CHAPTER II ## IDEALS OF FACTORIZABLE INVERSE SEMIGROUPS In this chapter, we study ideals and Rees quotient semigroups of factorizable inverse semigroups. Let A be an ideal of an inverse semigroup S. Then A is a subsemigroup of S. If $a \in A$, then $a^{-1} \in S$ and so $a^{-1} = a^{-1}aa^{-1} \in A$. Thus A is an inverse subsemigroup of S. An ideal of a factorizable inverse semigroup is not necessarily factorizable. An example is given as follows: Let $S = \{a,b,c,d\}$ be a semilattice with the Hasse diagram Then S is a semilattice with identity a and so E(S) = S and the group of units of S is {a}. Hence $S = E(S).\{a\}$ which implies that S is factorizable. In fact, any semilattice with identity is factorizable. Let $A = \{b,c,d\}$. Then A is an ideal of S. But A does not have its identity. Thus A is not factorizable. # The first theorem of this chapter shows that an ideal with its identity of a factorizable inverse semigroup is factorizable. 2.1 Theorem. Let S be a factorizable inverse semigroup. If A is an ideal of S and A has its identity, then A is factorizable. <u>Proof:</u> Let 1 be the identity of S and G be the group of units of S. Let 1' be the identity of A. Since A is an ideal of S and $1' \in A$, $1'G \subseteq A$. Claim that 1'G is a subgroup of A, let $1'g \in 1'G$ $(g \in G)$. Then $1'g^{-1} \in 1'G$ and $1' = 1!1 \in 1!G \subseteq A$, so $(1'g)(1'g^{-1}) = ((1'g)1')g^{-1} = (1'g)g^{-1} = 1'(gg^{-1}) = 1'(1) = 1'.$ and for all $x \in 1'G$, 1'x = x1' = x because $1'G \subseteq A$. Therefore 1'G is a subgroup of A. Next we show that A = (1'G).E(A), let $x \in A$. Then x = ge for some $g \in G$, $e \in E(S)$. Therefore x = x1' = (ge)1' = (g1')e = 1'(g1')e = (1'g)(1'e). But $1'g \in 1'G$ and 1'e is an idempotent and belongs to A, so $(1'g)(1'e) \subseteq (1'G).(E(A))$. Then $x \in (1'G).(E(A))$. Hence A = (1'G).(E(A)). Therefore A is factorizable. # From the proof of Theorem 2.1 and Theorem 1.1, the following follows: Let G be the group of units of a factorizable inverse semigroup S. If A is an ideal of S and A has its identity 1', then 1'G is the group of units of A. Now, we have a question whether an inverse subsemigroup with its identity of a factorizable inverse semigroup is factorizable. The following example shows that this is not true in general: Let $X = \{a,b\}$, and I_X be the symmetric inverse semigroup on X. Let 0 and 1 be the zero and the identity of I_X ; respectively, and let $$\alpha_1$$, α_2 , α_3 , α_4 , $\alpha_5 \in I_X$ such that $$\Delta\alpha_1 = \nabla\alpha_1 = \{a\},$$ $$\Delta\alpha_2 = \nabla\alpha_2 = \{b\},$$ $$\Delta\alpha_3 = \{a\}, \ \nabla\alpha_3 = \{b\},$$ $$\Delta\alpha_4 = \{b\}, \ \nabla\alpha_4 = \{a\},$$ and $\Delta\alpha_5 = \nabla\alpha_5 = \{a,b\}$ such that $a\alpha_5 = b$, $b\alpha_5 = a$. Then $I_X = \{0, 1, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ and the multiplication is as follows: | 0 | 0 | 1 | α_1 | α2 | α3 | α4 | α ₅ | |----------------|---|-----------------|----------------|------------|-----|----------------|----------------| | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | -1 | a ₁ | α2 | ° 3 | α ₄ | α ₅ | | α1 | 0 | α1 | α ₁ | 0 | α3 | 0 | α3 | | α2 | 0 | α2 | 0 | α_2 | 0 | α ₄ | α4 | | α ₃ | 0 | ⁰⁴ 3 | 0 | α_3 | 0 | $^{\alpha}1$ | α1 | | α4 | 0 | α ₄ | α ₄ | 0 | α2 | 0 | α2 | | α ₅ | 0 | α ₅ | α ₄ | α3 | α2 | α1 | 1 | Let $T = \{0, 1, \alpha_1, \alpha_2, \alpha_3, \alpha_4\}$. From the table, T is a subsemigroup of I_X . Because $$0^{-1}=0$$, $1^{-1}=1$, $\alpha_1^{-1}=\alpha_1$, $\alpha_2^{-1}=\alpha_2$, $\alpha_3^{-1}=\alpha_4$, $\alpha_4^{-1}=\alpha_3$, it follows that T is an inverse subsemigroup of S and T has the identity 1. It is clearly seen that the group of units of T is $\{1\}$ and the set of all idempotents of T is $\{0$, 1, α_1 , $\alpha_2\}$ so $E(T)=\{0,1,\alpha_1,\alpha_2\}$. Since $\alpha_3 \notin E(T)=\{1\}$. $E(T)$, T is not factorizable. # Let S be a semigroup with identity 1 and G be the group of units of S. Then $G = \{a \in S \mid aa' = a'a = 1 \text{ for some } a' \in S\}$. If A is an ideal of S, then either $A \cap G = \phi$ or A = S. To prove this, assume $A \cap G \neq \phi$. Then there exists $g \in G$ such that $g \in A$, so $1 = g^{-1}g \in A$ where g^{-1} is the group inverse of g in G. Hence for all $x \in S$, $x = x1 \in A$. Thus, A = S. Let A be an ideal of a semigroup S. Let ρ_A denote the Rees congruence on S induced by the ideal A, that is, $$a \rho_A = \begin{cases} \{a\} & \text{if } a \notin A. \\ A & \text{if } a \in A. \end{cases}$$ Recall that the semigroup S/ρ_A is called the Rees quotient semigroup of S induced by A, and denoted by S/A. Because a homomorphic image of an inverse semigroup is an inverse semigroup, S/A is an inverse semigroup if S is an inverse semigroup. To show that a Rees quotient semigroup of a factorizable inverse semigroup is a factorizable inverse semigroup, we need the following lemma: 2.2 <u>Lemma</u>. Let S be a semigroup with identity 1 and let G be the group of units of S. If A is an ideal of S, then the set $\{a\rho_A \mid a \in G\}$ is the group of units of S/A. <u>Proof:</u> It is clear that $1\rho_A$ is the identity of S/A. Because A is an ideal of S and G is the group of units of S, it follows that either A = S or $G \cap A = \phi$. If A = S, then S/A is a trivial semigroup, so S/A = $\{1\rho_A\}$ which is a trivial group. Assume $G \cap A = \emptyset$. Let $\overline{G} = \{a\rho_{\overline{A}} \mid a \in G \}$. Then for $a \in G$, $a\rho_{\overline{A}} = \{a\}$, so \overline{G} is obvious to be a subgroup of S/A since G is a subgroup of S. Let \overline{H} be the group of units of S/A. Then $\overline{H} = \{ x \rho_A \mid (x \rho_A) (x \rho_A) = (x \rho_A) (x \rho_A) = 1 \rho_A \text{ for some } x \in S \}$. Because \overline{H} is the greatest subgroup of S/A having $1\rho_A$ as its identity and \overline{G} is a subgroup and $1\rho_A \in \overline{G}$, it follows that $\overline{G} \subseteq \overline{H}$. Next, let $x\rho_{\widehat{A}} \in \overline{H}$. Then $$(x\rho_A)(x^{\dagger}\rho_A) = (x^{\dagger}\rho_A)(x\rho_A) = 1\rho_A$$, $(xx^{\dagger})\rho_A = (x^{\dagger}x)\rho_A = 1\rho_A$, Because $1 \notin A$, xx' = x'x = 1 and hence $x \in G$. Then $x\rho_A \in \overline{G}$. Hence, we have $\overline{G} = \overline{H}$ as desired. # 2.3 Theorem. Let A be an ideal of an inverse semigroup S. If S is factorizable, the Rees quotient semigroup S/A is factorizable. $\underline{\text{Proof:}}$ Assume that S is factorizable as G.E(S). Then G is the group of units of S. By Introduction, page 5, $$E(S/A) = E(S/\rho_A) = \{e\rho_A \mid e \in E(S)\}$$ By Lemma 2.2, $\{a\rho_A \mid a \in G\} = \overline{G}$ is the group of units of S/A. Now, we show that $S/A = \overline{G}.E(S/A)$. Let $x\rho_A \in S/A$. Then x = ge for some $g \in G$, $e \in E(S)$. Therefore $x\rho_A = (g\rho_A)(e\rho_A) \in \overline{G}.E(S/A)$. Hence S/A is factorizable. # The converse of Theorem 2.3 is not true even though the Rees quotient semigroup S/A is not trivial. For example, let Y be a semilattice with Hasse diagram For each $\delta\in Y$, let $G_\delta=Z\!\!\!Z \times \delta$ and set $S=G_\alpha\cup G_\beta\cup G_\gamma$. Define the operation on S by $$(n, \delta_1)(m, \delta_2) = (n+m, \delta_1 \delta_2).$$ Then S is a semilattice Y of groups G_{α} , G_{β} , G_{γ} and $$E(S) = \{(0,\alpha), (0,\beta), (0,\gamma)\}$$ Because Y has no identity, S has no identity, so S is not factorizable. Let $A=G_{\beta}\cup G_{\gamma}$. It is easy to see that A is an ideal of S. The Rees quotient semigroup S/A is isomorphic to G_{α}^{0*} , the group G_{α} adjoined the zero 0*. But the group of units of G_{α}^{0*} is G_{α} and $E(G_{\alpha}^{0*})=\{0*,(0,\alpha)\}$ and $$G_{\alpha}^{0*} = G_{\alpha} \cdot E(G_{\alpha}^{0*}) .$$ Then G_{α}^{0*} is a factorizable inverse semigroup. Hence S/A is factorizable. # Let Y be a semilattice. Then for each $\alpha \in Y, \alpha Y$ is the principal ideal of Y generated by α and it is also a semilattice which has α as its identity, so α is the maximum element of αY ; moreover, $$\alpha Y = \{\beta \in Y \mid \beta \leq \alpha \}$$ Let $S=\bigcup_{\alpha\ \in\ Y}G_{\alpha}$ be a semilattice Y of groups G_{α} . For each $\alpha\ \in\ Y$, let $$A_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$$. Then for each $\alpha \in Y$, $A_{\alpha} = \bigcup_{\beta \in \alpha Y} G_{\beta}$. Since αY is a semilattice with identity α , A_{α} is a semilattice αY of groups G_{β} , and A_{α} has the identity e_{α} , where e_{λ} denotes the identity G_{λ} for all $\lambda \in Y$. Moreover, A_{α} is an ideal of S for all $\alpha \in Y$. To show this, let $\alpha \in Y$. Let $x \in S$ and $a \in A_{\alpha}$. Then $x \in G_{\gamma}$ for some $\gamma \in Y$ and $a \in G_{\beta}$ for some $\beta \leq \alpha$. Then $\beta = \alpha\beta = \beta\alpha$. Thus, $\alpha X \in G_{\beta} \subseteq G_{\gamma} \subseteq G_{\beta Y}$ and $\alpha X \in G_{\gamma} \subseteq G_{\gamma}$ The following proposition follows directly from the above fact and Theorem 2.1: 2.4 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . For any $\alpha \in Y$, let $A_{\alpha} = \bigcup_{\beta \leq \alpha} G_{\beta}$ If S is factorizable, then A_{α} is a factorizable inverse semigroup for all $\alpha \in Y$. The next proposition follows from Proposition 1.14. 2.5 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} with corresponding homomorphisms $\psi_{\alpha,\beta}$. Let $\alpha \in Y$ and $A_{\alpha} = \bigcup_{\beta \leq \alpha} G_{\beta}$. If $\psi_{\alpha,\beta}$ is an epimorphism for all $\beta \in Y$, $\beta \leq \alpha$, then A_{α} is a factorizable inverse subsemigroup of S.