CHAPTER II

PRELIMINARIES

In this chapter we shall collect some definitions and
theorems which will be used in our investigation. We shall
assume that the reader is familiar with common terms used in the

set theorys

Let notations N, R, P\"', Q,"'. € bve the set of all non
- negative integers, set of all positive integers, set of all
positive real numbers, set of all positive rational numbers, and

set of all complex numbers respectivelya

DEFINITION 2.1 By 2 semigroup we mean an ordered pair (S, * ),

where S is a nonwempty set and ¢« is a binary operation on S

satisfying the associative law, that is, for all xy yy z of S
Xe(ys+2) = (Xey)e 2 .
For conveniencey sometimes we shall denote the semigroup (S; + )

simply by Se

DEFINITION 2.2 A semigroup (S, * ) will be called a monoid if

there exists an element e of S such that
er X =» X e = X

for each x in S. Then e is called the identity element of S,



For any X in a monoid S, if there exists an element i-i in S

such that
X 9 2™ e i =z
then x~! 4s called an inverse element of X.

DEFINITION 243 Let X be an element in 2 monoid (8 » )« For any

non=negative integer n, we define

0
X Il ]

n+1 n
X s % e —3

DEFINITION 2.4 pet (Sy # ) be a monoide (Ay #) will be a

submonoid if and only if A is a nonempty subset of Sy binary
operation « on A is the restriction of * on Sy and (Ay ¢ ) is

also a monoids

Let S be a monoid and T be a subset of Se Let
{Hili € I) be the family of all submonoid of S which contain Te

We can verify that ) H, is a monoid. It is the smallest
161

submonoid of S which contains Te

DEFINITION 245 Let S be 2 monoid and T be a subset of Se By

the submonoid of S generated by T we mean the smallest submonoid

of S which contains Te. We shall denote the submonoid of S

generated by T by <T > ,

In case T = {a}y, we write < a > inplace of < T >e



DEFINITION 2.6 Let S be a monoid., If there exists a in S such

that < a > = S, we say that S is 8 clic, and a is called a
generator of Se

We can show that < a > = [an/ n €N )o If the binary
operation of the monoid S is denoted by + we denoted the identity

by 0y and denote x° by nx for all n in N, for all x in Se

DEFINITION 247 By @ group we mean a monoid (Sy ¢+ ) in which for

each x in S there exists an inverse element x"i of x in S.
Furthermore, if

Xe Yy = YX
for all elements X, y of S« We say that (Sy» ) is an abelian

or commutative groupe

DEFINITION 2.8 A mapping h of a monoid (Ss ¢ ) into a monoid

(Ty ¢ ) is a homomorphism provided that

h(xsy) = h(x)# hiy)

for all x; y of Se

Let S be a monoid; T be @ groupe If h is a homomorphism

from S into T then
h(e,) = €
where egy @, are the identity elements of S and of T respectively.

REMARK 2.9 Let (S, +) be a cyclic monid with generator as(Ty ¢ )

be a groupy h be a homomorphism from S into Te Then

hina) = BW&¥® ,



DEFINITION 210 By a ‘1e1d we mean a triple (Fy +9* )y Where +,¥

are two binary operations on F known as addition and multiplica=

tion respectively, such that the following hold:

(i) F forms a commutative group under addition,
(ii) Fi' = F = (0} forms a commutative group under
multiplication,

(1ii) F satisfies right and left distributive laws, 1.e

ar(b+c)=aseb+ aascy (bt c)e a=Dbea+ cra

for all ay, by ¢ in Fa

The additive identity 0, called the zero of the field,

is uniquep sSo is the additive inverse of each a, denoted by =a.

DEFINITION 2,11 Let F be a fi2ld. If there is a least positive

integer n such that na = 0 for all a in Fy then F is said to

have characteristic ns If ne such n exists, F is said to have

characteristic zero.

DEFINITION 212 A field F is said to be algebraically closed if

for every positive integer n and every ayr 341 3y9eee a, in Fy

a, ¥ 0y there exists x in F such that

a0 + aix + azx2 + sse + anxn = 0

It is well=~known that the field d: of complex numbers is

algebraically closed.



DEFINITION 213 Let A be a subset of R*'© (0} A point x in
R'L (0) is a limit point of A 4f and only if every open interval

which contains x, contains points of A other than Xe

DEFINITION 214 A subset A of R 4 (0} 1is dense in R' 4 (0}

if and only if A is a subset of R*U (0} and every point in

R'Yy (0} is & limit point of A

It can be shown that if A is dense in R*U {0}« Then for
any X in R' L (0) there exists a sequence in A which converges

to Xe
We shall also make use of the following well-known facte

TUEOREM 2415 If £ is a function on R' U (0} into Cthen f is
continuous on R" ¥ (0) if and only if for each sequence {xn} in
I{"'U {0) which converges to a point x then the sequence {£(x n))

converges to f(x)e

THEOREM 216 Let § be a continuous homomorphism from R4 (0}

s

into multiplicative group € Then
) = §F

for all x in K’U {0} .

PROOF  Let 3’ be a continuous homomorphism from B,"'U {0} into
multiplicative group f: « Then
(241641) g(0) =1 .

It can be verified by mathematical induction that, for

cny Dy 9 in [Py we have



: oDy e )P
(2.1642) g () ax? .

Hence

(2.1643)  g(1) = '5(%)‘3 ,
From (2,16 e2) and (2 e16:3)s we have
(2416 +4) E({;-: « SnP/

for all ps G in [Pe From (2.16.1) and (2.1644), we have
(2.16.5) g(r) = g(n”

fecr 2ll r in QT‘U {o} .

Let x be any point in ﬁf[} {0} {rn] be any sequence in
Gt;J {0} which tends to x. Since 3 is continuous on mf;;{O),

hence

g(x) = 1im §(r ).
n
n=->c

From (2e16e5)y it follows that

r
11m  d(1) ®
TN==2>>J0

3(x)

= (¥,

Therefore, g(x) 5(1)* for all x in R’V {0} .
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