

## CHAPTER II

## IDEALS OF FACTORIZABLE INVERSE SEMIGROUPS

In this chapter, we study ideals and Rees quotient semigroups of factorizable inverse semigroups.

Let A be an ideal of an inverse semigroup S. Then A is a subsemigroup of S. If  $a \in A$ , then  $a^{-1} \in S$  and so  $a^{-1} = a^{-1}aa^{-1} \in A$ . Thus A is an inverse subsemigroup of S.

An ideal of a factorizable inverse semigroup is not necessarily factorizable. An example is given as follows: Let  $S = \{a,b,c,d\}$  be a semilattice with the Hasse diagram



Then S is a semilattice with identity a and so E(S) = S and the group of units of S is {a}. Hence  $S = E(S).\{a\}$  which implies that S is factorizable. In fact, any semilattice with identity is factorizable. Let  $A = \{b,c,d\}$ . Then A is an ideal of S. But A does not have its identity. Thus A is not factorizable. #

The first theorem of this chapter shows that an ideal with its identity of a factorizable inverse semigroup is factorizable.

2.1 Theorem. Let S be a factorizable inverse semigroup. If A is an ideal of S and A has its identity, then A is factorizable.

<u>Proof:</u> Let 1 be the identity of S and G be the group of units of S. Let 1' be the identity of A. Since A is an ideal of S and  $1' \in A$ ,  $1'G \subseteq A$ . Claim that 1'G is a subgroup of A, let  $1'g \in 1'G$   $(g \in G)$ . Then  $1'g^{-1} \in 1'G$  and  $1' = 1!1 \in 1!G \subseteq A$ , so

 $(1'g)(1'g^{-1}) = ((1'g)1')g^{-1} = (1'g)g^{-1} = 1'(gg^{-1}) = 1'(1) = 1'.$  and for all  $x \in 1'G$ , 1'x = x1' = x because  $1'G \subseteq A$ . Therefore 1'G is a subgroup of A. Next we show that A = (1'G).E(A), let  $x \in A$ . Then x = ge for some  $g \in G$ ,  $e \in E(S)$ . Therefore

x = x1' = (ge)1' = (g1')e = 1'(g1')e = (1'g)(1'e).

But  $1'g \in 1'G$  and 1'e is an idempotent and belongs to A, so  $(1'g)(1'e) \subseteq (1'G).(E(A))$ . Then  $x \in (1'G).(E(A))$ . Hence A = (1'G).(E(A)).

Therefore A is factorizable. #

From the proof of Theorem 2.1 and Theorem 1.1, the following follows: Let G be the group of units of a factorizable inverse semigroup S. If A is an ideal of S and A has its identity 1', then 1'G is the group of units of A.

Now, we have a question whether an inverse subsemigroup with its identity of a factorizable inverse semigroup is factorizable. The following example shows that this is not true in general:

Let  $X = \{a,b\}$ , and  $I_X$  be the symmetric inverse semigroup on X. Let 0 and 1 be the zero and the identity of  $I_X$ ; respectively, and let

$$\alpha_1$$
,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$ ,  $\alpha_5 \in I_X$  such that 
$$\Delta\alpha_1 = \nabla\alpha_1 = \{a\},$$
 
$$\Delta\alpha_2 = \nabla\alpha_2 = \{b\},$$
 
$$\Delta\alpha_3 = \{a\}, \ \nabla\alpha_3 = \{b\},$$
 
$$\Delta\alpha_4 = \{b\}, \ \nabla\alpha_4 = \{a\},$$

and  $\Delta\alpha_5 = \nabla\alpha_5 = \{a,b\}$  such that  $a\alpha_5 = b$ ,  $b\alpha_5 = a$ . Then  $I_X = \{0, 1, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$  and the multiplication is as follows:

| 0              | 0 | 1               | $\alpha_1$     | α2         | α3  | α4             | α <sub>5</sub> |
|----------------|---|-----------------|----------------|------------|-----|----------------|----------------|
| 0              | 0 | 0.              | 0              | 0          | 0   | 0              | 0              |
| 1              | 0 | -1              | a <sub>1</sub> | α2         | ° 3 | α <sub>4</sub> | α <sub>5</sub> |
| α1             | 0 | α1              | α <sub>1</sub> | 0          | α3  | 0              | α3             |
| α2             | 0 | α2              | 0              | $\alpha_2$ | 0   | α <sub>4</sub> | α4             |
| α <sub>3</sub> | 0 | <sup>04</sup> 3 | 0              | $\alpha_3$ | 0   | $^{\alpha}1$   | α1             |
| α4             | 0 | α <sub>4</sub>  | α <sub>4</sub> | 0          | α2  | 0              | α2             |
| α <sub>5</sub> | 0 | α <sub>5</sub>  | α <sub>4</sub> | α3         | α2  | α1             | 1              |

Let  $T = \{0, 1, \alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ . From the table, T is a subsemigroup of  $I_X$ .

Because

$$0^{-1}=0$$
,  $1^{-1}=1$ ,  $\alpha_1^{-1}=\alpha_1$ ,  $\alpha_2^{-1}=\alpha_2$ ,  $\alpha_3^{-1}=\alpha_4$ ,  $\alpha_4^{-1}=\alpha_3$ , it follows that T is an inverse subsemigroup of S and T has the identity 1. It is clearly seen that the group of units of T is  $\{1\}$  and the set of all idempotents of T is  $\{0$ , 1,  $\alpha_1$ ,  $\alpha_2\}$  so  $E(T)=\{0,1,\alpha_1,\alpha_2\}$ . Since  $\alpha_3 \notin E(T)=\{1\}$ .  $E(T)$ , T is not factorizable. #

Let S be a semigroup with identity 1 and G be the group of units of S. Then

 $G = \{a \in S \mid aa' = a'a = 1 \text{ for some } a' \in S\}$ .

If A is an ideal of S, then either  $A \cap G = \phi$  or A = S. To prove this, assume  $A \cap G \neq \phi$ . Then there exists  $g \in G$  such that  $g \in A$ , so  $1 = g^{-1}g \in A$  where  $g^{-1}$  is the group inverse of g in G. Hence for all  $x \in S$ ,  $x = x1 \in A$ . Thus, A = S.

Let A be an ideal of a semigroup S. Let  $\rho_A$  denote the Rees congruence on S induced by the ideal A, that is,

$$a \rho_A = \begin{cases} \{a\} & \text{if } a \notin A. \\ A & \text{if } a \in A. \end{cases}$$

Recall that the semigroup  $S/\rho_A$  is called the Rees quotient semigroup of S induced by A, and denoted by S/A. Because a homomorphic image of an inverse semigroup is an inverse semigroup, S/A is an inverse semigroup if S is an inverse semigroup.

To show that a Rees quotient semigroup of a factorizable inverse semigroup is a factorizable inverse semigroup, we need the following lemma:

2.2 <u>Lemma</u>. Let S be a semigroup with identity 1 and let G be the group of units of S. If A is an ideal of S, then the set  $\{a\rho_A \mid a \in G\}$  is the group of units of S/A.

<u>Proof:</u> It is clear that  $1\rho_A$  is the identity of S/A. Because A is an ideal of S and G is the group of units of S, it follows that

either A = S or  $G \cap A = \phi$ . If A = S, then S/A is a trivial semigroup, so S/A =  $\{1\rho_A\}$  which is a trivial group.

Assume  $G \cap A = \emptyset$ . Let  $\overline{G} = \{a\rho_{\overline{A}} \mid a \in G \}$ . Then for  $a \in G$ ,  $a\rho_{\overline{A}} = \{a\}$ , so  $\overline{G}$  is obvious to be a subgroup of S/A since G is a subgroup of S. Let  $\overline{H}$  be the group of units of S/A. Then

 $\overline{H} = \{ x \rho_A \mid (x \rho_A) (x \rho_A) = (x \rho_A) (x \rho_A) = 1 \rho_A \text{ for some } x \in S \}$ .

Because  $\overline{H}$  is the greatest subgroup of S/A having  $1\rho_A$  as its identity and  $\overline{G}$  is a subgroup and  $1\rho_A \in \overline{G}$ , it follows that  $\overline{G} \subseteq \overline{H}$ .

Next, let  $x\rho_{\widehat{A}} \in \overline{H}$  . Then

$$(x\rho_A)(x^{\dagger}\rho_A) = (x^{\dagger}\rho_A)(x\rho_A) = 1\rho_A$$
,  
 $(xx^{\dagger})\rho_A = (x^{\dagger}x)\rho_A = 1\rho_A$ ,

Because  $1 \notin A$ , xx' = x'x = 1 and hence  $x \in G$ . Then  $x\rho_A \in \overline{G}$ . Hence, we have  $\overline{G} = \overline{H}$  as desired. #

2.3 Theorem. Let A be an ideal of an inverse semigroup S. If S is factorizable, the Rees quotient semigroup S/A is factorizable.

 $\underline{\text{Proof:}}$  Assume that S is factorizable as G.E(S). Then G is the group of units of S. By Introduction, page 5,

$$E(S/A) = E(S/\rho_A) = \{e\rho_A \mid e \in E(S)\}$$

By Lemma 2.2,  $\{a\rho_A \mid a \in G\} = \overline{G}$  is the group of units of S/A. Now, we show that  $S/A = \overline{G}.E(S/A)$ . Let  $x\rho_A \in S/A$ . Then x = ge for some  $g \in G$ ,  $e \in E(S)$ . Therefore  $x\rho_A = (g\rho_A)(e\rho_A) \in \overline{G}.E(S/A)$ . Hence S/A is factorizable. #

The converse of Theorem 2.3 is not true even though the Rees quotient semigroup S/A is not trivial. For example, let Y be a semilattice with Hasse diagram



For each  $\delta\in Y$ , let  $G_\delta=Z\!\!\!Z \times \delta$  and set  $S=G_\alpha\cup G_\beta\cup G_\gamma$  . Define the operation on S by

$$(n, \delta_1)(m, \delta_2) = (n+m, \delta_1 \delta_2).$$

Then S is a semilattice Y of groups  $G_{\alpha}$ ,  $G_{\beta}$ ,  $G_{\gamma}$  and

$$E(S) = \{(0,\alpha), (0,\beta), (0,\gamma)\}$$

Because Y has no identity, S has no identity, so S is not factorizable.

Let  $A=G_{\beta}\cup G_{\gamma}$ . It is easy to see that A is an ideal of S. The Rees quotient semigroup S/A is isomorphic to  $G_{\alpha}^{0*}$ , the group  $G_{\alpha}$  adjoined the zero 0\*. But the group of units of  $G_{\alpha}^{0*}$  is  $G_{\alpha}$  and  $E(G_{\alpha}^{0*})=\{0*,(0,\alpha)\}$  and

$$G_{\alpha}^{0*} = G_{\alpha} \cdot E(G_{\alpha}^{0*}) .$$

Then  $G_{\alpha}^{0*}$  is a factorizable inverse semigroup. Hence S/A is factorizable. #

Let Y be a semilattice. Then for each  $\alpha \in Y, \alpha Y$  is the principal ideal of Y generated by  $\alpha$  and it is also a semilattice which has  $\alpha$  as its identity, so  $\alpha$  is the maximum element of  $\alpha Y$ ; moreover,

$$\alpha Y = \{\beta \in Y \mid \beta \leq \alpha \}$$

Let  $S=\bigcup_{\alpha\ \in\ Y}G_{\alpha}$  be a semilattice Y of groups  $G_{\alpha}$  . For each  $\alpha\ \in\ Y$  , let

$$A_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$$
.

Then for each  $\alpha \in Y$ ,  $A_{\alpha} = \bigcup_{\beta \in \alpha Y} G_{\beta}$ . Since  $\alpha Y$  is a semilattice with identity  $\alpha$ ,  $A_{\alpha}$  is a semilattice  $\alpha Y$  of groups  $G_{\beta}$ , and  $A_{\alpha}$  has the identity  $e_{\alpha}$ , where  $e_{\lambda}$  denotes the identity  $G_{\lambda}$  for all  $\lambda \in Y$ . Moreover,  $A_{\alpha}$  is an ideal of S for all  $\alpha \in Y$ . To show this, let  $\alpha \in Y$ . Let  $x \in S$  and  $a \in A_{\alpha}$ . Then  $x \in G_{\gamma}$  for some  $\gamma \in Y$  and  $a \in G_{\beta}$  for some  $\beta \leq \alpha$ . Then  $\beta = \alpha\beta = \beta\alpha$ . Thus,  $\alpha X \in G_{\beta} \subseteq G_{\gamma} \subseteq G_{\beta Y}$  and  $\alpha X \in G_{\gamma} \subseteq G_{\gamma}$ 

The following proposition follows directly from the above fact and Theorem 2.1:

2.4 <u>Proposition</u>. Let  $S = \bigcup_{\alpha \in Y} G_{\alpha}$  be a semilattice Y of groups  $G_{\alpha}$ . For any  $\alpha \in Y$ , let  $A_{\alpha} = \bigcup_{\beta \leq \alpha} G_{\beta}$  If S is factorizable, then  $A_{\alpha}$  is a factorizable inverse semigroup for all  $\alpha \in Y$ .

The next proposition follows from Proposition 1.14.

2.5 <u>Proposition</u>. Let  $S = \bigcup_{\alpha \in Y} G_{\alpha}$  be a semilattice Y of groups  $G_{\alpha}$  with corresponding homomorphisms  $\psi_{\alpha,\beta}$ . Let  $\alpha \in Y$  and  $A_{\alpha} = \bigcup_{\beta \leq \alpha} G_{\beta}$ . If  $\psi_{\alpha,\beta}$  is an epimorphism for all  $\beta \in Y$ ,  $\beta \leq \alpha$ , then  $A_{\alpha}$  is a factorizable inverse subsemigroup of S.