CHAPTER III

METHOD OF ANALYSIS

3.1 Introductory Remarks

To study the behaviour of pile caps by analytical methods,
following assumptions will be made:

1) The column load is located at the centroid of pile
group so that equal share of load is transmitted to each pile.

2) The pil§ reaction is concentrated at the center of
each pile.

3) No part of the column load is carried by the soil beneath
the cap and no external bending moment appliéd. 2
4) No lateral rigidity of the pile.

It was recommended by a working party of the Concrete

Society (10)

for standardization of design and detailing of isolated
‘pile caps for commonly used groups of pile supporting single axially
loaded column that two major considerations must be concerned ,i.e.,
(a) the best shape of a pile cap for a giving number of piles, and
(b) the most economical depth of the pile caps.
(a) Shape of pile cap;
The minimum spacing of piles permitted is controlled

by the soil condition, and will normally lie between two and three
times the pile diameter., As shown in Fig. 3.1, the spacing of piles

will be made in terms of a spacing factor, k, times the pile diameter



An overhang of 150 mm.to the edge is considered sufficient.
(b) Depth of pile cap
A cost analysis Qas made for a large number of pile
caps and the -oqt economical depth for each pile size are presented

in the Table 1 .

In tﬁis study, a pile diameter of 350 mm. will be used
throughout with spacing of three times the pile diameter. The column
size will be 350x350 mm. for single-pile cap and two-pile cap, and
450x450 ﬁn. for three-pile cap and four-pile cap. The total depth
of pile caps are 600 mm. for single-pile cap, and fixed at 850 mm.
for two-pile, three-pile, and four-pile cap. For all the pile caps,
the distance from centroid of reinforcement to bottom extreme fiber
will be taken as 100 mm.,., The allowable reaétion'at working load

in each pile will be 50 tons.

3.2 Analytical Method for Pile Caps

In this research, three methods of analysis will be employed

for the'strongth evaluation of the standard pile caps.

3.2.1 Finite Element Method

As the pile caps always b?en designed with large depth com-
pared to the span to ensure the stiffness of the cap to transmit
an equal load to the piles, thus the non-linear stress distribution
would be induced in the pile caps and the simple beam theory does |
not apply. An exact solution of the stress ;nalysis probieu can
be obtained from the theory of elasticity by formulating this problem

in terms of partial differential equations. However, the loading



and boundary conditions are such that a solution is very difficult

to obtain. Thus, approximate solutions often involve by replacing

the continuum with a substitute structure having a finite number
degrees of freedom. It might expect that as the subdivision is

made finer, the substitute structure models the original stucture

more closely. The substitute structure is a finite element structure,
.and each seperate area is a finite element. Points where tho'ele-

ments are connected to one another are called nodal points.

The shape of the finite element used in the stress analysis
of each pile cap are three dimensional rectangular element with 8
nodes called BRICK 8 element. The typical description of a BRICK 8

is shown in Fig. 3.2 .

As the geometry of pile caps and loading condition are sym-
metry at the column center, there are two.planes of symmetry in
single-pile, two-pile; and four-pile cap, only one quarter of the
cap can be represented by the ﬁubstituted finite element structure.
For three-pile cap, one half of the actual structure is represented
by finite element structure. The details of each finite element

structure are shown in Fig. 3.3

The boundary conditions and loading for the nodal points
are as follow:

1) The nodal points on the plane of symietry XZ, are free
toinove in the direction X and Z-axis, and fixed in Y-axis.

2) The nodal points on the plane of symmetry YZ, are free
to move in the di?ection Y and Z-axis, and fixed in X-axis.

3) Other nodal points are free to move in any direction
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and load may be applied.
4) Reaction of the pile is taken as the uniformly distri-
buted load acted to the corresponding face of the specified element.

In all cases the uniform pressure acted on face 6. (see Fig. 3.2)

The three dimensional Stress Analysis Program based on the
Finite Element Method will be used in this research to obtain infor-

mation on stress distributions within pile caps.

3.2.2 Beam Analogy

In beam analogy of pile caps, according to the ACI code
(318-63) (1). the critical stress resultants are determined along
prescribed section in the pile cap as shown in Fig. 3;4 o 'Based on
the allovaﬁle shearing and flexural stresses, thé.depth of the pile
. cap and the amount of steel reinforce-entvare determined from the

following requirements;

a) Punching Shear il

The depth of the cap is determined as

d = V. ' (3.1)

where V = the column load or pile§ reactions
v = the'allowable shearing stress along the
periphery of the section considered, ksc.,0.53/T]
for WSD and 1.06¢/T7 for USD where § is 0.85
b = the perimeter of the pseudocritical section

taken at a distance d4/2 from the face of column
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b) Beam Shear

The depth of the cap is determined as

d = vV . (3.2)
vcb

where V = the net shear force due to the pile reactions
exist outside of the critical section; piles
located near or atlthe critical section are
considered to prodﬁce shear proportion to the
distance of their centers from this section;

ve = allowable sheariné stress in a beam, ksc.,0.29/T]

for WSD ‘and o.ssﬂ/?: for USD where & is 0.85

¢) Flexure

From flexural requirement, the depth of the cap can be

determined as; .

d = [M AR, (3.3)

where M = the critical bending moment at tﬁe section
along a face of the column base

R = a coefficient in concrete beam design

From allowable flexure and bond stresses, the amount of

reinforcement is determined as

A = M (3.4)
8 £ja ‘
8
or
s = \' (3.5)
b dﬁd

where V = sghear force at critical section for bond
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3.2.3 Truss Analogy

a) Basis of Design(s)

The load is assumed to take the shortest line to the
supports, and to transmit tq the piles by inclined compression
in the cap. Assuming that the piles have no lateral rigidity, the
reinforcement is required to resist these inclined thrust, as

illustrated in Fig. 3.6-3.8 .

b) Design of Two-Pile Cap

Fig. 3.6 shows the distributed load from the base of
column. Considering the effect 6! an infinitesimal load pdx acting
a distance x from the center line, causing the pile reactions and
tie-tension. ' When integrated over the width of the base the ten-

sion in the steel reinforcement becomes

2
2 (_2)(&?-:2)dx
6 Ld 4

T

15 el G (3.6)
12Ld
where

P = total c¢olumn load

c width of a square column ;

L

spacing of the piles

If the effect of the column size was neglect by assuming

a concentrated column load at the center line, Eq. 3.6 becomes

44
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c) Design of Three-Pile Cap

The assumed load trajectories are shown in Fig. 3.7 .
For a square column base and the symmetry of the spacing of piles,

the tension in steel between two adjacent supports can be deter-

& .. L&
2, 232

mined as ‘ ]
T (_p_)/ /[(5— )2-x®] axay
1 Ld 2 3 :

"% zi'g

P(2L2-c2) : (3.8)
-18Ld

For the tie-tension in reinforcement betﬁeen centroid of

the cap and support,.

v o EPSTEeS) "(3.9)
' 18Ld

Neglecting the effect of the column size, eq. 3.8 becomes

R (3.10)
9d
and eq.3.9 becomes
T = (3.11)

PL
3/3d

d) Design of Four-Pile Cap

As before, the column load transmitfed to the supporting
piles as shown in Fig. 3.8 . Since the four horiéontal ties do not-
~form a stable lattice system, -an extra tie is intfoduced in diagonal
direction. From the equilibrium of forces and geometrical symmetry,
the tension in reinforcement between two adjacent supports can be

obtained as



14

% g
T = (_B_t/]QL-X)(fo+y)dxdy
adj} 2 2 _
= paL3-c?) | (3.12)
24Ld

From the equilibrium of forces, the tie in diagonal direction

is zero.

For the type of reinforcement arrangement in diagonal

direction, tension in reinforcement can be obtained as

T = /3P(3L%-c2) (3.13)
24Ld

Ay

~

" Neglecting the effect of the column size, eq 3.12 becomes

T = /PL (3.14)
8d

and eq. 3.13 becomes

35 ; (3.15)

4/2d
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3.3 Proposed Reinforcement Arrangements in Pile Cap

It is difficult to assess explicitly the elastic behaviour
of such short and relatively deep pile cap. Finite Element Method
however, can furnish the required stress trajectories, which describe
best the mechanism of load disposal. When the load intensity is
sufficiently large.'cracks will form approximately at right angles
to these principle tension trajectories. After cracking of the
concrete, the reinforcement will operate most efficiently if it is

located at least'approxinately along such tension trajectories.

The distribution of principal stress trajectories in single-
pile, two-pile, three-pile, and four-pile cap at cross sections of
interest are shown in Fig. A.4-A.7 . An evaluation of these results
reveal the existence of the following; [)(;4:3:’5

1) The vertical compressive stresses are almost uniform
between the column base and the distributed reaction from pile top.
This indicated that with the increase in depth of pile cap the compo-
nent of the column load transmitted directly to the supporting piles
would gradually increase, thus rqsulting in th; reduction of bending
stresses.

2) The tensile stresses in plane seétion near the bottom
of pile cap tend to flow from centroid of the pile cap to the sup-
porting piles with the components of tensile stresses between two
adjacented piles. '

3) The curvature of tensile stresses in vertical section

at the supports are vary from 10 to 20 degrees.
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To the above observed stress pattarns, proper arrangements
of reinforcement can be made regardless of the conventional practices
where reinforcements are uniformly distributed across 'the cross sec-
tion, Only two forms of pile caps, i.e., three-pile and four-pile
cap, will be considered in the experimental program. The proposed
reinforcement arrangements in three-pile cap and four-pile cap are
shown in Fig. 3.11-3.12 . P3-1 and P4-1 denote pile caps wi.th con-
ventional reinforcement arrangement according-to beam analogy,

whilst P3-2 and P4-2 based on truss analogy.

P3-3, P3-4, P4-3, and P4-4 denote pile caps with proposed
- reinforcement ai'rdngenents conforming to the observed stress trajec-

tory patterns and must be tested to verify the assumptions.

3.4 Cracking and Ultimate Loads

In reinforced concrete design, the cracking and ultimate
loads must be predicted to ensure that the structure would service
the design working load and thé limit ultimate load at failure of

the structure. Two methods in design are formulated as follow;

3.4.1 Beam Analogy

According to the ACI code, the cracking moment of the

section is determined from flexure fornula(z)
Mo, = If. (3.16)
Ye
where Mcr = cracking moment
I = moment of inertia of grbss concrete section
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about the centroidal aiis, neglecting the
reinforcement

f = modulus of rupture of concrete

¥ .= distance from centroidal axis to the eitrene

fiber of tension

The ultimate strength is determined from the ultimate moment

at critical section resisted by concrete and‘reinforcenent as

M, = #(ba®2:q(1-0.59q)) (3.17)
or “u = ¢Asfy(d-§) (3.18)

where M“ = ultimate moment

q = Asf
bdf!
c
a = AL
8
]
O.85fcb.
g = 0.9

Fig. 3.9 shows the stress distribution in concrete on beam

cross section under bending moment at cracking and ultimate conditions.

3.4.2 Truss Analogy

In finite element procedure, it was observed that the
thrust in concrete is in the form of a cone whiéh must be supported
along the edges of the cap. The edge supports then transmit the
load to the piles. In this study, oply elastic behaviour is valid
in finite element procedure.

After the cracks are formed, the interﬁal force system will

conformed to the basic of truss analogy.(lo)
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Figure 3.10(a) shows the assumed internal force system in pile caps
within elastic range. The shaded area are assumed as the tension

area in concrete, thus the cracking load can be expressed as follow,
For two-pile cap{

P = 12T L d + 12T Ld : (3.19)
cr ccCcZC 5

(3L2-c®)  (31%-c?)
For three-pile éap;

a) tie-tension between two adjacent piles,

P = 18T L d + 18T Ld (3.20)
c e C =]

cr.
(2L§-c2) {al*-c*)

b) tie-tension between centroid of the,cap and pile,

P SCIBTILCH, '+ 18T _Ld (3.21)
/322-c®)  /3(21°-c?)

For four-pile cap;

a) tie-tension between two adjacent piles,

P = 24T L d + 24T Ld  ~ (3.22)
cCCC S

cr
(3L§-52) (3L2-¢2)

b) tie-tension between centroid'of.the cap and pile,

P, = 24TcL¢dc + 24T Ld . (3.23)
/5(3L§-c2) /5(3L2-c2)

where the following assumptions will be made;

Tc = tie-tension in concrete = (hc/2)(fr/2)
T = tie-tehsion in steel = nf'A

s rs

d =

3h/4 for all pile caps
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Lc = L for two-pile caps

= 3L/4 for three-pile and four-pile caps

Figure 3.10(b) shows the internal force system in pile cap at
ultimate condition. Since the reinforcement in all pile caps are
subjected to direct tension, the ultimate loads can be expressed

as follow
For two-pile cap;

P
u

12A_f Ld - (3.24)
(3L2-c?) |

'For three-pile cap;

a) tie-tension between two adjacent piles,

P, = 18Af Ld (3.25)

(2L2-c?)
b) tie-tension between centroid of the cap and pile,

P, = 18Af Ld (3.26)
/3(2L2-c?)
For four-pile cap;
a) tie-tension between two adjacent piles,
P, = 24A_f Ld _ (3.27)
(3t%6™)
' b) tie-tension between centroid of the cap and pile,

Pu = 24A8f Ld ‘ . (3.28)
/3(3L2-¢2)
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