CHAPTIR II

HISTORICAL

1. Alkaloids isolated from Uncaric specios recognized by Bidsdele (10)

Uncaria acida (Hunt.) Roxb, yar, acida ..

Plant Part	Alkoloid	Reference
Leaf	Harmane	10
	Isorhynchophylline	10
	Rhynchophylline and its N-oxide	10

Uncaria acida (Iunt.) Roxb. Var. papuana Val.

Uncoria africane G. Don. sspe africana

Plant Part	Alkaloid	Reference
Leaf, Stem	Africanine	13
Leaf	Ajmalicine	10
	3-Isoajmalicine	10
	Tetrahydroalstonine	10
	19-Epi-ajmalicine	10
	19-Epi-3-isoajmolicine	10
	Dihydrocorynantheine	10
	Dihydrocorynentheine pseudoindoxyl	10.1
	Isomitraphylline	10
	Mitraphylline and its N -oxide	10
	Isorhynchophylline	10
	Rhynchophylline	10

Uncaria africana G. Don. ssp. angolensis (Havil.) Ridsd.

Plant Part	Alkaloid	Reference
Leaf	Isorhynchophylline and its N-oxide Rhynchophylline and its N-oxide	10

Whearia attenuata Korth.

Plant Part	Alkoloid	Reference
Lear	3-Isoa.jmalicine	10, 14
	Akuamnigine	10, 14
	Dihydrocorynantheine	10, 14
	Dihydrocorynantheine pseudoindoxyl	10, 14
	Epiallo corynantheine	10, 14
	Hormane	10, 14
	Hirsutine	10, 14
	Hirsuteine	10, 14
	Isomitraphylline and its N -oxide	10, 13, 14
	Mitraphylline and its N -oxide	10, 14
	Speciophylline	10, 14
	Uncarine A -	10, 14
	Uncarine B	10, 14
	Isorhynchophylline and its N -oxide	10, 14
	Phynchophylline and its N -oxide	10, 14
	Corymoxine B	13
	Isocorynoxeine	10, 14
	Corynoxeine	10, 14
	Rotundifoline	10, 14
	Isorotundifoline	10, 14
	Speciofoline	10, 14

Uncaria attenuata Korth. (continued)

Plant Part	Alkaloid	Reference
Stem	Dihydrocorynantheine	10
Stem, Bark, Wood	Isorhynchophylline Rhynchophylline Isocorynoxeine Corynoxeine	10

Uncaria barbata Merr.

Plant Part	Alkaloid	Reference
Leaf	Harmane	10
	Uncaria bernaysii F.V.Muell.	

Plant Part	Alkoloid	Reference
Leaf	Tetrohydroalstonine	10
	Akuammigine	10
	Isopteropodine and its N -oxide	10, 15
	Pteropodine and its N-oxide	10, 15
	Speciophylline and its N -oxide	10, 15
	Unearine F and its N-oxide	20, 15

Plant Part	Alkaloid	Reference
Flower	Isorhynchophylline N -oxide	10
	Rhynchophylline N -oxide	10
	Ajmalicine	10
	3-Isoajmalicine	10
	Tetrahydroalstonine	10
	Akuammigine	10
	Angustine	10, 12
	Isomitraphylline	10
	Mitraphylline	10
	Isopteropodine and its N-oxide	10
	Pteropodine and its N-oxide	10
	Speciophylline and its N-oxide	10
	Uncarine F and its N -oxide ${ }^{\text {a }}$	10
Leaf and ¢ Stem	Totrahydroolstonine	16
	Akuammigine	16
	Isopteropodine and its N -oxide	16
	Ptoropodine and its N -oxide	16
	weciopylline and its H-oxide	16
	Uncarine F and its N -oxide	16

Uncaria borneensis Havil.

Plant Part	Alkaloid	Reference
Leaf	Harmane	10

- Uncaria callophylla BI. ex Korth.

Plant Part	Alkeloid	Reference	
Leaf, Eruit Leaf	Dihydrocorynantheine	10	
	Gambirine	10	
	Isomitraphy 71 ine	10	
	Mitraphylline	10	
	Isorhynchophylline	10	
	Rhynchophylline	10	
	Rotundifoline เมหาวิทยาลัย	10	
	Isorotundifoline \|	UNIVERSITY	10
Stom	Isorhynchophylline	10	

Uncaria conescens Korth.

Plant Part	Alkoloid	Reference
Leaf	Harmane	10,14
	Isopteropodine and its N-oxide	14
Stemopodine and its N-oxide	Speciophylline and its N-oxide	14
	Uncarine F and its N-oxide	14

Uncaria cordata (Lowr.) Merr. var. cordata Merr. f. cordata

Plant Part	Alkaloid	Reference
Leaf, Stem, Flower	Isorlyynchophylline Rhynchophylline	10

Uncaria cordata (Lour.) Merr. var. ferruginea (BI.) Ridsd. f. forruginea

Plant Pert	Alkaloid	Reference
Leaf, Sten, Flower	Dihydrocorynentheine	10

Uncaria cordata (Lour.) Merr. var. ferruginea (BI.) Ridsd. f. insignis (Bart. in DC.) Ridsd.

Plant Part	Alkaloid	Reference
Leaf	Isorhynchophylline Rhynchophylline	10

Uncaria cordata (Lour.) Merr. var. ferruginea (BI.) Ridsd. f. Ieantha

Plant Part	Leaf	Isorhynchophylline Rhynchophylline

Uncaria donisii Petit.

Plont Part	Alkaloid	'Reference
Leaf	Isopteropodino and its N-oxide	10
	Pteropodine and its N-oxide	10
	Speciophylline and its N-oxide	10
	Uncarine F and its N-oxide	10

Uncaria elliptica R. Br. ox G. Don.

Plant Part	Alkeloid	Reference
Leaf	3-Isoajmalicine	10
	Akuammigine	10
	Dihydrocorynantheine	10
	Gambirine	10,43
	Roxburghines C, D and E ยาลัย	10
	Roxburghines GIKORN UNIVERSIT	43
	Harmane 005808	10
	Isorhynchophylline	10
	Rhynchophylline	10
	Rotundifoline	10
	Isorotundifoline	10
Stem	Dihiydrocorynantheine	10

Uncaria gambir (Hunt.) Roxb.

Uncaria gambir (Hunt.) Roxb: (continued)

Plant Part	Alkaloid	Reference
Catechu (Gambir)	Gambirine Gambirtannine Dilydrogambirtannine Plant material	Oxogambirtannine

Uncaria guianensis (Auble.) Gmel.

Uncoria guianensis (Auble.) Gmel. (continued)

Uncaria hirsuta Havil.

Plont Part	Alkaloid	Reference
Leaf, Flower	Isomitraphylline	10
	Mitraphylline	10
	Uncarine A	10
	Uncarine B รณ์มหาวิทยาลัย	10
	Isomitraphylline N -oxide	10
	Mitraphylline N -oxide	10
Flower	3-Isoajmalicine	10
	Uncarine B	24

Unceria homomolla Miq.
(Uncaria quadrangularis Geddes.)

Plant Part	Alkaloid	Reference
Leaf, Stem	Angustine	10
	Angustoline	10
	Angustidine	10
	Isomitraphylline	10
	Mitraphylline	10
	Isopteropodine and its N -oxide	10
	Pteropodine and its N-oxide	10
	Speciophylline and its N -oxide	10
	Uncarine F and its N-oxide	10
	3-Isoujnolicino	10
	Ancuatine , -	12
	ingustolivo	22
	$\operatorname{montinitio}$	12
	Isomitraphylline	25
	Mitraplylline	25
	Isopteropodine	26
	Pteropodine	26
	Speciophylline	26
	Uncarine F	2.
Stem	Isopteropodine	25
	Pteropodine	25

Uncaria kunstleri King.

Plant Part	Alkaloid	Reference
Leaf	Hirsutine	10
	Isorhynchophylline and its \mathbb{N}-oxide	10
	Phynchophylline and its N -oxide	10
	Coryantinc	10
	Corynoxine B	10
Twig	Isorhynchophylline	10
	Rhynchophylline	10

Uncaria laevigata Wall. ex G. Don.

Plant Part	Alkaloid	Reference
Leaf	Isomitraphylline and its N-oxide	10
Mitraphylline and its N-oxide	10	
	Isopteropodine	10
	Speciophylline	10

Uncaria Iancifolia Hutch.

Plant Part	Alkaloid	Reference
Leaf	Isomitraphylline	10
	Mitraphylline and its N-oxide	10

Uncaria lanosa Well. vore appendiculata (Benth.) Ridsd. f. appendiculata
(Benth.) Ridsd.
(Uncaria forrea (BI.) DC. var. Eppendiculata)

Plant Part	Alkaloi	Reference
Leaf	Isomitraphylizine and its N -oxide	10
	Mitraphylline	10
	Isopteropodine and its N -oxide	10
	Pteropodine and its N -oxide	10
	Speciophylline and its N -oxide	10
	Uncarine F and its N-oxide	10
Whole p'lont	Isopteropodine(Uncarine E)	15
	Pteropodine(Uncarine C)	15
	Speciophylline(Uncarine D)	15
	Uncarine F	15

Uncaria lonosa Wall. Vare appendiculata (Benth.) Ridsd. f. grabrescens (Merr. et Perr.) Ridsd.

Plant Part	Alkeloid	Reference
Leaf	Akuammigine	10
	Isopteropodine and its N -oxide	10
	Pteropodine and its N -oxide	10
	Speciophylline and its N -oxide	10
	Uncarine F and its \mathbb{F}-oxide	10

Uncaria Ianosa Wall. yar. appendiculata (Benth.) Ridsd. faphilippinonsis (Uncaria kawakamii Hayata) (Els.) Ridsd.

Uncaria lanosa Wall. vare appendiculata (Benth.) Ridsd. faphilippinensis (Uncaria kawakanii Hayota) (continued)

Uncaria lanosa Wall. var. appendiculata (Benth.) Ridsd. fe setiloba (Uncaria florida Vidal.)
(Benth.) Ridsd.

Plant Port	Alkaloid	Reference
Leaf	Isomitraphylline and its N-oxide Mitraphylline and its N-oxide	10

Uncaria lanosa Woll. var. forrea (BI.) Ridsd.f. ferrea (BL.) Ridsd. (Uncaria ferrea (BI.) DC.)

Plant Part	Alkaloid	Reference
Leaf, Flower	Isonitraphylline and its N-oxide Mitrophylline and its N -oxide	10 10
Leaf, Sten, Flower, Fruit	Isopteropodine and its N -oxide	10
	Pteropodine and its N -oxide	10
	Speciophylline and its N -oxide	10
	Uncarine F and its N-oxide	10
Leaf, Stem	Harmane	10
Leaf	Gambirine	43
Whole plant	Isopteropodine (Uncarine E)	15
	Pteropodine (Uncarine C)	15
	Speciophylline (Uncarine D)	15
	Uncarine FIGIKORN UNIVERSITY	15

Uncaria lanosa Wall. var. glabrata (Bl.) Ridsd.

Plant Part	Alkaloid	Reference
Leaf	Isopteropodine and its N-oxide	10
Steropodine and its N-oxide	10	
Stem	Speciophylline and its N-oxide	10
	Uncarine F and its N-oxide	10

Uncaria lanosa Wall. var. korrensis (Kanehira.) Ridsd.

Plant Part	Alkaloid	Reference
Leaf	Isomitraphylline and its N -oxide	10
	Mitraphylline and its N -oxide	10
	Isopteropodine and its N -oxide	10
	Pteropodine and its N -oxide	10
	Speciophylline and its N -oxide	10
	Uncarine F and its N -oxide	10

Uncaria lanosa Wall. vara lanose $+\because$

Plant Part	Alkaloid	Reference
Leaf	Isopteropodine and its N-oxide	10
	Pteropodine and its N-oxide	10
	Speciophylline and its N-oxide	10
	Uncarine F and its N-oxide	10

Uncaria lanosa Wall. vaṛ, toppingii (Merr.) Ridsd. fe toppingii (Merr.) Ridsd.

Uncaria Iongifiora (Poir.) Merr. var. Iongiflorá

Plant Part	Alkaloid	Reference
Leaf	Isomitraphylline and its N -oxide	10
	Mitraphylline and its N -oxide	10
	Isopteropodine and its N -oxide	10
	Pteropodine and its N -oxide	10
	Speciophylline and its N-oxide	10
	Uncarine F and its N -oxide	10
	Isorhynghophylline and its N -oxide	10
	Rhynchophylline and its N -oxide	10
	Corynoxine	10
	Corynoxine B	10
	Isocorynoxeine	10
	Corymoxeine	10
Stem	Isorhynchophylline and its N -oxide	10
	Phynchophylline and its N -oxide	10

Uncaria Iongiflora (Poir.) Merr. var. pteropoda (Miq*) Ridsd. (Uncaria pteropoda Miq.)

Plant Part	Alkaloid	Reference
Leaf	Isomitraphylline and its N -oxide	10, 34
	Mitraphylline and its N -oxide	70, 34
	Isopteropodine and its N -oxide	10, 34
	Pteropodine and its N -oxide	10, 34
	Speciophylline and its N -oxide	10, 34
	Uncorine F	10, 34
	Isorhynchophy17ine	10
	Rhynchophylline	10
	Isocorynoxeine	10
	Corynoxeine	10
Root, Bark, Stem	Isopteropodine	$32 \mathrm{a}, \mathrm{b}$
	Pteropodine	$32 \mathrm{a}, \mathrm{b}$
Stem	IsopteropodineORN UNIVERSITY	33
	Pteropodine	33

Uncaria macrophylla Woll.

Uncaria orientalis Guill.

Plant Part	Alksloid	Reference
Leaf	Ajmalicine	10
	3-Isoajnalicine	14
	Akuanmigine	10
	3-Iso-19-epiajmelicine	10
	Hamane	10, 14
	Isomitraphy 17 ine and its N -oxide	10, 14
	Mitraphylline and its N-oxide	10, 14
	Isopteropodine and its N -oxide	10, 14
	Pteropodine and its N -oxide	10, 14
	Speciophylline and its N -oxide	10, 14
	Uncarine F and its N -oxide	10, 14
	Uncarine $\hat{\sim}$	10
	Uncarine B	10
Stem berk, Stem wood	Isopteropodine and its N-oxide	10
	Pteropodino and its N -oxide	10
	Spociophylline and its N -oxide	10
	Uncarine F and its N -oxide	10
Leaf	Hermane	10

Uncaria perrottetii (A. Rich.) Merr.

Plant Part	Allkaloid	Reference
Leaf	Isomitraphylline and its \mathbb{N}-oxide	10
	Mitraphylline and its N -oxide	10
	Isopteropodine	10
	Pteropodine	10
	Speciophylline	10
	Uncarine F	10

Uncaria rhynchoply 71Ω (Miq.) Miq. ex Havil.

Plant Part	Alkaloid	Reference
Leof	Angustine	10, 12
	Angustoline	10, 12
	Angustidine ณ์มหาวิทยาลัย	10, 12
	Isorhynchophylline and its N -oxide	10, 40
	Rhynopophylline and its N -oxide	10
	Isocorynoxeine	10
	Corynoxoine	10
Hook	Rhynchophylline	39
Stem	Angustine	10
	Angustoline	10

Unceria rhynchoohylla (Miq.) Miq. ex Havil. (continued)

Plant Part	Alkaloid	Reference
StemSten, Root	Angustidine	10
	Isorhynchophylline N -oxide	10
	Dihydrocorynantheine	36,37,38
	Hirsutine	36,37,38
	Corynantheine	36,37,38
	Hirsuteine	36,37,38
	Isorhynchophylline	36,37,38
	Rhynchophylline	36,37,38
	Isocorymoxeine	36,37,38
	Corynoxeine	36,37,38
Bark, Root	Akuamigine	41, 42
	Geissoschizine methyl ether	41, 42

Chulalongioorn University

Uncaria roxburglizana Korth.

Plant Part	Alkeloid	Reference
Leaf, Stem,	Speciophylline	10
Leaf, Stam	Isopteropodine and its N -oxide	10
	Pteropodine	10
	Speciophylline N-oxide	10
	Uncarine F	10
	Pteropodine N-oxide	10
	Uncarine F N-oxide	10
Uncaria scandens (Snith.) Hutch.		
Plant Paxt	nikaloid	reference
Leaf	Isomitraphylline and its N -oxide	10
	Mitraphylline and its N -oxide	10
	Isopteropodine and its N -oxide	10
	Pteropodine and its N -oxide	10
	Speciophylline and its N -oxide	10
	Uncarine F	10

Uncaria schlenkerae S. Moore

Plant Part	Alkaloid	Reference
Leaf	Harmane	10

Uncaria sessilifructus Roxb.

Plant Part	Alkaloid	Reference
Leaf	3-Isoajmalicine	10
	19-Epi-3-isoajnalicine	10
	Akuamigine	10
	Hirsutine	10
	Isomitraphylline and its N -oxide	10
	Mitraphylline and its N -oxide	10
	Uncerine Λ	10
	Uncarine B	10
	IsorhynchophylIine	10
	Rhynclophylline	10
	Corynoxine	10
	Corynoxine B	10

Uncaria sinensis Hevil.

Plant Part	Alkaloid	Reference
Leaf, Fruit	Akuanmigine	10
	Isopteropodine and its N-oxide	10
	Pteropodine and its N-oxide	10
	Speciophylline and its N-oxide Uncarine F and its N-oxide	10

Uncaria Sterrophy11a Merr. ot Perr.

Plant Part	Alkaloid	Reference
Leaf	3-Isoajmolicine	10
	Isopteropodine	10
	Pteropodine	10
	Speciophylline and its N -oxide	10
	Uncarine FIGIKORIN UNIVERSITY	10
	Isorlhynchophylline	10
	Phynchophylline	10
Stem	Isopteropodine	10
	Ptoropodine	10
Stem, Bark, Root	Specioplyylline	10
	Isorly ${ }^{\text {a }}$ chophylline	10
	Phynchophylline	10

Uncaria tolbotij Wernh.

Plant Part	Alkeloid	Reference
Leaf, Flower	Isorhynchophylline	10
	Rhynchopliylline	\vdots

Uncaria tomentosa (Willd.) DC.

Plant Part	Alkoloid	Reference
Leaf, Stern	Dinydrocorynantheine and its N-oxide	45
	Hirsutine and its N-oxide	45
	Hirsuteine	45
	Isomitraphylline end its N -oxide	45
	Mitraphylline	45
	Isorhynchophylline and its N -oxide	45
	Rhynchophylline and its N -oxide	45
	Rotundifoline orin UnIVERSITY	45
	Isorotundifoline	45
Leaf, Sten Flower	Isorlynchophyllino	10
	Phynchoplylline	10
	Rotundifoline	10
	Isororundifoline	10
Stern, Flower	Dihydrocorynantheine	10
	Hirsutine	10

Uncaria tomentosa (Willd.) DC. (continued)

Plant Part	Alkaloid	Reference
Stem, Flower	Hirsuteine	10
	Isomitraphylline	10
	Mitraphylline	10
	Isorhynchophylline and its N-oxide	10

Uncaria volutina Havil.

Plant Part	Mlkaloid	Reference
Leaf	Isomitraphylline	10
	Mitraphylline	10
	Isopteropodine and its N-oxide Pteropodine and its N-oxide Speciophylline and its N-oxide	10

2. Uncuri indole ani oxindole alk Ioids isolatod from other botanical sources.

2.1. Indole alkaloids

2.1.1 Pentacyclic heteroyohimbines

Alkaloid	Botanical source	Reference
Ajmalicine	Catharanthus lanceus Bojer (ex A.D.C.) Pichon	46
	C. pusillus (Murray) G. Don.	46
	C. roseus (I.) G. Don.	46
	C. trichophyl1us (Baker) Pichon	46
	Mitragyna javanica Koord. et Valeton	47
	var. microphylla Koord, et Valeton M. parvifolia (lioxb.) Korth.	66
	M. speciosa Korth. ${ }^{\text {a }}$	73
	Rauvolfia canescens Linne.	50
	R. heterophylla Roem, et Schult.	51, 52
	R. Hicrantha Hook. f. ทยาลัย	51
	R. Sellowii Muell-Arg. IVERSITY	51, 53
	R. serpentina (L.) Benth. ex Kurz.	51
	R. tetraphylla Linne.	54
	R. Verticillata H.R. Arthur	55
	R. vomitoria fiz.	56
	R. yumanensis Tsaing	57

2.1.2 Tetracyclic heteroyohinbines

Alkaloid	Botanical source	Reference
Dihydrocorhynan. theine	Corynanthe yohimbe K. Schuru. Mi.tragyna parvifolia (Roxb.) Korth. Pseudocinchona africana Aug. Chev.	81 60-68 49

2.1.3 Other indole alkaloids

Alkaloid)พาลงกรณัม Botanical source	Reference
Angustine	Mitragyna javanica Koord. et Valeton	47
	var. microphylla Koord, et Valeton M, parvifolia (Roxb.) Korth.	60
	Nauclea coadunata Roxb. ex J.E. Snith	12
	Strychnos angolensis Gilg.	12
	S. angustiflora Benth.	12,96,97
	S. borneensis Leenh.	97
	S. canptoneura Gilg.	12, 96
	S. floribunda Gilg.	12

Mlkaloid	Botanical source	Reference
Angustoline	Strychnos Iedermanij Gilg. et Bened	97
	S. ninor Dennst.	97
	S. odorata 1. Vhev.	12
	S. ovata A.W. Hill.	97
	S. pototarun L.f.	12
	S. rubicola Pierre. ex Dop.	97
	S. schoffleri Gilg.	12
	S. soubronsis Gilg.	12, 97
	S. trichoneura Jecuwenberg	12
	S. umbellata Cobbr. (q.v.)	97
	S. usanarensis Gils.	12
	S. wollichiana Steud. ex DC.	97
	S. Xantha Leeuwenberg	12
	Strychnos angustiflora Benth.	97
	S. bormeensis Leenh.	97
	S. minor Dennst.	97
	S. odorata A. Chev.	12
	S. ovata A.W. Hill.	97
	S. rubicola Pierre. ex Dop.	97
	S. Sanba Duvign.	12
	S. Scheffleri Gilg.	12
	S. trichoneura Leeuwenberg	12
	S. Wollichiana Steud. ex DC.	97

Alkaloid	Botanical source	Reference
Angustidine	Strychnos xantha Leeuwenberg	12
	Strychnos angolensis Gilg.	12
	S. angustiflora Benth.	97
	S. borneensis Leenh.	97
	S. ninor Dennst.	97
	S. odorata . Chev.	12
	S. rubicola Pierre ex Dop.	97
	S. scheffleri Gilg.	12
	S. trichoneura Leeuwenberg	12
	S. Wallichiana Steud. ex DC.	97
	S. xantho Leeuwenberg	12

$$
1 \times 2020
$$

2.2 Oxindole alkaloids

2.2.1 Pentacyclic oxindoles

Alkaluid	Botanical source	Reference
Isomitraphylline	Mitragyna hirsuta Havil.	83,84
	M. javanica Koord. et Valeton var. macrophylla Koord, et Valeton	47
	M. parvifalia (Roxb.) Korth.	58-68
	M. speciosa Korth.	73,74,75
	M. tubulosa Havil.	70
Mitraphylline	Catharanthus roseus (L.) G. Don.	46
	Mitragyna hirsuta Havil,	83-84
	M. Javanica Koord. et Valeton var. macrophylla Koord. et valeton	47
	M. parvifolia (Roxb.) Korth.	58-68
	M. rotundifolia (Roxb.) O. Kuntse	86
	M. rubrostipulacea (Roxb.) 0. Kuntze	82,87
	M. speciosa Korth.	73-78
	M. Stipulosa (DC.) 0. Kuntze	88 a
	M, tubulosa Havil.	70
Isopteropodine	Mitragyna parvifolia (Roxb.) Korth.	58-68
Pteropodine	Mitragyna parvifolia (Roxb.) Korth.	58-68
Speciophylline	Mitragyna inermis (Willd.) 0. Kuntze	89
	M. parvifolia (Roxb.) Korth.	58-68

Alkaloid	Botanical source	Reference
Speciophylline	Mitragyna speciosa Korth.	77,78
Speciophylline N -oxide	Mitragyna parvifolia (Roxb.) Korth.	69
Uncerine F	Mitragyna inermis (Willd.) 0. Kuntze	89
	M. parvifolia (Roxb.) Korth.	58-68
Uncarine F N-oxide	Mitragyna parvifolia (Poxb.) Korth.	69
Alkaloid	Botanical source	Reference
Isorhynchophyl line	Adina rubrostipulata K. Schuman.	119
	Mitragyna cilliata Aubrev, et Pellgr.	90,91,92
	M. hirsuta Havil. UNIVERSITY	83,84
	M. inermis (Willd.) 0. Kuntze	89,92
	M. parvifolia (Roxb.) Korth.	58-68,94
	M. rotundifolia (Roxb.) O. Kuntze	85,86
	M. rubrostipulacea (Roxb.) 0. Kuntze	82
	M. stipulosa Korth.	880,92
	M. speciosa Korth.	77,78
	M, tubulosa Havil.	70

Alkaloid	Botanical source	Reference
Isorhynchophyl line. H -oxido	Mitragyna inermis (Willd.) 0. Kuntze	93
	M. rotundifolia (Roxb.) 0. Kuntze	86,93
Phynchophylline	Mitragyna ciliata Aubrev, et Pellgr.	90,92
	M. hirsuta Havi,t1.	83,84
	M. inermis (Willd.) 0. Kuntze	89,92
	M. parvifolia (Roxb.) Korth.	58-68,94
	M. rotundifolia (Roxb.) 0. Kuntze	85,86,91
	Me rubrostipulacea (Roxb.) O. Kuntze	82
	M. speciosa korth.	$\begin{aligned} & 74,76,77, \\ & 78 \end{aligned}$
	M. stipulosa (DC.) O. Kuntze	885
	M. tubulosa Havil.	70
Rhynchophylline N -oxide	Cephalanthus occidentalis L.	95
	ligtruyn ineraig (filic.) 0 Kuntze	93
	M. rotundifolia (Roxb.) 0. Kuntze	86,93
Corynoxine	Mitragyna speciosa Korth.	76,77,78
	Pseudocinchona africana Aug. Chev.	49
Corynoxine B	Mitragyna speciosa Korth.	76,77,78
Corynoxeino	Mitragyna hirsuta Havil.	83,84
	M. parvifolia (Roxb.) Korth.	65-68

Alkaloid	Botanical source	Reference
Corynoxeine	Mitragyna rotundifolia (Roxb.) 0. Kuntze	86
	M. speciosa Korth.	76,78
	M. stipulosa (DC.) 0. Kuntze	88 a
	Pseudocinchone africana Aug. Chev.	49
Isocorynoxeine	Mitragyna rotundifolia (Roxb.) 0. Kuntze	36
Rotundifoline	Mitragyne ciliata Aubreve et Pellgr.	90,92
	M. inermis (Willd.) O. Kuntze	89,92
	M. parvifolia (Roxb.) Korth.	94
	M. rotundifolia (Roxb.) 0. Kuntze	91,86
	M, rubrostipulacea (Roxb.) 0. Kuntze	87
	M. speciosa Korth.	75
	M. stipulosa (DC.) 0. Kuntze	88a,92
	M. tubulosa Havil. ${ }^{\text {a }}$ (70
Isorotundifoline	Mitragyna ciliata Aubrev. et Pellgr.	90,92
	M. inermis (Willd.) 0. Kuntze	89
	M. parvifolia (Roxb.) Korth.	94
	M. rotundifolia (Roxb.) 0. Kuntze	86
	M. speciosa Korth.	75
	Me stipulose (DC.) 0. Kuntze	88 a
	M. tubulosa Havil.	70

3. Basic structures of indole alkaloids from species of

Uncaria

3.1 Pentacyolic heteroyohimbines (Closed E ring)

$R=H, O H^{(10,104)}$
3.2 Tetracyclic heteroyohimbines (Open E ring or E-seco)

$$
\begin{aligned}
& R=H, O H \\
& R^{\prime}=\text { othyl, vingl }
\end{aligned}
$$

$$
\mathrm{H}_{3} \mathrm{COOC} \overbrace{17}^{2} \mathrm{OCH}_{3}
$$

3.3 Other indole alkaloids
3.3 .1 -carboline

Harmane ${ }^{(10)}$

3.3.2 Pyridino-indolo-quinolizidinones

N
$(12,96)$
Angustine, $\quad \mathbf{R}=-\mathrm{CH}=\mathrm{CH}_{2} ; \mathbf{R}^{\prime}=\mathbf{H}(12,96)$
Angustoline, $\mathrm{R}=-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{H}$
Angustidine, $R=H ; R^{\prime}=-\mathrm{CH}_{3}(12,96)$
3.3.3 Roxburghines

Roxburghine A, B, C, D and $E^{(18,100,104)}$

3.3.6 Geissosohizine methyl ether $(41,42)$

4. Basic structures of oxindole alkaloids from species of

Unoaria
4.1 Pentaoyclio oxindoles (Closed E ring)

$$
R=H^{(10,104)}
$$

4.2 Tetracyclic oxindoles (Open E ring or E-seoo)
$\mathrm{R}=\mathrm{H}, \mathrm{OH}$

$R^{\prime}=$ ethyl, $\operatorname{vinyl}^{(10,104)}$
4.3 Other oxindole alkaloids

Tetraoyclic pseudoindoxyl

5. Configurations of indole alkaloids

Both types of alkaloids, pentacyolic and tetracyolic heteroyohimbines, have asymmetric centres at $C(3), C(15)$, and $C(20)$. These alkaloids isolated so far possess a C(15)-Ha configuration and have asymmetric centres at $C(3)$ and $C(20)$, thus there are four possible $(104,105,106)$ configurations as follows.

Configuration	$O(3)-H$	$C(20)-H$
Hormal	α	B
Psoudo	B	B
Allo	α	α
Epial10	B	α

The pentacyolic heteroyohimbines possess another asymmetrio centre at $\underset{(102,195)}{C(19)}$ i.e. $\mathrm{CH}_{3} \alpha$ or β, so that eight isomers are possible*

The tetracyclic heteroyohimbines may show geometric isomerisation because of the double bond between $C(16)$ and $C(17)$. All known alkaloids possess a $C(17)-H$ cis to the $C(16)$ ester group.
5.1 Configurations of pentaoyclic heteroyohimbine alkaloids from species of Uncaria

R	Configuration	Alkaloid	c(19) $-\mathrm{CH}_{3}$	Reforence
H	Normal	Ajmallaine	\cdots	$\begin{aligned} & 100,101, \\ & 102,114 \end{aligned}$
	Pseudo	3-Isoajmalioine	a	$\begin{aligned} & 100,101 \\ & 102,111 \end{aligned}$
	Allo	Tetrahydroalatonine	α	$\begin{aligned} & 100,101, \\ & 102,116 \end{aligned}$
	Epiallo	Akuammigine	\propto	$\begin{aligned} & 100,101 \\ & 102,116 \end{aligned}$
	Normal	19-Epi-ajmalieine	B	$\begin{aligned} & 100,101, \\ & 102,114 \end{aligned}$
	Pseude	19-mpi-3-isoajmalioine	B	$\begin{aligned} & 100,101, \\ & 102,111 \end{aligned}$
	A110	Rauniticine	β	$\begin{aligned} & 100,101, \\ & 102 \end{aligned}$
OH	Has not jet been found	-		
OCH_{3}	Has not jet been found	-		

5.2 Configurations of tetracyclio heteroyohimbine alkaloids from species of Uncaria

R	$C(20)-R^{\prime \prime}$	Configaration	Alkaloid	Reference
Hf	$\mathrm{CH}_{2}-\mathrm{CH}_{3}$	Normal	Dihydrocorynantheine	$\begin{aligned} & 100,101, \\ & 102 \end{aligned}$
		Pseudo	Hirsutine	$\begin{aligned} & 100,101, \\ & 102 \end{aligned}$
	$\mathrm{CH}=\mathrm{CH}_{2}$	Normal	Corynantheine	$\begin{aligned} & 100,101 \\ & 102 \end{aligned}$
		Pseudo	Hirsuteine	$\begin{aligned} & 100,101, \\ & 102 \end{aligned}$
	$\mathrm{CH}_{2}-\mathrm{CH}_{3}$	Epiallo	Epiallo corynantheine	$\begin{aligned} & 100,101, \\ & 102 \end{aligned}$
$\begin{gathered} \mathrm{OH} \\ \mathrm{OCH}_{3} \end{gathered}$		Pexal	Gambirine	20,100
		Has not yet been found	-	

5.3 Configurations of other indole alkaloids from species of Unoaria

Roxburghines

Configuration	Alkaloid	C(18)	Reference
Formal	Roxbarghine C	α	$10,107,108$
Pseudo	Roxburghine D	α	$10,107,108$
Pseudo C	Roxburghine E	B	$10,107,108$
Epiallo	Roxburghine B	B	$10,107,108$

6. Configurations of oxindole alkaloids

Oxindole alkaloids possess the same four configurations as heteroyohimbine alkaloids, ie. normal, pseudo, allo and epiallo. In addition the oxindole alkaloids have asymmetric centre at C(7), thus eight configurations may exist as either A or B series alkaloids. The isomerimation takes place about the spiro carbon, $C(7)$. A and B oxindole alkaloids are classified in accordance with the position of the lactam carbonyl group relative to the plane of the C ring. Those alkaloids in which the lactam carbonyl lies below the plane of the C ring belong to the A series and those in which the lactam carbonyl lies above the plane of the C ring belong to the B series. $(106,109)$

A series

B series

Inversion of $N(4)$ is theoretically possible for both of the A and B series so that the lone pair of electrons may be either on the same side of the $C(7)$ as the lactam carbonyl group or on the opposite side and they are known as syn and anti alkaloids respectively. (110)
6.1 Configurations of pentacyolic oxindole alkaloids from species of Uncaria

R	Configuration	$\mathbf{C (7)}$	Alkaloid	$\mathrm{C}(19)-\mathrm{CH}_{3}$	Reference
H	Normal	A	Isomitraphylline	α	100,104,110
		B	Mitraphylline	α	100,104,110
	Allo	A	Isopteropodine	α	100,104,110
		B	Pteropodine	α	100,104,110
	Epiallo	A	Speoiophylline	α	100,104,110
		B	Uncarine F	α	100,104
	Normal		Uncarine A (Isoformosanine)	B	100,104,110
		B	Uncarine B (Formosanine)	β	100,104,110
OCH_{3}	Has not yet been found		-		

6.2 Configurations of tetracyclic oxindole alkaloids from

 species of Uncaria

R	$C(20)-R^{\prime}$	Configuration	$C(7)$	Alkaloid	Reference
H	$\mathrm{CH}_{2}-\mathrm{CH}_{3}$	Normal	A	Isorhynchophylline	100,104
		A110	B	Rhynohophylline	100,104
			A	Corynoxine	100,104
			B	Corynoxine B	100,104
	$\mathrm{CH}=\mathrm{CH}_{2}$	Normal	A	Isooorynoxeine	100,104
			B	Corynoxeine	100,104
OH	$\mathrm{CH}_{2}-\mathrm{CH}_{3}$	Normal	A	Rotundifoline	100,104
			B	Isorotundifoline	100,104
			B	Speciofoline	100,104
COH_{3}	Has not been f	und			

6.3 Confisurations of other oxindole alkaloids from species of Uncaria

Tetraoyolic pseudoindoxyl

7. Basic struotures and configurations of alkaloid N-oxides
from species of Unoaria
7.1 Indole H-oxides

7.1.1 Pentaoyclic heteroyohimbine N -oxides

Configuration	Alkaloid	Referenoe
Allo	(4R)-Tetrahydroalstonine N-oxide	21
Epiallo	(4R)-Akcuammigine N-oxide	21
Epiallo	(4S)-Alcuammigine N-oxide	21

7.1.2 Tetracyolio heteroyohimbine N -oxides

Configuration	Alkaloid	Reference
Normal	Dihydrocorynantheine N-oxide	45
Pseudo	Hirsutine N-oxide	45

7.2. Oxindole N -oxides
7.2.1 Pentacyclic oxindole N-oxides

Configuration		Alkaloid	Reference
Normal	A	Isomitraphylline \mathbb{N}-oxide	10,16,34,69
	B	Mitraphylline N -oxide	10,16,34,69
A110	A	Isopteropodine \mathbb{N}-oxide	10
	B	Pteropodine N -oxide	10
Epiallo	A	Speciophylline \mathbb{N}-oxide	10
	B	Uncarine F F -oxide	10

7.2.2 Tetracyclic oxindole N -oxides

Configuration	Alkaloid	Reference
Normal A	Isorhynchophylline N-oxide	10
B	Rhynohophylline N-oxide	10

8. Preferred conformations

8.1 Indole alkaloids

The preferred conformations of indole alkaloids were illustrated as follows $(15,106,125)$:-

8.1.1 Pentacyclic heteroyohimbines

Normal

Pseudo

$$
\begin{aligned}
& \mathbf{R}=\mathbf{H}, \text { 3-Isoajmalioine } \\
& \mathbf{R}=\mathbf{H} \text { and } \mathbf{C}(19)-\mathrm{CH}_{3} \text { B, 19-Epi-3-isoajmalicine }
\end{aligned}
$$

A110

$R=H$, Tetrahydroalstonine
$R=H$ and $C(19)-\mathrm{CH}_{3} \beta$, Rauniticine

Epiallo

8.1.2 Tetracyolic heteroyohimbines

Normal

A = H, Dihydrooorynantheine
$R=H$ and $C(20) E t=v i n j l$, Corynantheine
$\mathrm{R}=\mathrm{OH}$, Gambirine

Pseudo

8.2 Oxindole alkaloids

The preferred conformations of oxindole alkaloids were illustrated as follows $(100,101,106)_{8-}$

8.2.1 Pentaoyolio oxindoles

Hormel
A.

$\mathbf{R}=\mathrm{H}$, Isomitraphylline
$R=H$ and $C(19)-\mathrm{CH}_{3}{ }^{\beta}$, Uncarine A (Isoformosanine)

Normal
B.

R $=\mathbf{H}$, Mitraphylline
$R=H$ and $C(19)-\mathrm{CH}_{3} \beta$, Uncarine B (Formosanine)

A110
A.

A110
B.

$R=H$, Pteropodine

Epiallo

A.

Eoiallo
B.

$R=H$, Uncarine F

8.2.2 Tetracyolic oxindoles

Normal

A

Normal
B.

$\mathrm{R}=\mathrm{H}$, Rhynchophylline
$\mathrm{R}=\mathrm{H}$ and $\mathrm{C}(20) \mathrm{Ft}=$ Vinyl, Corynoxeine
$\mathrm{R}=\mathrm{OH}$, Isorotundifoline

Allo
A.

A110
B.

$R=H$, Corynoxine B

Epiallo

A.

Epiallo

B.


```
R=OH, Speciofoline
```


9. Transformation

9.1. Isomerisation

9.1.1 Isomerisation of indole alkaloids

The epimerisation is an equilibrium reaction with the position of the equilibrium depending upon the solvent and temperature. Experiments in the field of indole alkaloids reveal many procedures for ascertaining the $C(3)$ configuration. For example, the acid-oatalised or aoetio anhydride-induoed C(3) equilibration of D/E ais systems has been of diagnostic value. $(51,111)$ By mercuric acetate oxidation, Johimbine and ajmalioine were transformed into 3-dehydro compounds, and subsequent reduction of the 3-dehydro salts by zino-acetate yielded their $C(3)$ epimers $(111,112,113)$ as shown below :-

$2 n / H O A C$

Isomerisation of indole alkaloids

All compounds possessing $C(3)-H \alpha$ i.e. normal and allow such as yohimbine, d-1 allo yohimbine and ajmalicine undergo the oxidation, while the compounds containing a $C(3)-H B$ 1.e. pseudo or epiallo such as pseudo yohimbine, d-1 epiallo yohimbine and 3-isoajmalicine do not. ${ }^{(111,114)}$ Since, in compounds of the normal and allo series, the preferred configuration of the N-merourated complex is that in which the axial hydrogen at $\mathrm{C}(3)$ is trans to the $\mathrm{N}-\mathrm{Hg}$ bond, and thus the stereochemistry is favourable for a four-centre elimination. The mechanism is illustrated below :- (115)

$\mathrm{Hg} O A{ }^{-}$

In compounds of the pseudo and epiallo series, $C(3)-H$ is cis to the $\mathrm{N}-\mathrm{Hg}$ bond, and thus it would be unfavourable for the normal course of elimination. Some heteroyohimbine alkaloids had been converted into their corresponding isomers as summarised in the following table :-

Isomerisation		Referenoe
Ajmalicine normal	$\begin{aligned} & \text { 3-Isoajmalicine } \\ & \text { pseudo } \end{aligned}$	112,116
Tetrahydroalstonine a.l10	Akuammigine opiallo	112,116
Rauniticine allo	Isorauniticine opiallo	105
Dihydrocorynantheine normal	Hirsutine pseudo	109
Speciogynine normal	Mitraciliatine pseudo	109
Paynantheine normal	Tsopaynantheine pseudo	78,117
Corynantheidine a.110	Isocorynantheidine opiallo	78,117
Isomitrajavine normal	Mitrajavine psoudo	98

9.1.2 Isomerisation of oxindole alkaloids

In general pentacyclic and tetracyolic oxindole alkaloids may be isomerised about the $C(3)$ and $C(7)$ centres by treatment with either pyridine or acetic acid, or simply by heating. Because the oxindoles have a further asymetrio centre at $C(7)$ allowing the oxindole carbonyl to be either below (A configuration) or above (B configuration) the plane of the C / D ring. Six isomerio oompounds should result upon isomerisation namely two normal. (A and B), two allo (A and B) and two epiallo (A and B)
configurations. The existence of the pseudo (A and B) configuration has been thought to be precluded on the grounds of excessive steric hindrance. (109)

Determination of the isonerisation medium for the predominant isomers in the final mixture has been conducted by many workers. In aoid isomerisation, the B oxindoles predominate due to the stabilisation of the cation by means of intramoleoular hydrogen bond between the protonated $\mathrm{H}(4)$ and the lactam oarbonyl group. This stabilisation is not possible with the A oxindoles the latam carbonyl is below the plane of the C / D ring.

In a pyridine isorerisation, the A isomers predominate and this in thought to be due to the electrostatic repulsion between the lone pair of eleotrons of $M(4)$ and the laotam oarbonyl group in the free base form of the B isomer.

The isomerisation producte of pentaoyclic and tetracyclio oxindoles in acetic aoid and pyridine medium are shown in the followings :-
a. Aoetio acid isomerisation

Starting isomer	Isomerisation product	Reference
Isomitraphylline, or Mitraphylline 50% Isomitraphylline normal A 50% Mitraphylline normal B Uncarine A, or Unoarine B	minor Uncarine A normal A major Unoarine B normal B	15,99

Starting isomer	Isomerisation product	Reference
Isomitraphylline, or Mitraphylline	80\% Isomitraphylline normal 1 20\% Mitraphylline normal B	15,99
Uncarine A, or Uncarine B	80\% Uncarine A normal A 20\% Unoarine B normal B	15,99
Isopteropodine, or Pteropodine	80\% Isopteropodine $\text { al10 } 1$ 20\% Pteropodine $0110 \mathrm{~B}$	32b,99
Uncarine C, or Uncarine D	```100% Uncarine C al10 B Uncarine D epiallo A```	15,99
Isorhynohophylline, or Rhynohophylline	80\% Izorhynohophylline normal A 20\% Rhynchophyliline normal B	109,118 119
Rotundifoline, or Isorotundifoline	90\% Rotundifoline normal 4 10\% Isorotundifoline normal B	109
Rhynohoolline, or Ciliaphylline	35\% Rhynchooilline normal A 65\% Ciliaphylline normal B	109
Isospecionoxeine, or Specionoxeine	35\% Isospeoionoxeine normal 4 65\% Speoionoxelne normal B	109

9.2 Transformation of indole alkaloids to oxindole
 alkaloids

The reactivity of the β-position of indoles to electrophilic reagent has long been known. This property has been utilised to effect the transformation of simple indoles into their corresponding oxindoles via the intermediate β-hydroxyindolenine, subsequent treatment with acetic acid in methanol yielded oxindoles as shown below :- $(121,129,130)$

Pinch and Taylor, (102) and Kines and Shaver (123) showed that alkaloids of yohimbine and heteroyohimbine types were transformed into a mixture of epimeric $C(7)$ ohloroindolenines by the action of tertiary butyl hypochlorite. Methanolysis of the ohloroindolenines gave the imido ester which on hydrolysis in aqueous acetic acid yielded a mixture of oxindoles. The stronger base of the pair being named oxindole B and the weaker one, oxindoles A. The mechanism is as follows :-(122)

Zinnes and Shavel also noted that the universality of the $C(15)-H \alpha$ configuration of indole alkaloids also extended to the oxindole alkaloids. (123) Finch at al, and many workers have performed the conversion of heteroyohimbine alkaloids into their corresponding oxindoles and the results are eummarised as follows s-

Apart from the above mentioned method Finch et al ${ }^{(124)}$ showed that the reaction of lead tetramacetate with yohimbine and related
alkaloids afforded acetoxy indolenine. On refluxing this compound in methanol oontaining. a few drops of acetio acid, a rearrangement ocourred and an oxindole was obtained. Hart et al ${ }^{(125)}$ also sucoeeded in the oonversion of tetrahydroalstonine into its corresponding oxindoles, isopteropodine, pteropodine, speciophylline and unoarine F.

9.3 Transformation of oxindole alkaloids to indole alkaloids

Aimi ot al. sucoeeded in transforming both isopteropodine and pteropodine inte 2,3-seco-heteroyohimbine by treating with Meerwein's reagent in aoetic acid. The reaction first jielded ethylimino ether, whith on reduction with sodium borohydride in koetic aoid, 2,3 seooheteroyohimbine alkaloid with diluto soetic acid oontaining exoess merourio acetate, then treated with hydrogen sulphide, afforded the mixture of tetrahydroalstonine and akuammigine. (126) The reaction is shown in page 80.

Pteropodine

Imino ether

2,3 Seoo heteroyohimbine

Akuammigine
$+$

Tetrahydroalstonine

They also used the same method to convert tetracyclic oxindole, isorhynchophylline into dihydrocorynantheine and hirsutine. (126)

9.4 The interconversion of tetracyolio and pentaoyolia oxindole alkaloids

The natural ocourrence of both tetraoyclic and pentacyoldc oxindole alkaloids together in various species of Mitragyna without the presence of the oorresponding pentacyolic heteroyohimbine alkaloids led Houghton and Shellard ${ }^{(162)}$ to suggest that the pentacyolio oxindoles might arise by the ring olosure of the tetracyclic oxindoles. The presence of the $C(20)$ viny1 tetracyolio oxindoles, corynoxeine and isoc̣orynoxeine, in those plants containging mitraphylline and rhynohophylline suggested that they might be involved as intermediates.

In vivo closure of the Ering occurred when rhynohophylline labelled with ${ }^{14} \mathrm{C}$ was fed just below the leaf base of young plants of Mitragyna parvifolia (Roxb.) Korth. grown from seeds obtained from Sri Lanka. ${ }^{(68)}$ In this plant the xylem contains the tetracyclic oxindoles although they could not be detected in the leaves in which pentacyolic oxindoles are present. Shellard and Houghton therefore auggested that E ring olosure occurred in the xylem of the leaf base at 24 hours after the plant had been fed with radioactive rhynchophyline, as radioactive corynoxeine and mitraphylline were detected in the leaf. Conversely, when ${ }^{14}$ C-mitraphylline was fed into the stem bark, radioactivity was detected in the corynoxeine and rhynohophylline lower down the stem indicating that the reverse prooess, tetracyolic took place, with corynoxeine as an intermediate (68)

Following the method used by Djakoure, Jarreau and Goutard (163) for the closure of the open F ring in heteroyohimbine alkaloids, corynoxeine has been converted in vitro to mitraphylline and uncarine $\mathrm{Be}^{(162)}$

10. Alkaloid H -oxides

10.1 Pentaoyolio heteroyohimbine N -oxides

Merlini and Hasini believed that the M-oxides are not artifacts, because of the rather mild extraotions, and of the difficulty of oxidation of the base to H-oxides. They found that conditions employed with hydrogen peroxide in acetio acid or in ethanol were unsatisfactory, but oxidation of the base with 2 -obloroperbensoic acid in chloroform gave good yield $(30-70 \%)$ of the F-oxides. Tetrahydroalstonine, ajmalioine, 3-isoajmalicine and akuamigine, each Jielded only one H-oxide on treatment with $\underline{\underline{-} \text {-chloroperbenzoio acid. However, 4-R-akuammigine, }}$ 4-S-akuammigine and 4-R-tetrahydroalstonine H -oxides were indentified as natural produots in a species of Unoeria.

10.2 Tetracyolic heterorohimbine X-oxides

Dihydrocorynantheine and hirsutine H-oxides have been isolated from the leaves and stem of Unoaria tomentosa' (Willd.) DC. (45) No other tetracyolic I-oxide have been reported, so it would seem highly probable that they exist as natural products.

10.3 Pentacyolie oxindole H-oxides

N-oxides of the isomitraphylline, mitraphylline, isopteropodine,
pteropodine, speciophylline and uncarine F were reported as natural products in several species of uncaria and Mitragyna. (10), (69)

10.4 Tetracyclic oxindole N -oxides

It has been shown that the B series oxindoles give only one N-oxide, where as those in A series give two forms of N-oxides, an anti and a syn.

Isorkynchophylline treated with hydrogen peroxide yielded three products; anti-isorhynohophylline N-oxide, syn-isorhynohophylline N-oxide and rhynchophylline N-oxide. (166) But only the isorkynchophylline N-oxide with the anti configuration has been isolated as a natural product. (167) Rhynohophylline (normal B) yielded only one N-oxide and this also has been obtained as a natural product. (93) Similarly, rotundifoline yielded an anti and a syn N-oxides, while isorotundifoline yielded only one N-oxide. (167)

The facile conversion of N -oxide to tertiary base and vice versa under laboratory conditions might have their counterpart in plants, and N-oxide may simple be implicated in general oxidationreduction processes. Certainly when the natural oocurrence and chemioal reactivity of N -oxides is taken into aocount, it makes them likely biosynthetio intermediates in the sequence which follow alkaloid formation. (168)

11. Biogenesis

11.1. Indole alkaloids

The indole alkaloids of Unoaria species and nearly, all of the naturally ocourring indole alkaloids are formally derived from the oondensation of a monoterpenoid moiety $\left(C_{9}-C_{20}\right)$ unit with a tryptamine unit. (131)

11.1.1 Origin of the $\mathrm{C} 9-\mathrm{C}_{10}$ unit

This unit appears in three akeleton forms (132)
whioh are referred to as the oorynanthe-styohnos, the aspidosperma and the iboga types. (133) Three forms of the non-tryptophan derived

Corynanthe-strychnos unit

Aspidosperma unit
(The dotted line indicates that oarbon atom which is oansistently absent from those alkaloids having only nine skeleton carbons in addition to the tryptamine moiety.)

There were many hypotheses suggested the origin of monoterpenoid moiety of indole alkaloids, e,g. Woodward fission, (134) Prephenio hypothesis (136) and Aoetate hypothesis $(137,138)$ but each of them has now been disproven. $(136,139,140,141,142)$ The accepted hypothesis was based on feeding experiment by administration of $2^{-14} C-$ mevalonate
to Catharanthus roseus L. moote, afforded radioaotive ajmalicine, reserpinine (oorynanthe type), vindoline (aspidosperma type) and oatharanthine (iboga type). The results indioated that radioactive mevalonate was incorporated into each of the alkaloids. (143)

Iboga

Geraniol serves as the alicyolic monoterpene bridge between mevalonio aoid and a oyolopentanoid monoterpene. $(144,145,146)$ This was oonfirmed by feeding experiment nsing labelled geraniol. There
are four naturally occurring cyclopentanoid monoterpenes namely verbenalin, genepin, monoterpeine ester and loganin. Each of these compounds was tested for its ability to serve as the preoursor of the indole alkaloids of Catharanthus roseus L. . Only loganin with 3-H-labelled in the methyl ester group was proved as being the precursor of the indole alkaloids. (147)

The transformation of geraniol into the C_{10} siceleton of loganin requires oxidation of the C_{9} and C_{10} methyl groups, oxidation of C-1 to the aldehyde level, saturation of the Δ^{2}-double bond and formation of the cyclopentane ring. The intermediates in the pathway from geraniol to loganin are citronellal, iridodial and deoxyloganin. The rupture of cyclopentane ring leads to the formation of seco-loganin. ($148 \mathrm{a}, \mathrm{b}$) The pathway is shown below :-

11.1.2 Tryotamine formation

Tryptamine widely distributes amongst plants and animals. It derives from tryptophan by decarboxylation. Early experimental work had demonstrated the ability of the amino acid tryptophan to serve as a precursor of the tryptamine moiety of the indole alkaloids. $(154,155)$ Reoent work has been done on the biosynthesis of the amino aoid tryptophan. Careful studies with labelled intermediates have confirmed that tryptophan is synthesised via shikimic acid pathway, having anthranilic acid as an intermediate. $(156,157)$ The pathway of tryptophan biosynthesis is illustrated as follows 8-

When aryl-3H-tryptamine hydroohloride was fed to Catharanthus roseus L. shoots, the hydrochlorides of the two epimerio β-oarbolines namely isovincoside (strictosidine) and vincoside were produced. (149)

Isovincosido

Vinooside

In the feeding experiment to the same plant, $(149,150)$ only vincoside was shown to be incorporated into indole alkaloids. If as it now appears, vinooside bears a $C(3)-H \beta$ configuration, $(165,166)$ then an inversion must occur at that oarbon during the later stages of biosynthesis which lead to those indole alkaloids having the C(3)-H α oonfiguration.

However, recently isovinooside (striotosidine) was shown to be the common precursor for indole alkaloids, not vincoside as. originally thought. $(151,152,153)$ The proposed biosynthetio pathways leading to the corynanthe type are shown in the following three pages.

a. Heteroyohimbine alkaloids

b. Roxburghines

Roxburghines are indole alkaloids, being first isolated from Uncaria gambir Roxb. They are apparently derived from two tryptamines and one monoterpenoid C_{10} unit. They contain a loganin derived C_{10} unit of the corynanthe type. The following is a possible biogenetic soheme of roxburghines:- $(18,150)$

c. Pyridino-indolo-quinolizidinones

Pyridino-indolo-quinolizidinones is another type of alkaloids found in Uncaria speoies namely angustine, angustoline and angustidine. Angustine and angustoline are possibly derived from a tryptamine unit combined with a seoo-loganin monoterpene unit olosely related to the alkaloid gentianine. Gentianine has been shown in most but not all instances to be artifacts resulting from treatment of seco-iridoides such as gentiopioroside, swertiamarin and sweroside with ammonia. Thus there is the possibility that angustine and angustoline are artifacts. (96)

Gentianine

5-ene; gentiopicroside
$\mathrm{R}=\mathrm{OH}_{\text {; }}$ swertiamarin
$R=H$ sweroside

Alternatively, angustine and angustoline might possibly be formed from glyooside mixtures related to vincoside-lactam or isovincoside-laotam (striotosamide), (149) which are in turn derived biogenetically from tryptamine and seco-loganin.

The biogenesis of angustidine might involve the loss of a carbon atom $C(21)$ from the seoo-loganin portion of a corynanthe precursor. (96) For numbering see the next page.

corynanthe alkaloid structure

21-nor-corynanthe alkaloid structure

11.2 Oxindole alkaloids

Woodward a proposal regarding the oondensation between tryptamine and seco-loganin was that an intermediary, a Schiff's base, was formed which by $\alpha-$ condensation, gave indoles and the β-condensation yielded oxindoles. (131)

Jackson and Smith argued that the B-condensation was more likely than an a-condensation as the latter being less stable. They stated that tryptamine and the C_{10} mevalonate gave a Schiff's base which could undergo either α or β-condensation but that the β-condensation was more favoured because the intermediate product did not necessitate a rearrangement of the π electron system of the benzene ring which would be the case with an a-condensation. The indolenine can either isomerise in mild acid condition to give indole alkaloids or oxidise to give oxindole alkaloids. (158) This can be illustrated as shown in the next page.

Tryptamine

β-carboline

Schiff's base β - condensation

Spiro-indolenine

Oxindoles

Indoles

12. Biogenesis of the Uncaria Alkoloids

When the alkaloids present in individual species of Mitragyna are considered in terms of their configurations and D/E ring systems (61) it will be seen that :- ${ }^{-}$
a. when both heteroyohimbine and oxindole alkeloids are in the same plant, the D / E ring configurations of both are indentical,
b. heteroyohinbines are present in the major quantities as their least stable configuration, i.e. pseudo and epiallo. These showed the possibility that there was a well defined biogenetic link between the heteroyohimbine and oxindole alkaloids in plant and Shellard, Phillipson and Gupta postulated that :-

1. the plant synthesises the themodynamically more stable heteroyohimbine alkaloids,
2. these alkaloids are then isomerised to give the less stable heteroyohimbine alkaloids, and
3. that both types of hoteroyohimbines are thon converted to the corresponding oxindole alkaloids (pseudo oxindoles are unstable to exist (109) are unstable to exist because of steric interference.) (62)

The hypothesis can be represented as follows:-
A110 heteroyohinbine: $\longrightarrow 110$ oxindoles A and B
Epia110 heteroyohinbines \longrightarrow Epiallo oxindoles. A and B

Nomal heteroyohimbines \longrightarrow Nomal oxindoles. A and B (Pseudo oxindoles aro urato

In this comection it is interasting to note that the chemical transfomation of one indole alkaloid to the less stable isoner was (112)
achieved by Wenkert and Roychaudhuri. In addition the chemical conversion of heteroyolimbine alkaloids to the corresponding oxindoles
(123) was carried out by Finch and Taylor, Zinnes and Shavel, and (177) Beckett, Drurraa-Badu, and Heddock.

The alkaloids initially isolated fron the leaves of Uncaria bernaysii F.V.MMell. supported this hypothosis. Tetrhydroakstonine and akuanmigine are the pentacyelic heteroyohimbine alkaloids which occur together with the corresponding oxindole alkiloids, isopteropodine, pteropodine, speciophylline and uncarine F.

Recently, isopteropadine and pteropodine have been converted into tetralyydroolstonine and akummigine and it is possible that... oxindole alkaloids may be converted to heteroyohimbine alkaloids within the plant. The relationship betweon the ankaloids isolated from Uncaria bernaysii F.v.Muell: may be illustratedis fołiows: (16)
totralyydroolstonine

akuamigine (epinl1o)

"In vitro" conversion of the 110 and epiallo heteroyohinbine alkaloids into mixtures of allo and epiallo oxindoles had already been (127) achieved and Shellard and Sarpong were able to use the sane nethod
to convert pseudo heteroyohimbine into the normal oxindole alkaloids.
"In vivo" Shellard and Houghton ${ }^{(128)}$ fed ajmalicine and 3-isoajmalicine into young plants of Mitragyna parvifolia (Roxb.) Korth. grown from seeds obtained from Sri Lanka and in both cases obtained isomitraphylline and mitraphylline. It is significant, however, that no 3-isoajmalicine was detected in the leaves when the plant was fed with ajmalicine; neither ajmalicine was detected when 3-isoajmalicine was fed to plant. Similarly, akuammigine was not detected when ${ }^{14}$ C-tetrahydroalstonine was fed into the plant and vice versa. (67)

All of this experiments seem to confirm that in Mitragyna species, there is no interconversion between normal and pseudo, and allo and epiallo heteroyohimbine alkaloids during their biogenesis. (67)

It was considered that the $\mathrm{C}(3)-\mathrm{H} \times$ and $\mathrm{C}(3)-\mathrm{H}_{\beta}$ heteroyohimbine alkaloids were separately synthesised from a precursor but that epiallo and pseudo heteroyohimbine alkaloids were the dominant alkaloids and offered the main pathway to the oxindole alkaloids. The modification of this hypothesis later becomes more rational with Blackstock et al. and De Silva et al. (165) revelation that the $\mathrm{C}(3)$-H in vincoside was actually β. The hypothesis has been modified to meet this observed facts and was represented as follows:-

Hetoroyohimbine
oxindoles is and B
 epiallo

\longrightarrow = major routo
.... $=$ minor route

- a. these ${ }^{\text {a }}$ re two routes of biogenesis from a common precursor, one of which is a major route and the other a minor one,
b. the major route leads to the fomation of the epiallo and psoudo heteroyohimbine alknioids,
c. the epian1o heteroyohimbine are converted to epiallo and 0110 oxindoles, while the psoudo heteroyohinbine are converted only to nomml oxindoles,
d. the minor route leads to the formation of the a110 and nomel heteroyohimbine alkaloids and each may be converted to the corresponding oxindole, and
e. there may be conversion between the $C(3)-\mathrm{Hi} \alpha$ and $C(3)-H \beta$ oxindole alkaloids but not between the $e(3)-H \alpha$ and $C(3)-\mathrm{H} \beta$ heteroyohimbine alkaloids.

Since there is no evidence of interconversion between the substituted and non-substituted heteroyohinbine alkaloids in the plant, thus Shellord, Houghton and Resha suggested that there are (77) eight possible biosynthetic routes for the alkoloids.

Heteroyohimbine alkaloids corresponding to eight biosynthetic routes

asenjes	Closed E ring	Open E ring
Normol-psoudo	1. C(9)-HI	5. C(9)-H
4710-epiol10	2. $\mathrm{C}(9)-\mathrm{OCH}_{3}$	6. $\mathrm{C}(9)-\mathrm{OCH}_{3}$
	3. $\mathrm{C}(9)-\mathrm{H}$	7. C(9)-H
	4. $\mathrm{C}(9)-\mathrm{OCH}$	8. $\mathrm{C}(9)-\mathrm{OCH}_{3}$

Only unsubstituted leteroyohimbine alkaloids are reported from Uncaria species, sories 1, 3, 5 and 7 may be found.

However Stockight and Zenk have shown that in cell-free enzytue systoms from Catharonthus roseus I. cell suspension cultures, the precursor is isovincosido C(3)-Ho. This led Shellard, Houghton (78)
and Resha to modify their hypothesis and they suggested that the major route is via the $\mathrm{C}(3)-\mathrm{H} \boldsymbol{\alpha}$ heteroyohimbine alkaloids which are then converted primarily to the C(3)-Ho oxindole alkaloids and these alkaloids are then converted to the $C(3)-H$ bhetoroyohimbine alkaloids. There is probably, in addition, a minor route via the $C(3)-H / \beta$ heteroyohimbine alkaloids which are converted to the oxindoles since this has been shown to occur in vivo. The schene nay be show diagramatically as follows:-

Major route

Heteroyohirmine:
$\longrightarrow \mathrm{C}(3)-\mathrm{H} \alpha$
$C(3)-\mathrm{H} \beta$

Minor route

Oxindoles A and B

$$
\mathrm{C}(3)-\mathrm{H} \alpha
$$

$$
c(3)-\mathrm{I} / \mathrm{p}
$$

Oxindoles. A and B

$$
\begin{aligned}
& \mathrm{C}(3)-\mathrm{H} \alpha \\
& \mathrm{C}(3)-\mathrm{H}_{\beta}
\end{aligned}
$$

