CHAPTER V
AN OPERATOR IN HARMONIC ANALYSIS

1. Harmonic Analysis on Lz(qj)
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For £ € L°( F), the Fourier series of f is given by
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1.1 Lemma. (Bessel's inequality)
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holds for function P in L2 (qj )3
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Proof. Since, for any g in L (‘P), (gyg) 2 0, we have
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Hence
k

The proof is complete.

; 2
;o 1 % (k)l2 f’ ” f “ follows by letting n—> o0,
= o> 2

By an application of Theorem h.3.2, we can reverse the

inequality in Bessel's inequality as follow :
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1,2 Lemma. If f € L (EF) then
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Proof. Since L (qj) C L (qj) and c, = ? (k), k = 0,%1,... ,

then the (C, 1) means/of f are given by
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By Theorem 3.2.2, {En}- is an orthogonal set so that
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Since a;(x)-—>f(x) almost everywhere, by Theorem h.3.2,

Fatou's lemma implies -
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This completes the proof.
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Together with Bessel's inequality, Lemma 1.2 gives us the

following relation, known as Parseval's formula :
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“l.3 Theorem. (Uniqueness Theorem) If two functions f and g of

2
L (q:) have the same Fourier coefficients, then they are equal
almost everywhere.
Procf. Since the Fourier coefficients of function f - g are all
. =~ 2 1
0 and '{En}‘ is total in L (¥ ), by Theorem 3.2.4 . Then we
have f(x) - g(x) =0 almost, everywhere. This completes the

proof.
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1.4 Theorem. (Riesz - Figher) Suppose f belongs to L (IF). Then

2
its Fourier series converges to .f in the L ~norm; that is,

2 1/2
e -s_Il, =S¢ TeGo - s G ax )
% ,
n . 1/2
= ( (lf(x) - T £ (k) 2™EX |2 4y)
k= -n
Jo
tends to O as n tends to o0 . Furthermore,
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If a sequence Jc }-satisfies 5 |ec | < 0o, then there
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exists a function f in L (qj) such that c, = f (k) for all

integer k.
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Proof. Consider

n '2 n n
1im]| ) ¢.E -~ fl =lim (% ¢E-f,% cBE-f)
n-», =~y KK 2 n—yoco k= -n ~ ¥ kP.y KK
2 n 2
= 1lim (l’fll -z lc I )=o0
) B k
n— 0o k= -n
where ckz & 3N Ek) is the k-th Fourier coefficient of f,
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Thus the partial sums S =% 4 ckEk =z f (k) E,
k= <n k= «n
2 A
converges in the La-norm to £ in L (%3) with llflla =f’ £ ’L .
o 2
Conversely, if a sequence {c } satisfies £ [¢ | < oo,
LK k=1 ' k
n
then we shall prove that Sn =, \& ckEk converges in the
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L - norm. The only thing is to see the{sn}is a Cauchy sequence

for the L2- norm. If‘m 3 n, we get
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and the expression on the right is the Cauchy remainder of a
convergent series. Let f be a limit of~{Sn} , in the L2-norm.
We shall show that (f, Em) = Cp for all integers m., TFor any

integer m, we have
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The uniqueness of f, as a function in LE(qJ)' is a consequence
of Theorem 1,3,

The proof is complete.

2. Fatou's Theorem

Theorem. (Fatou's Theorem) If F is a bounded analytic function

in the interior of the unit circle then the radial limits

lim F (re2n16)
r—-l

exist for almost all & in [0, 1).
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Proof. Suppose -F(z)/ /= BoH 212 # 8,274 oo+ A Z 4+ wo. 8

an analytic function An the interior of the unit circle.
Suppose, further, that ¥ is bBounded in this domainj; say,
|[F(z)] £ B < o0 for }2}-< 2. Let us write z = reanle,

0£r<1l, 0 &6 <1, Using the orthogonality relations of
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Letting r —31 we therefore obtain & ]akf <Q0 . By
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Theorem 1.4 we can thus conclude that there exists an f
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belonging to L (7 ) such that f (k) = a. for k = Oy L2y ana

k
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and f (k) = O for all negative integers k. This shows that
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F(rezwle) =.5 f (k) rke2Tr1k6 =5 f (k) rkeanlke,()£1‘< 14
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are the Abel means of the Fourier scries of f. By Theorem 4.3,2,
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therefore, 1lim F(reznle ) = £(8) for almost every 8. This
r~>1

completes the proof.

We shall use Theorem 2.1 (Fatou's Theorem) to define an
important operator, the conjugate function operator, defined on
integrable and l-periodic functions. Suppose f is such a
function. It follows from our discussion concerning the Poisson

kernel and the conjugate Poisson kernel that the function G

defined by
-1
2ni(@=t)
Glz) = /i £(t) dt
1/ rean(e-t)
4
P
2116 = 0
Z =re . y is an analytie inm the interior of the unit circle.

We already know ‘that the first expression in the last sum has
radial limits, as''r-~—1, for almost all 8. The following theorem

asserts that this is also true for the second term,

1 P
Theorem. Suppose f € L (0, 1) ; then the limits, f (8), as

r—1, of
1 fl
’; ( !’s e) = Q(r9 e - t) f(t) dt = | 2 LT &4h 27'[ (e—‘:) v2 f(u)j’
1-2 r cos 2n (8-t)+r

0

exist for almost all 8. The function ?Jis called the conjugate
function of f.
Proof. By decomposing f into its real and imaginary parts and

considering separately the positive and negative parts of each
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of these, we see that it suffices to prove the theorem for f > C,
Thus, letting A(r,8) be the Poissoh integral and A (r, 6) the
conjugate Poisson integral of f, we obtain an analytic function

for |z{ <1, z = reanle

y Whose values lie in the right half-
blane (by property (B') of the Poisson kernel.in Chapter IV.
Sec.4). Thus,

F(z) = e-A(r,e) -ia (r,6)
is a bounded ( |F(z)| £ 1) analytic function in the interior
of the unit circle. By Theorem 2.1, the radial limits of F
exist almost everywheére.. /Since the radial limits of A(r, 8)
also exist almost everywhere and are finite (they equal to f(e)),
the limits of F must be nonzero almost everywhere. But this
implies the existence'of 1im & (r, €) for almost all &, and

P
the theorem is proved.



	Chapter V An Operator in Harmonic Analysis

