), t)dt}

2.2)

over allpaths
from atob

where a = (x t ) and b =(x,,t, ) are points in space-time.

a’> "a

The physical interpretation of |K(b a]2 1s the probability that a particle

will go from point x, at the time t, to the point x; at the time ty, P(b, a) [34].
That is

P(b,a) = K(b,a)’ (2.3)
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Although the above definition is expressed in the form of a sum over
paths seems to be discrete, indeed it is a sum over infinite continuous paths.
Then, next, we will replace the summation by the (functional) integral.

Hence, the Eq.(2.2) becomes

K(b,2) = |im]]... | (const )expl:% S[x('[)]]dx,de...de_l (2.4)

Nooo
where  S[x(t)] JL(x(t (t),t)dt is the classical action,

and x, is the variable defining the path.

To evaluate this (functional) integral we have to divide the time
interval from t, to ty, into N infinitesimal intervals, ¢, as shown in Fig.4.

From this process we will find that there is a set of successive times ty, ty, ...

lying between t, and t,, where t., =t,+¢, and there are points x,
corresponding to each t.,1.e.
X; :x(ti) ;K = x(ta :to) R :x(tb =tn) (2.5)

, and defining the path x(t).

Moreover, the functional action can be expressed in the discrete form as[36]

[-]"82 X; X, X»+2Xj-1,j€i| 2.6)

Because of the normalization condition, fK(b, a)dxb =1, we can define the

constant in Eq.(2.4) as the normalization factor Ay". Thus, the probability
amplitude, K(b, a), in Eq.(2.4) can be rewritten as[34]

K(b,a)=i§£§jj...jcxp[ Sulx ]}AN d:; .d’;:' @.7)
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In the general form of path integration, Eq.(2.7) will be expressed as

K(o.3) = [ofxOlexs| 15[ 2$)

known as the Feynman propagator.

\.«\

Ly X Xy X5
X

Fig.4 Diagram representing how the path integrals can be generated[34].

Propagator from Schrodinger’s equation

In the preceding section, the Feynman propagator is derived from
Feynman’s postulates leading to the Feynman path integral. Next, the
propagator will be directly developed from the Schrodinger’s equation. This
part will provide the proof of equivalence of the Feynman and Schrédinger
formulation while in Feynman’s original paper he derived the Schrédinger
equation from his propagator. We believe that this point of view will be
easier to understand. At first, we will start with the time-dependent

Schrodinger’s equation

[ih%-H}(p(x,t): 0 (2.9)
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For convenience we will show the simple case, the one-electron case, which
has a Green function, G(x x5t t’) satisfying the following differential

equation
[i}‘zg—H}G(x,x';t,t’)=6(x - x Bt - t') (2.10)
It is well known that this Green function can be expressed in matrix form as
G(x, x’;t,t’):<x|exp{—-}%H(t—t’)}|x’) (2.11)

Similarly to the preceding section, we divide the time interval t —t’ into n

equal infinitesimal subintervals, i.e. ne = t —t'. We will have Eq.(2.11) as

Glx, x';t,t")= (x |exp {—%Hns}| x')
1

= lim(x |(1 - %)[1 - %][1 - %} x')

where we have used the identity

exp (%Hna} = Iim(l - %] (2.13)

£-50

(2.12)

From the completeness relation of elementary quantum mechanics Eq.(2.12)

will be expressed as

ofx, xe.¢) =1im . (x [1- 21

I/

In general, the Hamiltonian is in the form

H=i+v(x) (2.15)
2m

where p denotes the momentum operator,

and V(x ) denotes the potential operator at x .
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Hence, we will get

(2.16)

From ordinary quantum mechanics, 1t 1s well known that the in 3-

dimensional case

(xIp)=7 ;)3/ exp[i x} @17
T 2

Hence, from Eq.(2.17) we have
igeH 1 1
[l - 7]' xi> - (2717’1)3 Jdp CXP{E (x 1 xi)' P}

()

(2.18)

Since ¢ 1s an infinitesimal quantity, the error that comes from replacing term

<|1 ——[— + V(x )J} by the corresponding exponential can be neglected.

Therefore we can rewrite Eq.(2.18) as

e
oo -2
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Using Gaussian integrals, we get

(X |(1_%]|Xi> {21;18}2 exp[ihé{%("m; - ]2 _V(X)H

(2.19)
Let us rewrite Eq.(2.14) by substitating Eq.(2.19) into it, thereby
n - — Y. 2
G(x,x';t,t)—llm—” {18 {IH(LA&] —V(X)H
i=1 2 €
(dx, dx, dx,
A A A
] 14[m
=lim — {[...[exp| = [{ —x* = V(x)}dt
im0l Xp[hl{zx ( )} ]
(dx, dx,  dx,,
A A A
(2.20)
where A=(2nm€] ,X, =x,and x, = x'.
m

Next, let us take into account the exponent in Eq.(2.20) that can be rewritten

as

i j{—x ~V(x )}dt - Lsfx(c)] (221)

thus ,Eq.(2.20) becomes

G(x,x"t,t")=lim=— ﬂ jcxp[ [(]}dx‘dxz... dX (2.22)

0 A A A A
Notice that Eq.(2.22) is the same as Eq.(2.7) even though they start from
very different points of view : one begins from an intuitive approach and the
other one begins from original quantum mechanics. This is the evidence to
confirm that the Feynman path integral approach is exactly equivalent to the

ordinary methods, such as Schrédinger and Heisenberg’s. To boot, it is
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obvious that the Feynman propagator is precisely equivalent to the Green’s
function, G(x Xt t’)A

To understand better, we have to consider a simple example, the propagator
of a free particle. Let us start with the Lagrangian of a free particle with

Imass, m,

L(x,i)=%>l2 (2.23)

Hence, the propagator or Green’s function can be expressed as

| , i£ntm( X, — X, T dx, dx, dx_,
G(x,x,t,t)—lclllgzﬂ...jcxp[h§2L TR

/

2 thie

[J

3

2

,X, =x,and x, =x".
m

where A = [

To solve this problem, we have to utilize the Gaussian integrals [30]

Jobt - b (25 o)

a+ a+b

Let us consider

) Jeo[ 2, 5. bt - o

2xnthe )
3
[ _m iexp{ (e —x,)
277 (2€) 2h(2e) "t T

2 A
Next, multiplying the next term,| —— | exp lm—(x3 -x,)’} and
2 ke 2he

Integrating over x,, we have

[ m ]%TTexp{iﬂ[(x, “x, Fo+(x, -x, F +(x, —xz)zl}dx,dxz

2The 2he
_(_m %ex Im (x, -x,)
2 mifi3e Planzs 3 ~ %o

-
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After (n-1) steps, we obtain
3 :
G, (x,x;t, t) = | — md —x,)
O(x b ) [Znihne] © p{2hne (x XO)
(m ) [ xp
2mAT P 2hT

(2.24)

where T = ng.

Nevertheless, even though the direct integration method can be
applied to the free particle problem very well, it is useless for more
complicated cases. Therefore, a different way to solve this difficult problem
1s required. Let us start now with the general form of the Feynman path

integral

K(b,a) = N[D[x( ]exp{ S[x(t )]} (2.25)

When considered in classical physics, the action S is extremized and
then it furnishes us the classical path completely fixed. Therefore, any path

x(t) can be expressed as the sum of the classical path, x (t), and a new

variable y(t). That is

x(t) = xo(t)+y(t) (2.26)
and it is clear that the path differential D[x (t)] can be replaced by D[y (t)]

This means that besides defining a point on the path by its distance r(t) from
an arbitrary coordinate axis, we now give the meaning of it by its deviation
y(t) from the classical path, as shown in Fig.2. The crucial conditions the
deviations, y(t), have to satisfy are

y(0)=y(T)=0 (2.27)
In here, we start with the time t =0 and end at the time t = T . Generally,

the Lagrangian will be the quadratic form
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L=a(t)?(t)+ b (t)x(t) + otk () + dt)x () + et x (t) + £(t)

(2.28)

Hence, the action S can be expressed as

S[x(t)] = S[x o (t) + v ()]

)0+ 25 5 (0)+ 5 O+ £

(2.29)

Il
© ey

It 1s obvious that the integral of all terms involving exclusively x c(t)

is exactly the classical action and the integral of all terms that are linear in

y(t) precisely vanishes. So, all the remaining terms in the integral are

second-order terms in y(t) only. That is

she (0] = Salk o)+ [ €) b E O+ oy O

(2.30)

X

Fig.5 Diagram showing a path deviating from the classical path [34].
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From Eq.(2.30), the propagator or the Green’s function can be rewritten as

€)= N Dly g sl (0] Jeckiey* (0
5O 0+ ey (]

[k ()
SO+ ey ()]

(2.31)

For the quadratic Lagrangian, customarily, the propagator can be expressed

~ exp {% Selx c(t)]}NJ Dly () Xp{ .

1
h

as

K(b,a) = F(T)exp {hi Selx .t )]} (2.32)

where

F(1) =Nl (] 1 a0 () o0 ot )

1s a prefactor.

Next, let us show the power of this approach in the problem of a one-

dimensional harmonic oscillator whose Lagrangian is

Lx(t), x(t)] = %5& —%m%& (2.33)

We will obtain the equation of motion by applying the Euler-Langrange
equation to the Lagrangian

el gl (2.33)
ax  dt 8%

thus we have

X, +o'x, =0 (2.34)
and the solution of Eq (2.34), with boundary condition x(0) = x"and
X(T) = x,1s
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xc(t) =X _S);C:,Sr ol sin ot + x’ cos wt (2.35)

Therefore, the corresponding action can be expressed as

Solkc )= [T )- o™i
== I:)‘(C(T)XC(T)_ )ic(O)xc(O)— Ixc[ic - cozxc]dt}

2
Using Eq.(2.34)
Salxc(O)]= 7 e (Tee(T) - % 0} 0)] (2.36)
Substituting Eq.(2.35) into Eq.(2.36), we have
Selee =5 [cos oT(x? +x?)-2xx] (2.37)

that 1s the classical action of the harmonic oscillator.

From Eq.(2.32) and Eq.(2.37), it is only the prefactor, F(T), that is required
to complete the propagator. Start now with

i t m '2 2.2
F(T) = N[Dly(t )xp RS § - 02y} (2.38)
0
at the boundary condition y(0) = y(T) =0
By expressing y(t) in the form of a Fourier series,
y(t)=Ya, sinn—;ft (2.39)

it is obviously seen that we can change the integration variables from y’s to

the new variable a,’s, and then with the use of the identity

N\Y%
lim l—[[l —[—T} ] = .(DT (2.40)

N-» e nrw sinwT

we will obtain the result as
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f maeo
T)= |— %
F( ) 2mAisin oT (2:41)

Finally, the time-independent propagator or Green’s function of the

harmonic osctllator is

’ maeo mao
K b = _ embeeag i | T 2 1) 2 !
( ’ a) 2nihsmoT ok {27‘7 sinoT [COS N (x s ) - ]}

(2.42)

Path Integrals for Multiply Connected Space.

After the ordinary Feynman path integration in elementary quantum
mechanics has been presented in the preceding section of this chapter, the
more advanced subject of the path integrals for multiply connected space is
given in this portion. Unfortunately, since there is no enough time, it is
solely the introductory level of this topic that is discussed here. The
quantisation rules for a system whose classical configuration space is
multiply connected are shown here as exclusively fundamental concepts and
for a sumple example while the more profound concepts, involving topology,
especially homotopy theory, are neglected here. Nevertheless, details of this
topic can be found in Ref. [37] and Ref.[38].

In this part, many details are quoted from Schuliman’s book [30] which
is the classic and famous book for path integrals both in its foundations and
applications. This subject is one of many applications contained in
Schulman’s book and the example shown in there 1s the problem of a rotator.
However, this important application was proposed in 1971 by Laidlaw and
de Witt [39]. In that paper a system of indistinguishable particles in a three-

dimensional world, multiply connected, is quantized and the result shows



24

that solely two kinds of particles in 3-D, bosons and fermions, are possible.
This means that the topology of configuration space of physical systems
determines the possibility of particles in this system. In 1984 two year after
Wilczek introduced the anyon, Wu [31] showed that the Feynman path-
integration formulation allows unusual statistics. This result comes from the
complexity of the topology of the configuration space for identical particles
in two dimensions. While in three dimensions the fundamental group of the
configuration space has only two classes, in two dimensions there are infinite
classes in the fundamental group. Nevertheless, the relation between anyonic
systems and systems whose configuration space is multiply connected is

deferred to the next chapter.

Let us start now with the basic definition of path integrals stating that

the propagator can be expressed as

Kb,a)= 3 (const )exp iS[q(t)] (2.43)

allgz:i:]lec'bpal}w
where q(t) is the coordinate function defining any path from a to b, by which

q(ta) = a and q(t,) = b. For convenience #is set to be 1.

In multiply connected space, M, the fundamental group or the first
homotopy class, T, (M) has an infinite number of elements. This means that
there are an infinite number of equivalent classes whose elements can be
continuously transformed from one to the other if and only if they belong to
the same class. Therefore, we must divide all possible classes into all

equivalent classes, the elements of 7, (M).

The crucial point 1s that in multiply connected space (or manifold) the
paths belonging to different classes have different weights in the sum over

histories a problem which does not exist in standard quantum mechanics.
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Hence, it 1s essential to reformulate the quantum theory taking in account
this fact. Actually, this topic was discussed for the first time by Schulman
[29] in 1968, rigorously formulated by Laidlaw and de Witt[39] in 1971, and
eventually reviewed by Gamboa [40] in 1996. Let o e, (M) be the

equivalence class and y(c) the weight factor corresponding to class o , thus

Kb.a)= Y xle) S expis[alt)] (2.44)

oE™M (M) q(t Jea
For convenience, we have to define the partial propagator, corresponding to

the class a, as

K, (b,a)= (I\L;‘aexp iS[q(t)] (2.45)

Therefore, the total propagator

Kb,a)= T 1(e)K,(.a) (2.46)

aem (M)
To understand more clearly let us consider the simple example of a particle
constrained to a circle. Starting with its Lagrangian

L= ;—I('pz (2.47)

where ¢ 1s angle coordinate ; 0 < ¢ <27,

and 1 is the moment of inertia.

A continuous path of this system is a continuous function ¢ with the
identification of 0 and 2w . The set of such paths can be classified into classes
labeled by their “winding number”, the number of times the path goes past
some specific point. Generally the sign of moving clockwise is positive and
the other is negative or vice versa. Two different paths having different
winding numbers cannot be continuously transformed into each other. Now
let us define o, as the class whose members are paths having the winding

numer as n, and thus the propagator can be rewritten as



26

Kb.a)= Y1k b.a) (2.48)

It 1s clear that iIf o(t,) goes through a complete circle, the K ’s

become the K ’s while K(b, a) itself must show no physical change, which

n)
is to say it can exclusively be multiplied by a phase factor, exp (i6). From this
fact and the linear independence of the K_’s we will have
Xosr = €xp (O}, (2.49)
The magnitude of y,1s fixed by unitarily to be 1, or taking its (arbitrary)
phase to be zero we get
x, = exp(inB) (2.50)
Next, to perform the path integral for (2.47) let us consider the mapping

from the real line R to the circle

f:RS8 ; f(x)zx—[i—}Zn (2.51)
27

where [x] means the integral part of x.

It is obvious that 0 < p(x) < 2n. The mapping p is illustrated in Fig.6.

It 1s clear that p is locally invertible, but, however, its invertible property is

ill defined globally. Then the problem can be seen easily in the case that two
paths having p(x)) =p(x,)=¢ or p(x])=p(x;)=0"but x| #xor
x7 # x,. To solve the problem, the preimage p~ (¢') must be fixed at first,
yet it can not completely solve the problem. It 1s clear that paths ¢(t) having
the same end points and same choice of p~' (¢') can end at different p™' (¢")
To solve the last problem, the winding number part of p™'(¢") should be
excluded and then the preimage can be rewritten as p~'(¢”) + 2nn for paths

with winding number n. Therefore it follows that to calculate K, can one do
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the path integral on R for the path that begins at the definite p™' (¢') which
has been selected and ends at p~' (¢") + 2rnn where p~ (¢") is fixed by the

choice of p™'(¢'). The map p can be used to carry the classical Lagrangian

from S' to R since it is smooth.

| p“'(sﬁ') | p‘l(w') 2™ I
—2n

Fig.6 The map p for points on the line to some ¢ and to some ¢" [30].

Let us now go back to the Lagrangian (2.47), and consider it on R. It is

clear that it is that of a free particle, and we immediately have

I il 2
Km(b,a)— T exp[ﬁ((p—hn) } (2.52)
with
@ =ot,) - o(t,), T=t, - t, (2.53)

and the point for reckoning number has been taken to be zero. From Eq.
(2.52), (2.50), and (2.48), we will get '

Kb,a)= i 2; exp {me + ;—IT(@ - 2mt)2:\ (2.54)

Using the identity involving the Jacobi theta function [30]
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8,(zt)= iexp [ifctn2 + an]

n=-—w

8,(z+ n,t) = 63(z,t) (2.55)
0,(z+nt,t) = exp|-int —-22Jp,(z,t)
we have
[ o[ g (mol 8 2nt
K(,a)= e exp[zTcp }e{ ST ] (2.56)

Using the additional identity [30]

1 z z |
93 (Z,t) = —ECXP [E]eg [?,— ?) (257)

we have

1 0 O°T|, (¢ T6 -T
K(b,2) = —exp| 2 - o [0,[ 2 - 2 == 258
b.2) 2neXp[2n(p sm’} ’[2 4nl 27:1] (2.38)

From this example, it is seen clearly that a system with non-trivial
topology should be carefully treated in an unusual way. Firstly, all paths
must be divided nto equivalent classes in the fundamental group. Secondly,

in each class the partial propagator, K should be multiplied by the weight

factor exp (i6). This method is used again in the next chapter in connection

with the problem of the anyon system.



CHAPTER 3
ANYONS: CONCEPTS AND APPLICATIONS

In chapter 1, both the introductory concepts and applications have
been discussed, but, however, it is necessary to expand both of them here.
Especially, the mathematical details of the simple model of anyon will be
shown in precise detail in this episode. The second part of this chapter is
devoted to the Feynman path integration for the configuration space of
anyons that is multiply connected. Furthermore, in the third portion, the
relation between the Chern—Simons theory and anyons will be analyzed. A
similar form of the exotic phase factor occurs in both the second and third
sections. The last section is reserved for the unportant application of anyon
theory, the concept of anyons for the Fractional Quantum Hall Effect
(FQHE). Unfortunately, because it 1s so advanced, the anyon
superconductivity has to be neglected here. Nevertheless, many details and
topics concerning anyon superconductivity can be found in Lerda’s book

[41] and Wilczek’s book [42] even though they are disregarded in this work.

Simple Model of the Anyon

The simplest model of the anyon is a charged point-particle interacting
with an infinitely long magnetic solenoid of flux-tube-charge composites,
called cyon[6, 43]. It is obvious that the cyon will obey the law of a two-
dimensional world and its dynamics is essentially planar if the motion along

the solenoid is disregarded.

Now let us consider a non-relativistic particle with mass m and

electric charge e that moves in the magnetic field B generated by an
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infinitely long and thin solenoid passing through the origin and directed
along the z-axis. Since the (free) motion along the solenoid s neglected, the
pertinent dynamics takes place in the (x, y) - plane and is governed by the

non-relativistic Lagrangian
] ., €
L=§mv +-v-A(r) (3.1)
c

where r = (x, y) € R? denotes the particle position, v =F its velocity and A
the vector potential for the solenoid configuration. In a convenient
symmetric gauge, A is given by

D/

=¥/ . X .| ®dzxr
A(r)y=— i+ =— 32
) 21th2+y2 x' +y’ j) 27 ‘r|2 (32)

where i and j are the unit vectors along the x- and y- axis respectively, and ®
is the flux of the solenoid. From elementary electromagnetism, the magnetic
field associated with A(r) in Eq.(3.2) can be expressed as

B(r)=V A =g, 9,A, (3.3)

where €1, =1, en=-1, €11 =€ =0.

CaseIr=0.
0 0
B(r)= &Ay —EAX
(e ry)-x(x), K7+ y?)-y(2y)
(x2+y2)2 ()(2+y2)2
=0 (3.4)
Case 11

Using a regularization scheme with

et D T,
g : i
—. - ~5_lm

P ..
A =——1Im 3 >
2meirit+ e 2me20ix " +y
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B(r)=lim g; 0,A,

€—0

|

2\2
27‘5 -0 ()(2_'_)/2_'_E )

and considering the case of r <« ¢,

2
. (O
B=2hm2€4 =-—111T1L2
21{6—)0 e Tce—;oe

[d*B=([d*B)  +([d*B)

o . 1
=—lim{d*r—
.[ EZ

e €0

=9[” f2]=q> (3.5)

n\ €
From Eq. (3.4) and Eq. (3.5), we can deduce that

B(r)= ®8™(r) (3.6)
where §®)(r) is the Dirac-delta function in two-dimensional space.
It 1s Eq. (3.6) that shows that the cyon, a charged point-particle interacting
with an infinitely long magnetic solenoid of flux-tube-particle composites,

has the magnetic flux of the solenoid, ®, locating at the position of the

charge particle, r.

Before discussing the spin and statistics of the cyon, a new form of the
vector potential in Eq. (3.2) will be derived. This form will be very useful in
next section where we discuss the path integration of two anyons by using
the Chern—Simons term. For convenience we shall represent the vector

potential, A, in each component as

A =25
1 2n 1’

3.7

. T
Let us consider that 6 = arotan[—’—]
I‘l
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09=—¢ - (3.9)

where r =i +1,j. Therefore, we can rewrite Eq.(3.7) as

A =250 (3.10)
2n

L,

where 0= arctan[
rl

] 1s the angle made by the vector r with an arbitrary

axis.

Now, we go back to the crucial point, the spin and statistics of the
cyon and then we will show that the cyon is generally an anyon. In this part
the basic concepts of elementary quantum mechanics, the quantization rules
of angular momentum and spin, are used to verify these exotic quantum
properties of the cyon or generically anyon. Next, let us consider the
canonical momentum p which can be readily obtained from the Lagrangian
(3.1). The momentum p differs from the kinetic momentum mv by a term
involving the vector potential A ;namely

_a

P= 5

—mv+—A (3.11)
c
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The Hamiltonian of this system is

H=p-v-L
=L[p_gAJ’ 1o (3.12)
2m c 2

Notice that the magnetic field and the vector potential are invisible if
the Hamiltonian is written in terms of the kinetic momentum. Actually, the
classical equations of motion are the same as those of a free particle, yet non-

trivial features are present in the quantum theory.

If the Lagrangian L does not change when the dynamical variables are
rotated in the plane, the Lagrangian 1s rotationally invariant. Thus we have to
pay more attention to the constant of motion associated with this rotational
symmetry, the canonical orbital angular momentum, J,

J.=rAp

—rAmMV+orAA (3.13)
C

:J+E(i
27c

where J = mrAv is the gauge invariant kinetic angular momentum. It is well
known that J. has a conventional spectrum. In other words, the eigenvalues
of J. are always integers in units of #. This is true despite the fact that the
algebra of the two-dimensional rotation is abelian and in principle an
arbitrary constant could be added to the angular momentum operator, thus

obtaining arbitrary eigenvalues.

Since, both in the absence and the presence of @, the canonical
angular momentum is always expressed by the same quantum operator
0

J, =—-th— 3.14
=it (3.14)
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, Its eigenvalues are always integers in units of % as below
,=hm  5meZ (3.15)

where Z 1s the set of integers.

The interesting quantity is the kinetic angular momentum, J, not the
canonical angular momentum. However, they are indentical when the
magnetic flux, @, is equal to zero. Now, let us consider J in the case of

® = 0. From Eq.(3.13) and (3.14) we can show that

(3.16)

If the kinetic angular momentum J is applied to single-valued wavefunctions
with angular dependence exp(img), we will get

J:h(m—gj ,meZ (3.17)
he

Therefore, the spectrum of J is composed of integers shifted by -e®/hc.

Commonly in quantum mechanics, only the conserved quantity, the
canonical one, 1s considered, but, however, for the present case, A. S.
Goldhaber and R. Mackenzie [44] lucidly pointed out that the integer
canonical angular momentum is divided into two parts: One localized near
the cyon and 1n general fractional, and one located at the spatial infinity and
also fractional. Moreover they argued that this diffused angular momentum
1s irrelevant in describing local phenomena, and identified the piece localized
on the cyon with the kinetic angular momentum. Unfortunately, we have to
skip the details of their argument, but these details can be found in Ref. [44]
and Ref. [45].
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The spin of the cyon 1s defined as the (kinetic) angular momentum of
the cyon in the case of m = 0, that is the spin

- J(m=0)*_c(D
kR he

(3.17)

This equation means that in general the spin of the cyon can take on any

values. This 1s one relevant reason that the cyon 15 generally an anyon.

Next, we will discuss the statistics of the cyon closely relating them to
its spin. It 1s well known that if some connection between spin and statistics
exists, we should expect that the cyon be generally an anyon. To establish its
statistical properties, let us consider two identical cyons with a wavefunction
w(1,2) and assume that the magnetic flux and electric charge are tightly
bound on each particle. To evaluate the statistics we have to move one cyon
around the other by a full loop and neglect both charge-charge and vortex-
vortex interactions. Using the Aharonov-Bohm effect [45], the charged
particle moving around the other attached to the magnetic flux @ feels the
effect of the vortex on its quantum motion. Let us consider the case that
particle 1 is moved around the vortex 2 on a closed loop I, therefore the

wave function acquires a phase
e
exp| —1—¢dr- A 3.19
o{-imders e
Using Stokes’ theorem, it can be rewritten as

e e
—i=[d4V A A |=ex [—1— derj
exp{ lfch ] P }‘zcJ

=ex (—iC(D
= e*p hic

In two-cyon system, the effect of particle 1 on particle 2 is equal to the effect

(3.20)

of particle 2 on particle 1. Thereby, the phase picked up should be twice that
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in Eq. (3.20). This means that the phase factor in Eq. (3.20) can be rewritten

as

exp(2miv)= exp(— 2mi 2:—(1)) (3.21)
C

Thus the statistics of the cyon is

B 2ed
he

V=

(3.22)

Furthermore the spin s and the statistics v appear to be related in the
conventional way

v =728 (3.23)
Therefore generally the cyon is an anyon and the standard spin-statistics

connection 1s satisfied.

In an alternative approach, we can define the quantum statistics of
the cyon by the phase of the amplitude associated with slow motion of
distant particle around one another. Hence the quantum statistics in this case
can be obtained by rewriting Eq.(3.21) as

exp(inv)= exp(— 27 ?) (3.24)
c

We can see that if v = =1, the quantum statistics 1s +1 that is the

fermionic statistics. This means that the bosonic particle with magnetic flux

® =1/ ®, (@, =h¢/ is the fundamental flux unit) is a fermion. In this

thesis, after this portion, the above definition of the quantum of the quantum
statistics will be used unless denoted otherwise. Furthermore, we have to
define the statistical parameter o as

a=nv=2n£ (3.25)
he

Hence, the quantum statistics can be expressed as exp(ic).
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Finally, from the previous discussion of the cyon, we can deduce that
the cvon is generally the simple model of an anyon. Since both its spin and
statistics can take on any values, as shown in Eq.(3.18) and Eq.(3.24), it is

called “anyon”.

Path Integral for Multiply Connected Space and Anvons

This part 1s devoted to the relation of the path integral for multiply
connected space with the anyon. Especially, its statistics 1s discussed from
the viewpoint of the braid group, a group classified by the winding number.
Furthermore, the relation between the additional phase factor in path
mtegrals and the representation of the generator in the braid group is

presented here also.

Let us review the definition of quantum statistics. From the preceding
section, it is well known that the quantum statistics in two dimensions can be
defined as the phase factor of the amplitude associated with slow motion of
distant particle around one another. In the previous part, the quantum

statistics 1s expressed as exp(ia).

The configuration space for distinguishable particles is exclusively
R* =R?x...xR"(n factors), where d is the dimension of space [31]. There
is something different for the system of identical particles. For

indistinguishable particles the different ordering of particle indices make no

physical distinction. This means that (rl yoos T T rn) 1S equivalent to
(rl gy X5 Tipeny Ty ) In our problem, we have to exclude the diagonal points,

D = {(r1,....rn) with r; = xj for some 1 # j} because any two particles are

prohibited to coincide with each other. Therefore, the configuration space of
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n identical particles is M? = (Rd“ ~DJfs, where S, is the symmetric group

of n objects that shows the symmetric property of ordering in the system.

It is reasonable to assume that M is multiply connected. Hence, the

path integral for imultiply connected space, shown is Chapter 2, can be

applied here. To do path integrals, we have to divide all possible paths into

the homotopic classes o € m, (M) . Let us rewrite Eq.(2.46) as

K(g,t'q,t) = %ﬁ)x(a)Jan cxp{%Ter{qu(r),qa(f)}} (3.26)

Now, we consider the paths that start and end at the same point, called a loop
and put back the factor % here. For Eq.(3.26) to make sense as a probability

amplitude, the weights (o) cannot be arbitrary. Actually, since the usual

rule for combining probabilities

K(g,t;q,t)= [dq"K(g, t;q". t"K(a", t", q, t) (3.27)
!

must be correct, thus the weights y(a) have to satisfy

X(al )X(az) = X(a’l E sz) (3.28)
for and loops o, and o,. From Eq.(3.28) it can be conciuded that y(c)

must be a one-dimensional representation of the fundamental group n, (M. ).

To see the group structure of the system of particles the fundamental
group of the configuration space, 7, (M) must be identified, Unfortunately,
since this topic requires so much background in algebraic topology, we quote
only the result here. It turns out that the fundamental group of M is given
by

n,(M,‘f)=Sn , d=3, (3.29)
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where B, is Artin’s braid group of n objects coutaining the permutation

group S, as a finite subgroup [46].

Next, to be clearer let us consider the system of two particles as an
example. In this example, the unportant difference between two and higher
dimensions 1s presented as well. Rather than assigning the position vectors r,
and r, for the two particles, they can be replaced by the relative and center-

of-mass coordinates, r and R respectively. Their definitions are

R:r';"2 e RY, (3.30)
r=r -1, € R'-{0} (3.31)

where d is the dimension of space.

Now, let us start with the case of two particles in three dimensions.

The configuration space M can be decomposed as
M, =R’ xr; (3.32)
where the space 1, describes the three degrees of freedom of the relative
motion consisting of the length and the two angles of relative coordinate r.
Since they are identical, r and -r are identified. The topology of r is
represented by the product of the semi-infinite line describing |r‘ times the

oo . . r
projective space P, describing the orientation of + H [41].
r

It is well known that the projection space P, 1s doubly connected and
admits merely two classes of loops. One class comprises loops, which can be
shrunk to a point by a continuous transformation, and the other consists of
loops, which cannot be shrunk to a point. The loop, which can be shrunk to a

point, i1s a contractible loop and the other is non-contractible loop. Both of
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them are shown in Fig 7. In addition it is easy to find that there are no other
classes because the square of a non-contractible loop is contractible as

shown in Fig 8.

Fig.7 Examples of contractible (q;) and non-contractible (q,) loops [41].

Fig.8 The square of non-contractible loop, q5 is contractible M [41].

From the composition (3.32) and the topology of 1;, we obtain the

fundamental group of M
nM)=mR x5 )=s, (3.33)

This means that there are sole two classes of particles, bosons and fermions,
in three dimensions. The former class corresponds to contractible loops and

the latter corresponds to non-contractible loops.
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Let us now tumn to our problem, the anyon in two dimensions. Thus
we have to discuss two dimensions here. Like the system 1n three

dimensions, the configuration space in two dimensions can be expressed as
M =R? xr1} (3.34)
where 1} is some space describing the two degrees of freedom of the relative

motion. Since r and -r must be identified, the space r. is then the upper-half
plane without the origin and with the positive x-axis identified with the
negative one. Thus the topology of 1} is a cone without the tip [41] shown in

Fig.9. If the vertex was included, it 1s easy to see that any loops can be
contractible. This means that there is only one class, bosonic class. However,

in physical situations since the hard-core assumption is reasonable, the tip of

the cone should be removed. According to Eq.(3.34) any loop in M; can be

classified by the number of times it winds around the cone r?. Since the
vertex of the cone has been removed, two loops, q and q', with different

winding numbers are homotopically inequivalent. This means that these two
loop cannot be continuously transformed to each other. Therefore, it can be
deduced that

n, )= n,®2 xr?)=2=B, (3.35)
where Z is the set of integer number. From Eq. (3.35), we can conclude that

the configuration space M is infinitely connected.

Fig. 9 The topology of 1, is a cone without the tip [41].
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It has been seen that in two dimensions T, (Mf) 1s much more
complicated; it is an infinite non-Abelian group, the braid group [31].
Moreover since the anyon exists in two dimensions, the braid group should
be briefly reviewed here. Unfortunately, the difficulty of this subject makes
it impossible to ¢larify this subject in detail. Thus it 1s shown only essential

relations and properties here.

To illustrate a closed path in M?, it can be represented by n curves in

the three-space (x, y, t) with no intersection and with the final positions in R’
in t’ being exclusively permutations of the initial ones at t. The equivalence
classes of these curves are displayed by projecting them on a fixed x - t plane
and the projections on the plane shall be called strings. Without loss of

generality, we can assume that (1) the initial positions of the strings are all
different (1.e. x, <... <Xx,), (2) at each time slice there 1s at most one

intersection of two neighboring string, and (3) the strings are always parallel
to the t axis, with x values being permuted initial ones, except in the
neighborhood of an intersection [31]. Since how the curves in three-space
wind have to be seen in this process, we will consider that one of the strings
at the intersection be in front if the corresponding curve in three-space has a
smaller ordinate at that point. Such a configuration of string discussed above

1s called a braid [46], and examples are shown 1n Fig.10 and Fig. 11.

L N
N N
P | g
1Ll M)
(a) (b)

Fig.10 Two braids for n= 3 [31].
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\ I
NN

(a) (b)

Fig.11 Two braids for n =4 [31].

The equivalence classes of braids under continuous deformation also

form a group, called the braid group B, (RQ). This group can be analogous to
the fundamental group nl(l\/ﬁ) generated by the multiplication of closed

paths in M’ so that is roughly that B, (Rz) 1s 1somorphic to 7, (M: )

The crucial quantities in a group are the generators. The generators of
the braid group are o,'s. The operation o, denotes the interchange of two
neighboring strings at x; and x,,, with the left one in front. This means that
a braid can be expressed algebraically as a preduct of a sequence of
o} (I <i<n-— I) as shown in Fig. 11. From Flig. 9 and Fig. 10 it is clear that
the essential relations among c,'s are

G;0;,0; =0;,,0;%:y (3.36)
so, =00,  (k=izl) |

Moreover, it has been proved that there are no further relations

among o,'s [47].

It can be deduced from Eq. (3.36) that all one-dimensional unitary
representations of 7, (Ivﬁ) satisfy [31]

Xeo (51): =X (Gn—l)= exp(-16) (3.37)



and are labeled by 6(0 <6 <2x). This means that the term 7, (a) in Eq.
(3.26) represents the exotic statistics, called 6 -statistics. The 0 -statistics can
take on any values between the Bose - Einstein (8 = 0) and the Fermi - Dirac
(6 = n) statistics. Therefore the §-statistics is the statistics of anyons and is

called fractional statistics.

Now, let us go back to phase factor y(o) in Eq.(3.26). The
homotopic class o, In general, is a product of a sequence of o'. To
generalize to x(a) the case of x(c,f ) should be rewritten here in novel form.
Since, physically, o, denotes the interchange of only the two particles at r,

and r,,, along a counter-clockwise loop with, the other particles kept

k+1
outside, hence it is equivalent to the homotopic ¢lass whose winding number

1s exactly minus one. Thus, we can rewrite Eq. (3.37) as

1, (02 = exp(Fi6) = exp{— i%ZM) U} (3.38)

i<j
where A¢; is the change of the azimuthal angle of particle i relative to
particle j. It is obviously seen that, for each o, , only a single term in the sum
is nonvashing and its value is exactly n. This term can be readily

generalized to arbitrary o € n,(M):
10 d
Xe(a)= CXP{_LJdt _Z(t’u(t)} (3.39)
T dt i<j
Let us put Eq.(3.39) into Eq.(3.26) , we will obtain
it ho d
K(q,t';q,t)= an(r)exp —fdr L———Z%(T)
) b T drt

asn, i<)

= %Mﬁ)an (x)exp {% 1 d'cL’J]>

aE

(3.40)
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where L' =L - @iz%(r).
n dT i

Notice that instead of taking care of the multiply connectedness
property of the anyon in two dimensions, we will deal with the sum of
ordinary path integrals with a new Lagrangian. The additional term in this
Lagrangian can be analogous to the Chern — Simons term discussed in the
next chapter. Furthermore, it is clearly seen that this exotic term in the
Lagrangian comes from the multiply connectedness of the configuration

space of the anyon.

Chern-Simons Theory and Anvons

As mentioned in the previous section, the additional term in the
Lagrangian comes from the complicated topology of the configuration space.
In this part we will put the Chern-Simons term by hand into the ordinary
Lagrangian before it is proved in a later part that it is related to the
complicated topology of the configuration space. This part is devoted to a

simple Chern-Simons term of fractional statistics.

Chern-Simons theory is a very important and interesting subject both
in physics and mathematics. The connection between Chern-Simons gauge
theory and the theory of knot and link invariant was established by Edward
Witten eleven years ago [48]. Moreover, these topics are an importat and
advanced subject in quantum field theory {49]. Unfortunately, only Abelian
Chern-Simons gauge theory is presented here. Now let us start with the

Chern-Simons Lagragian in two dimensions expressed as

K
L.=—{[dxe*™ Ao 341
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where € is the completely antisymmetric tensor density, x is the coupling
constant of Chern-Simons term and A, is a dynamical (2+1)- dimensional
U(1) gauge field. Moreover, here and in the following, Greek indices, such
as a, take values 0,1,2 while Latin indices, such as 1, take values [,2. For
example, the three-vector x® = (ct, x') is denoted for short also as x, so that
d’x = cdtd*x . Nevertheless, the crucial quantity in field theory is the action.

The Chern-Simons action can be written as
K : afv
Ses = Zjal’x €™ A,0,A, (3.42)

This action 1s gauge invariant even If the Lagrangian contains an
undifferentiated gauge field A_. This is very easy to show that the action 1s
gauge invariant up to the surface term. Consider a gauge transform

A, > A, +0,A (3.43)
where A is a space-time dependent parameter, thereby the Chern-Simons

action changes only by a surface term

8¢5 = —— [d*x €™ 3, [(6,A)A, ] (3.44)
P

Thus the action (3.42) remains invariant

To see the effect of the Chern - Stmons term in a many-body system
in (2+1)-dimensional space, let us now couple the gauge field A_ to a
matter system consisting of N non-relativistic point particles of mass m and
charge e. The interesting point is that this charge is not the the standard
electric charge because the gauge field A, is not standard vector potential in
electrodynamics. Their coordinates are denoted by dynamical variables,

r,(t) where I take values 1, ..., N. Now, let us define the current as

i°60 = Levi B~ () = .) (349



47

where the velocity v,(t) = (c,vl(t)) and 8(2)(1( -1 (t)) 1s the Dirac-delta
function In 2 dimensions. Moreover, it is easy to show that the current

satisfies the continuity equation.
0, =0p+V-j=0 (3.46)
Next, to understand more clearly let us couple the conserved current j* to

the gauge field A, in the standard minimal way
1 .
Sint = _c_zj‘dJXJ Aa
1 N
- L el ) Al n )~ Al n O

where the second line is obtained from substituting Eq. (3.45) into the first

(3.47)

line. The kinetic action of this system can be expressed in the conventional

way as
N
Sune = (4 T3 (3.43)
Thus, the total action will be expressed as
S = Smat\ler i bmt + S (3 49
= [dtL )
where the total Lagrangian is
L= 3| g+ w0 Al n )= e n)
1=t | 2 c C (3.50)
—%jd’x[E(t, x)n A+ A, (L, x B(t, x )]
in Eq. (3.50) the Chern-Simons magnetic field
B=VAA=0A-0,A =-F, (3.51)
and the Chern-Simons electric field 1s
E = —lalA‘ -9A" =F, (3.52)
c

and here the metric is 1, = (],—1,—1).
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Next, we will explore the equations of motion of our system. By

varying L with respect to r,(t), the equations of motion for matter variables

will be in the form of the standard Lorentz force equations of particle mass
m and charge e moving in an electric field E and in magnetic field B. These

equations can be expressed as
¥ ()= e[E‘(t,rl )+ va(t,r(t))] (3.53)
C

If L is varied with respect to A_, we will get instead the equations of motion

for the gauge fields written as

o= e (3.54)
2
or In components
Fd:t- 18 4

E'=—¢&" j (3.55a)

KC

1
B= —;p (3.55b)

These equations are crucial for the anyon system. Firstly, they tell us
that while in the cyon system the magnetic field B is an externally given
field and could be chosen to be that of a vortex, it is given by the field
strength of the Chern-Simons term as shown in Eq.(3.55b). Secondly, it is

not difficult to prove that in a single particle system.

By =BG O) - e viOBEr()
_ ;1; & [1*() - v* (o) (3.56)
_ T{‘;e [V ()~ v OB D (x - x(t))= 0

This means that a particle that moves in a Chern-Simons background does

not feel any self-interaction because the Lorentz force becomes obsolete.
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Nevertheless, the presence of the Chem-Simons electric and magnetic fields
is not at all umimportant. It leads to the non-trivial relationship between the

velocity v and the canonical momentum p, i.e.

p=mv + % A(r) (3.57)

From Eq. (3.55b) a significant result can be obtained by integrating
this equation over a small two-dimensional disc C; including solely the I-th
particle. The result is

= jd2xB = ——_[dzxZS (x - r(t)) = -

Kc, 1=1

(3.58)

where @, is the magnetic flux attached to that particle whose charge is e.

Eq.(3.59) tells us that the Chern-Simons naturaily binds charge and

flux to the particle. This means that in this system if a particle has a charge e,

. e —
then it has also a flux @, = ——. In this situation, it 1s easy to see that each
K

particle possesses both a charge and a flux, and moves in the background
fields created by the other particles, the Chern-Simons electric and magnetic
fields conspire to cancel al! self - interactions and the resulting Lorentz force
18 zero [41]. Nevertheless, at the quantum level there still exists the

Aharonov-Bohm interaction between charges and fluxes in this system.

From the total Lagrangian in Eq.(3.50) we derive the corresponding

Hamiltonian

H= 3 mv] + [¢A, (kB + pl) (3:59)

Choosing the Weyl gauge, A, may be set equal to zero if a constraint

p = —xB is imposed. Therefore,
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N1
1=1
that 1s the Hamiltonian of N non-interaction particles. However, the

condition A, = 0 is not enough to fix the gauge completely because we are

still free to perform any time-independent gauge transformation without

teaving the Weyl gauge. To this end, let us impose the condition
oA =0 (3.61)
From both these conditions and the constraint p = —xB, we obtain

= X?r

j ] i
Ary e 1) = —[d*x € ——Lp(t, x)
27K =X J\
2N (3.62)
& i 50
27K Yo |rI ~ r1|2
where we have used the two-dimensional Green’s function satisfying
v{iqqx—y0=am@—y) (3.63)
2n
Therefore, the Hamiltonian can be expressed as
S e g
H:Z‘“@I““&”““ﬂ (3.64)
1=1 2m c

Furthermore, since Eq.(3.62) is similar to Eq.(3.2), the magnetic field be can

be derived similarly as

B, = -~ 80 -r,) (3.65)

K =1
This means that each particle feels the effect of the (N-1) others as if they are

. : e
vortices carrying a flux @, = ——.
K

Let us now go back to Eq.(3.62) and derive the alternative form of

A‘] (rl, ‘rn ) as
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- e . 0
Alr, r)=—¢€"— 3.66
L )L (3.66)
j
where we have used the identity 6i[arctan E2—-}=—eij |r—|2- and defined
T, r
p2 2
¢,, = arctan [ — ] Next, let us consider the Lagragian corresponding to
Iy =T,
Eq. (3.64) that is
N
L=lZ[%mvf Jr—ec—vI -Al(r1 ..... l‘N):|
=l
N ny (3.67)
=Y omvi - S5 5 2y,
1= 2 2MCK 121 J=1 al';
Using the property
0 0
Zby = (3.68)
arl 1 31'1 1]
we get
. - i i) O
L= -—mv; —— ) \v; —V;)— 3.69
> Suivies— i J)arl, oy (3.69)
From the fact that
d oy & or o
— &, = -+ :
a [at ol ot &}]%
i 0 ;0
=VI——F¢ +V|—i¢ (370)
I ar] 1 ] arj I
i i).0
=WV, —V,j—
( 1 J)arj. d)U
The Lagrangian in Eq.(3.69) can be rewritten as
N e’ d
L=% —mv} - — t 3.71
Somvi - 2 (1) (3.71)

It is clearly seen that the additional term in Eq.(3.71) coming from

the Chern-Simons term takes a similar form to that in Eq.(3.40) coming from
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the complicated topology of the configuration space. This means that adding
the tonological term, the Chern-Simons term, into the Lagrangian is
equivalent to taking care of the multiply connectedness of the configuration
space. In other words, instead of considering anyons in multiply connected
space, we can study them by adding the Chern-Simons term into their

Lagrangian.

Now, let us go back to consider the statistics of anyons in the Chern-
Stmons construction. The statistics can be derived from the Ahanorov-Bohm
phase or the Berry’s phase, shown in detail in Appendix A, picked up when

two neighboring anyons are interchanged [23]. Therefore, the statistics is

exp (ict) = exp {%Fi—:§dr : A} = exp {%J‘d%B}
I

It ) G BN
P1%2%e P17 2cx

When we compare Eq.(3.72) and Eq.(3.25), it i1s clearly seen that the

(3.72)

statistical parameter, o, in Eq.(3.72) is a half of that in Eq.(3.25). The factor

% come from the fact that the Noether current in this system is [41]

Ja. =1—ja —E EO‘W F|3
c 2 !
1 (3.73)

where in the last step we use Eq.(3.54). Therefore, The Noether charge can

be derived from

q =[dx]° == [d’xp=—e (3.74)

where C,; is a small disc containing only the I-th particle. Thus, we can

rewrite Eq. (3.72) as



exp(ict) = exp {— 1%} (3.75)

Here we assume all particles have the same charge e. Notice that a bosonic

: : 1 ~ I he . : C
particle with a flux ® = ECD" 3 a is a fermion. This implies that the
q
: > he . . : :
Chern- Simons flax unit @, = — is twice the ordinary electrodynamics flux
q
: he
unit @, =—,
e

The last topic in this section 1s devoted to the significant properties
of anyons, parity and time reversal violations. Prior to working out any
detail, we have to introduce the Dirac gamma matrices in (2+1) dimensional

space as [50]

, 0 1
7 =] =[_ ] (3.76)

o 0 1
= 1T, =
L S e

where ©,,05, and o, are Pauli’s matrices and the Minkowski metric

nt = (1 ,—1,—1). Let us now consider the parity transformation, P. In (2+1)
dimensions the normal operation of the parity transformation, x — —x, is
equivalent to a rotation. Therefore, the novel parity transformation should be
defined particularly in the plane as the reflection in just one of spatial axes

[50]. Without losing generality, we can choose the parity transformation as

x' = —x’
R (3.77)
x? = x
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From the kinetic part of the Dirac Lagrangian, it is clear that the spinor field

v transforms as

v = vy (3.78)
This leads to the fact that a fermion mass term breaks parity [50]
WYy = Yy (3.79)
Moreover, the gauge fields transform under P as
Al =5 -Al AT 5 A2 A S A (3.80)
thus
e A e — £ R (3.81)

This means that the Chern-Simons term violates the parity symmetry [51].

Next, we will consider the time reversal, T, defined as

1— i (3.82)

Under T the spinor and gauge fields transform as
¥ - y*¥ (3.83)
A->-A , A SA (3.84)

Moreover, we see that under T x° — —x° without taking P° — —P°® where
P is an energy-momentum three vector. Hence it is clearly seen that both the
fermion mass term and the gauge field Chern-Simons term change sign

under time reversal [S1].

To conclude, in (2+1) dimensional space, the anyonic world, parity
and time reversal will be violated. Unfortunately, there has been no
experiment that confirms this phenomenon until now. However, since it can
be applied to many phenomena very well, anyon is still an the interesting and

important subject in physics.
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Fractional Quantum Hall Effect and Anvons

This part of this chapter is devoted to the applicability of the concept
of anyons to the fractional quantum Hall effect (FQHE). The important point
of this part is that it is the most remarkable application of anyons. This
confirms that the concept of anyons is very important in modern theoretical
physics. Unfortunately, many details and topics are disregarded here. This
means that we can present only an introduction of these topics. However,
relevant reviews can be found readily in Lerda’s book [41] and Wilczek’s
book [42].

Let us now start with QHE characterized by the fact that the Hall

. . ] : 2
conductance, o, is quantized in units of © 4 ,

e2

=0— 3.85
Oy Uh ( )

where (-¢) is the electron change and h is Plank constant while v can be an
integer for integer QHE and a simple fraction for fractional QHE. To
understand this better, let us consider the quantization rules of two-
dimensional particles with the external magnetic filed perpendicular to their
plane. This field, B, organizes the energy spectrum of the particles into
Landau level [51] and forces particles to fill such levels from the bottom up.
For samples of finite area A, it is not difficult to show that the degeneracy in

each level is finite and thus the number of available levels is given by

deg = (386)

2l

0

where || = Jh—]; 1s the magnetic length [52].
e
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Since a quantity playing an important role in QHE is the factor, v,
defined as the number of electrons, N, per number of Landau levels available
[41], the filling factor 1s

N o (3.87)

L=

2

/27l
where p=% it’s the electron density. Furthermore, Eq.(3.87) can be

rewritten as

N N

e\ ©
AB(EJ 9,

where ® = AB is the magnetic flux through the area A, and ¢, = h% 1S the

L= (3.88)

flux unit. This means that the number states is equal to the number of

external magnetic flux in unit of h%. From a knowledge of the classical
Hall effect, it is well known that the transverse Hall conductance is defined

as[41]

oy =0, =& (3.89)
) Ey

where ) ~ epv, is the electric current in the x-direction. Therefore,

ec
=— 3.90
Oy B p ( )
To get the quantum result, we have to use Eq.(3.88), thus the quantized Hall
conductance
2
e
Gy =L— 3.91
§=os (391)

As in Eq.(3.85) it can be interpreted that for the case of v is integer
correspondingly integer QHE, an integer number of Landau levels are

completely filled. Moreover, this system 1s a non-interacting-electron system
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1in a2 magnetic field while the fractional QHE results from the condensation of
the two-dimensional electron system into a new type of collective ground

state driven by the Coulomb repulston.

In the case of FQHE, the first corresponding ground state

wavefunction, a variational wavefunetion, was proposed by Laughlin [10] tn

1983. This wavefunction can describe only the case of v = lm with m and

odd integer and is given by

1<J

m — ]-
LIJm :Nm]_[(zl 1 ZJ)‘ €Xp {EZZIF} (392)
o |
where z, is the complex coordinate for the I-th electron and Ny, is a

normalization factor. It can be proved from Eq.(3.92) that the statistics of

particles in Eq.(3.92) 1s exp (inv) = exp (inm). Moreover, since the prefactor

[1(z, - z,)" is purely analytic, it can be deduced that all particles are in the

I<J
lowest Landau level. The very important aspect of ¥  is that it 1s not simply

the product of single particle wavefunctions, yet is a perplexing combination
of such products. From Eq.(3.92), using the plasma analogy [10], our system

can be seen as a system of a plasma of particles with charge

q=+2m (3.93)

In a neutralizing background of density

Al (3.94)

) 27l m

p

Hence, from Eq.(3.88) we conclude that the filling factor corresponding to
Y is given by

m

|
v=2nlp=— (3.95)
m
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To see the effect of anyons, Let us now go beyond the ground state to
constder excitations in our system. From Eq.(3.94) we find that any

deviations from the density p can be accommodated in the system as

localized quasi-hole or quasi-particle across a gap. To prove that these
excitations turn out to have fractional statistics and fractional charge, let us

now begin by considering the case of a quasi-hole. It can be predicted

reasonably that the wavefunction for the state at filling factor v = %1 with a

quasi-hole at the point z_ is given by

e =N [ (2, 2, ¥, (3.96)
|

where N, is a normalization factor and ‘¥ 1s the ground state wavefunction

in Eq.(3.92). From Eq.(3.95) and (3.88) we can conclude that each particle
carries m units of flux, and similarly the quasi-hole described by Eq.(3.96)

will carry only one unit of flux. Hence, the quasi-hole behaves like %n of
an electron. To see more clearly, Berry’s phase [14], shown in detail in

Appendix A, will be applied to evaluate the fractional charge of the quasi-
hole [13]. Since

05 L fnge, -2, OO (3.97)

therefore the geometric phase
. d
Yo =-ifdt(F, () a\ 7, (1)

- ifa{e O Sl -2, (O]9 )

(3.98)

We can rewrite this expression in term of the electron density in the state

lP+Za

p(e)= (7 (282, )90 (1) (3.99)

as
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y = [dt Idzz%[ln(z—za ()b(2)
p(z)

where I' is a closed loop starting at time to and ending at time t;. From Eq.

(3.100)

- —ijd’zidza —

(3.99) , it can be assumed reasonably that p(z) i1s a regular function. Thus, we

can evaluate y as

y=-i [ d*zfdz, ——p(z)
s(r) ¥ Z,7Z (3.101)
=2n [d’zp(z) = 27N,

8(r)
where S(I') is the surface confined by the closed path I” and Nr is the average
number of electrons containing in there. On the other hand, from Eq.(3.75),
using the Aharonov-Bohm effect, a particle of charge q moving along a

closed loop I encircling a flux @ will have the additional phase

cxp(- 5—&} (3.102)
he
Comparing Eq.(3.101) to Eq.(3.102), we find that
&=2ENF (3.103)
hc

Hence, the particle has charge given by

N 1
=hc—L=—¢ 3.104
q Bl TH (3.104)

This means hat the quasi-holes have charge q=¢" = Kn . Similarly, the case

of quasi-particles can be solved as well, but, unfortunately, it jis not
considered here. Next, let us consider the statistics of the quasi-holes.
Reconsidering Eq.(3.101), we will find that if two quasi-holes are exchanged

also, the Eq.(3.101) have to be rewritten as
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y=2n | d°p(z)= 27{1\1r - l] (3.105)
S(f') m
Comparing Eq.(3.105) and (3.101) we find that when z, encircles z, the

wavefunctions picks up an additional phase

exp[-iAy]= exp[— i27 i} (3.106)
m
Similarly to Eq (3.21), we deduced that their statistics is
explio) = exp(i 1] (3.107)
m

From Eq.(3.104) and (3.107), we can conclude that the quasi-holes in FQHE
are anyons with fractional charges and fractional statistics. Next, let us
consider the case of two quasi-holes. Hence, the effective wavefunction for

them can be predicted as
+ m, = 2 2
v x(z, -z,) exp{Zaz 6za| ~|z,| )} (3.108)

where m, = %n+2pl Using the approach similar to the method applied in

the case of only single quasi-hole, we can find that the quasi-holes carry a

total charge

ql=£( ! ] (3.109)
m | mm,
and the electron filling factor is given by
e
_2p 1 (3.110)
I+2pm e
2p,
From Eq.(3.110), it is easy to find that if m = 3 and p, = 1, then
o, =2 (3.111)

7
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, one of the experimentally observed fractions in the QHE. Eventually,
considering excitations in a recursive way, we can find that the generic-

filling factor is represented by [41]

D= (3.112)

o,

2p, +
i 2P, + .

where o, = +1 if the i-th generation comprises quasi — hole and o, = -1 if
the i-th generation consists of quasi — particle. This method is well known as
the hierarchy construction proposed by Haldane [12]. However, Eq.(3.112)
sometimes leads also to fractions that are not experimentally observed.

Nevertheless, it has been seen that the concept of anyons is very useful to

understand the mechanism of FQHE.



CHAPTER 4
RESULTS, DISCUSSION AND CONCLUSION

This chapter is devoted to presenting the results of applying the path
integral to calculate the ground-state energy of two anyons in a harmonic
potential and to discuss the results and also to conclude this work as well. In
the first part, we would like to show the lengthy results of calculating the
ground-state energy of two anyons in a harmonic potential through the path
integration technique. Finally, in the last portion, the results are discussed

and compared with Wu’s work [55].
Results

This section is devoted to showing the details of calculating the
propagator of a two-anyon system in a harmonic potential. However, since in
the two-body problem center-of-mass and relative coordinates can describe
the system, the Lagrangian of this system can be separated into two parts,
center-of —-mass and relative Lagrangian. Let us now start with the
Lagrangian of two particles with mass M in a harmonic potential with

frequency w,

L, = %Mff +
= MR? -Mo’R? +iMr’ —%Mofrz

!
%Mr‘f - El\/ﬂ[co’rl2 - —;Mco’r;

(4.1)

r,+r

where R = 1 —2 s their center-of-mass coordinate of them.

r=r, —r, is their relative coordinate of them.
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Since in the path integral form the center-of-mass contribution can be
directly integrated out and does not lead to the extraordinary result [15], n
this part only the relative contribution is considered in detail. As mentioned
in chapter 3, especially in two dimensions, to change an ordinary particle
into an anyon the Chern-Simons term must be added to the original

Lagrangian. Hence, the relative action corresponding to our system 1s

S = [ded L mi? —le2.~2}—ijd xe“’2 0,2,
4 4 2¢ g (42)
Ll 2.2 : '

= [dt Emr —Emw r’ —ab

M@

where m=—,a =

Yo and to complete the second line we have used Eq.
TCK

(3.71) for the two-body problem.

As shown in chapter 3, «a 1s called the statistical parameter. Let us

now consider the last term in Eq.(4.2) leading to the constraint
[dt6=6"—-6"+27mn=¢ (4.3)

where 6(t") = 6’and 6(t") = 6”. The crucial step is expressing this constraint

in the form of a Dirac-delta function. That 1s,

6£¢ - Tdté] = Tgi exp {17&((1) J’dte)} (4.4)

-0

The constraint propagator can be defined as

K, (r”, ' T)= IDr(t)exp [% S(r”, r')}&(d) - Idté] (4.5)
Thus, it is clear that the complete propagator can be expressed as

K(e",r'’; T) = [doK, ("1, T) (4.6)
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Let us now go back to Eq.(4.5),

K, (r", r’; T) = JDr(t)exp [%S} T%exp [ik[d) - ldeté J

- A ’ (4.7)
= M% eXp (ikd)).[ Dr(t)exp [% S,}
where
S, = [dtL,
: (4.8)
= [dt T-.‘-l—ﬂcolr%acen} k=t
2 2 h
Eq.(4.7) can be rewritten in the term of infinitesimal time intervals as
( m i d)\. ( N 2
K Ar".r;T)= lim — exp (1A d*r.
ol Ieealffie)

'GXP[;ZS;.(%J}_I)]
1 j=1

= ¥, =r',r, =r" and, the action will be expressed as

] l‘j = l‘j_l

£
2
m rj—rj_, m 4 2 Gj—ej_,

=g — -—o’r - xh L—=
L[ : ] 2 ( e (4.10)
m m

2 2 —rj’o)zs’]—-E-;-rjrj_l cos (Gj —Gj_,)
_%(ej _ej—l

From the relation [58]

cos AQ +agAB ~ <:os(A6—ae)+15azs2 (4.11)
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Using Eq.(4.11), the action can be rewritten as

2 2.2
[J’Jl N_& +r I’CDE]——”_

2 (4.12)
fcos| 6, -6, , - (8 -0 )|+ 1| |
mrr_, 2\ mrr,,

im [(1_(0282} o ] i Xeh

Therefore,

25,5 )=

2¢h 2 mrr;
(4.13)
um xeh
] Erjlj | COS [GJ =y = =< (6, - 61_1)J

From the identity [S3]

cxp{%z(s +s7" )} = is"‘lm (z) (4.14)

where I,(z) is the modified Bessel function of the first kind and its

asymptotic behavior can be expressed as [58]

Iv(x)=%g){1—%[vz—ﬂ%+..} (4.15)

in the [im1t € approaches zero or N approaches infinity we can show that

2 _: X _1 &
};L_r}(}exp[—g% XJexp[ 18cos[e %xﬂ 2 _mcxp(une)lfmﬁ[( ](416)

Using Eq.(4.16), it 1s clear that

mr.r._ 7]
Jim exp ——93 2L exp| —i—=—"cos (ej—ej_l)~9c £
£-30 2 mr i eh mr 1,
exp |in{® il
- 5 explnle ~o, o "2

(4.17)
Therefore, applying Eq.(4.17), the constraint propagator can be expressed as
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2l 5
{1 S ool 0,6, "5 |
expltil—n (2412, - rf@zsz)}}
(4.18)
From
jd%jzzdgfdgg (4.19)
and )
i%%eﬂﬁ@f—an=5mm (4.20)

we find that the constraint propagator become
1 § L \edk o (R
K,(",r;T)= lim —[-I—n—] cxp(—ioub [ ——exp(ixo) [T {drr,
h o) 2w K
N 0 /m_r_r_
- { >, explin(6”-67),,,, —}

n=—o 1eh

im
. exp[?(rj2 +17, - rjz(o’ez)}}

(4.21)

Next, to complete this calculation we have to consider the identity [58]
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Idxx exp (iox” X, (~ iax )1, (- ibx ) = —icxp [_ i(az—+b2)JI{_ @]

2a 4o 2c
(4.22)
Hence, we can find that
Tdrlr] exp (ia‘r12 } v (_ ibr,r, )I\, (_ 1br,T, )
° (4.23)

and then

Tdrgjdr,rl CXp [ia(rf + 15 )}Iu(_ ibr,r, )Iv(_ ibryr, )Iv(_ ibrzrz)
¢ 0
e _'i 2_1 b’ B b 2 2.2
—exp[ 14ar° 4[21 E] {Zro +br,
[i i ( b b’ ﬂ
| —=e—L ]| —1——T1,I,
2a 2a, 2a 2a,

(4.24)
2
where a, =a ,a, =a- for 121
4a,
b,=b ,b b]l[ o for j>1
= 5 o = or = 1.
] )l l 2ak J
Then it is obviously seen that
2
a2=a—§— , b2:bL ,and b3=bLL (4.25)
4a 2a 2a 2a,

Hence, Eq.(4.24) can be rewritten as
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Qe g

2 ) 2 3
[1dr.r, exp 1a_Zl:rf}l—[Iv (— ibrj-rj_,)
i

k=1 J=l

To prove the general form of Eq.(4.26), let us now assume that

) N N+1
dr,r, exp [laz r! }H 5 ibrr;_, )
et wafhad

N

S t— 8

k=1

\ I\- (_ ib.\:»flroﬂ\nul )

It is seen obviously that the case of N=1 and 2 is exactly correct, form Eq.
(4.23) and (4.26). Next, let us consider

AT I b’ 2 b/
g[a}a[dINHrNH €Xp |:1{r)\v+1 [a = ;}}:| €Xp |i_ A[r ; a]] (428)

: Iv(_ iDyaf Ty )Iv (_ 1Dry 2T )
2
From a,,, =a- T Eq. (4.28) becomes

Ay
N+l i . ,2N+l bj2 , b2 . '
kH 53 EXp| — KT Z{Za_""an 1a. Iv(_ 1y, rN+2) (4.29)
= K | )= i N+

where
b I N
b =——Db,, = o
N2 T - N+l 1 22,

Actually it is clearly seen that Eq.(4.28) is exactly

N+) N+2 ]
dr,1, exp (iaer ]Hlv(— ibri,_, ) (4.30)
=17 )=

S §

N+1
k=1

Therefore, by mathematical induction, we can deduce that
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k=1 =

ON-1 . N-1 5 N .
[TTdr,z, exp(w r JH 1, (— 1brjrj_1)
0 1 =1

k=1 ak 1=] aJ a\I_‘
(4.31)
where
r'=r, , BEdi
b’ .
a, =a , a, =a- for 121,
' 4&j
I b .
b, =b o =B ] for j>1,
k=1 231\

Substituting Eq.(4.31) into Eq.(4.21), it 1s obvious that the constraint

propagator can be expressed as

1 ) i d#
K, (", r';T) = lim —(Ej exp[- —ocd)) [ —exp(ixo)
167 27

Noeo )r

2eh _ (4.32)

/ 2
. K s 12 E_N‘l_b__i__ 2 E_ b2
n; exp{lr LZ §4a1}+1r 2 o
explin(6” - 8')[, . (~ i)}

where

From the relations [53]
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Iim b, =—ocscwT
N—eo )
( N-1 b2
im[ 225320 [ 2O T (4.33)
'\"’”\ 2 j=I aj 27-1

the constraint propagator is

K, (r",r";T)= & ex (— —oubJ | —%exp(ﬁ-(b)

2rthsin T Lol

St {cxp{i%(r’z +r"2)cotcoT}
1

.exp|in(6” - 6’) '"”'[1hsmo}TJ}
- exp(— _a¢] J exp(ih) 3 fexplin(6 )]

n=—o

Qi (r" ,r';T)}

(4.34)
where
ma AMO (L, .
"r'T)= exp| 1 ' +1r"" JcotwT
Q" ) 2mifisin T p[ 27‘1( ) }
mr”
'Hn#{f]
“1hsinoT
(4.35)

Hence, using Eq.(4.6) and Eq.(4.34)
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K(r,v',T) = id¢K¢(r",r';T)
i :Ji—-exp[ld)[% - —Hi{exp [in(e” - 6)]
- Jora{3-2 ) £ expliner 000, (r17)

= _Z exp[in(e”—6')]Q‘n+g‘(r",r’;T)
= &exp[%g(r +r 2)00‘[0&T]

2nifsinoT i
mr't”
8"-48
Zexp[m( )l e (177 sin (DTJ
= iexp[in(ﬁ" 0K, (r".r";T) (4.36)

where the partial propagator, corresponding to the n-winding number

equivalence class, is

” f, - ma® % 12 n2
Kn(r B T)— T exp[ 5% (r +r )oot coT}

n+—

[ mrr” J
#sin ®T

(4.37)

Using the Hille-Hardy formula[54]

t_%exp[—l(XH)Ht] [zr]

-t 2 1-t I-t




72

if we set

, mo mo ,
t=exp(—21®T),x=Tr2 ,y=T’r2 , o=

the partial propagator will become
— 26T ' ) _ '11_1_02 2 "?
K, (r” - T) _ i me [CXp( 10 )]\N‘ exp[ Y (r +r )}

neo TOh l
N0 T F(N+|n+a!+1]

| hi

(mm o { . [

| ==l exp| - io
T

o o
1l mo mllmo ,,
N P N I
7 h

(4.39)

a
{—+n
h

n+—

)

1

Since the partial propagator can be expanded in the form of [30]
K (r,r;T)= S exp (— %E;T)R;;(r’){; (") (4.40)
N=0 -

thus we can find that the radial eigenenergies are

E\ = ha{2N+ 1+ ’11 + %] N and n are integers (4.41)

and the radial eigenfunctions are

moN!

R,(r)=

nhl‘{N+ n+ 2

imo , ], 3 me ,
-exp| ———r° [L —r
p[ o ] (h ]

where T(x) is the gamma function,

(4.42)

L)(x) is the Laguerre polynomials.
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Moreover, it 1s easy to show that the eigenenergies of the center-of-mass part
are [54]
E, = oL + 1| +1) L and ] are integers  (4.43)

Therefore, the total energies of two anyons in a harmonic potential are

E=ha)[2L+|l|+2N+ n+%
1

+ 2] (4.44)

Let us now go back to chapter 3, specifically Eq.(3.72). We can find
that the statistical parameter a in here is slightly different from o« in Eq.
(3.72). Nevertheless, it can be seen readily that if the latter « is zero, we will
have a bosonic particle but if it is n, we will have a fermionic particle. Hence

in this section we can show easily that o/h varies from zero to 1. This

means that if a equals zero, the anyon will become a boson, but if o equal 1,
it will become a fermion. In other words, the anyon interpolates between
boson and fermion. Next, let us consider the possibilities for n, the winding
number, Since in our problem, all anyons are indistinguishable, when two
anyons are interchanged the system remains unchanged. In a mathematical

sense, we can deduce the boundary condition [54]

Wrc\ (r’ﬂ:+ e): Wrel(rDe) (445)

This boundary condition is very important since it also leads to the condition
of eigenenergies. From Eq. (4.36) we can find that when 6 is transformed to
n+0, only the phase factor term exp(inf) is changed. That is

cxp(ine) — exp(in6 + inn) (4.46)
Hence, it is very easy to see that to satisfy the boundary condition in Eq.

(4.45), n has to be an even integer [54,55]. Let us now go back to Eq.(4.41),

and then from the above discussion we can show that
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Ezj=h_@[2j+1+%] 20

E,, =h@(2j+1—%J >0 (4.47)

where j can be both zero and a positive integer. Furthermore, from Eq.(4.47),
it can be readily seen that the relative ground-state energy of two anyons in

harmonic potential is

E, = h.(o(l + %] (4.48)

as shown in Fig.12

E, (ho unit)

Fig.12 The relative ground-state energy of two anyons in a harmonic

potential.
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Moreover, it is easy to show that the relative energy can be transformed as

shown in Fig. 13.
E, (o unit)
A

- -
1 a
h
Fig.13 Relative energy of two anyons in a harmonic potential.

From the above figures, it is clear that the energy of an anyonic system can

be interpolated continuously between that of bosonic and fermion system
when % varies from 0 to 1 [55]. This means that an anyon is a particle

whose properties are intermediate between those of a boson and a fermion.

Discussion and Conclusion

Since several phenomena in modern condensed matter physics exist in
two-dimensional space, properties of particles i the plane should be
understood very well if physicists would like to comprehend those
phenomena. As mentioned in preceding chapters, particles in two-

dimensions have exotic properties, such as their spins and statistics, and
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since their spins and statistics can take om any values, they are called

“anyons” [6]

The fractional quantum Hall effect (FQHE) [9,10] is the most
important evidence of applicability of the anyonic concept. As stated in
chapter 3, the quasiparticles in FQHE are anyons having fractional charge
and fractional statistics. This result comes from the fact that FQHE 1s a
phenomenon occurring in the plane. Furthermore, we can derive the generic
filling factors represented in Eq. (3.121) by applying the anyonic idea. These
filling factors were constructed first by Haldane [12] and he called his
approach the hierarchy construction. However, this method can be
understood very well when the anyonic concept is applied to discuss the
mechanism as shown in chapter 3. Apart from FQHE, anyon
superconductivity [23] is very important also, but, unfortunately, it is not
presented in this thesis. It is crucial since it is expected that it can describe
the high-temperature superconductivity. Therefore since it is very important
in both FQHE and high-Tc¢ superconductivity, the anyon should be studied in
detail. In this thesis, we decided to study the ground - state energy of two —

anyons in a harmonic potential using the path integration technique.

In our problem, the path integration technique is chosen because the
configuration space of indistinguishable anyons is a multiply connected
space. In ordinary quantum mechanics, it 1s clear that the multiply
connectedness of the configuration space of our system can be neglected.
However, in the path integral formulation it can be treated as shown in
chapter 2. Introduced by Schulman [29] in 1968, the path integral for
multiply connected space is very useful to solve problems connected with
anyons. The difficulty of applying this approach is that we have to know the

fundamental group of the configuration space of our system. The following
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problem is that the contribution of each equivalence class must be identified.
In general it is very difficult to determine this contribution. However in our
system it is seen clearly that the contribution is proportional to exp(ine)
corresponding to one — dimensional representations of the braid group [46].
Therefore, the corresponding lLagrangian can be expressed as (modified from
Eq. (3.40)),

1 X1 hed(

L=—Y -my’ -2

> Lo v DL (t)] (4.49)

1<J

The structure of the braid group helps us understand why in the plane
there are infinite kind of particles, On the other hand, the permutation group
is required to understand particles in three or more dimensions, bosons and
fermions. As mentioned in chapter 3, the permutation group is a subgroup of
the braid group. It can be seen readily from the fact that the one—-dimensional
representations of the permutation group are 1 and -1, while those of the

braid group are exp(i0), which equals 1 if 6 =0 and -1 if 6 = 7.

Let us now go back to discuss the configuration space of N identical
particles. It is well known that in d dimensions the configuration space M,
can be given by

R —A)

o
MY = 3 (4.50)

As shown in chapter 3, it is found that in three or more dimensions the
fundamental group of the configuration space, n,(Mﬂ,) is 1somorphic to the
permutation group Sy, while in two dimensions the fundamental group
n,(Mf\,) 1s isomorphic to the braid group. Therefore, due to the topological

structure of the configuration space as mentioned here, we can see clearly

that in three dimensions there are only bosons and fermions while in two
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dimensions there are anyons that have infinitely many possible classes. The
most 1mportant conclusion is that the infinite connectedness of the
configuration space of identical anyons leads to infinite possibilities of

quantum statistics in two dimensions.

In field theory, many physicists have shown Liow to solve the problem
of the anyon by adding the Chern-Simons term into the ordinary Lagrangian.
As shown is chapter 3, the corresponding Lagrangian is given by (cited from
Eq, (3.72))

L=3Limet - 3(2%(0] (@s1)

1
=1 2 b 2mex dt\ (S

Consequently, it can be easily seen that the Lagrangian in Eq. (4.51) is
similar to that in Eq. (4.50). This means that adding the Chern-Simons term
into the ordinary Lagrangian is equivalent to considering the connected
property of the configuration space of the system. Moreover, adding the
Chern—Simons term leads to the physical effect that makes the charged
particle attach to the magnetic flux. As mentioned in the first section of
chapter 3, the charged particle attached to the magnetic flux, called the flux—
tube—charge composites, is the anyon. This means that adding the Chern—
Simons term can transform an ordinary particle into an anyon. Therefore, in
our problem, we use the Chern - Simons term to make two ordinary particles

in 2 harmonic potential become two anyons in a harmonic potential.

It is well known that for the two-body problem its ground-state
energy has to be the sum of single—particle—ground-state energy. For our
problem, it should be expected that the ground-state energy should be {54]

E, =2ho (4.52)
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, but, actually, as shown in Eq. (4.44) the ground state of our problem is

exactly

E, =(%+2)h03 (4.53)

This means that the ground - state energy of two anyons in a harmonic
potential does 1ot equal the sum of two ground — state energies of an anyon
in 2 harmonic potential. This result comes from the statistical interaction
through the Chern — Simons term. Moreover, the two — body wavefunction
of this problem is also different from the product of two wavefunctions of an
anyon in a harmonic potential [54]. Moreover, considering Fig.12 and Fig.13
we can conclude that the energy level of anyons will interpolate between that

of bosons and fermions, and depend on the statistical parameter, a.

Actually, this problem was solved by Wu [56] in 1984 and our result
1s similar to his result. However, in that paper he used the path integral only
to formulate the general theory, but used the algebraic (operator) method to
solve this problem. It is easy to evaluate this problem by using his method,
but it is difficult to solve the problem by applying the path integration
technique. Nevertheless, in our approach, we both formulate and evaluate the
problem with the path integration technique. In conclusion, although we
have used a different approach, the path integral method, we still obtain the

same result as Wu [56].

Finally, from the preceding discussions, it can be deduced that when
an anyonic system is considered, spectal treatment should be applied. The
wavefunction of the many — body problem is not simply a product of single -
particle wavefunctions, and the energy levels are also not the sum of single -

particle energies. Until now, the system of three or more anyons does not
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have an exact solution, although Wu [55] would argue that he can solve the
problem of three anyons in a harmonic potential. His result has a problem
when the statistical parameter o=/, equivalent to a fermion system, the
ground — state energy of them does not equal the ground — state energy of a

fermion systen.
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APPENDIX A
BERRY’S PHASE

The original 1dea of Berry’s phase or Geometric phase started in the
classic paper of Pancharatnam [57] in 1956, but it was well known in the
beautiful paper of Berry [14] in 1984. In Berry’s work the inherent
universality and beauty of the geometric phase are presented. Moreover,
Simon [58] pointed out the deep geometrical significance of Berry’s phase as

well.

The Berry’s phase 1s what mathematician would call a U(1)
holonomy, and the mathematical context for holonomy is the theory of fiber
bundles [59]. The theory of fiber bundles i1s very important in gauge theory,
but, unfortunately, it is not presented here. Nevertheless, it is contained in
Nakahara’s book {32] and, moreover, several topics of the geometric phase
are presented in the book of Shapere and Wilczek [58]. In this part, many
details are quoted from Sakurai’s book [35].

Since in our approach we have to assume that the quantum mechanical
system changes under adiabatic change, hence the meaning of the adiabatic
change should be presented here. The adiabatic change is the change
describing the response of the system in time to changes of the external
parameter performed infinitesimally slowly. It can be deduced that certain
features of the eigenfunctions remain unaltered. Such staple behaviors are

called adiabatic invariants [60].

Let us now consider the Hamilfonian H(R(t)) of the system with an

external time-dependent parameter R(t). Consider the Schrodinger equation,
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HR(t))a(R(t)) = B, R(t)jn(R (1)) (A1)
where |n(R(t))) is the ket of the nth normalized energy eigenstate

corresponding toR(t) Next, we will try to change H(R(t)) under adiabatic
condition from H( ( )) to H(R(t)) such that R(t,) = R, .

Consider the time-dependent Schrodinger equation
HR ()R, ).ty 1) = m%\nmo),to;q (A2)

where ln(Ro), to;t> would be proportional to the nth energy state In(R(t))>

of H(R(t )) at time t. Therefore, 1t can be represented as

R ) ) =2 @O e OaRE)

If we replace Eq.(A.3) into Eq.(A.2), we will find the equation of v, being
in the second phase term in Eq.(3). That 1s

i () = (RO 2R ()
- (R Van RENRE)

(A.4)

The the geometric phase yn(t) can be represented in the form of a path

integral as

7.(t)

l[

(R ()| Ven(R()R(
(n(R(t))|Ven®R(t))dR

where the path of integration C is that of the adiabatic change as the external

(A.5)

| I

!
1

parameter R change from R, to R(t)k From the normalization,
R E))|n®R(E)) =1, it is easy to show that

Re{n(R()|V,n(R ()} = 0 (A6)
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This means that the term (n|Vn) is pure imaginary. Although the practical
evaluation here might be expected to be complicated because of the presence
of |VRn> term, the geometric phase can be solved easily if we consider the
closed loop; i.e. R(t,)=R(T)=R,. Therefore, the Berry’s phase

v,(C)= 1§ (n(R)|V,n(R))dR (A.7)

Applying the Stoke’s theorem, we obtain

1,(C)= -Sj(l)vn (R)- ds (A8)

Where S(C) 1s a surface integral enclosed by the closed loop C, and
V,([R)=Im V, x (n(R)| V,n(R))
= Im(V,n(R)] x| Vzn(R)) (A.9)
=Im ¥ (VnR)mR)) x (m(R)| Ve (R )
Where we have used Eq.(A.7) and the vector identity:
v x [f(x Jog(x )] = [VEG)]x [Ve(x )] (A.10)
Next, if we multiply some phase fattor exp [ix(R)] to {n(R)) it is easy to see
that
(nR)|VnR)) = (1R)|VnR)) +iVy(R) (A.11)
Therefore, because of the identity V x Vyx = 0 we can conclude that V. (R)

does not change under such transformation. This means that the geometric

phase is independent of choice of phase factor of eigenstates.

Multiplying {m | form the left to the equation [35]

[VeHR)|nR ) + HR} Ven(®)) = [ViE, R )| 2(R)

+E,(R)V n(R))
(A.12)
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obtained by differentiating Eq. (A.1) with respect to the external parameter

R, we have

(m (R)IVRn(R)>
Hence, the integrand of the surface integral in Eq.(A.8) is expressed as

R)THR)n®) (R, HR ) R)
V)=t 2 b.®)-E. ®F

From Eq. (A.14) we can notice that V, (R) passing through the surface S(C)

®)v:HRnR)

E -E,

(A.13)

(A.14)

1s 2-form, and this 2-form 1s obtained from (A.14) by substituting V by the
exterior d and X by the wedge produce A[32]. The validity of this
generalization 1s congruous with the observation that in the three-

dimensional version the geometric phase factor is independent of the choice

[14]. Moreover we find that the knowledge of the state ket |n(R)) itself is

usually unnecessary to evaluate VH(R). Finally, let us go back to Eq.(A.3)

and rewrite it as

|n(R0),tO =0; T) = cxp(iy exp{ IE }| )) (A.15)
where

1.(C)= -Sf( i)Vn R)- ds (A.16)

In conclusion, yn(C) 1s called the Berry’s phase taking the form of Eq.

(A.16) and coming from the adiabatic change of the external parameter.



APPENDIX B
HOMOTOPY THEORY: A BRIEF INTRODUCTION

This addendum is dedicated to the theory of the first homotopy group
or the fundamental group, yet, unfortunately, because of the limitation of
space to write it is sole a brief introductory level that is presented here.
However, there are many books showing about this subject, especially the
books involving the algebraic topology. Massey’s book [61] and Nakahara’s
book [32] are highly recommended to read additionally to more details and
advanced subjects. Furthermore, if solitary the basic topics concerning with
path mtegrals are required, the Schulman’s book [30] will be recommended.
Finally, since this section states about mathematical subject involving to
definitions and theorems, thus to preserve their meanings most of them are
recited from the Nakahara’s book [32]. Nevertheless, some proofs are

neglected here.

Historically, the fundamental group was introduced by the great
French mathematician Henri Poincare in 1895 while the higher-dimensional
analogs of the fundamental group, called the homotopy groups, were
presented in a series of four papers by Witold Hurewicz in 1935-1936 [61].
Although it was first proposed over a century, the fundamental group has

been applied in physics, especially quantum theory, for few decades merely.

Because the fundamental group involves to loops, o, in the
topological space, X [32], let us now start at the definition of paths and
loops.

Definition B.1 Let X be a topological space and let I =[0,1]. A continuous

map o : [ — X is called path with an initial point Xy and an end point x;, if «
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(0) = xoand a(1) =x,. If 2(0) = a(1) = Xy, the path is called a loop with base
point Xg.

The crucial point is that the set of paths or loops in the topological
space X may be endowed with an algebraic structure as follows. Before

going beyond the special path, a constant path ¢ : [ — X defined by c,(s) =

X, S€l, must be introduced first. Since ¢, (0) = ¢, (1) = x, thus it is loop also.

Definition B.2 Let o, 3: I — X be paths such that a(1) = $(0). The product

of a and B, denoted by o*P is a path in X defined by
a*B(s)=a(2s) ,OSSS%
=B@2s-1) , Yy <s <l

This definition is seen clearly in Fig.14

(B.1)

B

p
(1) = B(0)

N |~

a(0)

Fig. 14 The product o * 3 of paths o and B with a common end

point [32].

Definition B.3 Let o : I = X be a path from xo to x,. The inverse path o' of
o is defined by

o' (s)=afl -s) (B.2)

Let us now consider
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S
IA
)

IN

a*a’(s)=al2s) ) ®3)

IA

=025 -1)=a2-2s) , 1/ <5

NN

It is clear that a*o” does not equal to ¢,. This means that a constant
map cx cannot be the unit element. In other words, we need a concept of
homotopy to define a group operation in the space of loops. To form a group
the equivalence relation, homotopic, is required. Therefore, let us now

present the definition of homotopic relation as follows.

Definition B.4 Let o,Bf:1 — X be loops at xo. They are said to be

homotopic, written as o ~ B, if there exists a continuous map F: Ix] —» X
such that
F(s,0)=afs), F(s,1)=B(s) forallsel (B.4a)
FO,t)=F(,t)=x, for all t (B.4b)

The connecting map F is called a homotopy between o and §.

The significant aspect is that the homotopic relation is an equivalence
relation. To see more clearly, its proof should be shown here. Since an
equivalence relation, ~, must satisfy the reflective, symmetric, and transitive

requirements [32], thus we have to shown now that

(1) Reflectivity: o~ a..
Let F(s,t) = ofs) forany t €I , hence
F(s,0) = F(s,1) = a(s) and
F(0,t) = a0) = afl) = F(1, t).

Therefore, it 1s easy to see that a ~ «.
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(2) Symmetry: If .~ B, then B~ o.
Define F(s,t) such that a~ f, and then consider F(s,I —t)

that we can find that

E(s,0) =B(s) , F(s,l) = als) and
F(0,1 —t) =F(1,1 —t) = x,.

Thus, we can deduce that if a~ (3, then B~ o.

(3) Transitivity: If &~ B and B~ v, then o ~ v.
Let F(s,t) is a homotopy between o and B andG(s,t) is a
homotopy between  and y as shown tn Fig. 15. From the picture

1t can be seen that a homotopy between o and y may be (Fig. 15)

H(s, t) = F(s,2t) , 0<t s%

(B.S
=G(s2t-1) %Stsl :
Y
° g
]
E
(04
—>

S

Fig. 15 A homotopy H between o and y via f [32].

Next, the equivalence class of loops via the homotopic relation, ~ , is
introduced and it is denoted by [a]. Moreover, since it concerns with the

homoteplic, it is called the homotopy class of a.

Definition B.S Let X be a topological space. The set of homotopy classes of

loops at x, € X is denoted by 7, (X x,) and called the fundamental group
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(or the first homotopy group) of X at xo. The product of homotopy classes
[a] and [B] is defined by

o]  [8] = [oe 8] (B.6)
The important consequence of the definition of the product is that it is

independent of the representative, that is, if a~ a' and B~ B’, then

a*f~ a' *p.

Theorem The fundamental group is a group. Specifically, if o, B,... are

loops at x € X, the following group properties are satisfied.

(1) Qo] [BD ] =[] = B]+ [¥D
@ la]*[c,]=[o] and [e,]*[o]= o]
3) o] [oa"']= c. ] hence [o] = [a"’]

This means that w, (X, x) is a group whose unit element is the homotopy
class of the constant map c,. Moreover, the inverse of the homotopy class

[a] 1s defined by [cx]‘i = [a“‘ ] Unfortunately, the proof of the theorem is not

presented here.

Before we will go to the general properties of the fundamental group,
we should go back to necessary definition in elementary topology, the

connectedness.

Definition B.6

(1) A topological space X is connected if it can be written as
X=X uX, where X and X, are both openand X, "X, = .

Otherwise X 1s called disconnected.
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(2) A topological space X is called arcwise connected if, for any
points x,y € X, there exists a continuous map f [0 ,1] — X such
that f(0)=x and f(1)=y. With a few pathological exceptions,
arcwise connectedness is practically equivalent to connectedness.

(4) A loop in a topological space X is a continuous map f: [0,1] - X

such that f(0) = £(1). If any loop in X can be continuously shrunk

to a point, X is called simply connected.

From the definition of the connectedness and the fundamental group, it can
be proved that if X be an arcwise-connected topological space and
X,,X, € X, then m,(X, x). For the definition of isomorphic term, it is found

in all topology books.

As mentioned above, we define the homotopic equivalence of only

paths and loops, but, however, it can be generalized to arbitrary maps as

follows.

Definition B.7 Let f,g: Y— X be continuous maps. If there exists a

continuous map F: XxI — Y such that F(x,O)z f(x) and F(x,1)= g(x), f
1s said to be homotopic to g, denoted by f~ g. The map F is called a

lhomotopy between f and g.

Definition B.8 L.et X and Y be topological spaces. X and Y are of the

same homotopy type, written as X~ Y, if there exist continuous maps
f: X—= Y and g: Y — Xsuch that for the identity maps id,and id, [32],
fg ~ id, and gf ~ id,. F is called the homotopy equivalence andg, its

homotopy inverse.
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From these definitions, we will have the theorem about isomorphism

between two topological spaces as follows.

Theorem Let X and Y be topological spaces of the same homotopy type,

expressed as X~ Y. If f: X — Y is a homotopy equivalence, =, (X, x,) is

isomorphic to =, (Y, f(x, ).

This means that two topological spaces of the same homotopy type have the
same fundamental group is invariant under homeomorphisms, and hence is a
topological invariant. Unfortunately, it is difficult to find what is meant by of
the same homotopy type. Thus, we have to consider a continuous

deformation from X to Y, a subspace of X.

Definition B.9 Let R(= &) be a subspace of X. If there exists a continuous

map f: X — R such that for the restriction of R ¢ X, ﬂR =1d,, R is called

a retract of X and f a retraction.

Definition B.10 Let R be a subspace of X. If there exists a continuous map
H: XxI — X such that

H(x,0)= X, H(x,l)e R forany x € X (B.7a)
H(x,t) =x foranytel and any x €R (B.7b)
R is said to be a deformation retract of X, Note that H is a homotopy

between 1dyx and a retraction f: X — R, which leaves all the points in R

fixed during deformation.

Finally, the definition of the contractible space will be presented here.
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Definition B.11 If a point a € X 1s a deformation retract of X, X is said to

be contractible and the corresponding homotopy H is called the contraction.

Note that if an arcwice connected space X has a trivial fundamental
group, X 1s said to be simply connected. Moreover, it 1s easy to prove that

the fundamental group of a contractible space is trivial, n,(X, xo) 1S

isomorphic to {e 3
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