CHAPTER I

FACTORIZABLE INVERSE SEMIGROUPS

In this chapter, we first introduce many important theorems re-
lated to factorizable inverse semigroups which have been gi\)en by S.Y.
Chen and S.C. Hsieh in [6]. From their paper, we study more about
factorizable inverse semigroups and we get many results concerning to
minimum group congruences, the property of being proper and the pro-

perty of being F-inverse.

Let S be a semigroup. The relations '0%, R) and % on S are

defined as follows :

1 1

aéeb {: S'fa = Sb.
1

a R b, aS' ,
Ko - Lak. ;

1]
o
wnn

The relations% ,R) and% are called Green's relations on S,

and they are equivalence relations on S. Moreover,% ‘is‘right com-

patible and %is left compatible. . For each a € S, let
by~ B {xéslxcga Y3
and Ra-’ Ha are defined similarly.
In any semigroup S, an % - class of S containing an idempo-
tent e of S is a subgroup of S [[1], Theorem.2.16 ], and

He ={ageS | ae =ea=aand aa' = e = a'a for some a'€s}
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" which is the maximum subgroup of S having e as its identity. If S has

an identity 1, then H1 is the group of units of S.

The following theorem shows various properties of a factoriza-

ble inverse semigroup :

1.1 Theorem [6]. Let S be an inverse semigroup. If S is factorizé-
.ble as S = GE, then the following hold :
(1) S = EG.

(ii) S has an identify 1 which is the identity of G.

—~
H.

H‘ ~
H'

—
(]
]

Hl’

(iv) For any g, h € G and e, f € E(S), if ge = hf, then e

the group of units of S.

1}
Hh

(V) E = E(S), the set of all idempotents of S.

The next theorem gives equivalent definitionsof an inverse semi- |

group to be factorizable.

1.2 Theorem [6]. Let S be an inverse semigroup, G be a subgroup of S.
Then the following coﬁditions are equivalent :

(i) S = G.E(S).

(3d) Le'ﬁwGe,'for every e € E(S).

(iii) Re = eG, for every e € E(S).

(iv) S = wG, where wG = {x€ S | x = ge for some g€ G,

e € E(S)}.

In fact, by Introduction page 3 , wG in (iv) of theorem 1.2 is

the set {x &€ S | x < g for some g € G}
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= {x €S | x=eg for some g € G, e € E(S)} and so wG = G.E(S) = E(S).G.

Let X be a set. A one-to-one map o from a subset of X onto a

subset of X is called a one-to-one partial transformation of X,

and let Ao and Vo denote the domain and the range of a; respective-

ly. Let'IX be the set of all one-to-one partial transformations of X.

If'déiIX and Aa = Va = ¢ , then a is called the empty partial trans-

formation and is denotéd by 0. The product on Iy is defined as fol-
lows : For a,B € Iys if VaQ AR = ¢ , define aB = 0, otherwise;

define af to be the composite map of a and B _ -
(VaN AB)at (Va N AB)B

Then IX is an inverse semigroup with zero and identity and call it the

symmetric inverse semigroup on the set X; moreover, for each ocelx,

g (the.inverse map of &) is the unique inverse of:a inAIX,,and,;,

E(Ix) ={a'€ Ix | o-is the identity map on A for some subset A
of X}

={a € Iy | o is the identity map on Aa L

[[1], page 29 ]. Let GX denote the permutation group on X. Then GX
is clear the group of units of IXO
For any set A, the notation l A ] denotes the cardinality of

the set A.

The following theorem shows that any symmetric inverse semi-

group on a set has the largest factorizable inverse subsemigroup :
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1.3 Theorem [6]. Let X be a set, Gy be the permutation group on X

and let Ty = {oa€Iy | X - baof |X - va| }. Then T, = uGy is

the largest factorizable inverse subsemigroup of Ix.

1.4 Corollary [6]. Let X be a set. Then IX is factorizable if and

only if X is finite.

A subsemigroup T of a semigroup S -is said to be full if-

E{8). € T.

Let S be an inverse semigroup with identity 1 and G be the‘group
of units of S. Then wG is a full inverse subsemigroup of S. To prove

this, let .a € wG. Since-

wG

{x€ S | x =ge for some g € G and e € E(S)}

{xes | x

eg for some g ¢ G and e € E(S)},
4 = hE for some h € G, -GS —soa—=F;/m | = th"" [Introduction,
page 2 ] and hence a~l'= fn™! € wG because hle G. From wG =

G.E(S) = E(S);G, we have
(w G).(w G) (G.E(S)}.(E(S) .G)

6. (E($)?).6

G.E(S) .G

G.G.E(S) = G.E(S) = wG.
Since 1 € G, E(S) € G.E(S) = wG. Hence wG is a full inverse subsemi-

group of S.

The next theorem shows that wG is the largest full factorizable
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inverse subsemigroup of S, and it becomes the largest factorizable in-
verse subsemigroup of S if and only if wG contains all subgroups of

S.

1.5 Theorem [6]. Let S be an inverse semigroup with identity and Gbe
the group of units of S. Then wG is the largest full factorizable
inverse subsemigroup of S. It is the largest factorizable inverse

“subsemigroup of S if and only it HeQLu)G for all e € E(S).

Using Theorem 1.3 and Corollary 1.4, an embedding theorem has

been obtained in [6] as follows :

1.6 Theorem [6]. Every inverse semigroup can be embedded in a facto-

rizable inverse semigroup.

Recall that in any inverse semigroup S, the minimum group con-

. gruence . 0 (S), or o, always exists and

{(a, b)ES xS | ae

be for some e € E(S)} .

Q
1}

{(a, b)€S x S | ea = eb for some e € E(S)} .

We show a relation between the minimum group congruence and
the group of units of a factorizable inverse semigroup in the following

proposition : fovao
0 )1 Ly
UU@L@Q

1.7 Proposition. Let S be a factorizable inverse semigroup as S =

G.E. Then every ¢ - class of S intersects G, and hence

S/ =1{golgeql
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Proof: Let ac be 4 o - class of S. Then there exist e€E(S),
g € G such that a = ge. Therefore
ae = gee = ge.

Thus acg so that g € ac. Hence ach G # ¢. #
The following corollary follows clearly from Proposition 1.7:

1.8 Corollary. In any factorizable inverse semigroup S, the maximum
group homomorphic image of S is a homomorphic image of the group of

umits of S.

1.9 Proposition. Let S be a factorizable inverse semigroup as G.E.
Define a relation & on G by
g 6§ h &—= ge = he for some e € E(S).
Then & is a congruence on G, and hence G/§ is a group homomorphic
image of G. Moreover;
$/c =B/
That is ; G/g 1is the maximum group homomorphic image of S.

Proof : Because for any e, f € E(S), ef = fe € E(S), it follows

obviously that & is an equivalence relation on G. Let a, b, c &€ G
such that a 6 b. Then ae = be for some e € E(S). Therefore cae = cbe,
so that cadcb. Since cc—lé E(S),

ac(c—lec) e Bent e = bc(c_lec).
But c-lec € E(S), so acébc. Thus 6§ is a congruence on G. Since G/g
is a homomorphic image of the group G, G/g is a group homomorphic

image of G.
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Next, define 6 : G/§ > S/g Dby
(gd)e = go (g € G).
To show 6 is well - defined, let g8 , g,9 € G/5 such that g 8 = g,8o.
Then g.e = gy¢ for some e € E(S) and so 8,0 = 8,0 which implies
(g,8) 0 = (g,9) 0.

Let glé‘, gzﬁ € G/s . Then

n

((g,8)(g,8)) 8 = ((g;2,)8)0

= (g485)0

= (g;9)(g,9)

= ((g,8)0)((g,8)0).
This proves 0 is a homomorphism.

To show 6 is onto, let a<J€,S/o . Since S is factorizable as
G.E, by Proposition 1.7, there eiists g € G such that g € ao. Then
go = aco ,:and therefore |
(gé)6 = go = ao .

Next, to show 6 is one-to-one, let g.8 , g,8 & G/§ such that
1 2 /

(gld)e = (g26)6 . (Therefore gxORi BaivEs Then g, = g,¢ for some
e€ E(S) and hence g16 = g26 . Hence 6 is an onto isomorphism.
.Therefore

S/c = G/G s

as required. #

We show in the next theorem that the group of units of a facto-
rizable inverse semigroup S becomes the maximum group homomorphic

image of S if S is proper.
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1.10 Theorem. Let S be a factorizable inverse semigroup as G.E(S).

If S is proper, then.G = Sjfo .

Proof. To prove this theorem, it suffices to show that the
congruence § defined on G as in Proposition 1.9 is the identity con-

gruence. Recall;thatagl, g2e G,

815 g, 8, = §,° for some e € E(S)..

Let g,, &, € G such that g8 8- Then g.e = gye for some
e € E(S). Thus (gé1 gl)e = le = € where 1 is the identity of S.

1

Since S is proper, gélglé E(S). But g;‘ glé G. Then 851 g = |

which implies g, = 8-
This proves that § is the identity congruence on G. #
The following example shows that in any factorizable ‘inverse

semigroup S which is not proper, the maximum group homomorphic image

of S is not necessarily isomorphic to the group of units of S :

{08} be a semilattice with its Hasse diagram

Examgle ¢ Let Y

o

[

B
axZ = {(o,n)| n€Z Y},

and let G
o

G, = { (8,0},

where Z denotes the set of all integers.
Set S = GoLU GB , and define an operation * on S by
(A, n + n'") S A= AT

(A, n) » &Y 8} =<
(8, o) if A # A



Then (S,*) is a semilattice Y of groups Ga and GB , and hence (S,*)

is an inverse semigroup. It is clearly seen that
E(S)- = {(u‘: 0)_, (B, O)}

and (a,0) is the identity of S. Therefore Ga is the group of umits

of S and .G, is clearly isomorphic to the-group-(Z, +).
The semigroup S is- ebviously factorizable as'Gd. E(S}:

From the definition of *, (S, *) has (B, o) as its zero. Then
the minimum group congruence of S, o, is § x S, and so | S/o| =1,
Hence Sj; is not isomewphic to 6 .

We have (o, 1) € E(S), (B, o) € E(S) and (o, 1) * (B, 0) =

(B,0). Therefore S is not proper. #

The above example also shows that a factorizable inverse semi-

group need not be proper.

An inverse semigroup S is called an F - inverse semigroup if

each 0 - class of S has a maximum element undef»the naturel partial
order. Any F - inverse semigroup is proper and has an identity
[Introduction, page 8 ] . Then any semilattice without identity is
proper but not F - inverse. In fact, a proper‘inverse semigroup with

identity need not be F - inverse.

19

We will show in the next theorem that a proper and factorizable

inverse semigroup is F - inverse.

1.11 Theorem. If S is proper and factorizable inverse semigroup, then
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S is F - inverse.

Proof: Let S be a factorizable as G.E(S). Let aobe a o -
class of S. By Proposition 1.7, there exists g & G such thatAg € ao.
Let h € G such that h € ao. Then (h,g)€éo, so there exists f & E(S)
such that hf = gf. Therefore g_lhf'= f. Since S is proper,
¢ e E(S). But g 'h€ G. Then g 'h = 1 and hence g = h. This
proves that for each a € S, There exists a unique g€ G éuch \that

‘g€ ao.

Let a€ Sand ge GNao. We claim that g is the maximum |
element of the o - class ao. Let x € aoc. Then xf = gf for some
f € E(S). Since x € S=GE(S),x = ke for some k & G, e € E(S).
Therefore (ke)f = gf, and so kef = gef. Thué (k, g) € oc. From
above proéf, we have k = g. Hence x = ge so that x < g [Introduction,
page 3 ]. This showsthat g is the maximum element of ao.

Henceeach o - class of S has a maximum elemént.' Therefore

S is F - inverse. #

The following example shows that an F - inverse semigroup
need not be factorizable. Hence, the converse of Theorem 1.11 is

not true in general.

Example. Let Y = {a, B} be a semilattice with its Hasse diagram

™0 —0 R

and let = G 2 Zxa ,

(]
1]

Zx B
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Set S = GgU Gg , and define an operation o on S by
(n,A)o(m,2') = (n+m,2x") €(m,A\), (m,A')€S).
Then (S, o) is a semilattice Y of groups Ga and GB , so S is an inverse
semigroup. Moreover,
E(S) = {(0,a), (0,8)1}.

It is easily seen that for any (n, 1) and (m, ') € S,

(n, A) o (A A== n = n.

{(n, o),(n, g)} if n .is even,

Hence for any n € Z, (n, a)o

(n, B)o

{(n, @),(n, B)} if n is even,

(n, B)o {(n, B)} if n is odd,

and if n is even, then (n, @)o(0, B) = (n, B) so that (n, B) < (n, a).
Therefore every o - class of S has a maximum element. Since (0, a)

is the identity of S, Ga is the group of umits of S. Because (3, B)ES
but (3, B) € Ga' E(S). Then S # Ga. E(S). Therefore S is not a facto-

rizable inverse semigroup. *

Because every F - inverse semigroup is proper, the above éxample
alsd shows that a proper inverse semigroup is not necessarily factori-
zable. However, a certain condition for a proper inverse semigroup
with identity to become factorizable is given in term of its minimum

group congruence as follows :

1.12 Proposition. Let S be a proper inversé semigroup with identity, and

G be the group of units of S. If every o - class of S intersects G,
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then S is factorizable.

Proof: Let x€ S. Then x0 intersects G. Let g € xo N G.
‘Then g 0x, and so xe = ge for some e € E(S). Therefore g_1 xe = le
= e. Since S is proper, g_lx = f for some £ € E(S). Thus x =

gf € G. BE(S). Hence S = G. E(S) as required. #

Any F - inverse semigroup is proper and has identity. Then

the following corollary follows :

1.13 Corollary.. Let S be an F - inverse semigroup. If every o -
class of S intersects the group of units G of S, then S is factori-

zable.

Let S = a%@ Ga be a semilattice Y of groups Ga . For each

a€yY, let e, denote the .identity of the group G, . Then
E(S)~={ea|a€Y}

and it is contéined in the center of S [[1], Lemma 4.8 ]. For each

pair a, B € Y such that o >8 , the map wu,s ~ Gq > GB which

is defined by
= - G
gl g gey (g € Gy)
is a homomorphism; moreover, if a > B >¥ ¥, 5 Vg . =V, | [[1],

Theorem 4.11 ], We call the maps wa 8 the corresponding homomorphisms
3 1

of the semilattice Y of groups Gd . It is easy to see that E(S) is

isomorphic to .Y by the isomorphism : e, ~¢ (¢« € Y). It then follows

that €88 = €4 for all a, BE€ Y. Hence if S has an identity, then Y
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has an identity. Also, if Y has an'identity 1, then e, is the identi-

1
ty of S. 'Tq show this, let oo € Y and x € G, . Then
xe, = (xem)e1 = x(euel) = xe,, = xe = X
and - Bk - el(edx) = (eled)x = e X Tex = X

Thus, if S is factorizable, then Y has an identity 1 and G1 is _the

group of units of S.

1.14 Proposition. Let S = aLeJ YGoc be a semilattice Y of groups Ga
with corresponding homomorphisms vy, 8" Then S is factorizable if and
2

only if Y has an identity 1 au'-lcl-.-tl)1 a is an.epimorphism .for- all-a €Y.
_ ) :

Proof: Assume S is factorizable as G . E(S). From above ex-
planation, Y has an identity 1.
* Let o be any element of Y. To show wl,on ¥ G1 > Ga is onto,
let x€ G, . Since S = G.E(S), there exist g€ G, B € Y such that
x = geg . Claim that @.=B8 . Since x = gegs xEGl.GBQG . But

B
X € Gu , then a = B . Therefore-

X = ge6 RSWER gwl,oc'

Thus wl,u is onto.

Conversely, assume that 11)1 . is an epimorphism for all o € Y.
3
Let x € S. Then there exists o € Y such that x € G_. ‘Since L2 is
) ]
an epimorphism, there exists g ¢ G1 such that x = gwl,a= ge_ae, Gl.E(S) ;

Therefore» S = Gl.E(S) . Hence S is factorizable. #

The following corollary follows directly from Proposition 1.14:
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1.15 Corollary. Let S = LGJY G, be a semilattice Y of groups G
e e o

Then S is factorizable if and only if Y has an identity 1 and

Geq =Gy for all & & Y.

1.16 Theorem. Let'S = U G, be a semilattice Y of groups G_ .
i 0y © o

If S is factorizable, then all the homomorphisms ‘wa 8 are epimorphisms.
£

The converse is true if S has an identity.

Proof: Assume that S is factorizable. By Proposition 1.14,
Y has an identity 1 and lbl ~ is an epimorphism for all Y& Y. Let
$ ]

o, BE Y such that a>B . Then 1 > o > B and so
byg = ) Uy )

Since V¥ is onto, V¥ is onto.
o, B

1,8

Conversely, assume all the homomorphisms l‘ba g are onto and S
i _

- has an identity. Then Y has identity 1, and then for each a €Y,

v

o is onto. By Proposition 1.14, S is factorizable. #
s i

1.17 Lemma. Let S = U G, be a semilattice Y of groups G, and
) aEy
P B(a ‘> g) be its corresponding homomorphisms. Then the following

Qs
are equivalent :
(i) S is proper.

(ii) All homomorph»ismswa are one-to-ones
L]

B
Proof: Assume S is proper. Let o > B. Then B = aB = Ba .
To show that npq’s is one-to-one,. let a,b € Ga such that awa,B = b\pu’B.
B, -1 _ -1 = . " " .
Then aeg = beB and so b aeg = b beB €88 = ©ap which implies
b-laeB = e, . Since S is proper, b-lae E(S). But v la € G, - Then
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b a-= e, and hence a = b.

Conversely, assume that all the homomorphisms wa g are one-to-
T 3

one. Let a € S, e€ E(S) such that aé = e. Assume aeGu and e € GB ;

Then eg = aeg € GaB and so B = aB which implies a > B. Hence
wu,B is defined. From B8 = oB, we have eB = euB = eaeB . Therefore
aeg = €g = €48 which implies awa,B = %pa B Since wu,B is one-to-
one, we have a = B e Hence a € E(S). This proves that S is proper.#

1.18 Proposition. Let S = U G, be a semilattice Y of groups G
aeY
with corresponding homomorphisms wa g
b

Then, if S is factorizable and proper, then all the groups Ga

are isomorphic and for each o €.X; Ga is the maximum group homomor-

e

G’ ¥ Y&
o

phic image of S and S
Proof: Assume S is factorizable and proper. By Lemma 1.17,
all the homomorphisms wa g are one-to-one. Since S is factorizable,
s

Y has an identity 1. All the homomorphisms ¢a g are onto by Theorem
’ ]

1.16. Hence wl . is an onto isomorphism for all o & Y. Therefore
1 ;

12

%

G

o

G, for all a € Y. By Theorem 1.10, G1 £ S/g which implies

S/g for all o € Y and hence for each a €Y, Ga is the maximum

R

group homomorphic image of S.
Next, we define 6 : S = Gl.E(S). -> G1 %Y. by

(ge )6 = (g,0) (g€ G, a€Y),
To show 6 is well-defined, let g.e , g,&; € S = G,-E(S) such that

g.8, = 8,8 - Since gleaE Ga and gzese GB’ we have a = B. Therefore



26

g;lglea = e_ . Since S is proper, g;lgle E(S) which implies gélgl = e

o 1

so that g, = 8- Therefore
(ge )0 = (80 = (8;.8) = (gpep)0
Let g;e, and gzeeé S.. Then ..

((810,) (820 = ((g12)) (2g80))® (since E(SIC C(S))

- ((g185)e,8)0

(8,85, %B)

(g1, ) (gy, B)

((gy,)8) ((2,20)9) -

Therefore 6 is a homomorphism and.8 is clearly onto and one-to-one.
Hence 6 is an onto isomorphism. This proves that S = G1 x Y. Since

for each 0 € Y, G, Gy, it follows that S = G x Y for all o & ¥, &

Let G be a group and Y be a semilattice. Then-the semigroup

‘{(g.a)l g € G}. A

U Ga is a dis-
. aEY
joint union, and for each o € Y, G, is a group. Let (g,a).€ G, and

G x Y is a semilattice Y of groups G& where Ga

proof is given as follows : It is clear that S

(h, B) 6 GB e Then"‘(g)‘a) (h,B) i (gh: (18) € GU.B .
If e is .the identity.of.G,.then
E(GxY) = {(e,a) | o € Y}

which is isomorphic to Y.

1.19 Proposition. Let G be a group and Y be a semilattice with iden-
tity 1. Assume that a semigroup S is isomorphic to the semilattice Y

of groups, G x Y. Then S is factorizable and proper, and hence S is
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F-inverse and G is the.maximum-group homomorphic- image of S.

Proof: Clearly, G, = {(g,l)' | g€ G} is the group of units

1
of G xY. Let o€Y and (g,a) € Gu . Let e be the identity of G.

Then (g,a) = (g,1)(e,a) € Gl.E(Gfx Y). Hence G x Y is factorizable.
Let (g,a) € G x Y and-(e,B) & E(G x-Y) such that

(g,0)(e,B8) = (e,B)
Then (g,d8) = (e,B), so g = e and hence (g,a) = (e,a) € E(G xY).

Hence G x Y is proper.

By Theorem 1.10, G1 is the maximum group homomorphic image of
G x Y. But G1 2 G. Then G is the maximum group homomorphic image of
G x Y. Since G x Y is proper and factorizable, by Theorem 1.11,

G x Y is F - inverse:

Because S is isomorphic to G x Y, the proposition follows. f#
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