CHAPTER III ## WEAKLY FACTORIZABLE INVERSE SEMIGROUPS We introduce weakly factorizable inverse semigroups which gives a generalization of factorizable inverse semigroups. Weakly factorizable inverse semigroups are studied in detial in this chapter. An inverse semigroup S is called a <u>weakly factorizable inverse</u> <u>semigroup</u> if there exist an inverse subsemigroup T of S which is a union of groups and a set of idempotents E of S such that S = T.E. Then every factorizable inverse semigroup is weakly factorizable. Every group is factorizable, so it is weakly factorizable. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . Then $$E(S) = \{ e_{\alpha} | \alpha \in Y \}$$ where e_{α} denotes the identity of G_{α} for each $\alpha \in Y$. Because $G_{\alpha}e_{\alpha} = G_{\alpha}$ for all $\alpha \in Y$, its follows that $(\bigcup_{\alpha \in Y} G_{\alpha}) E(S) = S$. Hence S is weakly factorizable. Because every semilattice S is a semilattice of groups, S is weakly factorizable. Hence we have the following: 3.1 <u>Proposition</u>. The following inverse semigroups are weakly factorizable: - (i) Factorizable inverse semigroups . - (ii) Semilattices of groups. Proposition 3.1 shows that weakly factorizable inverse semigroups give a generalization of factorizable inverse semigroups and semilattices of groups. Any semilattice without identity is weakly factorizable but not factorizable. Let $S=\bigcup_{\alpha\in Y}G_{\alpha}$ be a semilattice Y of groups G_{α} . Then Y has an identity if and only if S has an identity, so if Y has no identity, then S is weakly factorizable but not factorizable. The next example shows that there exists a factorizable inverse semigroup but not a semilattice of groups. The following lemma is required first: 3.2 <u>Lemma</u>. [Introduction, page 8]. If S is a semilattice of groups, then $E(S) \subseteq C(S)$, where C(S) denotes the center of S. Example: Let $X = \{1,2\}$. Then the symmetric inverse semigroup on X, I_X , is factorizable [Corollary 1.4]. Next, we will show that $E(I_X) \not = C(I_X)$. Let δ be the identity mapping on the set $\{1\}$. Then $\delta \in E(I_X)$. Now, let $\alpha \in I_X$ such that $\Delta \alpha = \{1\}$ and $\nabla \alpha = \{2\}$. Then $\alpha \notin E(I_X)$ and $\Delta(\delta \alpha) = \{1\}$ and $\Delta(\alpha \delta) = \phi$. Therefore $\delta \alpha \neq \alpha \delta$. Hence $\delta \notin C(I_X)$ which implies $E(I_X) \not\subset C(I_X)$. By Lemma 3.2, I_X is not a semilattice of groups. # Because every factorizable inverse semigroup is weakly factorizable, the above example also shows that there exists a weakly factorizable inverse semigroup which is not a semilattice of groups. Now, we still have a question whether a weakly factorizable inverse semigroup has to be either a factorizable inverse semigroup or a semilattice of groups. The following example shows that there is a weakly factorizable inverse semigroup which is neither a factorizable inverse semigroup nor a semilattice of groups. Example: Let $Y = {\alpha, \beta, \gamma}$ be a semilattice with Hasse diagram : Let A, B be finite disjoint sets such that |A|>1 and |B|>1, where |X| denotes the cardinality of the set X, Since A and B are finite sets, I_A and I_B are both factorizable as $I_A = G_A \cdot E(I_A)$ and $I_B = G_B \cdot E(I_B)$ where G_A and G_B denote the permutation groups on A and B; respectively. Let $$S_{\alpha} = I_{A}$$, $S_{\beta} = I_{B}$, and $S_{\gamma} = \{0\}$, a trivial group where 0 is a new symbol, $0 \notin I_A$ and $0 \notin I_B$. Let us consider the empty transformations of I_A and of I_B be distinct. Set $S = S_{\alpha} \cup S_{\beta} \cup S_{\gamma}$ and define the operation * on S as follows: $$\delta^* \delta' = \begin{cases} \delta \delta' & \text{if either } \delta, \delta' \in S_{\alpha} \text{ or } \delta, \delta' \in S_{\beta}. \\ 0 & \text{otherwise.} \end{cases}$$ Then (S,*) is a semilattice Y of inverse semigroups S_{α} , S_{β} and S_{γ} , so (S,*) is an inverse semigroup [Introduction, page 8]. It is clear that S has no identity, so it is not factorizable. Because |A|>1, there exist a, a' \in A such that a \neq a'. Let δ_1 , $\delta_2 \in I_A \subseteq S$ such that and $$\Delta\delta_1 = \{a\} = \nabla\delta_1$$ $$\Delta\delta_2 = \{a\}, \nabla\delta_2 = \{a'\}.$$ Then $\delta_1 \in E(I_A) \subseteq E(S)$ and $\delta_2 \notin E(I_A)$, so $\delta_2 \notin E(S)$. Thus, $\delta_1 \delta_2 \neq \delta_2 \delta_1$ because $\Delta \delta_1 \delta_2 = \{a\}$ and $\Delta \delta_2 \delta_1 = \phi$. Hence $\delta_1 \in E(S)$ and $\delta_1 \notin C(S)$, so $E(S) \not \subseteq C(S)$. Therefore S is not a semilattice of groups [Lemma 3.2]. Let $G_{\alpha}=G_A$, the permutation group on the set A, $G_{\beta}=G_B$ and $G_{\gamma}=S_{\gamma}=\{0\}$. Then $T=G_{\alpha}\cup G_{\beta}\cup G_{\gamma}$ is a semilattice Y of groups, so it is an inverse subsemigroup of S. Because $S=S_{\alpha}\cup S_{\beta}\cup S_{\gamma}$, $$\begin{split} E(S) &= E(S_\alpha) \cup E(S_\beta) \cup E(S_\gamma) \\ &= E(I_A) \cup E(I_B) \cup \{0\} \ . \end{split}$$ But $$S_\alpha &= I_A = G_A \cdot E(I_A) = G_\alpha \cdot E(S_\alpha) \ , \\ S_\beta &= I_B = G_B \cdot E(I_B) = G_\beta \cdot E(S_\beta) \ , \end{split}$$ and $$S_\gamma &= \{0\} = G_\gamma \ . \end{split}$$ Then $$S = S_\alpha \cup S_\beta \cup S_\gamma \\ &= G_\alpha \cdot E(S_\alpha) \cup G_\beta \cdot E(S_\beta) \cup G_\gamma \cdot \{0\} \\ &\subseteq (G_\alpha \cup G_\beta \cup G_\gamma) \cdot (E(S_\alpha) \cup E(S_\beta) \cup \{0\}) \subseteq S \ . \end{split}$$ Hence S = T.E(S), so S is a weakly factorizable inverse semigroup. If S is a weakly factorizable inverse semigroup as T.E, then T is a semilattice of groups. To show this, we need the following lemmas: 3.3 <u>Lemma</u>. Let S be an inverse semigroup. If S is a union of groups, then S is a disjoint union of groups. <u>Proof:</u> Let $S = \bigcup_{i \in \Lambda} G_i$ be a union of groups G_i . In any group G_i , the identity of G is the only idempotent of G. Then $E(S) = \{e_i | i \in \Lambda\}$ where e_i is the identity of the group G_i for all $i \in \Lambda$. Let K be an index set such that $$\{e_k \mid k \in K\} = \{e_i \mid i \in \Lambda\}$$ and $e_k \neq e_k$, if $k \neq k'$. Then $E(S) = \{e_k \mid k \in K\}$. Claim that $S = \bigcup_{k \in K} H_e$ where H_e denotes the K - class of S containing e_k . Let $x \in S$. Then $x \in G_i$ for some $i \in A$. Because $e_i \in E(S)$, there exists $k \in K$ such that $e_k = e_i$. Since H_e is the greatest subgroup of S having e_k as its identity [Chapter I, page 11], $G_i \subseteq H_e$ and so $x \in \bigcup_{k \in K} H_e$. Hence $S = \bigcup_{k \in K} H_e$. Since each \mathcal{H} - class of a semigroup contains at most one idempotent [[1], Lemma 2.15], it follows that $H \cap H_{e_k} \cap H_{e_k} = \phi$ if $k \neq k'$. Hence $S = \bigcup_{k \in K} H_{e_k}$ is a disjoint union of groups. # 3.4 Lemma. Let S be an inverse semigroup and S = $\bigcup_{k \in K} G_k$ be a disjoint union of groups. Then S is a semilattice of groups. Proof: Let e_k denote the identity of the group G_k for all $k \in K$. Then $E(S) = \{e_k \mid k \in K \}$. Because S is an inverse semigroup, E(S) is a semilattice. Since for each $k \in K$, H_e is a maximum subgroup of S having e_k as itsidentity, H_e = G_k for all $k \in K$. Hence $S = \bigcup_{k \in K} H_e$. Since S is an inverse semigroup, every \mathcal{L} -class and every \mathcal{R} -class contains exactly one idempotent [[1]], Corollary 2.19]. But each \mathcal{L} -class and each \mathcal{R} -class of S is a union of \mathcal{H} -class of S. Then for each $k \in K$, $L_e = H_e = R_e$. But \mathcal{L} is right compatible and \mathcal{R} is left compatible. Then \mathcal{H} = \mathcal{L} is a congruence. Next, let $x \in H_{e_k}$ and $y \in H_{e_k}$. Then $x \not \in H_{e_k}$ and $y \not \in H_{e_k}$, so $xy \not \in H_{e_k}$. This prove that $H_{e_k} \cap H_{e_k} \subseteq H_{e_k}$ for all k, $k' \in K$. Therefore, S is a semilattice E(S) of groups H_{e_k} . # 3.5 <u>Proposition</u>. Let S be a weakly factorizable inverse semigroup as T.E. Then T is a semilattice of groups. We give a remark that if S is a weakly factorizable inverse semigroup as T.E, then $S = T.E \subseteq T.E(S) \subseteq S$ and so S = T.E(S). However, if S is a weakly factorizable inverse semigroup as T.E, then E is not necessarily to be E(S). For example, let S be a semilattice with Hasse diagram : Let T = S. Then T is a semilattice of groups. Then E(S) = S, and $S = T \cdot \{a\}$ because a is the identity of S. The following theorem shows various properties of weakly factorizable inverse semigroups: - 3.6 <u>Theorem</u>. Let S be a weakly factorizable inverse semigroup as T.E. Then the following hold: - (i) S = E.T. - (ii) If e is the identity of T, then e is the identity of S. - (iii) For any $e \in E(T)$, $x \in S$, xe = ex; that is, $E(T) \subseteq C(S)$. Proof: Let $T=\bigcup\limits_{\alpha\,\in\,Y}G_{\alpha}$ be a semilattice Y of groups G_{α} . Then $S=(\bigcup\limits_{\alpha\,\in\,Y}G_{\alpha})$. E. - (i) Let $x \in S = T.E$. Then $x^{-1} \in S$, so there exist $g \in G_{\alpha}$ for some $\alpha \in Y$ and $e \in E$ such that $x^{-1} = ge$. Therefore $x = eg^{-1} \in E.T$. Hence S = E.T. - (ii) Assume e is the identity of T. Let $x \in S$. Then there exist $k \in T$, $f \in E$ such that x = kf. Therefore $$ex = e(kf) = (ek)f = kf = x,$$ and $$xe = (kf)e = k(ef) = (ke)f = kf = x.$$ Hence e is the identity of S. (iii) Let $e \in E(T)$ and $x \in S$. Then x = kf for some $k \in T$, $f \in E(S)$. Because T is a semilattice of groups, by Lemma 3.2, $E(T) \subseteq C(T)$. Then $$ex = e(kf) = (ek)f = (ke)f = k(ef) = k(fe) = (kf)e = xe.$$ Thus $e \in C(S)$. Hence $E(T) \subseteq C(S)$, as required. # Next, we show that if S is a weakly factorizable inverse semigroup as T.E, then the maximum group homomorphic image of S is a homomorphic image of the maximum group homomorphic image of T. The following lemma is required first: 3.7 <u>Lemma</u>. Let S be a weakly factorizable inverse semigroup as T.E. Then every σ - class of S intersects T. Proof: Let $a\sigma$ be $a\sigma$ - class of S. Then there exist $t \in T$ and $e \in E$ such that a = te and so ae = tee = te. Hence $a\sigma = t\sigma$, so $t \in a\sigma$.# 3.8 <u>Proposition</u>. Let S be a weakly factorizable inverse semigroup as T.E. Then $S/\sigma(S)$ is a homomorphic image of $T/\sigma(T)$. Proof: Let $$\psi$$: $T/\sigma(T) \rightarrow S/\sigma(S)$ be a map defined by $$(t\sigma(T))\psi = t\sigma(S) \qquad (t \in T).$$ ψ is clearly well-defined because $E(T)\subseteq E(S)$, and it is easily seen that ψ is a homomorphism. To show ψ is onto, let $a\sigma(S)\in S/_{\sigma}(S)$. By Lemma 3.7, there exists $t\in T$ such that $t\in a\sigma(S)$. Then $t\sigma(S)=a\sigma(S)$, so $$(t\sigma(T))\psi = t\sigma(S) = a\sigma(S)$$. The homomorphism ψ in the proof of Proposition 3.8 is one-to-one if S is proper. 3.9 Theorem. Let S be a weakly factorizable inverse semigroup as T.E. If S is proper, then $S_{\sigma(S)}$ is isomorphic to $T_{\sigma(T)}$ and hence S and T have the same maximum group homomorphic image. Proof: Let $$\psi$$: $T/\sigma(T)$ \to $S/\sigma(S)$ be a map defined by $$(t\sigma(T))\psi = t\sigma(S) \qquad (t \in T).$$ From the proof of Proposition 3.8, ψ is an onto homomorphism. To show ψ is one-to-one, let t_1 , $t_2 \in T$ such that $t_1 \sigma(S) = t_2 \sigma(S)$. Then $t_1 e = t_2 e$ for some $e \in E(S)$. Then $$t_2^{-1}t_1e = (t_2^{-1}t_2)e$$. But $t_2^{-1}t_2 \in E(S)$, so $$(t_{2}^{-1}t_{1})(t_{2}^{-1}t_{2})e = (t_{2}^{-1}t_{1})e(t_{2}^{-1}t_{2})$$ $$= (t_{2}^{-1}t_{2})e(t_{2}^{-1}t_{2})$$ $$= (t_{2}^{-1}t_{2})e .$$ Since S is proper and $(t_2^{-1}t_2)e \in E(S)$, $t_2^{-1}t_1 \in E(S)$. But $t_2^{-1}t_1 \in T$, so $t_2^{-1}t_1 \in E(T)$. Then $t_2^{-1}t_1 = f$ for some $f \in E(T)$. Hence $t_2t_2^{-1}t_1 = t_2f$, so $$t_1^{\sigma}(T) = (t_2^{-1})\sigma(T)t_1^{\sigma}(T)$$ $$= (t_2^{-1}t_1)\sigma(T)$$ $$= (t_2^{-1}t_1)\sigma(T)$$ $$= (t_2^{-1}t_1)\sigma(T)$$ $$= (t_2^{-1}t_1)\sigma(T)$$ $$= (t_2^{-1}t_1)\sigma(T)$$ $$= (t_2^{-1}t_1)\sigma(T)$$ since $t_2 t_2^{-1} \sigma(T) = f \sigma(T)$ is the identity of the group $T/\sigma(T)$. Hence ψ is an onto isomorphism, so $S/_{\sigma(S)} \stackrel{\sim}{=} T/_{\sigma(T)}$ as required.# The Green's relation $\mathcal H$ on a weakly factorizable inverse semigroup is studied, and the following proposition is obtained: 3.10 <u>Proposition</u>. Let S be a weakly factorizable inverse semigroup as T.E and let $T = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . Then for each $\alpha \in Y$, G_{α} is an \mathscr{H} - class of S. Moreover; for $e \in E(S)$, if $H_e \cap T \neq \emptyset$, then $H_e = G_{\alpha}$ for some $\alpha \in Y$. $\begin{array}{c} \underline{Proof}\colon \text{ For each }\alpha\in Y, \text{ let }e_{\alpha} \text{ denote the identity of }G_{\alpha}. \text{ Let}\\ \alpha\in Y. \text{ Since }H_{e_{\alpha}} \text{ is the maximum subgroup of S having }e_{\alpha} \text{ as its identity, }G_{\alpha}\subseteq H_{e_{\alpha}}. \text{ Next, let }x\in H_{e_{\alpha}}. \text{ Then }x^{-1}x=e_{\alpha} \text{ and }x=gf \text{ for some}\\ \beta\in Y \text{ such that }g\in G_{\beta} \text{ and for some }f\in E. \text{ Therefore} \end{array}$ $$e_{\alpha} = x^{-1}x = (fg^{-1})(gf) = f(g^{-1}g)f = fe_{\beta}f = e_{\beta}f,$$ and so $$x = (ge_{\beta})f = g(e_{\beta}f) = ge_{\alpha} \in G_{\beta}G_{\alpha} \subseteq G_{\alpha\beta}$$. Thus $x^{-1} \in G_{\alpha\beta}$ and so $e_{\alpha} = x^{-1}x \in G_{\alpha\beta}$. But $e_{\alpha} \in G_{\alpha}$. Hence $\alpha = \alpha\beta$ which implies $x \in G_{\alpha}$. Then $H_{e_{\alpha}} \subseteq G_{\alpha}$. Therefore $G_{\alpha} = H_{e_{\alpha}}$. Next, let $e \in E(S)$ such that $H_e \cap T \neq \emptyset$. Then there exist $\alpha \in Y$ and $g \in G_\alpha$ such that $g \in H_e \cap T$. Claim that $H_e = G_\alpha$. Since $g \in H_e$, $g^{-1}g = e$. But $g^{-1}g = e_\alpha$, so $e = e_\alpha$. Hence, from the first part of the proof, we have $H_e = H_{e_\alpha} = G_\alpha$. # Let S be a weakly factorizable inverse semigroup as T.E and $T = \bigcup_{\alpha \in Y} G_{\alpha} \text{ be a semilattice of groups } G_{\alpha} \text{ . Let A be an ideal of S.}$ If $\alpha \in Y$ and $G_{\alpha} \cap A \neq \emptyset$, then as the proof of Lemma 2.2, $G_{\alpha} \subseteq A$. It is possible that $A \cap G_{\alpha} = \emptyset$ for all $\alpha \in Y$. For example, let $X = \{a,b\}$. Then the symmetric inverse semigroup on X is $$I_{X} = \{ 0, 1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \}$$ where 0, 1, α_i (i = 1, 2, 3, 4, 5) are defined the same as in the example of Chapter II. That is, the table of multiplication is as follows: | | o | 1 | α ₅ | 0 | α ₁ | ^α 2 | ^α 3 | α4 | |---|----------------|----------------|----------------|---|----------------|----------------|----------------|----------------| | | 1 | 1 | ^α 5 | 0 | ^α 1 | α2 | α ₃ | α ₄ | | | α ₅ | ^α 5 | 1 | 0 | α ₄ | α ₃ | α2 | α ₁ | | Ī | 0- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | α_1 | α ₁ | α ₃ | 0 | α_1 | 0 | α ₃ | 0 | | | α_2 | α2 | α ₄ | 0 | 0 | α ₂ | 0 | α4 | | | α3 | α3 | α_1 | 0 | 0 | α3 | 0 | α ₁ | | | α ₄ | α ₄ | α2 | 0 | α ₄ | 0 | α2 | 0 | $$\Delta\alpha_{1} = \{a\} = \nabla\alpha_{1},$$ $$\Delta\alpha_{2} = \{b\} = \nabla\alpha_{2},$$ $$\Delta\alpha_{3} = \{a\}, \nabla\alpha_{3} = \{b\},$$ $$\Delta\alpha_{4} = \{b\}, \nabla\alpha_{4} = \{a\},$$ $$\Delta\alpha_{5} = \{a,b\} = \nabla\alpha_{5},$$ such that $a\alpha_{5} = b$, $$b\alpha_{5} = a$$. Then I_{χ} is factorizable as $G_{\chi}.E(I_{\chi})$, G_{χ} = {1, α_{5} }, $E(I_{\chi}) = \{0, 1, \alpha_{1}, \alpha_{2}\}, \text{ so } I_{\chi} \text{ is weakly factorizable. From its table of multiplication, the set } K = \{0, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\} \text{ is an ideal of } I_{\chi} \text{ and } K \cap G_{\chi} = \emptyset$. The above example also shows that an ideal of a weakly factorizable inverse semigroup is not necessarily weakly factorizable. To show the ideal K of I_{χ} is not weakly factorizable, first we find all the inverse subsemigroups of K. It is easy to check that all the inverse subsemigroups of K are $$K_1 = \{0\}$$, $K_2 = \{\alpha_1\}$, $K_3 = \{\alpha_2\}$, $K_4 = \{0, \alpha_1\}$ $K_5 = \{0, \alpha_2\}$, $K_6 = \{0, \alpha_1, \alpha_2\}$ and K . Because K_1 , K_2 , K_3 , K_4 , K_5 and K_6 are semilattices, they are semilattices of groups. Since $\alpha_1 \in E(K)$ and $\alpha_1 \alpha_3 = \alpha_3$ and $\alpha_3 \alpha_1 = 0$, $\alpha_1 \alpha_3 \neq \alpha_3 \alpha_1$ so $\alpha_1 \notin C(K)$, the center of K. This shows that $E(K) \notin C(K)$. Hence K is not a semilattice of groups [Lemma 3.2]. Then all of the inverse subsemigroups of K which are semilattices of groups are K_1 , K_2 , K_3 , K_4 , K_5 , K_6 . Next, we show that $K_1 \cdot E(K) \neq K$ for all $i \in \{1,2,3,4,5,6\}$. Since $E(K) = \{0, \alpha_1, \alpha_2\}$ and $K_1 \subseteq E(K)$ for all $i \in \{1,2,3,4,5,6\}$, $K_1 \cdot E(K) \subseteq E(K)$ for all $i \in \{1,2,3,4,5,6\}$. But $E(K) \neq K$. Hence K is not weakly factorizable. We end this chapter by introducing a property of ideal A of a weakly factorizable inverse semigroup to let A be also weakly factorizable. 3.11 <u>Proposition</u>. Let S be a weakly factorizable inverse semigroup as T.E, A be an ideal of S and A has its identity. Then if T contains the identity of A, then A is weakly factorizable. Proof: Let 1_A be the identity of the ideal A, and let $T = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . Let $\begin{array}{lll} Y_A &=& \{\alpha \in Y \mid G_\alpha \cap A \neq \emptyset \} \ . & \ \ \text{Then} \ Y_A &=& \{\alpha \in Y \mid G_\alpha \subseteq A \ \} \ . \\ \text{Since } 1_A \in A \cap T, \ Y_A \neq \emptyset \ . & \ \ \text{Claim that} \ Y_A \ \text{is an ideal of} \ Y, \ \text{let} \ \alpha \in Y_A, \\ \beta \in Y. & \ \ \text{Then} \ G_\alpha \subseteq A \ \ \text{and so} \ G_\alpha G_\beta \subseteq A. \ \ \text{But} \ G_\alpha G_\beta \subseteq G_{\alpha\beta} \ . & \ \ \text{Then} \ G_\alpha \cap A \neq \emptyset, \\ \text{and hence} \ \alpha\beta \in Y_A. & \ \ \text{Thus} \ Y_A \ \text{is an ideal of} \ Y \ \text{and then it is also a} \\ \text{semilattice.} \end{array}$ Set $T_A = \bigcup_{\alpha \in Y_A} G_{\alpha}$. Then it follows that $T_A \subseteq A$ and it is a semilattice Y_A of groups G_{α} . By assumption, 1_A is also the identity of T_A so $1_A \in E(T_A)$. But $E(T_A) = \{\ e_\alpha \, \big| \, \alpha \in Y_A \}$. Then $1_A = e_\lambda$ for some $\lambda \in Y_A$. Next, we show that $A=T_A.E(A)$. Let $a\in A$. Since $A\subseteq S$ and $S=T.E=(\bigcup_{\alpha\in Y}G_{\alpha})$. E , a=ge for some $\beta\in Y$, $g\in G_{\beta}$ and for some $e\in E$. Therefore $$a = 1_A a 1_A = 1_A g e 1_A = (e_{\lambda} g) (e 1_A).$$ Because Y_A is an ideal and $\lambda \in Y_A$, $\lambda \beta \in Y_A$. Since $e_\lambda g \in G_{\lambda \beta}$, it follows that $e_\lambda g \in T_A$. Since $e1_A \in E(S)$ and $e1_A \in A$, $e1_A \in E(A)$. It then follows that $a \in T_A \cdot E(A)$. Therefore $A \subseteq T_A \cdot E(A)$. But $T_A \subseteq A$ and $E(A) \subseteq A$, so $T_A \cdot E(A) = A$, completing the proof of the proposition.