CHAPTER V

DEGREE SEQUENCE OF CONNECTED HYPERGRAPHS

5.1 Connected hypergraph

Lemma 5.1.1 Let H be an r-graph with P_1 vertices, P_r edges. If H is connected, then P_1 - $(r-1)P_r \le 1$.

Proof Let H be a connected r-graph.

Case 1 Assume that H contains no cycle. Thus H is acyclic. Hence H is an r-tree. Thus by theorem 4.1.6 Σ (-1) i+1 $P_i = 1$ i=1

and $P_i = {r \choose i} P_r$; i = 2, 3, ..., r-1, thus by lemma 4.1.4

$$\sum_{i=1}^{r} (-1)^{i+1} P_i = P_1 - (r-1) P_r$$
.

Hence $P_1 - (r-1) P_r = 1$.

Case 2 Assume that H contains a cycle. Thus by lemma 4.1.5 $P_1^- \text{ (r-1) } P_r \leqslant 0. \text{ Hence } P_1^- \text{ (r-1)} P_r \leqslant 1. \text{ Therefore in any case }$ $P_1^- \text{ (r-1) } P_r \leqslant 1.$

Then H contains no cycles iff P_1 - $(r-1)P_r$ = k, where, as usual, P_1 and P_r denote the numbers of vertices and edges of H.

Proof First we prove the necessary part. Let the k components of H be H^1 , H^2 ,..., H^k . Assume that H has no cycles. Hence each component H^j is an r-tree. Let P^j_i be the number of i-edge of $K(H^j)$. Thus from theorem 4.1.6, $P^j_i = \binom{r}{i} P^j_r$; $i = 2,3,\ldots$ r...,r-1; $j = 1,2,\ldots,k$, and $\sum_{i=1}^{r} (-1)^{i+1} P^j_i = 1$, $j = 1,2,\ldots,k$.

By lemma 4.1.4 $\sum_{i=1}^{r} (-1)^{i+1} P_i^j = P_1^j - (r-1)P_r^j$, j = 1, 2, ..., k,

thus $P_1^j - (r-1) P_r^j = 1$.

Therefore $\sum_{j=1}^{k} (P_1^j - (r-1) P_r^j) = k,$

we observe that $\sum\limits_{j=1}^k P_1^j = P_1$ and $\sum\limits_{j=1}^k P_r^j = P_r$.

Hence $P_1^- (r-1) P_r = k$.

Next we prove the sufficiency part

Again, assume the k connected components of H be H^1 , H^2 ,..., H^k .

Assume that P_1^- (r-1) P_r^- = k. We shall show that H has no cycle. Suppose that H has a cycle. Without loss of generality we may assume H^k has a cycle, thus by lemma 4.1.5

$$P_1^k - (r-1) P_r^k \le 0$$
 (5.1.2.1)

Since H^1 , H^2 ,..., H^{k-1} are connected, thus by lemma 5.1.1

$$P_1^{j}$$
- $(r-1)P_r^{j} \le 1$; $j = 1, 2, ..., k-1$.

Hence

$$\sum_{j=1}^{k-1} P_1^{j} - (r-1) \sum_{j=1}^{k-1} P_r^{j} \leq k-1 \qquad \dots \qquad (5.1.2.2).$$

From (5.1.2.1) and (5.1.2.2), we see that

$$\sum_{j=1}^{k} P_{1}^{j} - (r-1) \sum_{j=1}^{k} P_{r}^{j} \leq k-1 \qquad \dots (5.1.2.3).$$

Since

$$P_1 = \sum_{j=1}^k P_1^j \text{ and } P_r = \sum_{j=1}^k P_r^j,$$

hence it follows from (5.1.2.3) that

$$P_1 - (r-1) P_r \leq k-1.$$

Thus we get a contradiction.

5.2 Degree sequence of connected r-graph

Theorem 5.2.1 Let $\pi = (d_1, d_2, \dots, d_{p_1})$ be a sequence of non-negative integer with $d_1 > d_2 > d_3 > \dots > d_{p_1}$. Then there exist a connected

r-graph with degree sequence π iff

(5.2.1.1) π is a degree sequence of an r-graph,

(5.2.1.2) d_i > 1 for all i,

$$(5.2.1.3)$$
 $\Sigma d_{i} \ge \frac{r(P_{1}-1)}{r-1}$.

Proof First we prove the sufficiency part.

Let H be an r-graph with degree sequence π .

Suppose H is not connected, thus H has k > 2 components, from

remark (2.3.1)
$$P_r = \frac{\Sigma d_i}{r}$$

and from (5.2.1.3)
$$\frac{\Sigma d_i}{r} \geqslant \frac{P_1 - 1}{r-1}$$

thus
$$P_r \Rightarrow \frac{P_1 - 1}{r - 1}$$
,

$$(r-1)P_r > P_1 - 1$$
,

thus $(r-1)P_r > (r-1)\frac{P_1-1}{r-1}$,

$$P_1^- (r-1)P_r \leq P_1^- (r-1) \frac{P_1^{-1}}{r-1}$$

$$P_1 - (r-1)P_r \leq 1$$
,

since $k \geqslant 2$. Thus $P_1 - (r-1)P_r \neq k$. Thus from Lemma 5.1.1 H has a cycle, say P. Assume the cycle P is $x_1, E_1, x_2, E_2, \dots, E_q, x_{q+1}$, since $x_2 \in E_2$ and $x_2 \in E_1$, thus $d_H(x_2) \geqslant 2$. Thus there exist a vertex x on the cycle P such that $d_H(x) \geqslant 2$. Let E be an edge on the cycle that contains x, say $E = \{x_1, x_2, \dots, x_{r-1}, x\}$ and let $\{a_1, a_2, \dots, a_r\}$ be an edge of the other component. Construct a new hypergraph $H' = (X', \xi')$ where X' = X and $\xi' = (\xi \setminus \{\{x_1, x_2, \dots, x_{r-1}, x\}\}, \{a_1, a_2, \dots, a_r\}\}) \cup \{\{x_1, x_2, \dots, x_{r-1}, a_r\}, \{a_1, a_2, \dots, a_{r-1}, x\}\}$.

In H' the number of connected components is reduced in which

 $d_{H^1}(x) = d_H(x)$ for every $x \in X = X^1$. If H^1 is not connected, thus H^1 has $k \geqslant 2$ components thus $P_1 - (r-1)P_r \leqslant 1$, in which $P_1 - (r-1)P_r \neq k$, therefore H^1 has a cycle. By repeating the same process in H, as many times as needed, we obtained a connected hypergraph.

Next we prove the necessary part.

Suppose there exist a connected r-graph H with degree sequence π . Then conditions (5.2.1.1) satisfied. Since H is connected and if H has no cycle, then H is a r-tree, thus by theorem 4.1.6

$$\Sigma$$
 (-1)ⁱ⁺¹ $P_i = 1$. If H has a cycle, then by lemma 4.1.5 i=1

and by lemma 4.1.4
$$\sum_{i=1}^{r} (-1)^{i+1} P_i = P_1 - (r-1) P_r$$
,

thus
$$P_1^- (r-1) P_r \le 1$$
 $P_1^{-1} \le (r-1) P_r$ $\frac{P_1^{-1}}{r-1} = P_r$.

By remark 2.3.1
$$P_r = \frac{\Sigma d_i}{r}$$
,

thus
$$\frac{\Sigma d_i}{r} \geq \frac{P_1 - 1}{r-1} ,$$

i.e.
$$\Sigma d_i > \frac{r(P_1-1)}{r-1}.$$

The theorem is prove.