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CHAPTER IV

SUMMABILITY THEORY

1% Summability

Another satisfactory solution to the problem of represen-
tation of functions by their Fourier series is to consider,
instead of convergence, some methods of "summability" of Fourier
series at individual points. The two best known types of summa-

bility are Cesaro and Abel summebility. The former (often also

referred to as the méethod of summability by the first arithmetic
means or, simply, as/ (C,1) summability) is defined in the

following way :

Definition. Suppose we are given a nummerical series Ut Ujteeo

with partial sums so,sl,sa,... « We then form the (C,1) means

(or finite arithmetic means)

q So+ Sl+ cce + Sn n K
n = = I (l“m u,
n+ 1 k=0
and say that the series is (C,1) summable to s if 1im G = s .
-~ n
n-—»00

Definition. The Abel means of the series Ut Uyt Uste.e  are

defined for each r, 0 & r < 1, by setting

r2+ = %o u rk
© o0 = k

A(r) = u + ur+u
“ 1 k=0

2

and we say that the series is Abel summable to s if

lim A(l") = S o
r-—1"
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2 u is convergent with sum s, then
n=0

it is also (C,1) summable to Cesir> sum s.

1.3 Theorem. If a series

Proof,. Let Sn denote the n-th partial sums of the sefies,

define Gn as in Definition 1.], and introduce t, = S - =,

T, = Gn- s. Then we have

t0+ tl+ see + tn

n+ 1

and we must .prove that Tn-—+O as n—spo9e Choose A ?» 0 so

that each |t | & &,

Given & > 0, choosé /N so that n- 3, N implies that

1tn{ <

[T} s [fo] * - ”‘t"l 2 [Erpal +eee ’tn‘

oo

« Taking' n 2, N, we obtain

n+ 1 n+ 1
< S —f
n -1 2
&
If n is sufficiently large, then £§—1~£l—é < =, we
(n + 1) 2

find that 'Tn' < E for sufficiently large n. This completes
the proof,

o QI
1.4 Theorem, If § u converges to s then & u, is Abel
k=0 " k=0 .

summable to s.

Proof. We must show.that 1lim f(x) = s where
X~p1”
co
f(x) = ukxk (Ogxg1).
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oo (Ve k )
Since I u converges, then ¥ u x converge uniformly
k k
k=0 k=0
for 0 £ x £1. Hence, f is continuous on [0,1] . 1In particular,
oo
f is continuous at 1, 1lim f(x) = f(1)e and f(1) = ¢ u.=s
x-»1" k=0
We have 1lim _ f(x) = s whkich completes the proof.
x->1
Remark and Example. Actually (C,1) and Abel summabilities are

strictly more general than convergence as the following shows.

The series

OoQ
1l - 1T 207, Sos=_ ¥ (-1)k
k=0

is divergent. This series has sequence of partial sums.
E:
n

Sn = 0 (n= 2,41000) 1

1 (n

1]
I

1,3’000 ),

The sequence of (C,1) means of the partial sum is giving

by the following:

Gn = R l (n A.= 1,3'5’090)
2n
dn = é]'- (n = 2,’+,6,oooo)|
1 o k
which converges to S as n—00. It follows that the £ (-1)
k=0
is (C, 1) summable to % .
The Abel means of the series are defined by
A(r) = 1 -1+ 1% rs u... y for 0g£ r <1,
which converges to 5> and therefore,
. 1 1
lim = -
r«—)l— I + 2
- . k . 1
Hence I (-1) is Abel summable to 5 -
k=0
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1.6 Theorem. If I u is (C,1) summable to g then ¥ u, is

n=0 n=0
Abel summable to s .

Proofe Let S = u + u
— n o

1 n
we have 1lim (§ = 8 where
N -3 00 R
SO+ Sl+..+ Sn
Gn = (n = 0,1,2..00) -
n + 1

Since (n + l)q; -n Gn-

(8 #e6+S ) = (S 400+ S
e n o n

1 -1 n
we have
Sn (n+1)6n Gn—l
lim = = 1lim A /A e S ) =8~ s = O.
n—o0 B n—00 n
Hence
u S/ ~ .S S
lim =" = lim (27BN q4n == - lim (“n“l)( S
n —» 00 n—> o0 1 n— o0 n— oo
= O - O = O -
u %0 u 1P
Since {-—~ is \a-convergent sequence, then {-P is a
n n
n=1 n=1
, Cer n
bounded sequence. This shows that for O x <1, the £ ux
n=0
co n
is dominated by £ Mnx for some M > 0 which converges
n=0 oo .
absolutely for -0& x < 1. Hence X u_x converges absolutely
n=0
for 0Lx < 1. Let
2
f(x) = U WX U XTH e (0€x < 1),
. 1 2
Then, Slnce l = 1 + X + X + oo e 060000 ®000o0 (l)
- X

is also absolutely convergent for O f x < 1, we have

—Eifl = ¥ cx° (0 £x < 1),

l - x n=0

+eeo + u_(n = 0,1,2,s.s.). By hypothesis,
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where ¢ = u el + u,el + 400 +u ol. This is ¢c_ = §_, so
n o) 2 n n n
that
o
f(X) = E an (O(X<l) -eq-eoaoe(z)

-~

We multiply (2) by (1) to obtain

f(x)

oo
= £ (n+1)0 x* (0g&x<1).
2 n=0 n

(1-x)

oo
Hence f(x) = (1 - x)2 2/ + 1) Gﬁ X (OS:x € 1) sesk)
n=0
oo
But & (n + 1) xoZZ 7 b 3x2+ vee = -———E——é
n=0 (1 - X)

(-1 < x < 1),
so that

2 LIRS n
(1 -x)" 72/ (a+l) x =1 (-1 <x<1),
n=0

2 =X n
s = (1 - x)X ¥ ta+1)'sx (-1 < Xx € 1)eveeoeaallt)
=0

From (3) and (4) we have

o0
£(x) = 8 = (1 - x)° % (n+1) (0 - ) x" (0gx <1)
n=0

essee (5)

Given € > 0O choose NEZ()O) such that lUn - 5% < -82-

for all n > N, Then, from (5)

N
lf(x) -s|sQ - x)° £ (n+ 1) |G - s ]xn +
n=1 =
oo
£ 1-025 (n +1) =™
2 n=N+1
N (8%]
$A-%%% (n+1) | T - s+ §.(1—x)2 £ (a+l)x"
n=1 g R 2 n=0
S (1 - X)2 A + 5
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« Since (1 - x)° <

N
where A = T (n + 1) 'G;— s

if
n=1 2A
1l - S < x <1, where 8 = ji_ y we have
2A
|f(x)-s|<_§i.k+§=8 ifl-8<x<1.
24 2
This proves 1lim f(x) = s , the proof is complete.

X —>1

Thus, many results involving Abel summability follow from
corresponding theorems that) deal with Cesaro summability.
This happens not only because such serieé may be Abel summable
under weaker conditions/on f/ than are necessary to guarantee
their (C,1) summability, butalso because Abel summability has
special properties, related to the theory of harmonic and
analytic functions, that are not enjoyed by Cesaro summability.

Recall the convention that we use the symbol f to denote a
complex function over I?J and its associated l-periodic function

defined over'nz -

/
2. A Theorem of Fejer

Theorem. If f is l-periodic and integrable on [O,l), then the

(Cy1) means and the Abel means of the Fourier series of f
converge to
' 1 + -
: (f(xo) + £x))
‘ -
at every point X, where the limits f(x;) and f(xo) exist. In

particular, they converge at every point of continuity of f.
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Proof. Let us examine the (C,1) means of the Fourier series of

a function f. We first obtain an expression of the partial

O A 3
sums of the Fourier series ¥ f (k) eankx of f where
ks =
1 &'s)
& e
£ (k) = J £(6) o™ ap (k= 0, %1, 2,... ),
3]
n A ;
s,(x) = % () STX
= =N
1
2 ~2rikt \ 2mikx
= 3 £{t) e dt e
k= -n
1
n e (s
_ 5 ‘ e2n1k(x t) £(t) dt.
k= «n
0
n .
If we multiply Dn(e) = AR A ke by 2 sin ne =

k= ~-n
£ fa™ 0 elne), all but ‘the first’and last term of the

resulting sum cancel-and we obtain

ZDn(e) sin n6 = i (e-(2n+1)nie o’ e(2n+1)n16) = 2sin (2n+l) =8,
so that
(1) Dn(e) sin (2n + 1) =no ,

sin no

which is known as the Dirichlet Kernel. Hence
1

-
b f(t) Dn(x - t) at

'fl £(4) sin (2n + 1) n (x - t) a4t
Q

(2) Sn(x)

sin © (x - t)

The (C,1) means can then be expressed as :
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So(x) + Sl(x) ¥ ces + Sn(x)

il

n+ 1

1
l n
= f(t)[ ) D(x-t)]dt.
1 k

0 (x)
n

n + k=0
0]

By multiplying the numerator and denominator of

n 1 sin (2k + 1) =6
Zoabii® = 3

k=0

n
K (&) = E

n+1 k=0 sin t 6

by sin n € and replacing the products of sines in the numerator

by differences of cosines, we obtain

1 n cos 2kn® - cos 2(k + 1) =8

(3) k_(8) = . L
n n+ X
k=0 2 Sin2n6
1 1 ~ cos 2(n + 1) né
n+1 2 sin2 ne
2
1 {sin (n +.2) ne}
B 470 sin 7w
called the Fejé; kernel, Consequently;
X
) G, (x) = J £(£) K (x - t) at
n
0 1 2 .
1 sin (n + 1) n (x - t)
= 3 £(t) dt -
n + sin n(x - t)

0

The proof of the theorem follows from the three basic
/
properties of Fejer kernel :

1
(A)J Kh(e) ae = 13
@ ° x(8) > o0 ;

n
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(¢) for each 8)0. max Kn(e) —>0 as n -3 00,
§¢e¢1 -8

Property (B) is obvious. Property (A) is a consequence of the

corresponding property for the Diridghlet kernel (which is

immediate since

' n fl 2nike
J Dn(t) dt = % e ae =1 )
o k= ~n o
1 n
and the representation Kn(e) = § Dk(e). Finally,

k=0

(8) follows from the dnequality (see (3))

1
max Kn(e) fs .

Sco¢1 -8 (2 W N sin® © §

Now, to complete the proof, ‘we suppose X is a point at which
- + = . 1 (., + -
T = = .
the limits f(xo ) and _(xo ) exist and let a 3 Lf(xo) + f(xo)}
Then, using the periodicity of the functions involved, the change

of variables t = x - s, and property (&),

Gn(xo) - a

1/2
J’ £(s) Kn(xo— ROITY - a.l
-1/2

1/2 /2
J f(xo- t) Kn(t) dt - a [ Kn(t) dt
-1/ ~1/2

i}

- aJ K (t) dat
n

Y
. [f(xo- t) + £lx + t)
5 2

[f(xo- t) - a] K _(t) dt.
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Hence, if §> 0 is so chosen that [ £(x = t) + £(x + t) - 2a{ &

whenever |t | 8 , we have,

Y

by (B) -and (A),

|0, (x) -2a|<£§g K (t) dt-{§<TiT< 1 K_(¢) llf(xo Y-al
0 SR J8uti s 3
1/2 r N rl/2
. - ., ".*_
< EE Kn(t)dt + [S<T:T4 1 Kn(t) J- lf(xo t)-a|dt
-1/2 h = - -1/2
i 1/2 -
= &,1+{ max Kn(t) { 'f(xo- t) - at dt ;
LSSItlS% -1/2
but, by (¢), the last tétm tends to O as n——s®. Since & > 0 is
arbitrary we can conc¢lude  the 1lim [Gn (xo)- a [ = 0. By Theoren

n—300

1.6, (C,1) summability inplies /Abel summability, and the theorem

is proved,

5+ A Theorem-9f Lebesgue LT

The Lebesgue set of a function f.

Before we prove the theorem of Lebesgue, we first introduce

/
the Lebesgue set of a function. Recall that F (x) = f(x) for

X
almost all x, where F(x) = j; f(t) dt. We can indicate this

fact by writing
h

148 = J {f(x +t) - f(x)} dt = 0
h>0 B ], -
holds for almost all x.

possible :

(1)

h
J fe(x + ¢) - £l at
0

1

h

lim
h-0

Oﬂ

In this form, a stronger result is
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holds for almost all x, To show this; fixed a rational number

r let Er be the set of all x such that

h
(2) 1lim 1 lf(x +t) = r] dat = |f(x) - r|
h-~»0 h

fails to hold. Applying Lebesgue's theorem on the differentias
tion of the integral to g(t) = lf(t) - r| we conclude that E
has measure 0. Let E = UEr’ the union being taken over all
rational number r, Then E also has measure O. We claim that
if x does not belong to F then (1) holds. Let €Y 0 be given;

choose a rational numbeér r i such that | £(x) - rol < g. Then
h - h 2
1 J. [£(x + t) -/1(x)] at ¢ % J> £(x + t) - r | dt
0
\

h
= h
+ % J‘~‘f(x) =)
o)

Since x € TR\UEr = N (TR\Er), the relation (2) holds for

dt.

all rationals r so that
h
1 J [f(x'+ t) = ro{ dt <

h
0
if h is close to O, On the other hand

1 § . €
1 €
}—lf 'f(x)-roldt< ﬁj -2'dt = 5.
0 0
Thus
h
1}1 J l£(x + £) - £x)| at < £
0

if h is small. The claim is now proved.
The met of all x such that (1) holds is called the Lebesgue

set of f.

— —
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3.2 Theorem. (Lebesgue's Theorem) If f is l-periodic and integrable

on [0,1), then the (C,1) means and the Abel means of the Fourier

series of f converge to f(x) for almost all x in [0,1).

Proof. We shall show that the (C,1) means of the Fourier series

of f converge to f(x) whenever x is a member of the Lebesgue set.
We shall need the following two estimates of the Fejér kernel:

(2) Kn(t) £n+ 1,

(v) Kn(t) £ 8 for ! <it] ¢ % , where A is a
(n+l)t2 n-+ 1

constant depends onlty /on.the n,

(a) follows from the obvious estimate on the Dirichlet kernel

|D ()] £ 2k + 1;7in fact,

1 n l n
K (t) = 8 DY) % r  (2x + 1)
B Ny e n + 1 k=0
2
. (n+1) o o a1
(n +1)

(b) is a consequence of formula (3) in the Proof of Theorem 2.1 :

¢
B 4 sin (n + 1) nt]?2 s ) . S y for
K (t) = L =i
n n+ 1 o g n + 1lsin(n/(n+1))

1 1

£ =

Ty SItlg 3
A

4 1 Ji
B bin + 1) | sin(n/(n+l) (n + )t

,-1[ N

- sin(n/(n%l))i




67
Now suppose x belongs to the Lebesque set of f. As in the
proof of Theorem 2.1, we have, using property (A) in the Proof
of Theorem 2,1,
: 1/2
Gg(x) - f(x) = J {f(x -t) - f(x)} K, (t) at.
-1/2

Thus, using the estimates (a) and (b)

1/2
16_(x) - f(x)|$.J 2= ©) - £ | K (1) at
=1/2
£ a3 1) | £lx = t) - £(x)| at
1t1€ 1/(n+l)
A J’ | £0e-t)-£C)| 4,
+
B4 B/ (1) g1y ¢ X £2

no

Given £ 30, let &0 be such that » | | £(x-)-£(x)] at
b itign

<€ if n 58. Then the first term in the above sum is less
than € whenever () + l)“lS S Tnllerder to estimate the
second term we break the integral into the sum of two integrals

over [- %, -(n + l)“1 ] and over [Fn + 1)'1, %J, We shall show

that the first integral tends to 0 as n—00; a similar argument

will then show that the same is true for the second.

Let G(t) = jf(x = s) = £f(x)| ds. Then, integrating by
parts, we have Q
- 1/2
£ ~ t) - f a l
J | £(x ) (x)] tf LA a(1/2)
n+ 1 2 n+1
: l/(n+%) t s
L2k Eﬁ;l at
n+l 1/(ns1)  t
/2
2A g G(t)
+ — dte
n+1l it

g
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The first and third terms tends to O as n——300. Since
(1/t) a(t) < €& for lt1€ § the second term is dominated by
aae (9 < g
B /ey 82

Thus, lﬁn(x) - £(x)| can be made as small as we wish by

choosing n large enough. This proves the theorem.

b, Able Summability And Harmonic Function

When f is real-valueéd integrable l-pericdic function, the

Fourier series of f

oo /
(1) £ f (k) 2rikx
k= - oo
where 1

. LN,
T (k) = If(t) =2kt L o, 1, f2,...
0

is the real part of the power series

P o ~
() T (O, 8,0 28 (k). 25
KT
restricted to the unit circle 2z = e2n1x. In fact,

A o ~ 3 A
f(0)+ £ 2¢F (k) e afdien £ (0) + Z 2 f (k) (cos 2mkx + isin2nkx)
k=1 k=1

0o 1
= £ (0) + B 2 f(t) =Ry ] (cos 2nkx + i sin 2nkx)
k=1
N oo
=T (0) + ¢ 2[' f(t)(cos enkt - i sin 2nkt) dt|(cos 2nkx+isin2mnl~"
k=1
1
A (& ]
= f (0) # % [{ (Lf(t)coanktdt) cos 2nkx+2(L £(t) sin2nktdt>
k=1

1 h
sinthkx}+i { ( f(t)cos2nktdt) sin 2nkx-2 ([f(t)sinantdt)cosan:{S‘
O =1 i
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3 ;.:' (k) eZTtlkx

~ X0
The real part of £ (0) + % y where f is real=-

k=1
valued, is 1
- oo r ‘ \
f(0) + ¢ | 2(' f(t)cos 2nkt dt) cos 2nkx+2 f(t)sin2nkt dt |
k=1 \J, 0 /
sin anx] .
1
Let a, = 2 | £(t) cos 2nktdt, b, = 2] f(t) sin2nktdt for
0 eanikx . e-znikx
k = 142,044y and replace cos 2nkx = '
2
enikx _ =2wikx
sin 2nkx = < - « Then the series
2i
A oo
f(0)+ ¢ [a cos 2nkx + by sin 2nkx
k k
k=1

equals to the series

o0 oy 3 A 2l

5 £ (k) ST HERED (k) - (l £(t) e 2Tkt 44

k= =0 0

k =0, %1, ¥2 ,..%

We note that the series (2) defines an analytic function in
the interier of the unit circle since the coefficients ? (k) are
uniformly bounded; in fact,

1
£ (k)] ¢ J le(e)lat =2y,
0
Thus, the real part of (2) is a harmonic function when r = [z] < 1

But this real part is nothing more than the Abel mean of the

Fourier series of f :

A (6] . . A
£(0) + & r°F (x)(e2Mikx | -2mikx,
k=1

Alr,x) = Af(r,x)

co Ikl :
s - g (k) eankx°

k= - 0o
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The imaginary part of (2) in case z = g
. ® A 2ni
(3) -i%  (sgnk) £ () "X,
k= -~ 00
Z
where, for any nonzero complex number z, sgn 2z = — and
12|

sgn O = 0. This series is called the series conjugate to the
Fourier series (1). Though it is not, in general, a Fourier
series, this conjugate is closely connected to a function, the

conjugate function f~ of f (see Theorem 5.2,2 for Definition).

As in the case-of the (C,Y) means, the Abel means A(r,x)

have an integral representation; that is a representation

¥

similar to (4) in Theorem 2.1: In fact for 0 £ r < 1,

= | .
A(r,x) = ¢ r|k 1) ik
k= -00
o 'k ~ » .
= I r ‘( f(t) e gt dt ) eankx
k= '~ 00 0
1
r

k= -co

i
52 pa

the change in the order of integration and summation can be

carried out since the series
sd tkl  2ni
P(r,8) = % r M
k= - o0
. . . 2nib
converges uniformaly for O ¢ r < 1. But, setting z = re s

P(r,8) is simply the real part of

oo ; o
i+ £ 2 rk e2Tt1ke = 1 +27 zk = }_:~E
k=1 k=l 1l -~z
Consequently,
2
P(r,e) = 1 =2

1 - 2r cos 2n8 + r2
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and we obtain the desired integral representation for the Abel

means @ 1

(%) Alr,x) =[ P(r, x - t) £(%) dt
0

1 L e
f 1-r s £(t) at.

0 1l ~-2rcos 2n (x - t) + r

P(r,8) is called the Poisson kernel and the integral (4) is

called the Poisson integral oFf f, This kernel satisfied the

three properties, completely analogue to those of the Fejér

kernel :
1
(a) [ P(r,0) a6 </ 14
‘o
(") P(r,8) 3 04
(8") for each & > 0y /max P(ry8) — 0 as r —> 1.
8geg1-8
1 1
) .
Since Jr P(2,8) a8 =J ikl 2mike o
e ok=_=oe
m .
= I J r'kl eanlke T EU AEATN)) rkdl (a’) follows.
k= - 0a 0

2

(B") follows since 1-2 r cos 218 + r° = (l-r cos 2n6)2 +

(r sin 2n6)2 > 0 and r < 1. (C’) holds because

2
1 - — 1.
max P(r,8) £ -0 asr .

b 5
d<p <18 1+ r°= 2r cos 2n§

From this we see that to the proof of Theorem 2.1 in the
case of the Cesaro means there corresponds a practically

identical proof of this result for the Abel means.

1 +
1 -

Let us observe that the imaginary part of g has the

form
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2r sin 2n 6

Q(r,8) =

1l - 2r cos 216 + r2

and one readily obtains the Abel means of the conjugate Fourier
series (3) by the %ntegral

L Qlr, x = t) f£(t) dt
1

(5) & (r,x)

1]

2r sin 2n(x - t) f(t) dt.

o 1 = 2r cos 2n (x - t) + r2

This integral is called the conjugate Poisson integral of f

and Q(r,8) is known as the conjugate Poisson kernel.

In this discussion /we ,assumed that f was real - valued. It
is clear, however, that the Poisson integral formula (4) for
the Abel means of the Fourier ‘series of f holds in case f is
complex-valued as well., To.see this one needs only apply it

to real and imaginary parts of f.
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