DEGREE SEQUENCE

3.1 Degree Sequence

Let $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ be a sequence of non-negative integer. If there exists a hypergraph H with vertices $v_{1}, v_{2}, \ldots, v_{p}$ such that $d_{1 i}\left(v_{i}\right)=d_{i}\left(d_{1 i}^{r}\left(v_{i}\right)=d_{i}\right)$ we say that $\pi=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is the degree sequence (r-degree sequence) of H. If $d_{1} \geqslant d_{2} \geqslant \ldots \geqslant d_{p}$ we say that $\pi=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is non-increasing degree sequence (non-increasing r-degree sequence) of H.

Havel and Hakimi [4], as cited in [1], found that if we let $\pi=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ be a sequence of non-negative integer in which $d_{1} \geqslant d_{2} \geqslant \ldots \geqslant d_{p}$ then π is a degree sequence of 2 -graph if and only if $\pi^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}^{-1}, d_{d_{1}}+2, \ldots, d_{p}\right)$ is a degree sequence of a 2-graph.

The question "which sequence of non-negative integers are r-degree sequence ? " is answered by A.K.DEWDNEY [3]. We state and prove this result in theorem 3.1.2. First we prove the following lemma.

Lemma 3.1.1 Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ be a non-increasing r-degree sequence. Then there exists an r-graph $H=(X, \mathcal{E})$ with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}$ such that.
(3.1.1.1) k has degree sequence π and
(3.1.1.2) $H^{\prime}=\left(X^{\prime}, \varepsilon^{\prime}\right)$, where $X^{\prime}=X-\left\{v_{1}\right\}, \varepsilon^{\prime}=\left\{E-\left\{v_{1}\right\} /\right.$ $v_{1} \varepsilon E$ and $E \in\}$, has a non-increasing ($r-1$)-degree sequence.

Proof Let $H^{*}=\left(X^{*}, \varepsilon^{*}\right)$ be an r-graph with vertices $v_{1}, v_{2}, \ldots, v_{p}$ such that

$$
d_{\mathrm{n}^{*}}^{x}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}_{i}, \quad i=1,2, \ldots, p
$$

Let $H^{*^{\prime}}=\left(\mathrm{X}^{*^{\prime}}, \varepsilon^{*^{\prime}}\right)$, where $X^{* \prime}=X^{*}-\left\{v_{1}\right\}, \varepsilon^{* \prime}=\left\{E^{*}\left\{\left\{v_{1}\right\} / v_{1} \varepsilon E^{*}\right.\right.$ and $E^{*} \varepsilon\{ \}$, Thus H^{*} ' is an $(r-1)$-graph, whose $(r-1)$-degree sequence
 is not a non-increasing sequence, let k^{*} be any integer for which

$$
\begin{equation*}
\mathrm{d}_{\mathrm{k}^{\mathrm{*}}}^{\mathrm{r}-1}\left(\mathrm{v}_{\left.\mathrm{k}^{*}\right)<\mathrm{d}^{\mathrm{r}-1}\left(\mathrm{k}^{*} \mathrm{k}^{*}+1\right)}\right. \tag{3.1.1.3}
\end{equation*}
$$

hence there exists $(r-2)$ subset S_{1} of $X^{* \prime}-\left\{v_{k}, v_{k}^{*}+1\right\}$ such that

$=T_{1} \cup\left\{v_{k{ }^{*}+1}\right\} \in \mathcal{E}^{*}$, while $E{ }_{k}{ }^{*}=T_{1} U\left\{v_{k}{ }^{*}\right\}=S_{1} \cup\left\{v_{k}{ }^{*}\right\} \cup\left\{v_{1}\right\} \notin \mathcal{E}^{*}$.
Let $X^{* \prime \prime}=X^{*} \backslash\left\{v_{1}\right\}$ and $\varepsilon^{* "}=\left\{\mathrm{E}^{*} / \mathrm{E}^{*} \varepsilon \varepsilon^{*}\right.$ and $\left.\mathrm{v}_{1} \notin \mathrm{E}^{*}\right\}$. Hence
$H^{* \prime \prime}=\left(x^{* \prime \prime}, \varepsilon^{* \prime \prime}\right)$ is an r-graph whose degree sequence is
$\left(d_{H}^{r}{ }^{* \prime \prime}\left(v_{2}\right), d_{H^{r}}^{r}{ }^{\prime \prime}\left(v_{3}\right), \ldots, d_{H^{* \prime}}^{*}\left(v_{p}\right)\right)$. Observe that for any vertex
$v_{i}, \quad i=2,3, \ldots, p$ we have

$$
\begin{equation*}
\mathrm{d}_{\mathrm{II}}^{\mathrm{r}}\left(\mathrm{v}_{\mathrm{i}}\right)=\underset{\mathrm{K}^{*}}{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{i}}\right)+\underset{\mathrm{H}}{\mathrm{~d}}{ }_{* N}\left(\mathrm{v}_{\mathrm{i}}\right) \tag{3.1.1.4}
\end{equation*}
$$

In particular, for the case $i=k^{*}$ and $i=k^{*}+1$, we have

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{E}}^{\mathrm{r}}{ }_{*}\left(\mathrm{v}_{\mathrm{k}}{ }^{*}\right)=\underset{\mathrm{d}^{\mathrm{r}}}{ }{ }^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}}{ }^{*}\right)+\underset{\mathrm{d}^{\mathrm{r}}}{*^{\prime \prime}}\left(\mathrm{v}_{\mathrm{k}}{ }^{*}\right)
\end{aligned}
$$

From the assumption that $\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is non-increasing we have

$$
\begin{equation*}
\mathrm{d}_{H^{*}}^{r}\left(\mathrm{v}_{\mathrm{k}^{*}}\right) \geqslant \mathrm{d}_{\mathrm{V}^{*}}{ }^{\mathrm{k}}\left(\mathrm{v}_{\mathrm{k}^{*}+1}\right) \tag{3.1.1.7}
\end{equation*}
$$

From (3.1.1.5), (3.1.1.6), and (3.1.1.7) we have

From (3.1.1.3) and (3.1.1.8), we get

$$
\mathrm{d}_{\mathrm{H}^{\prime \prime}}^{\mathrm{r}}\left(\mathrm{v}_{\mathrm{k}}^{*}\right)>\mathrm{d}_{\mathrm{H}^{\mathrm{r}}}^{*^{\prime \prime}}\left(\mathrm{v}_{\mathrm{k}}^{*} \mathrm{k}^{\mathrm{s}}\right) \text {), }
$$

thus there exists an (r-1)- subset of T_{2} of $\left.X^{\prime \prime}-\operatorname{va}_{k}{ }^{*}, v_{k}^{*}+1\right\}$ such that $T_{2} \cup\left\{\mathrm{v}_{\mathrm{k}}{ }^{*}\right\} \in \mathcal{E}^{* \prime \prime}$ and $\mathrm{T}_{2} \cup\left\{\mathrm{v}_{\mathrm{k}^{*}+1}\right\} \notin \mathcal{E}^{* \prime \prime}$. Let $\mathrm{E}_{\mathrm{k}}^{*}=\mathrm{T}_{2} \cup\left\{\mathrm{v}_{\mathrm{k}}{ }^{{ }^{\prime}}\right\}$ and $\mathrm{E}_{\mathrm{k}^{*}+1}=\mathrm{T}_{2} \cup\left\{\mathrm{v}_{\mathrm{k}^{*}+1}\right\}$. Hence $\mathrm{E}_{\mathrm{k}}^{*} \varepsilon \varepsilon^{*}$ and $\mathrm{E}_{\mathrm{k}^{*}+1} \notin \xi^{*}$. Construct a new r-graph $\mathrm{If}=(\mathrm{X}, \mathcal{E})$ where $\mathrm{X}=\mathrm{X}^{*}$ and $\mathcal{E}=$

$$
=\left(\varepsilon^{*} \backslash\left\{E_{k+1}^{*}, E_{k}^{*}{ }_{k}^{*}\right\}\right) \cup\left\{E_{k}^{*}, E_{k}^{*}{ }^{*}\right\} \text {. }
$$

Hence H is a r-graph with degree sequence ($d_{1}, d_{2}, \ldots, d_{p}$). And construct a new $(r-1)$-graph $H^{\prime}=\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ where $X^{\prime}=x-\left\{v_{1}\right\}$ and $\mathcal{E}^{\prime}=\left\{E \sim\left\{v_{1}\right\} / v_{1} \varepsilon E\right.$ and $\left.E \varepsilon \mathcal{\}}\right\}$. From definition of \mathcal{E} we see that $\mathrm{s}_{1} \cup\left\{\mathrm{v}_{\mathrm{k}^{*}}\right\} \in \mathcal{E}^{\prime}$ and $\mathrm{S}_{1} \cup\left\{\mathrm{v}_{\mathrm{k}^{*}+1}\right\} \notin \mathcal{E}^{\prime}$. So H^{\prime} is a $(\mathrm{r}-1)$ graph in which all vertices have the same ($\mathrm{r}-1$)-degree excepts two vertices $\mathrm{v}_{\mathrm{k}^{*}}$ and $\mathrm{v}_{\mathrm{k}^{*}+1}$. ie, $\mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}^{*}}\right)$ has increased by unity, while $\mathrm{d}_{\mathrm{H}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}^{*}+1}\right)$ has decreased by unity. Inspecting the formula

$$
\sum_{i=2}^{p} i \cdot d_{H^{\prime}}^{r-1}\left(v_{i}\right)=\sum_{i=2}^{k^{*}-1} 1 \cdot \mathrm{~d}_{\mathrm{H}^{\prime}}^{\mathrm{r}}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{k}^{*} \cdot \mathrm{~d}_{\mathrm{H}^{\prime}}^{r-1}\left(\mathrm{v}_{\mathrm{k}}\right)+\left(\mathrm{k}^{*}+1\right) \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}+1}\right)
$$

$$
+\sum_{i=\mathrm{k}^{*}+2}^{\mathrm{p}} i \cdot \mathrm{~d}_{\mathrm{H}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{i}}\right),
$$

the term $\mathrm{k}^{*} \cdot \mathrm{~d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}}{ }^{*}\right)$ has increased by k^{*}, while the next term $\left(k^{*}+1\right) \cdot \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}^{*}+1}\right)$ has decreased by $\mathrm{k}^{*}+1$. Hence $\sum_{i=2}^{\mathrm{p}} 1 \cdot \mathrm{~d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{i}}\right)$ has decreased by 1. If the new sequence $\left(\mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{2}\right), \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{3}\right), \ldots, \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{p}}\right)\right)$ in H^{\prime} is not non-increasing then we can find a new integer k such that

$$
\mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}}\right)<\mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{k}+1}\right) .
$$

and continuing the same process on H^{\prime}. Each time we work the $\sum_{i=1}^{p} i \cdot d_{H^{\prime}}^{r-1}\left(v_{i}\right)$ has decreased by 1 . Since $\sum_{i=2}^{p} i \cdot d_{H^{\prime}}^{r-1}\left(v_{1}\right)$ is a positive integer. So $\sum_{i=2}^{p} i \cdot d_{H^{\prime}}^{r-1}\left(v_{i}\right)$ has decreased until we arrive at an ($r-1$)graph in which the sequence $\left(\mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{2}\right), \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{3}\right), \ldots, \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{p}}\right)\right)$ is nonincreasing.

Theorem 3.1.2

A non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ is an r-degree sequence if and only if there is a non-increasing ($r-1$)-degree sequence $\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{q}^{\prime}\right)$ for which the following conditions hold :
(3.1.2.1) $\sum_{i=1}^{q} d_{i}^{\prime}=(r-1) d_{1}$
(3.1.2.2) $\left(d_{2}-d_{1}^{\prime}, d_{3}-d_{2}^{\prime}, \ldots, d_{q+1}-d_{q}^{\prime}, d_{q+2}, \ldots, d_{p}\right)$ is a
r-degree sequence.

Proof we prove the sufficiency part.
Let $H^{\prime}=\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ be an $(x-1)$-graph with vertices v_{2}, \ldots, v_{q+1}
such that

$$
d_{H^{i}}^{r-1}\left(v_{i}\right)=d_{i-1}^{r}, i=2,3, \ldots, q+1
$$

Let $H^{\prime \prime}=\left(X^{\prime \prime}, \varepsilon^{\prime \prime}\right)$ be an r-graph with vertices $v_{2}, v_{3}, \ldots, v_{p}$ such that

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{H}^{\prime \prime}}^{\mathrm{r}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}-1}^{\prime}, \mathrm{i}=2, \ldots, \mathrm{q}+1 \\
&=\mathrm{d}_{\mathrm{i}}, \quad \mathrm{HHULALO} \\
& i=q+2, \ldots, \mathrm{p}
\end{aligned}
$$

Let v_{1} be a vertex not in X^{\prime}. Define $\varepsilon^{\prime \prime \prime}=\left\{\left\{v_{1}\right\} \cup E^{\prime} \mid E^{\prime} \varepsilon \varepsilon^{\prime}\right\}$ so $|E|=r$ for every $E \varepsilon \mathcal{E}^{\prime \prime}$ 。.
Let $H=(X, \mathcal{E})$, where $X=\left\{v_{1}\right\} \cup X ", \mathcal{C}=\mathcal{C} " \cup \mathcal{C} "$. Since $|E|=r$ for every $E \in \mathcal{E}$, then H is an r-graph. Observe that $d_{H}^{r}\left(v_{1}\right)=\left|\varepsilon^{\prime}\right|$
$=\left|\varepsilon^{\prime \prime \prime}\right|$. By remark 2.3.1, the number of $(r-1)$-edges, in H^{\prime} is $\sum_{i=2}^{\sum_{i-1}^{q+1}} \mathrm{~d}_{\mathrm{H}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{i}}\right)$

$$
\text { Thus } \quad \begin{aligned}
d_{H}^{r}\left(v_{1}\right) & =\frac{\sum_{i=2}^{q+1} d_{H^{\prime}}^{r-1}\left(v_{i}\right)}{r-1} \\
& =\frac{\sum_{i=2}^{\sum_{i=1}} d_{i-1}^{\prime}}{r-1} \\
& =\frac{\sum_{i=1}^{q} d_{i}^{\prime}}{r-1}
\end{aligned}
$$

from condition (3.1.2.1) $\sum_{i=1}^{q} d_{i}^{\prime}=(r-1) d_{1}$.
thus $\quad d_{H}^{r}\left(v_{1}\right)=\frac{(r-1) d_{1}}{r-1}$.

Hence

$$
d_{H}^{r}\left(v_{1}\right)=d_{1}
$$

For each $i=2,3, \ldots, q+1$, observe that

$$
d_{H}^{r}\left(v_{i}\right)=d^{r}\left(v_{i}\right)+d^{r-1}\left(v_{i}\right) \text {, }
$$

$$
=d_{i}-d_{i-1}^{\prime}+d_{i-1}^{\prime} .
$$

$$
=d_{i}
$$

While for each $i=q+2, q+3, \ldots, p$,

$$
d_{H}^{r}\left(v_{i}\right)=d_{H^{\prime \prime}}^{r}\left(v_{i}\right)=d_{i} \text {. Therefore } d_{1}, d_{2}, \ldots, d_{p}
$$

is an r-degree sequence.
Next we prove the necessary part.

By lemma 3.1 .1 there exists an r-graph $H=(X, \mathcal{E})$ such that H has degree sequence π with vertices $v_{1}, v_{2}, \ldots, v_{p}$, and $H^{\prime}=\left(X^{\prime}, \varepsilon^{\prime}\right)$ where $X^{\prime}=X-\left\{v_{1}\right\}$ and $\varepsilon^{\prime}=\left\{E \backslash\left\{v_{1}\right\} \mid v_{1} \in E\right.$ and $E \varepsilon\{ \}$ has a non-increasing $(\mathrm{r}-1)$-degree sequence $\left(\mathrm{d}_{\mathrm{Hi}}^{\mathrm{r}-1}\left(\mathrm{v}_{2}\right), \mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{3}\right), \ldots\right.$ $\left.\ldots, d_{H^{\prime}}^{r-1}\left(v_{p}\right)\right)$. Dy remark 2.3.1 the number of $(r-1)$-edges in H^{\prime} is $\frac{\sum_{i=2}^{p} d_{H^{r}}^{r-1}\left(v_{i}\right)}{r-1}$. Let q be the largest integer satisfying
$\mathrm{d}_{\mathrm{H}^{\prime}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{q}+1}\right)>0$ thus
thus

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{H}^{\mathrm{r}}}^{\mathrm{r}-1}(\mathrm{v} / \mathrm{i})=0 \quad \text { for } i>q+1 \\
& \frac{\sum_{i=2}^{p} \quad d^{r-1}(v / i)}{r-1}=\frac{\sum_{i=2}^{q+1} d_{i}^{r-1}\left(v_{i}\right)}{r-1}
\end{aligned}
$$

By definition of \mathcal{E}^{1}, we observe that the number of ($r-1$)edges in H^{\prime} is $d_{M}^{r}\left(v_{1}\right)$, therefore

$$
\begin{aligned}
& q+1 \text { CHULALONGKORN UNIVERSITY } \\
& \frac{\sum_{i=2} d_{H}^{r-1}\left(v_{i}\right)}{r-1}=d_{H}^{r}\left(v_{1}\right) \text {. } \\
& \sum_{i=2}^{q+1} d_{H^{i}}^{r-1}\left(v_{i}\right)=(r-1) d_{H}^{r}\left(v_{1}\right), \\
& =(r-1) d_{1} \text {. } \\
& d_{i}^{\prime} \quad=d_{H^{\prime}}^{r-1}\left(v_{i+1}\right), \quad i=1,2, \ldots, q \text {, }
\end{aligned}
$$

Define
therefore $\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{q}^{\prime}\right)$ is a $(r-1)$ non-increasing degree degree sequence of H^{\prime} and $\sum_{i=1}^{q} d_{i}^{\prime}=\sum_{i=1}^{q} d_{H^{p}}^{r-1}\left(v_{i+1}\right)$,

$$
\begin{aligned}
& =\sum_{i=2}^{q+1} d_{H^{0}}^{r-1}\left(v_{i}\right), \\
& =(r-1) d_{1},
\end{aligned}
$$

thus the condition 3.1.2.1 is satisfies.
Let $X^{\prime \prime}=x>\left\{v_{1}\right\}$ and let $\mathcal{E}^{n}=\left\{E \mid E \varepsilon\left\{\right.\right.$ and $\left.v_{1} \notin E\right\}$.
Hence $H^{\prime \prime}=\left(X^{\prime \prime}, \mathcal{E}^{\prime \prime}\right)$ is an r-graph.
Observe that for any vertex $v_{i}, i=2,3, \ldots, p$.

$$
\begin{aligned}
& d_{H}^{r}\left(v_{i}\right)=d_{H}^{r-1}\left(v_{i}\right)+d_{H^{\prime \prime}}^{r}\left(v_{i}\right), \\
& d_{H^{\prime \prime}}^{r}\left(v_{i}\right)=d_{H}^{r}\left(v_{i}\right)-d_{H}^{r-1}\left(v_{i}\right),
\end{aligned}
$$

since

$$
\mathrm{d}_{\mathrm{H}}^{\mathrm{r}-1}\left(\mathrm{v}_{\mathrm{i}}\right)=0 \quad \text { for } i>\mathrm{q}^{+1}
$$

thus

$$
\begin{aligned}
d_{H^{n \prime}}^{r}\left(v_{i}\right) & =d_{i}-d_{i-1}^{\prime}, \quad i=2, \ldots, q+1 \\
& =d_{i} ; \quad i>q+1
\end{aligned}
$$

So the sequence $\left(d_{2}-d_{1}^{\prime}, d_{3}-d_{2}^{\prime}, \ldots, d_{q+1}-d_{q}^{\prime}, d_{q+2}, \ldots, d_{p}\right)$ is an r-degree sequence.

