CHAPTER I

FACTORIZABLE INVERSE SEMIGROUPS

In this chapter, we first introduce many important theorems related to factorizable inverse semigroups which have been given by S.Y. Chen and S.C. Hsieh in [6]. From their paper, we study more about factorizable inverse semigroups and we get many results concerning to minimum group congruences, the property of being proper and the property of being F-inverse.

Let S be a semigroup. The relations \mathcal{L} , \mathcal{R} and \mathcal{H} on S are defined as follows :

The relations $\mathcal L$, $\mathcal R$ and $\mathcal B$ are called <u>Green's relations</u> on S, and they are equivalence relations on S. Moreover, $\mathcal L$ is right compatible and $\mathcal R$ is left compatible. For each a \in S, let

$$L_{a} = \{ x \in S \mid x \mathcal{L}_{a} \};$$

and R_a , H_a are defined similarly.

In any semigroup S, an & - class of S containing an idempotent e of S is a subgroup of S [[1], Theorem 2.16], and

 $H_e = \{a \in S \mid ae = ea = a \text{ and } aa' = e = a'a \text{ for some } a' \in S\}$

which is the maximum subgroup of S having e as its identity. If S has an identity 1, then H_1 is the group of units of S.

The following theorem shows various properties of a factorizable inverse semigroup:

- 1.1 Theorem [6]. Let S be an inverse semigroup. If S is factorizable as S = GE, then the following hold:
 - (i) S = EG.
 - (ii) S has an identity 1 which is the identity of G.
 - (iii) $G = H_1$, the group of units of S.
 - (iv) For any g, $h \in G$ and e, $f \in E(S)$, if ge = hf, then e = f.
 - (v) E = E(S), the set of all idempotents of S.

The next theorem gives equivalent definitions of an inverse semigroup to be factorizable.

- 1.2 <u>Theorem</u> [6]. Let S be an inverse semigroup, G be a subgroup of S.

 Then the following conditions are equivalent:
 - (i) S = G.E(S).
 - (ii) $L_e = Ge$, for every $e \in E(S)$.
 - (iii) $R_e = eG$, for every $e \in E(S)$.
 - (iv) $S = \omega G$, where $\omega G = \{x \in S \mid x = ge \text{ for some } g \in G$, $e \in E(S)\}$.

In fact, by Introduction page 3, ωG in (iv) of theorem 1.2 is the set $\{x \in S \mid x \leq g \text{ for some } g \in G\}$

= $\{x \in S \mid x=eg \text{ for some } g \in G, e \in E(S)\}$ and so $\omega G = G.E(S) = E(S).G.$

Let X be a set. A one-to-one map α from a subset of X onto a subset of X is called a <u>one-to-one partial transformation of X</u>, and let $\Delta\alpha$ and $\nabla\alpha$ denote the domain and the range of α ; respectively. Let I_X be the set of all one-to-one partial transformations of X. If $\alpha \in I_X$ and $\Delta\alpha = \nabla\alpha = \phi$, then α is called the <u>empty partial transformation</u> and is denoted by 0. The product on I_X is defined as follows: For $\alpha, \beta \in I_X$, if $\nabla\alpha \cap \Delta\beta = \phi$, define $\alpha\beta = 0$, otherwise; define $\alpha\beta$ to be the composite map of α and β $(\nabla\alpha \cap \Delta\beta)\alpha^{-1}$ $(\nabla\alpha \cap \Delta\beta)\beta$

Then I_X is an inverse semigroup with zero and identity and call it the symmetric inverse semigroup on the set X; moreover, for each $\alpha \in I_X$, α^{-1} (the inverse map of α) is the unique inverse of α in I_X , and

$$\begin{split} E(I_X) &= \{\alpha \in I_X \mid \alpha \text{ is the identity map on A for some subset A} \\ &\quad \text{of X} \} \\ &= \{\alpha \in I_X \mid \alpha \text{ is the identity map on } \Delta\alpha \}. \end{split}$$

[[1], page 29]. Let ${\rm G}_{\chi}$ denote the permutation group on X. Then ${\rm G}_{\chi}$ is clear the group of units of ${\rm I}_{\chi}.$

For any set A, the notation \mid A \mid denotes the cardinality of the set A.

The following theorem shows that any symmetric inverse semigroup on a set has the largest factorizable inverse subsemigroup:

- 1.3 Theorem [6]. Let X be a set, G_X be the permutation group on X and let $T_X = \{\alpha \in I_X \mid |X \Delta \alpha| = |X \nabla \alpha| \}$. Then $T_X = \omega G_X$ is the largest factorizable inverse subsemigroup of I_X .
- 1.4 Corollary [6]. Let X be a set. Then I_X is factorizable if and only if X is finite.

A subsemigroup T of a semigroup S is said to be $\underline{\text{full}}$ if $E(S) \subseteq T$.

Let S be an inverse semigroup with identity 1 and G be the group of units of S. Then ωG is a full inverse subsemigroup of S. To prove this, let $a \in \omega G$. Since

 $\omega G = \{x \in S \mid x = \text{ge for some } g \in G \text{ and } e \in E(S)\}$ $= \{x \in S \mid x = \text{eg for some } g \in G \text{ and } e \in E(S)\},$ $a = \text{hf for some } h \in G, \text{ f} \in E(S), \text{ so } a^{-1} = \text{f}^{-1}h^{-1} = \text{fh}^{-1} \text{ [Introduction,}$ $\text{page 2] and hence } a^{-1} = \text{fh}^{-1} \in \omega G \text{ because } h^{-1} \in G. \text{ From } \omega G =$ G.E(S) = E(S).G, we have

$$(\omega \ G) \cdot (\omega \ G) = (G.E(S)) \cdot (E(S) \cdot G)$$

$$= G \cdot (E(S)^{2}) \cdot G$$

$$= G.E(S) \cdot G$$

$$= G.G.E(S) = G.E(S) = \omega G.$$

Since $1 \in G$, $E(S) \subseteq G.E(S) = \omega G$. Hence ωG is a full inverse subsemigroup of S.

The next theorem shows that $\omega\,G$ is the largest full factorizable

inverse subsemigroup of S, and it becomes the largest factorizable inverse subsemigroup of S if and only if ωG contains all subgroups of S.

1.5 Theorem [6]. Let S be an inverse semigroup with identity and G be the group of units of S. Then ω G is the largest full factorizable inverse subsemigroup of S. It is the largest factorizable inverse subsemigroup of S if and only if $H_e \subseteq \omega$ G for all $e \in E(S)$.

Using Theorem 1.3 and Corollary 1.4, an embedding theorem has been obtained in [6] as follows:

1.6 Theorem [6]. Every inverse semigroup can be embedded in a factorizable inverse semigroup.

Recall that in any inverse semigroup S, the minimum group congruence $\sigma(S)$, or σ , always exists and

$$\sigma = \{(a, b) \in S \times S \mid ae = be \text{ for some } e \in E(S)\}.$$

$$= \{(a, b) \in S \times S \mid ea = eb \text{ for some } e \in E(S)\}.$$

We show a relation between the minimum group congruence and the group of units of a factorizable inverse semigroup in the following proposition: 002145

- 1.7 Proposition. Let S be a factorizable inverse semigroup as S =
- G.E. Then every σ class of S intersects G, and hence

$$S_{/\sigma} = \{ g \sigma \mid g \in G \} .$$

<u>Proof:</u> Let as be a σ - class of S. Then there exist $e \in E(S)$, $g \in G$ such that a = ge. Therefore

ae =
$$gee$$
 = ge .

Thus a σ g so that g \in a σ . Hence a σ $G \neq \phi$. #

The following corollary follows clearly from Proposition 1.7:

- 1.8 <u>Corollary</u>. In any factorizable inverse semigroup S, the maximum group homomorphic image of S is a homomorphic image of the group of units of S.
- 1.9 Proposition. Let S be a factorizable inverse semigroup as G.E. Define a relation δ on G by

$$g \delta h \iff ge = he \text{ for some } e \in E(S).$$

Then δ is a congruence on G, and hence G/δ is a group homomorphic image of G. Moreover;

$$S/\sigma = G/\delta$$
,

That is ; G/δ is the maximum group homomorphic image of S.

<u>Proof</u>: Because for any e, f \in E(S), ef = fe \in E(S), it follows obviously that δ is an equivalence relation on G. Let a, b, c \in G such that a δ b. Then ae = be for some e \in E(S). Therefore cae = cbe, so that ca δ cb. Since $cc^{-1}\in$ E(S),

$$ac(c^{-1}ec) = aecc^{-1}c = becc^{-1}c = bc(c^{-1}ec)$$
.

But $c^{-1}ec \in E(S)$, so acobc. Thus δ is a congruence on G. Since G/δ is a homomorphic image of the group G, G/δ is a group homomorphic image of G.

Next, define
$$\theta$$
: $G/\delta \rightarrow S/\sigma$ by
$$(g\delta)\theta = g\sigma \qquad (g \in G).$$

To show θ is well - defined, let $\mathbf{g}_1^{\ \delta}$, $\mathbf{g}_2^{\ \delta} \in \mathbf{G}_{/\delta}$ such that $\mathbf{g}_1^{\ \delta} = \mathbf{g}_2^{\ \delta}$. Then $\mathbf{g}_1^{\ e} = \mathbf{g}_2^{\ e}$ for some $\mathbf{e} \in \mathbf{E}(\mathbf{S})$ and so $\mathbf{g}_1^{\ \sigma} = \mathbf{g}_2^{\ \sigma}$ which implies $(\mathbf{g}_1^{\ \delta}) \ \theta = (\mathbf{g}_2^{\ \delta}) \ \theta$.

Let $g_1 \delta$, $g_2 \delta \in G/\delta$. Then

$$((\mathbf{g}_{1}^{\delta})(\mathbf{g}_{2}^{\delta})) \theta = ((\mathbf{g}_{1}^{g}\mathbf{g}_{2}^{\delta}) \theta$$

$$= (\mathbf{g}_{1}^{g}\mathbf{g}_{2}^{g}) \sigma$$

$$= (\mathbf{g}_{1}^{\sigma})(\mathbf{g}_{2}^{\sigma})$$

$$= ((\mathbf{g}_{1}^{\delta}) \theta)((\mathbf{g}_{2}^{\delta}) \theta).$$

This proves θ is a homomorphism.

To show θ is onto, let $a\,\sigma\in S/\sigma$. Since S is factorizable as G.E, by Proposition 1.7, there exists $g\in G$ such that $g\in a\,\sigma$. Then $g\sigma=a\sigma$, and therefore

$$(g\delta)\theta = g\sigma = a\sigma$$
.

Next, to show θ is one-to-one, let $\mathbf{g}_1^{\ \delta}$, $\mathbf{g}_2^{\ \delta}$ \in G/δ such that $(\mathbf{g}_1^{\ \delta})\theta = (\mathbf{g}_2^{\ \delta})\theta$. Therefore $\mathbf{g}_1^{\ \sigma} = \mathbf{g}_2^{\ \sigma}$. Then $\mathbf{g}_1^{\ e} = \mathbf{g}_2^{\ e}$ for some $\mathbf{e} \in E(S)$ and hence $\mathbf{g}_1^{\ \delta} = \mathbf{g}_2^{\ \delta}$. Hence θ is an onto isomorphism. Therefore

$$S/\sigma = G/\delta$$
,

as required. #

We show in the next theorem that the group of units of a factorizable inverse semigroup S becomes the maximum group homomorphic image of S if S is proper. 1.10 Theorem. Let S be a factorizable inverse semigroup as G.E(S). If S is proper, then $G \cong S/\sigma$.

<u>Proof.</u> To prove this theorem, it suffices to show that the congruence δ defined on G as in Proposition 1.9 is the identity congruence. Recall that g_1 , $g_2 \in G$,

$$g_1^{\delta} g_2 \iff g_1^{e} = g_2^{e} \text{ for some } e \in E(S).$$

Let g_1 , $g_2 \in G$ such that $g_1 \delta g_2$. Then $g_1 e = g_2 e$ for some $e \in E(S)$. Thus $(g_2^{-1} g_1)e = 1e = e$ where 1 is the identity of S. Since S is proper, $g_2^{-1}g_1 \in E(S)$. But $g_2^{-1} g_1 \in G$. Then $g_2^{-1} g_1 = 1$ which implies $g_1 = g_2$.

This proves that δ is the identity congruence on G. #

The following example shows that in any factorizable inverse semigroup S which is not proper, the maximum group homomorphic image of S is not necessarily isomorphic to the group of units of S:

Example: Let $Y = \{\alpha, \beta\}$ be a semilattice with its Hasse diagram

and let $G_{\alpha} = \alpha \times \mathbb{Z} = \{(\alpha, n) \mid n \in \mathbb{Z} \},$ $G_{\beta} = \{(\beta, 0) \},$

where Z denotes the set of all integers.

Set S = $G_{\alpha}U$ G_{β} , and define an operation * on S by

$$(\lambda, n) * (\lambda', n') = \begin{cases} (\lambda, n + n') & \text{if } \lambda = \lambda' \\ (\beta, o) & \text{if } \lambda \neq \lambda' \end{cases}.$$

Then (S,*) is a semilattice Y of groups G_α and G_β , and hence (S,*) is an inverse semigroup. It is clearly seen that

$$E(S) = \{(\alpha, 0), (\beta, 0)\}$$

and $(\alpha, 0)$ is the identity of S. Therefore G_{α} is the group of units of S and G_{α} is clearly isomorphic to the group (Z, +).

The semigroup S is obviously factorizable as ${\sf G}_{\alpha}$. E(S).

From the definition of *, (S, *) has (β , o) as its zero. Then the minimum group congruence of S, σ , is S x S, and so $|S/\sigma| = 1$. Hence S/σ is not isomorphic to C_{α} .

We have $(\alpha, 1) \notin E(S)$, $(\beta, o) \in E(S)$ and $(\alpha, 1) * (\beta, o) = (\beta, o)$. Therefore S is not proper. #

The above example also shows that a factorizable inverse semigroup need not be proper.

An inverse semigroup S is called an \underline{F} - inverse semigroup if each σ - class of S has a maximum element under the natural partial order. Any F - inverse semigroup is proper and has an identity [Introduction, page 8]. Then any semilattice without identity is proper but not F - inverse. In fact, a proper inverse semigroup with identity need not be F - inverse.

We will show in the next theorem that a proper and factorizable inverse semigroup is F - inverse.

1.11 Theorem. If S is proper and factorizable inverse semigroup, then

S is F - inverse.

<u>Proof:</u> Let S be a factorizable as G.E(S). Let $a \circ be$ $a \circ -c$ class of S. By Proposition 1.7, there exists $g \in G$ such that $g \in a \circ c$. Let $h \in G$ such that $h \in a \circ c$. Then $(h,g) \in \sigma$, so there exists $f \in E(S)$ such that hf = gf. Therefore $g^{-1}hf = f$. Since S is proper, $g^{-1}h \in E(S)$. But $g^{-1}h \in G$. Then $g^{-1}h = 1$ and hence g = h. This proves that for each $a \in S$, There exists a unique $g \in G$ such that $g \in a \circ c$.

Let $a \in S$ and $g \in G \cap a\sigma$. We claim that g is the maximum element of the σ - class $a\sigma$. Let $x \in a\sigma$. Then xf = gf for some $f \in E(S)$. Since $x \in S = GE(S)$, x = ke for some $k \in G$, $e \in E(S)$. Therefore (ke)f = gf, and so kef = gef. Thus $(k, g) \in \sigma$. From above proof, we have k = g. Hence x = ge so that $x \leq g$ [Introduction, page 3]. This shows that g is the maximum element of $a\sigma$.

Hence each $\,\sigma$ - class of S has a maximum element. Therefore S is F - inverse. #

The following example shows that an F - inverse semigroup need not be factorizable. Hence, the converse of Theorem 1.11 is not true in general.

Example. Let $Y = {\alpha, \beta}$ be a semilattice with its Hasse diagram

and let $G_{\alpha} = 2 \mathbb{Z} \times \alpha$, $G_{\beta} = \mathbb{Z} \times \beta$.

Set S = $G_{\alpha}\,U$ G_{β} , and define an operation o on S by

$$(n,\lambda) \circ (m,\lambda') = (n+m,\lambda\lambda')$$
 $((n,\lambda), (m,\lambda') \in S).$

Then (S, o) is a semilattice Y of groups G_{α} and G_{β} , so S is an inverse semigroup. Moreover,

$$E(S) = \{(0,\alpha), (0,\beta)\}.$$

It is easily seen that for any (n, λ) and $(m, \lambda') \in S$,

$$(n, \lambda) \sigma (m, \lambda') \iff n = m$$

Hence for any $n \in \mathbb{Z}$, $(n, \alpha)_{\sigma} = \{(n, \alpha), (n, \beta)\}$ if n is even,

$$(n, \beta)\sigma = \{(n, \alpha), (n, \beta)\}$$
 if n is even,

$$(n, \beta)\sigma = \{(n, \beta)\}$$
 if n is odd,

and if n is even, then $(n, \alpha)o(0, \beta) = (n, \beta)$ so that $(n, \beta) \leq (n, \alpha)$. Therefore every σ - class of S has a maximum element. Since $(0, \alpha)$ is the identity of S, G_{α} is the group of units of S. Because $(3, \beta) \in S$ but $(3, \beta) \notin G_{\alpha}$. E(S). Then $S \neq G_{\alpha}$. E(S). Therefore S is not a factorizable inverse semigroup.

Because every F - inverse semigroup is proper, the above example also shows that a proper inverse semigroup is not necessarily factorizable. However, a certain condition for a proper inverse semigroup with identity to become factorizable is given in term of its minimum group congruence as follows:

1.12 Proposition. Let S be a proper inverse semigroup with identity, and G be the group of units of S. If every σ - class of S intersects G,

then S is factorizable.

Proof: Let $x \in S$. Then $x\sigma$ intersects G. Let $g \in x\sigma \cap G$. Then $g \circ x$, and so xe = ge for some $e \in E(S)$. Therefore g^{-1} xe = 1e = e. Since S is proper, $g^{-1}x = f$ for some $f \in E(S)$. Thus $x = gf \in G$. E(S). Hence S = G. E(S) as required. #

Any F - inverse semigroup is proper and has identity. Then the following corollary follows:

1.13 <u>Corollary</u>. Let S be an F - inverse semigroup. If every σ - class of S intersects the group of units G of S, then S is factorizable.

Let $S=\bigcup_{\alpha\in Y}G_{\alpha}$ be a semilattice Y of groups G_{α} . For each $\alpha\in Y$, let e_{α} denote the identity of the group G_{α} . Then

$$E(S) = \{ e_{\alpha} \mid \alpha \in Y \}$$

and it is contained in the center of S [[1], Lemma 4.8]. For each pair α , $\beta \in Y$ such that $\alpha \geq \beta$, the map ψ_{α} , $\theta \in G_{\alpha} \to G_{\beta}$ which is defined by

$$g\psi_{\alpha,\beta} = ge_{\beta}$$
 $(g \in G_{\alpha})$

is a homomorphism; moreover, if $\alpha \geq \beta \geq \gamma$, $\psi_{\alpha,\beta}$ $\psi_{\beta,\gamma} = \psi_{\alpha,\gamma}$ [[1], Theorem 4.11]. We call the maps $\psi_{\alpha,\beta}$ the <u>corresponding homomorphisms</u> of the semilattice Y of groups G_{α} . It is easy to see that E(S) is isomorphic to Y by the isomorphism : $e_{\alpha} \rightarrow \alpha \ (\alpha \in Y)$. It then follows that $e_{\alpha}e_{\beta} = e_{\alpha\beta}$ for all $\alpha,\beta \in Y$. Hence if S has an identity, then Y

has an identity. Also, if Y has an identity 1, then e_1 is the identity of S. To show this, let $\alpha \in Y$ and $x \in G_{\alpha}$. Then

$$xe_1 = (xe_{\alpha})e_1 = x(e_{\alpha}e_1) = xe_{\alpha 1} = xe_{\alpha} = x$$

and $e_1x = e_1(e_{\alpha}x) = (e_1e_{\alpha})x = e_1x = e_{\alpha}x = x$.

Thus, if S is factorizable, then Y has an identity 1 and \mathbf{G}_1 is the group of units of S.

1.14 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} with corresponding homomorphisms $\psi_{\alpha,\beta}$. Then S is factorizable if and only if Y has an identity 1 and $\psi_{1,\alpha}$ is an epimorphism for all $\alpha \in Y$.

<u>Proof:</u> Assume S is factorizable as G.E(S). From above explanation, Y has an identity 1.

Let α be any element of Y. To show $\psi_{1,\alpha}: G_1 \to G_\alpha$ is onto, let $x \in G_\alpha$. Since $S = G \cdot E(S)$, there exist $g \in G_1$, $\beta \in Y$ such that $x = ge_\beta$. Claim that $\alpha = \beta$. Since $x = ge_\beta$, $x \in G_1 \cdot G_\beta \subseteq G_\beta$. But $x \in G_\alpha$, then $\alpha = \beta$. Therefore

$$x = ge_{\beta} = ge_{\alpha} = g\psi_{1,\alpha}$$

Thus $\psi_{1,\alpha}$ is onto.

Conversely, assume that $\psi_{1,\alpha}$ is an epimorphism for all $\alpha \in Y$. Let $x \in S$. Then there exists $\alpha \in Y$ such that $x \in G_{\alpha}$. Since $\psi_{1,\alpha}$ is an epimorphism, there exists $g \in G_1$ such that $x = g\psi_{1,\alpha} = ge_{\alpha} \in G_1$. E(S). Therefore $S = G_1$. E(S). Hence S is factorizable. #

The following corollary follows directly from Proposition 1.14:

1.15 Corollary. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . Then S is factorizable if and only if Y has an identity 1 and $G_1 e_{\alpha} = G_{\alpha}$ for all $\alpha \in Y$.

1.16 Theorem. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . If S is factorizable, then all the homomorphisms $\psi_{\alpha,\beta}$ are epimorphisms. The converse is true if S has an identity.

<u>Proof:</u> Assume that S is factorizable. By Proposition 1.14, Y has an identity 1 and $\psi_{1,\gamma}$ is an epimorphism for all $\gamma \in Y$. Let α , $\beta \in Y$ such that $\alpha \geq \beta$. Then $1 \geq \alpha \geq \beta$ and so

$$\psi_{1,\beta} = (\psi_{1,\alpha}) (\psi_{\alpha,\beta}).$$

Since $\Psi_{1,\beta}$ is onto, $\Psi_{\alpha,\beta}$ is onto.

Conversely, assume all the homomorphisms $\psi_{\alpha,\beta}$ are onto and S has an identity. Then Y has identity 1, and then for each $\alpha \in Y$, $\psi_{1,\alpha}$ is onto. By Proposition 1.14, S is factorizable. #

1.17 <u>Lemma</u>. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} and $\psi_{\alpha,\beta}(\alpha \geq \beta)$ be its corresponding homomorphisms. Then the following are equivalent:

- (i) S is proper.
- (ii) All homomorphisms $\psi_{\alpha,\beta}$ are one-to-one-

 $b^{-1}a = e_{\alpha}$ and hence a = b.

Conversely, assume that all the homomorphisms $\psi_{\alpha,\beta}$ are one-to-one. Let $a \in S$, $e \in E(S)$ such that ae = e. Assume $a \in G_{\alpha}$ and $e \in G_{\beta}$. Then $e_{\beta} = ae_{\beta} \in G_{\alpha\beta}$ and so $\beta = \alpha\beta$ which implies $\alpha \geq \beta$. Hence $\psi_{\alpha,\beta}$ is defined. From $\beta = \alpha\beta$, we have $e_{\beta} = e_{\alpha\beta} = e_{\alpha}e_{\beta}$. Therefore $ae_{\beta} = e_{\alpha}e_{\beta}$ which implies $a\psi_{\alpha,\beta} = e_{\alpha}\psi_{\alpha,\beta}$. Since $\psi_{\alpha,\beta}$ is one-to-one, we have $a = e_{\alpha}$. Hence $a \in E(S)$. This proves that S is proper.#

1.18 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} with corresponding homomorphisms $\psi_{\alpha,\beta}$.

Then, if S is factorizable and proper, then all the groups G_{α} are isomorphic and for each $\alpha \in Y$, G_{α} is the maximum group homomorphic image of S and S \cong G_{α} x Y.

<u>Proof:</u> Assume S is factorizable and proper. By Lemma 1.17, all the homomorphisms $\psi_{\alpha,\beta}$ are one-to-one. Since S is factorizable, Y has an identity 1. All the homomorphisms $\psi_{\alpha,\beta}$ are onto by Theorem 1.16. Hence $\psi_{1,\alpha}$ is an onto isomorphism for all $\alpha \in Y$. Therefore $G_1 \cong G_{\alpha}$ for all $\alpha \in Y$. By Theorem 1.10, $G_1 \cong S/_{\sigma}$ which implies $G_{\alpha} \cong S/_{\sigma}$ for all $\alpha \in Y$ and hence for each $\alpha \in Y$, G_{α} is the maximum group homomorphic image of S.

Next, we define θ : $S = G_1 . E(S) \rightarrow G_1 \times Y$ by $(ge_{\alpha})\theta = (g,\alpha) \qquad (g \in G_1, \alpha \in Y).$

To show θ is well-defined, let $\mathbf{g}_1\mathbf{e}_{\alpha}$, $\mathbf{g}_2\mathbf{e}_{\beta} \in S = G_1.E(S)$ such that $\mathbf{g}_1\mathbf{e}_{\alpha} = \mathbf{g}_2\mathbf{e}_{\beta}$. Since $\mathbf{g}_1\mathbf{e}_{\alpha} \in G_{\alpha}$ and $\mathbf{g}_2\mathbf{e}_{\beta} \in G_{\beta}$, we have $\alpha = \beta$. Therefore

 $g_2^{-1}g_1e_{\alpha}=e_{\alpha}$. Since S is proper, $g_2^{-1}g_1\in E(S)$ which implies $g_2^{-1}g_1=e_1$ so that $g_1=g_2$. Therefore

$$(\mathbf{g}_{1} \mathbf{e}_{\alpha}) \theta = (\mathbf{g}_{1}, \alpha) = (\mathbf{g}_{2}, \beta) = (\mathbf{g}_{2} \mathbf{e}_{\beta}) \theta$$
.

Let $g_1 e_{\alpha}$ and $g_2 e_{\beta} \in S$. Then

$$((\mathbf{g}_{1}\mathbf{e}_{\alpha})(\mathbf{g}_{2}\mathbf{e}_{\beta}))\theta = ((\mathbf{g}_{1}\mathbf{g}_{2})(\mathbf{e}_{\alpha}\mathbf{e}_{\beta}))\theta \text{ (since } E(S) \subseteq C(S))$$

$$= ((\mathbf{g}_{1}\mathbf{g}_{2})\mathbf{e}_{\alpha\beta})\theta$$

$$= (\mathbf{g}_{1}\mathbf{g}_{2}, \alpha\beta)$$

$$= (\mathbf{g}_{1}, \alpha)(\mathbf{g}_{2}, \beta)$$

$$= ((\mathbf{g}_{1}\mathbf{e}_{\alpha})\theta)((\mathbf{g}_{2}\mathbf{e}_{\beta})\theta).$$

Therefore θ is a homomorphism and θ is clearly onto and one-to-one. Hence θ is an onto isomorphism. This proves that $S \cong G_1 \times Y$. Since for each $\alpha \in Y$, $G_{\alpha} \cong G_1$, it follows that $S \cong G_{\alpha} \times Y$ for all $\alpha \in Y$. #

Let G be a group and Y be a semilattice. Then the semigroup $G \times Y$ is a semilattice Y of groups G_{α} where $G_{\alpha} = \{(g,\alpha) \mid g \in G\}$. A proof is given as follows: It is clear that $S = \bigcup_{\alpha \in Y} G_{\alpha}$ is a disjoint union, and for each $\alpha \in Y$, G_{α} is a group. Let $(g,\alpha) \in G_{\alpha}$ and $(h,\beta) \in G_{\beta}$. Then $(g,\alpha)(h,\beta) = (gh,\alpha\beta) \in G_{\alpha\beta}$.

If e is the identity of G, then

$$E(G \times Y) = \{(e, \alpha) \mid \alpha \in Y\}$$

which is isomorphic to Y.

1.19 Proposition. Let G be a group and Y be a semilattice with identity 1. Assume that a semigroup S is isomorphic to the semilattice Y of groups, $G \times Y$. Then S is factorizable and proper, and hence S is

F-inverse and G is the maximum group homomorphic image of S.

<u>Proof:</u> Clearly, $G_1 = \{(g,1) \mid g \in G \}$ is the group of units of $G \times Y$. Let $\alpha \in Y$ and $(g,\alpha) \in G_{\alpha}$. Let e be the identity of G. Then $(g,\alpha) = (g,1)(e,\alpha) \in G_1 \cdot E(G \times Y)$. Hence $G \times Y$ is factorizable.

Let $(g,\alpha) \in G \times Y$ and $(e,\beta) \in E(G \times Y)$ such that

$$(g,\alpha)(e,\beta) = (e,\beta)$$
.

Then $(g, \mathbf{e}(\beta)) = (e, \beta)$, so g = e and hence $(g, \alpha) = (e, \alpha) \in E(G \times Y)$. Hence $G \times Y$ is proper.

By Theorem 1.10, G_1 is the maximum group homomorphic image of $G \times Y$. But $G_1 \cong G$. Then G is the maximum group homomorphic image of $G \times Y$. Since $G \times Y$ is proper and factorizable, by Theorem 1.11, $G \times Y$ is F - inverse.

Because S is isomorphic to G x Y, the proposition follows. #