INTRODUCTION

Let S be a semigroup. An element a of S is called an idempo-
tent of S if az = a. For a semigroup S, we denote E(S) to be the set
of all idempotents of S, that is,

EGS) = {a€s|3a% = al.
2

A semigroup S is a semilattice if for all a,b€S, a a and ab = ba.

Zzx = 2z for

An element z of a semigroup S is a zero of S if xz
all x € S. An element e of a semigroup S is an identity of S if
ex = Xe =X for‘all x € S. A zero and an identity of a semigroup
are unique.
Let S be a semigroup, and let 1 be a symbol not representing
any element of 'S. The notation SU1l denotes the semigroup obtained
by extending the binary operatioﬁ on S to one by defining 11 =1
and la = al = a for every a € S. .Throughout this thesis we will adhere

to the following notation :

S if S has an identity,

SU1 othexrwise.

Let S be a semigroup. A subgroup of S is a subsemigroup of S

which is also a group under the same operation.

Let S be a Semigroup with identity 1. An element a of S is
called a unit of S if there exists a' € S such that aa' = a'a = 1.
Let G be the set of all units of S. Then

G ={a€S | aa' = a'a = 1 for some a' € S}



and G is the greatest subgroup of S which has 1 as its identity,

Let S be a semigroup. " An element a of S is regular if a = axa

for some x £ S, and S is called a regular semigroup if every element

of S is regular.
In any semigroup S,if a, x €S such that a = axa, then ax and
xa are idempotents of S. Hence if S isaregular semigroup, then.
E(S) # ¢.
Let a and x be elements of a semigroup S such that a = axa then

(i) as = as! and s'a

Sa

and (ii) aS

Sa.

axS and Sxa
Let a be an element of a semigroup S. An element X of S is an

inverse of a if a = axa, x = xax. A semigroup S is an inverse semi-

group if every element of S has a unique inverse, and the unique in-
verse of the element a in S is denoted by a_l. A semigroup S is an
inverse semigroup if and only if S is regular and any two idempotents
of S commute [[1], Theorem 1.17 ]. Hence, if S is an inverse semi-
group, then E(S) is a semilattice. ‘For any elements a,b of an inverse
semigroup S and e €E(S), we have

-1

(a-l) = a, (ab)-1 = b-la-1 -1

and e = e
[[1] , Lemma 1.18 ]. Let T be a subset of a semigroup S. The centra-
lizgz_of T in S 1is |
c(r) ={a€s)| at =ta forall t€T]}.
The centralizer of S in S is the center of S. It then follows that

if S is an inverse semigroup, them E(S) C C(E(S)).



Let P be a nonempty set and < be a relation on P. If the rela-
tion < is reflexive, antisymmetric and transitive, then < is called a

partial order on P, and [P, %) 0P, is ‘called ‘a partially ordered

set.
Let S be an inverse semigroup, a,b€S. Then the following are
equivalent :
(1) Gk <R R,
(i1) P, = ba_l,
GiD, h = a b,
N NN
(V) O d.
and (vi) a_lba_1= g

[[2], Lemma 7.1 ]«

The relation < defined on an inverse semigroup S by
a <b if and only if el
is a partial order on S [[2] , Lemma 7.2 ], and this partial order

is called the natural partial order on the inverse semigroup S. ' In

this thesis, whenever we mention about a partial order on an inverse
semigroup, we always mean the natural partial order.

In any inverse semigroup S, we have the following :

(i) a <b if and only if a = be for some e €E(S).

(ii) a < b if and only if a = fb for some fE€E(S).
We note that the restriction of the natural partial order < on an

inverse semigroup S to E(S) is as follows : For e,fE€E(S),

e <.f = e = ef (= fe).



Then if S is a semilattice, a <b in S if and only if a = ab (= ba).

A reflexive, symmetric and transitive relation on a nonempty

set X is an equivalence relation on X.

Let S be a semigroup. A relation p on S is left compatible if

for all a,b,c€S, a p b implys capcb. Right compatibility is defined

dually. By “a“congruence on S we mean an equivalence relation on S
which is both right and left compatible. Then the equivalence rela-
tion p on S is a congruence on S if and only if for a,b,c€S, ap b
imply capcb and ‘acpbc.
If p is a congruence on a semigroup S, then the set
sto/ #) ae J a &S}
with the operation defined by
(ap)(bp) =  (ab)p (a,b € 8)

is a semigroup, and is called the quotient semigroup relative to the

congruence p.
Let p be a congruence on a semigroup S. Then the mapping
p + S S/, defined by
ay = ap (a € 8)

is an onto homomérphism and ¢ will be denoted by ;* , and call it

‘the natural homomorphism of S onto 8/ .

Conversely, if ¢ : § > T is a homomorphism from a semigroup
S into a semigroup T, then the relation p on S defined by
apb & ay = b (a,b € S)
is a congruence on S and S/p 2 Sy , and p is called the'congrueﬁce on

S inducéd by ¥ .



Let p be a congruence on an inverse semigroup S. Then
E(S/p) ={ep | e€E(S) }
1214 Theorem 7.36 1, S/p 1is an inverse semigroup and for a €S,
-1
P

(ap)_1 =g [[2] , Lemma 7.34].

Hence for all a,b € S,

apbid&==% =" ph

A group G is called the maximum group homomorphic image of a

semigroup S if there exists a homomorphism ¢ from S onto G such that
the following hold : For any group H and for any homomorphism & from
S onto H, there exists a unique group homomorphism wl from G onto H

such that the diagram :

(0]
v

commutes, that is, wwl 2N31E9 ¢

A congruence p on a semigroup S is called a group congruence

if S/p is a group. If p is a group congruence on a semigroup S, then
E(S) is contained in the p - cldss which represents the identity of
the group S/p and hence E(S) Cep for all e€E(S).

Let o be a group congruence on a semigroup S such that for any

group congruence p on S, o C p . Then o is called the minimum group

congruence on S

If o is the minimum group congruence on a semigroup S, then S/g



is the maximum group homomorphic image of S.

Munn [5] has shown that any inverse semigroup S has a minimum
group congruence o, and

o= {(a,b)€S xS | ae = be for some e & B(B)} 2
equivalently,

g= {(a,b)€E S x S | ea = eb for some e € Ef8)) «
Hence “any ‘inverse semigroup S has the maximum group homomorphic image,
that issS/0 . Throughout this thesis o(S), or o if there is no
danger of ambiguity, will be denoted for the minimum group congruence

of the inverse semigroup S.

Let S be a semigroup. A nonempty subset A of S is a left ideal
of S if sac A for all s€S, a€A. A right ideal of'S s defined
dually. A nonempty subset of 8 is an ideal (or two-sided ideal) of S
if it is both a left ideal and a right ideal of S. An arbitary in-
tersection ofaleft ideals, of right ideals and of ideals of a semi-
group S is left ideal, a right ideal and an ideal of S; respectively,

An ideal of an inverse semigroup S is an inverse subsemigroup
of 5.

Let A be an ideal of a semigroup S. Then the relation p de-
fined on S by apb if and only if either a,bc Aor a=>b, is a con-

gruence and it is called the Rees congruence induced by the ideal A

and S/p is the Rees quotient semigroup induced by the ideal A and it

is denoted by S/A. Hence
{a} if a ¢ A,

A if a € A,



Let A be an ideal of a semigroup S. Then S/A is a homomorphic
image of S. Since a homomorphic image of an inverse semigroup is an
inverse semigroup, S/A is an inverse semigroup if S is an inverse

semigroup.

Let A be a nonempty subset of a semigroup S." The left ideal

of S generated by A is the intersection of all left ideals of S con-
taining A, ‘The right ideal of S generated by A is defined dually.

The ideal of S generated by A is the intersection of all ideals of S
containing A. If A cciutains only one element, say a, the left ideal

of S generated by A is called the principal left ideal of S generated

by a, the principal right ideal of S generated by a and the principal

ideal of S generated by a are ‘defined similarly.

Let a be an element of a semigroup S. Then we have Sla, aS1
and slasl ‘are the principal left ideal of S generated by a, the prin-
cipal right ideal of S generated by a and the principal ideal of S

generated by ‘a; respectively.

If S is a regular semigroup, then

Sla = Sa, aS1 = aS and SlaS1 = SaS

for all a € S. If S is a semilattice, then an ideal I of S is princi-

pal if and only if I = aS = Sa = SaS for some a G 8

An inverse semigroup S is proper if for all a€S,ecE(S),
ae = e imply a€ E(S); equivalently, if for all a€S, e€CE(S), ea = e
imply a€ E(S). An inverse subsemigroup of a proper inverse semigroup

is clearly proper. Every group is proper, also every semilattice is



proper.

Let S be an inverse semigroup. S is called an F - inverse semi-

roup if every o - class of S has a maximum element (under the natural
BESUD, Y

partial order on S).

McFadden [4] has shown that any F - inverse semigroup is proper

and has an identity. But the converse is not generally true.

Let Y be a semilattice and a semigroup S = U Sa be a dis-
joint union of subsemigroups Sa of S-S is calledaagsimilattice Y of
semigroup S if SOLSBQ_SOLB for all a, BEY; or equivalently, for all
a,BeY,aeSa,beSB nmb'ﬂnesas.

A semilattice of inverse semigroups is an inverse semigroup J
[[2], Theorem 7.52 ]. Then a semilattice of groups is also an inverse
semigroup.

let §= LJ Ga be a semilattice Y of groups Ga.. For each
a €Y, let e dZnStz the identity of the group Ga . Then

E(S) ={ea| g &Y 1.,
Because S is an inverse semigroup, €.8g = &y - g
Hence E(S) £ Y by the isomorphism e, b——> 0 (o € Y), and so S has

Jfor all o,BE Y.

an identity if and only if Y has an identity.
Let s = U Ga be a semilattice Y of groups Ga . Then E(S)
a €Y
is contained in the center of S [[1], Lemma 4.8 ]. For each pair

o, BEY such that a > B, define the mapping wa g ' Ga = GB by

awa,B aeq (a € Ga).

Then the mappings ¥ (e>B) are homomorphisms and for every a € Y,
o,B =



¢a - is the identity mapping on»Gu, Furthermore,
b

'wu,B wB,Y 1J’Ot’\(
ifa >R >y , and ifa, BE Y, a € Ga, b & GB , then

ab = (av, ,g) (Vg o)

[[1] , Theorem 4.11]. For convenience, we will call the homomorphisms

wa 8 (o > B), defined as above, the corresponding homomorphisms of the

semilattice Y of groups Ga'

A semigroup S is said to be factorizable if there exist a sub-

group G of S and a set E of idempotents of S such that S = G.E.

We introduce the work of Chen and Hsieh [6] on factorizable
inverse semigroups in the first chapter. Different studies of pro-
perties of factorizable inverse semigroup relating to minimum group
congruences, maximum group homomorphic images, the property of being
proper and the property of being F - inverse are also obtained in
this chapter. It is shown that the maximum group homomorphic image
of a proper factorizable inverse semigroup S is the group of units of

S. Any proper factorizable inverse semigroup is F - inverse.

If is shown in the second chapter that an ideal A with its
identity of a factorizable inverse semigroup is factorizable. Any
Rees quotient semigroup of a factorizable inverse semigroup is

factorizable.

In the last chapter, we introduce a generalization of a
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factorizable inverse semigroup which is called a weakly factorizable
inverse semigroup. Every semilattice of groups is a weakly factori-
zable inverse semigroup. An example ofaweakly factorizable inverse
semigroup which is neither a semilattice of groups nor a factorizable
inverse semigroup is given. It is proved that if S is a weakly facto-
rizable inverse semigroup as T.E and S is proper, then S and T have
the same maximum group homomorphic image. In general, an ideal of a
weakly factorizable inverse semigroup need not be weakly factorizable.
But, if an ideal A with its identity of a weakly factorizable inverse
semigroup which factors as T.E and T contains the identity of A, then

A is weakly factorizable.
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