สารออกฤทธิ์ทางชีวภาพจากราเอนโดไฟต์ *Phomopsis* sp.จากผักหวานเมา *Urobotrya siamensis* และไอโซเลต LRUB 20 จากกะตังใบ *Leea rubra*

นายพรเทพ ชมชื่น

สถาบันวิทยบริการ จุฬาลงกุรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ISBN 974-53-1551-6 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย BIOACTIVE COMPOUNDS FROM ENDOPHYTIC FUNGI *Phomopsis* sp. FROM Urobotrya siamensis AND ISOLATE LRUB 20 FROM Leea rubra

Mr. Porntep Chomcheon

สถาบันวิทยบริการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biotechnology Faculty of Science Chulalongkorn University

Academic Year 2004

ISBN 974-53-1551-6

Thesis Title	BIOACTIVE COMPOUNDS FROM ENDOPHYTIC FUNGI
	Phomopsis sp. FROM Urobotrya siamensis AND ISOLATE LRUB 20
	FROM Leea rubra
Ву	Mr. Porntep Chomcheon
Field of study	Biotechnology
Thesis Advisor	Associate Professor Nattaya Ngamrojanavanich, Ph.D.
Thesis Co-advisor	Associate Professor Nongluksna Sriubolmas, Ph.D.
Thesis Co-advisor	Prasat Kittakoop, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

.....Deputy Dean for Administrative Affairs,

Acting Dean, The Faculty of Science

(Associate Professor Tharapong Vitidsant, Ph.D.)

Thesis committee

.....Chairman

(Assistant Professor Surachai Pornpakakul, Ph.D.)

......Thesis advisor

(Associate Professor Nattaya Ngamrojanavanich, Ph.D.)

......Thesis Co-advisor

(Associate Professor Nongluksna Sriubolmas, Ph.D.)

......Thesis Co-advisor

(Prasat Kittakoop, Ph.D.)

.....Member

(Assistant Professor Supat Chareonpornwattana, Ph.D.)

นายพรเทพ ชมชื่น: สารออกฤทธิ์ทางชีวภาพจากราเอนโดไฟต์ *Phomopsis* sp. จากผัก หวานเมา *Urobotrya siamensis* และไอโซเลต LRUB 20 จากกะตังใบ *Leea rubra* (BIOACTIVE COMPOUNDS FROM ENDOPHYTIC FUNGI *Phomopsis* sp. FROM *Urobotrya siamensis* AND ISOLATE LRUB 20 FROM *Leea rubra*) อาจารย์ที่ ปรึกษา: รศ. ดร. นาตยา งามโรจนวณิชย์, อาจารย์ที่ปรึกษาร่วม: รศ. ดร. นงลักษณ์ ศรีอุบลมาศ, ดร. ประสาท กิตตะคุปต์ 196 หน้า. ISBN 974-53-1551-6

้งานวิจัยนี้ทำการแยกสารออกฤทธิ์ทางชีวภาพจากราเอนโดไฟต์ไอโซเลต LRUB 20 ที่แยก ได้จากกิ่งกะตั้งใบ และไอโซเลต USIA 5 ที่แยกได้จากใบผักหวานเมา โดยน้ำสารสกัดหยาบจากรา เอนโดไฟต์ไอโซเลต LRUB 20 มาทำการแยกสารบริสุทธิ์โดยเทคนิคโครมาโทกราฟีได้สาร 3 ชนิด คือ asterric acid, 2-hydroxymethyl-3-methyl-cyclopent-2-enone และ 2-hydroxymethyl-3-ในขณะที่สารสกัดหยาบจากราเอนโดไฟต์ไอโซเลต USIA 5 แยกสาร methyl-cyclopentanone บริสุทธิ์ได้ 1 ชนิด คือ 3-nitropropionic acid การพิสูจน์โครงสร้างทางเคมีของสารเหล่านี้ใช้ ้วิธีการวิเคราะห์ข้อมูล UV, IR, MS, และ NMR ร่วมกับการเปรียบเทียบข้อมูลที่มีรายงาน มาแล้ว เมื่อนำสารบริสุทธิ์ที่แยกได้ไปทดสอบฤทธิ์ทางชีวภาพ พบว่า สาร asterric acid, 2hydroxymethyl-3-methyl-cyclopent-2-enone และ 3-nitropropionic acid แสดงฤทธิ์ต้านเชื้อ Mycobacterium tuberculosis H37Rv ด้วยค่า MIC เท่ากับ 200, 200 และ 0.39 µg/ml การศึกษาทางสัณฐานวิทยาและการวิเคราะห์ลำดับนิวคลีโอไทด์ในบริเวณ ITS1-ตามลำดับ 5.8S-ITS2 ของ rDNA สามารถจำแนกประเภทราเอนโดไฟต์ไอโซเลต USIA 5 คือ Phomopsis sp. ในวงศ์ Diaporthaceae ขณะที่การศึกษาทางสัณฐานวิทยาพบว่าราเอนโดไฟต์ไอโซเลต LRUB 20 ไม่สร้างสปอร์ จึงทำการจำแนกประเภทโดยการวิเคราะห์ลำดับนิวคลีโอไทด์ในบริเวณ ITS1-5.8S-ITS2 ของ rDNA สามารถจำแนกประเภทราเอนโดไฟต์ไอโซเลต LRUB 20 ไว้ในวงศ์ Magnaporthaceae

	ลายมือชื่อนิสิต
สาขาวิชาเทคโนโลยีชีวภาพ	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2547	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม
	ลายมือซื่ออาจารย์ที่ปรึกษาร่วม

4572402023: BIOTECHNOLOGY

KEYWORD: ENDOPHYTIC FUNGI / BIOACTIVE COMPOUND / Phomopsis / MAGNAPORTHACEAE / ITS / ANTI-Mycobacterium ACTIVITY
PORNTEP CHOMCHEON: BIOACTIVE COMPOUNDS FROM ENDOPHYTIC FUNGI Phomopsis sp. FROM Urobotrya siamensis AND ISOLATE LRUB 20 FROM Leea rubra THESIS ADVISOR: ASSOCIATE
PROFESSOR NATTAYA NGAMROJANAVANICH, Ph.D., THESIS CO-ADVISOR: ASSOCIATE PROFESSOR NONGLUKSNA SRIUBOLMAS, Ph.D., PRASAT KITTAKOOP, Ph.D., 197 pp. ISBN 974-53-1551-6

The purpose of this research was to isolate bioactive compounds from endophytic fungi isolate LRUB 20 from *Leea rubra* Blume Ex Spreng. and isolate USIA 5 from *Urobotrya siamensis* Hiepko. Crude extract of endophytic fungus isolate LRUB 20 was purified by chromatographic techniques to afford three compounds, which were identified as asterric acid, 2-hydroxymethyl-3-methyl-cyclopent-2-enone, and 2-hydroxymethyl-3-methyl-cyclopentanone. The crude extract of endophytic fungus isolate USIA 5 provided 3-nitropropionic acid. The chemical structures of the isolated compounds were elucidated through extensive analyses of UV, IR, MS, and NMR and by comparison with literature. Asterric acid, 2-hydroxymethyl-3-methyl-cyclopent-2-enone, and 3-nitropropionic acid were found to exhibit activity against *Mycobacterium tuberculosis* H37Rv with the MIC values of 200, 200, and 0.39 µg/ml, respectively. Based on morphology and nucleotide sequences of ITS1-5.8S-ITS2 regions of rDNA, endophytic fungus isolate USIA 5 was identified as *Phomopsis* sp. in the family Diaporthaceae. While based on morphology, the fungus isolate LRUB 20 limited in spore formation. Nucleotide sequences of ITS1-5.8S-ITS2 regions of rDNA were applied to classify endophytic fungus isolate LRUB 20, which was found to be in the family Magnaporthaceae.

				Stuc	lent's :	sign	ature	e	 	

Field of studyBiotechnology	. Advisor's signature
Academic year2004	. Co-advisor's signature
	Co-advisor's signature

V

ACKNOWLEDGEMENTS

I would like to express my deepest grateful appreciation to my thesis advisor, Associate Professor Dr. Nattaya Ngamrojnavanich for her valuable advice, guidance, and encouragement throughout the research study.

I would like to express my greatest appreciation to my thesis co-advisor, Associate Professor Dr. Nongluksna Sriubolmas for her guidance, suggestion, encouragement, and great kindness throughout the research study.

I would like to express my sincere gratitude to my thesis co-advisor, Dr. Prasat Kittakoop for his guidance, consultation, constructive criticism, and great kindness throughout the research study.

I would like to thank Assistant Professor Dr. Suthep Wiyakrutta for his helpful suggestion and guidance throughout the research study.

I would like to thank Associate Professor Dr. Palangpon Kongsaeree for his help on structural determination by X-ray crystallography.

I am particularly grateful to chairman of thesis committee, Assistant Professor Dr. Surachai Pornpakakul and Assistant Professor Dr. Supat chareonpornwattana as committee and for their editorial assistance and comments.

I would like to thank my friends and all members of the Department of Biotechnology, Faculty of Sciences, Chulalongkorn University, the Department of Microbiology (B600 and B601), Faculty of Sciences, Mahidol University, and BIOTEC for their friendship, help and encouragement.

Finally, I am thankful to my family and especially my parents who have shown their great patience, moral support, and encouragement in every way possible to enable me to succeed in my education.

CONTENTS

		Page
Abstract in	Thai	. iv
Abstract in	English	. V
Acknowled	gements	vi
Contents		. vii
List of Table	9	. xii
List of Figur	res	. xiv
List of Sche	mes	. xxi
List of Abbr	eviations	. xxii
Chapter I		. 1
Chapter II	REVIEW OF LITERATURE	6
	2.1 Association of the endophytic fungi and plants	6
	2.2 Study of bioactive compounds from the endophytic fungi	8
Chapter III	MATERIALS AND METHODS	10
	3.1 Selection of endophytic fungal isolates	. 10
	3.2 Culture media and chemicals	13
	3.2.1 Culture media	13
	3.2.2 Chemicals	14
	3.3 Screening of selected endophytic fungal isolates for expected novel	
	compounds	. 14
	3.4 Cultivation, extraction and deposition of fungi	18
	3.4.1 Cultivation of fungi	. 18
	3.4.2 Extraction of fungi	18
	3.4.3 Deposition of fungi	19

			Page
3.5	Chror	natographic techniques	22
	3.5.1	Analytical thin-layer chromatography	22
	3.5.2	Column chromatography	22
		3.5.2.1 Gel filtration chromatography	22
		3.5.2.2 High performance liquid chromatography (HPLC)	22
3.6	Isolat	ion of bioactive compounds from endophytic fungi isolate LRUB	
	20 an	d isolate USIA 5	23
	3.6.1	Isolation of secondary metabolites from endophytic fungus	
		isolate LRUB 20	23
	3.6.2	Condensation of compounds L20B5(34)5 and L20B464 with	
		hydrazine	29
	3.6.3	Isolation of bioactive compounds from endophytic fungus	
		isolate USIA 5	33
3.7	Spec	troscopy	34
	3.7.1	Ultraviolet (UV) spectroscopy	34
	3.7.2	Infrared (IR) spectroscopy	34
	3.7.3	Mass spectroscopy (MS)	35
	3.7.4	Proton (¹ H) and carbon (¹³ C) nuclear magnetic resonance (¹ H	
		and ¹³ C NMR) spectroscopy	35
3.8	Deriv	atization of the isolated compounds	36
	3.8.1	Condensations with hydrazine	36
	3.8.2	Condensations of acids with alcohols: The Fischer	
		esterification	36
3.9	Physi	cal properties of bioactive compounds	37
	3.9.1	Fraction L20B7 of fungus isolate LRUB 20	37

	3.9.2 Fraction L20B5(34)5 of fungus isolate LRUB 20	37
	3.9.3 Fraction L20B5(34)5R3 of fungus isolate LRUB 20	37
	3.9.4 Fraction L20B464R2 of fungus isolate LRUB 20	38
	3.9.5 Fraction U5B5 of fungus isolate USIA 5	38
	3.10 Determination of biological activities	39
	3.10.1 Cytotoxicity and Anticancer assays	39
	3.10.2 Antimalarial assay	40
	3.10.3 Antifungal assay	41
	3.10.4 Anti-Mycobacterium assay	41
	3.10.5 Antiviral assay	42
	3.11 Classification of the endophytic fungi isolate LRUB 20 and isolate	
	USIA 5	43
	3.11.1 Conventional method	43
	3.11.1.1 Macroscopic morphology	43
	3.11.1.2 Microscopic morphology	43
	3.11.2 Molecular method	43
	3.11.2.1 DNA extraction	43
	3.11.2.2 Polymerase chain reaction (PCR) amplification	44
	3.11.2.3 DNA sequencing	45
	3.11.3 Phylogenetic Analysis	46
Chapter IV	RESULTS AND DISCUSSION	47
	4.1 Structure elucidation of the isolated compounds from endophytic	
	fungi isolate LRUB 20 and isolate USIA 5	47
	4.1.1 Structure elucidation of asterric acid (L20B7)	47

Page

Page

Х

4.1.2 Structure elucidation of 2-hydroxymethyl-3-methyl-cyclopent	
-2-enone [L20B5(34)5]	53
4.1.3 Structure elucidation of {2-methyl-5-[(4-methyl-2-nitro-phenyl)-	
hydrazono]-cyclopent-1-enyl}-methanol [L20B5(34)5R3]	56
4.1.4 Structure elucidation of {2-[(2,4-dinitro-phenyl)-hydrazono]-5-	
methyl-cyclopentyl}-methanol (L20B464R2)	59
4.1.5 Structure elucidation of 3-nitropropionic acid (U5B4-6)	63
4.2 Biological activities of the isolated compounds	65
4.3 Classification of the endophytic fungi isolate LRUB 20 and isolate	
USIA 5	69
4.3.1 Conventional method	69
4.3.2 Molecular method	73
4.3.2.1 The PCR product of ITS1-5.8S-ITS2 region of rRNA gene	73
4.3.2.2 Nucleotide sequence of partial 18S and 28S sequences	
and complete ITS-5.8S-ITS2 sequences of isolate USIA 5	
and phylogenetic analysis	75
4.3.2.3 Nucleotide sequence of partial 18S and 28S sequences	
and complete ITS1-5.8S-ITS2 sequences of isolate LRUB	
20 and phylogenetic analysis	81
Chapter V CONCLUSION	90
REFERENCES	91
APPENDICES	102
APPENDIX A	103
APPENDIX B	128
APPENDIX C	133

|--|

xi

APPENDIX D	168
BIOGRAPHY	192

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

Table		Page
1	Number of fungal species have been expected in this world	3
2	Endophytic fungal isolates selected based on their bioactivities	10
3	Selected new endophytic fungal isolates that have not been evaluated for	
	bioactivities	12
4	Yields of crude extract (mg/100 ml) of fungi isolate LRUB 20 and isolate USIA 5	
	cultured on four different media	18
5	Fractions obtained from Sephadex LH-20 column of crude extract L20B	23
6	Fractions obtained from Sephadex LH-20 column of fraction L20B5	24
7	Fractions obtained from Sephadex LH-20 column of fractions L20B53 and	
	L20B54	24
8	Fractions obtained from Sephadex LH-20 column of fraction L20B4	25
9	Fractions obtained from Sephadex LH-20 column of fraction L20B46	26
10	Fractions obtained from Sephadex LH-20 column of fraction L20B5(34)5R	29
11	Fractions obtained from Sephadex LH-20 column of fraction L20B464R	30
12	Fractions obtained from Sephadex LH-20 column of crude extract U5B	33
13	Biological activities tested in this study	39
14	Primers for amplification of ribosomal RNA genes of fungi isolate LRUB 20 and	
	isolate USIA 5	45
15	The ¹ H, ¹³ C-NMR and HMBC spectral data of compound L20B7 in acetone- d_6	50
16	The ¹ H-NMR spectral data of L20B7 and asterric acid in acetone- d_6	52
17	The ¹ H, ¹³ C-NMR and HMBC spectral data (CDCl ₃) of compound L20B5(34)5	55
18	The ¹ H, ¹³ C-NMR and HMBC spectral data (CDCl ₃) of compound L20B5(34)5R3.	57
19	The ¹ H, ¹³ C-NMR and HMBC spectral data (CDCl ₃) of compound L20B464R2	62

Table		Page
20	The 1 H, 13 C-NMR and HMBC spectral data (CDCl ₃) of the compound U5B4-6	64
21	Summary of biological activities of the compounds from endophytic fungi isolate	
	LRUB 20 and isolate USIA 5	65
22	List of endophytic fungal isolates capable of producing 3-nitropropionic acid	67
23	Twenty three known species (taxa) with relatively high sequence similarity to	
	isolate USIA 5 that were selected for phylogenetic analysis	76
24	Twenty known species (taxa) selected as representatives from 100 blast hits	
	that obtained from GenBank when 5.8S sequence of LRUB 20 was used as the	
	query sequence	84
25	Representative species of families Magnaporthaceae and Trichocomaceae	
	obtained from GenBank sequences used for phylogenetic analysis	88
А	The chemical compounds, sources, biological activities of bioactive compounds	
	of endophytic fungi	103

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure		Page
1	Growth an <i>E. festucae</i> variant in the vascular tissue of meadow fescue	5
2	(A) Life cycles of systemic grass endophytes	. 7
	(B) Benefits to the partner	. 7
3	Proposed pathways of secondary metabolites produced by Epichloë	
	endophytes isolated from grass	9
4	<i>Leea rubra</i> Blume ex Spreng. (Leeaceae) – กะตั้งใบ	. 16
5	<i>Urobotrya siamensis</i> Hiepko. (Opiliaceae) – ผักหวานเมา	. 16
6	Location on nuclear rDNAs of primers ITS5 and ITS4.	. 45
7	The correlations ¹ H- ¹ H COSY spectrum (arrow) of compound L20B7	48
8	Long-range correlations from HMBC (${}^{n}J_{HC} = 8$ Hz) spectral data of the	
	compound L20B7 in acetone- <i>d</i> ₆	. 49
9	ORTREP plot of asterric acid	. 51
10	The correlation of ¹ H- ¹ H COSY spectrum (arrow) of compound L20B5(34)5	. 53
11	Long-range correlations from HMBC ($^{n}J_{HC} = 8$ Hz) spectral data of compound	
	L20B5(34)5	. 55
12	The correlation from ¹ H- ¹ H COSY spectrum (arrow) of compound L20B5(34)5R3	. 58
13	Long-range orrelations from HMBC ($^{n}J_{HC}$ = 8 Hz) spectral data of compound	
	L20B5(34)5R3	58
14	The correlations from ¹ H- ¹ H COSY spectrum (arrow) of compound L20B464R2	. 61
15	Long-range correlations from HMBC ($^{n}J_{HC} = 8 \text{ Hz}$) spectral data of compound	
	L20B464R2	61

Figure		Page
16	Structure of {2-[2,4-dinitrophenyl)-hydrazono]-5-methyl-cyclopentyl}-methanol, a	
	secondary metabolite from the fermentation of fungal isolate <i>Lrub</i> 20	63
17	The structure of 3-nitropropionic acid (U5B4-6)	64
18	Colony morphology of endophytic fungus isolate LRUB 20 on six different media	70
19	Colony morphology of endophytic fungus isolate USIA 5 on five different media	71
20	Conidioma of endophytic fungus isolate USIA 5 on banana leaf	72
21	α and β conidia of endophytic fungus isolate USIA 5	72
22	Agarose gel electrophoresis analysis of the PCR product from amplification of	
	ITS1, 5.8S, and ITS2 regions of rDNA	74
23	Nucleotide sequences of the partial 18S sequence, complete ITS1-5.8S-ITS2	
	sequences, and partial 28S sequence of the isolate USIA 5	75
24	The alignment scores (% identity) of complete ITS1-5.8S-ITS2 sequences of the	
	isolate USIA 5 and 23 reference taxa from GenBank	78
25	Maximum-parsimony tree (50% majority-rule consensus tree) generated from	
	the ITS1-5.8S-ITS2 sequences of 25 taxa showing the evolutionary relationship	
	of USIA 5 with reference taxa	79
26	Nucleotide sequences of the partial 18S sequence, complete ITS1-5.8S-ITS2	
	sequences, and partial 28S sequence of the isolate LRUB 20	81
27	Maximum-parsimony tree (50% majority-rule consensus tree) generated from	
	the ITS1-5.8S-ITS2 sequences of 43 taxa showing the evolutionary relationship	
	of LRUB 20 with reference taxa	83
28	The alignment scores (% identity) of complete 5.8S sequence of the isolate	
	LRUB 20 and 20 reference taxa from GenBank	85

9	Page
Maximum-parsimony tree (50% majority-rule consensus tree) generated from	
the 5.8S sequences of 23 taxa showing the evolutionary relationship of LRUB 20	
with reference taxa	86
The alignment scores (% identity) of complete 5.8S sequence of the isolate	
LRUB 20 and 11 reference taxa from GenBank	88
Maximum-parsimony tree (50% majority-rule consensus tree) generated from	
the 5.8S sequences of 14 taxa showing the evolutionary relationship of LRUB 20	
with reference taxa	89
Structure of bioactive compounds of endophytic fungi listed in Table A	
The 400 MHz 1 H-NMR (in CDCl ₃) spectrum of crude extract L20B of endophytic	
fungus isolate LRUB 20	133
The 400 MHz ¹ H-NMR (in CDCl ₃) spectrum of mycelia extract L20C of	
endophytic fungus isolate LRUB 20	133
The 400 MHz ¹ H-NMR (in CDCl ₃) spectrum of crude extract U5B of endophytic	
fungus isolate USIA 5	134
The 400 MHz ¹ H-NMR (in CDCl ₃) spectrum of mycelia extract U5C of	
endophytic fungus isolate USIA 5	134
The ESI-TOF spectrum of compound L20B7	135
The UV spectrum of compound L20B7 in methanol	135
The IR spectrum of compound L20B7	136
The 500 MHz ¹ H-NMR (in acetone – <i>d</i> 6) spectrum of compound L20B7	. 136
Expansion 500 MHz ¹ H-NMR (in acetone – <i>d</i> 6) spectrum of compound L20B7	
$(\delta = 0-2.4 \text{ ppm})$	137
	Maximum-parsimony tree (50% majority-rule consensus tree) generated from the 5.8S sequences of 23 taxa showing the evolutionary relationship of LRUB 20 with reference taxa

xvi

Figure		Page
C10	Expansion 500 MHz 1 H-NMR (in acetone – <i>d</i> 6) spectrum of compound L20B7	
	$(\delta = 3.5-4.0 \text{ ppm})$	137
C11	Expansion 500 MHz ¹ H-NMR (in acetone – <i>d</i> 6) spectrum of compound L20B7	
	$(\delta = 5.7-7.2 \text{ ppm})$	138
C12	The 125 MHz ¹³ C-NMR spectrum of compound L20B7	138
C13	The DEPT 135 spectrum of compound L20B7	139
C14	The HMQC spectrum of compound L20B7	139
C15	The HMBC spectrum of compound L20B7	140
C16	The HMBC spectrum of compound L20B7 (partial expanded: δ H 0-2.7 ppm,	
	δC 0-40 ppm)	140
C17	The HMBC spectrum of compound L20B7 (partial expanded: δ H 3.2-4.4 ppm,	
	δC 45-64 ppm)	141
C18	The HMBC spectrum of compound L20B7 (partial expanded: δ H 5.6-7.4 ppm,	
	δC 94-118 ppm)	141
C19	The HMBC spectrum of compound L20B7 (partial expanded: δ H 5.6-7.4 ppm,	
	δC 142-170 ppm)	142
C20	Expansion ¹ H- ¹ H COSY spectrum of compound L20B7	142
C21	The ESI-TOF spectrum of compound L20B5(34)5	143
C22	The UV spectrum of compound L20B5(34)5 in methanol	143
C23	The IR spectrum of compound L20B5(34)5	144
C24	The 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound L20B5(34)5	144
C25	Expansion 500 MHz $^1\text{H-NMR}$ (in CDCl_3) spectrum of compound L20B5(34)5 (δH	
	= 2.0-2.7 ppm)	145
C26	The 125 MHz ¹³ C-NMR spectrum of compound L20B5(34)5	145

Figure	· ·	⊃age
C27	The DEPT 135 spectrum of compound L20B5(34)5	146
C28	The HMQC spectrum of compound L20B5(34)5	146
C29	The HMBC spectrum of compound L20B5(34)5	147
C30	Expansion ¹ H- ¹ H COSY spectrum of compound L20B5(34)5	147
C31	The ESI-TOF spectrum of compound L20B5(34)5R3	148
C32	The UV spectrum of compound L20B5(34)5R3 in methanol	148
C33	The 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound L20B5(34)5R3	149
C34	Expansion 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound L20B5(34)5R3	
	(δH = 1.0-2.8 ppm)	149
C35	Expansion 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound L20B5(34)5R3	
	$(\delta H = 3.4-6.0 \text{ ppm}).$	150
C36	Expansion 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound L20B5(34)5R3	150
	$(\delta H = 7.6-9.2 \text{ ppm})$	
C37	The 125 MHz ¹³ C-NMR spectrum of compound L20B5(34)5R3	151
C38	The DEPT 135 spectrum of compound L20B5(34)5R3	151
C39	The HMQC spectrum of compound L20B5(34)5R3	152
C40	The HMBC spectrum of compound L20B5(34)5R3	152
C41	Expansion 1 H- 1 H COSY spectrum of compound L20B5(34)5R3 (δ H = 0.0-7.0	
	ppm)	153
C42	Expansion 1 H- 1 H COSY spectrum of compound L20B5(34)5R3 (δ H = 7.0-12.0	
	ppm)	153
C43	The ESI-TOF spectrum of compound L20B464R2	154
C44	The UV spectrum of compound L20B464R2 in methanol	154
C45	The IR spectrum of compound L20B464R2	155

Figure	e F	Page
C46	The 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound L20B464R2	155
C47	Expansion 500 MHz 1 H-NMR (in CDCl $_{3}$) spectrum of compound L20B464R2 (δ H	
	= 0.0-3.0 ppm)	156
C48	Expansion 500 MHz 1 H-NMR (in CDCl $_{3}$) spectrum of compound L20B464R2 (δ H	
	= 3.6-6.2 ppm)	156
C49	Expansion 500 MHz 1 H-NMR (in CDCl_3) spectrum of compound L20B464R2 (δ H	
	= 7.6-9.4 ppm)	157
C50	The 125 MHz ¹³ C-NMR spectrum of compound L20B464R2	157
C51	The DEPT 135 spectrum of compound L20B464R2	158
C52	The HMQC spectrum of compound L20B464R2	158
C53	The HMBC spectrum of compound L20B464R2	159
C54	Expansion HMBC spectrum of compound L20B464R2 (δ H=0.0-6.5 ppm,	
	δC=100-180 ppm)	160
C55	Expansion $^{1}\text{H}\text{-}^{1}\text{H}$ COSY spectrum of compound L20B464R2 (δ H=0.0-7.0 ppm)	160
C56	Expansion $^{1}\text{H}\text{-}^{1}\text{H}$ COSY spectrum of compound L20B464R2 (δ H=7.0-9.6 ppm)	161
C57	The ESI-TOF spectrum of compound U5B4-6	161
C58	The UV spectrum of compound U5B4-6 in methanol	162
C59	The IR spectrum of compound U5B4-6	162
C60	The 500 MHz ¹ H-NMR (in CDCl ₃) spectrum of compound U5B4-6	163
C61	Expansion 500 MHz 1 H-NMR (in CDCl $_{3}$) spectrum of compound U5B4-6 (δ H =	
	2.7-3.4 ppm)	163
C62	Expansion 500 MHz 1 H-NMR (in CDCl $_{3}$) spectrum of compound U5B4-6 (δ H =	
	4.4-5.0 ppm)	164
C63	The 125 MHz ¹³ C-NMR spectrum of compound U5B4-6	164

xix

Figure	F	Dage
C64	The DEPT 135 spectrum of compound U5B4-6	165
C65	The HMQC spectrum of compound U5B4-6	165
C66	The HMBC spectrum of compound U5B4-6	166
C67	The ¹ H- ¹ H COSY spectrum of compound U5B4-6	166
C68	The 400 MHz ¹ H-NMR (in CDCl ₃) spectrum of 3-nitropropionic acid from Sigma	167
D1	Alignment data of complete ITS1-5.8S-ITS2 sequences of isolate USIA 5 and 23	
	refernce taxa from GenBank	168
D2	Alignment data of complete ITS1-5.8S-ITS2 sequences of isolate LRUB 20 and	
	42 refernce taxa from GenBank	174
D3	Alignment data of complete 5.8S sequences of isolate LRUB 20 and 22 refernce	
	taxa from GenBank	188
D4	Alignment data of complete 5.8S sequences of isolate LRUB 20 and 13 refernce	
	taxa from GenBank	190

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF SCHEMES

Sche	me	Page
1	Experimental steps used to get crude extracts from fungal cultures	. 17
2	Extraction of culture broth and mycelia of the fungus isolate LRUB 20	20
3	Extraction of culture broth and mycelia of the fungus isolate USIA 5	. 21
4	Isolation of compounds L20B7 and L20B5(34)5	. 27
5	Isolation of compounds L20B464	. 28
6	Isolation of compound L20B5(34)5R3	. 31
7	Isolation of compound L20B464R2	. 32
8	Isolation of compounds U5B4, U5B5 and U5B6	. 34

LIST OF ABBREVIATIONS

acetone-d6	=	deuterated acetone
bp	=	Base pairs
O_0	=	degree Celsius
¹³ C NMR	=	carbon-13 nuclear magnetic resonance
CDCI ₃	=	deuterated chloroform
CHCl ₃	=	chloroform
CH_2CI_2	=	methylene chloride
CMA	=	Corn Meal Agar
δ	=	chemical shift
d	=	doublet (for NMR spectral data)
dd	=	doublet of doublets (for NMR spectral data)
DNA	=	Deoxyribonucleic acid
DEPT	=	distortionless enhancement by polarization transfer
3	= {	molar absorptivity
e.g.	=	for example
et al.	=	and other
EtOAc	=	ethyl acetate
ESI-TOF MS	₽N 6	Electronspray Ionization Time of Flight Mass
g	2- 	gram
μg	= 6	microgram
h	=	hour
¹ H- ¹ H COSY	=	Homonuclear (proton-proton) correlation spectroscopy
¹ H NMR	=	proton nuclear magnetic resonance
HMBC	=	¹ H-detected heteronuclear multiple bond correlation
HMQC	=	¹ H-detected heteronuclear multiple quantum coherence

Hz	=	Hertz
IC ₅₀	=	inhibitory concentration required for 50% inhibition of growth
IR	=	infrared
ITS	=	internally transcribed spacers
J	=	coupling constant
L	=	liter
μΙ	=	microliter
$\lambda_{_{max}}$	=	wavelength at maximum absorption
Μ	=	Molar
$\left[M+Na ight]^{+}$	=	pseudomolecular ion
т	=	multiplet (for NMR spectral data)
MCzB	=	Malt Czapek Broth
MEA	=	Malt Extract Agar
MeOH	=	methanol
MES	=	Malt Extract Sucrose medium
mg	= 6	milligram
MIC	=	minimum inhibitory concentration
min	=	minute
ml	=	milliliter
mm	€16	millimeter
mM	-	millimolar
MHz	= 6	megahertz
MS	=	mass spectroscopy
m/z	=	mass to charge ratio
v_{max}	=	wave number at maximum absorption
nm	=	nanometer
NMR	=	nuclear magnetic resonance

NTP	=	Nucleotide triphosphate
PCR	=	polymerase chain reaction
PDA	=	Potato Dextrose Agar
PDB	=	Potato Dextrose Broth
ppm	=	part per million
q	=	quartet (for NMR spectral data)
rDNA	=	Ribosomal deoxyribonucleic acid
rpm	=	Round per minute
rRNA	=	Ribosomal ribonucleic acid
S	=	singlet (for NMR spectral data)
SDA	=	Sabouraud's Dextrose Agar
SDB	=	Sabouraud's Dextrose Broth
sp.	=	species
t	=	triplet (for NMR spectral data)
TAE	=	Tris-HCI, acetate and EDTA
TE	= 6	Tris-HCI and EDTA
T _m	=	Melting temperature
TLC	=	thin layer chromatography
U	=	Unit 💟 👝
UV	€16	ultraviolet
V	=	Volt
v	= 6	Volume
w 9	=	Weight
YCzB	=	Yeast Czapek Broth
YEA	=	Yeast Extract Agar
YES	=	Yeast Extract Sucrose medium

CHAPTER I

INTRODUCTION

An increase in the number of people in the world having health problems caused by various cancers, drug-resistant bacteria, parasitic protozoans, and fungi is a cause for alarm. Increased efforts are therefore needed to develop and search for new drugs from natural products. Microbes, especially fungi have been known to be a major source of bioactive compounds. Examples are Metarhizium anisopliae (microbial insecticide), Penicillium chrysogenum (penicillin), Cephalosporium acremonium (cephalosporin), Penicillium griseofulvum (griseofulvin), Monascus ruber and Aspergillus terreus (lovastatin) (Moore-Landecker, 1998). The estimated numbers of fungi on our planet are 1 million species and approximately 100,000 species have been described, as shown in Table 1 (Rossman, 1994). Fungi are important components of biological communities such as soil, marine, fresh water, litter, dung, and decaying remain of plants and animal (Charlie and Watkinson, 2001). Their influence is most prevalent in plant communities, where they are as biotrophic or necrotrophic parasites or pathogens, saprophytes, or facultative to obligate mutualists (Isaac, 1992). Among the least-known groups of plantassociated fungi are the fungal endophytes, the ubiquitous diverse Ascomycetes that grow asymptomatically within aerial plant tissues such as leaves and stems (Wilson, 1995). Hawksworth (1993) predicted that the vast majority of undescribed fungal diversity lies within tropical plant-associated fungi, yet the diversity and ecological roles of endophytes in tropical angiosperms are almost entirely unexplored. Thus, living plants are interesting source for screening of new microorganisms that may produce novel bioactive compounds.

Endophytic fungi are fungi which spend the whole or part of their life cycles colonizing inter-and/or intra-cellularly inside the healthy tissues of the host plant, as shown in Figure.1, typically causing no apparent symptoms of disease (Chanway, 1996). Some of these fungal endophytes may produce bioactive substances that may involve in a host-endophyte relationship. As a direct result of the role that these secondary metabolites may play in nature, they may ultimately have application in

medicine. A worldwide scientific effort to isolate fungal endophytes and study their natural products is now under way. While there are myriads of epiphytic microorganisms associated with plants, the fungal endophytes now seem to attract more attention. This may be the case, since closer biological associations may have developed between these organisms in their respective hosts than the fungal epiphytes (fungi living on the outside of the plant) or soil-related organisms. Hence, the result of this may be the production of a greater number and diversity of classes of biologically derived molecules, possessing a range of biological activities. In fact, a recent comprehensive study has indicated that 51% of biologically active substances isolated from endophytic fungi were previously unknown. This compares with only 38% of novel substances from soil microflora (Strobel, 2003).

In Thailand, there are a few reports of endophytic fungi. For examples, endophytic fungi were isolated from indigenous dicotyledonous plants at Doi Suthep-Pui area from the northern Thailand (Lumyong *et al.*, 1997). Studies by Wiyakrutta *et al.*, (2004) have reported that endophytic fungi were isolated from 81 Thai medicinal plant species collected from forests in four geographical regions of Thailand, and crude extracts of these fungi were evaluated for biological activities.

The present research aims to study bioactive metabolites produced by endophytic fungi of Thai medicinal plants. During the course of study, the endophytic fungi isolate LRUB 20 (isolated from *Leea rubra* Blume ex Spreng) and isolate USIA 5 (isolated from *Urobotrya siamensis* Hiepko) exhibited interested ¹H NMR pattern. Chemical structures of the bioactive compounds were elucidated by spectroscopic methods and the isolated fungi were classified based on morphology and nucleotide sequence of ITS1-5.8S-ITS2 regions of rRNA gene.

The objectives of this study are as follows:

1. Isolation and characterization of bioactive compounds of the endophytic fungi isolate LRUB 20 from *L. rubra* and isolate USIA 5 from *U. siamensis*.

2. Classification of the endophytic fungi isolate *Lrub* 20 and isolate *Usia* 5.

3. Evaluation of biological activities of the isolated compounds.

 Table 1
 Number of fungal species have been expected in this world (Rossman, 1994).

	Group of Fungi	Number of
		species
Well-known	I-known Aphyllophorales (saprophytes/facultative parasites)	
	Macrolichens (symbiotic)	20,000
Moderately	Agaricales (mushrooms including secotioid and	80,000
Well-known	hypogeous relatives, saprophytic/ectomycorrhizal)	
	Dematiaceous and aquatic hyphomycetes	80,000
	(primarily saprophytic, some plant pathogenic)	
	Uredinales (rusts) (obligate parasites of vascular	50,000
	plants)	
Hypocreales and Xylariales (saprophytes on soil,		50,000
	rotting litter, and other fungi, some plant pathogens)	
	Ustilaginales	
	(smuts) (obligate parasites of vascular plants)	
01	Gasteromycetes (saprophytes on soil and rotting	10,000
ิ จพั	wood)	2
9	Erysiphales (obligate parasites on vascular plants)	10,000
	Jelly fungi (saprophytes on rotting wood, possibly as	5,000
	parasites of invertebrates or other fungi)	
	Ascomycetes-Pezizales (mostly saprophytic, some	3,000
	plant pathogenic and mycorrhizal)	
	Myxomycetes (true slime molds) (saprophytic)	1,500

Table 1 Continued

	Group of Fungi	Number of
		species
Moderately	Endomycetales (true yeasts)	1,000
Well-known		
Poorly	Non-dematiaceous hyphomycetes	200,000
Well-known	(excluding groups mentioned above)	
	Coelomycetes	200,000
	(saprophytic on all substrates, some plantpathogens)	
	Perithecial Ascomycetes and Loculoascomycetes	100,000
	(excluding Erysiphales, Hypocreales and Xylariales)	
Ascomycetes-Helotiales		70,000
	(saprophytic on all substrates, some plantpathogens)	
	Insect-specificfungi (Entomophthorales, Laboulbenio-	
	mycetes,Trichomycetes)	
	Crustose lichenized ascomycetes (symbiotic)	20,000
	Mucorales (saprophytic)	20,000
	Oomycetes (some obligate parasites of vascular	20,000
	plants, nonspecizalized plant pathogens, saprophytes)	
	Chytridiomycetes (some with specialized habitats)	2,000
	Endogonales and Glomales (vescicular mycorrhizal	1,000
	fungi)	
	Total	1,028,500

[Table adapted from: Rossman 1994 Biodiversity and terrestrial ecosystems Sinica Monograph Series No.14]

[Micrographs: Christensen et al. 1997 Mycol. Res. 100: 497]

Figure 1 Growth an *E. festucae* variant in the vascular tissue of meadow fescue.

(A) Cross section of a leaf sheath with hyphae (arrow) throughout the vascular bundle.

- (B) Close-up of hyphae (arrow) in the air space.
- (C) Hyphae (arrow) surrounding a phloem sieve tube element (st) and companion cell (c).

As shown in (B) and (C), plant cells adjacent to hyphae appear undamaged and exhibit no apparent response to the fungus (Christopher, 2001).

CHAPTER II

REVIEW OF LITERATURE

2.1 Association of the endophytic fungi and plants

As a matter of fact, fungal endophytes are important components of microbial biodiversity (Smith et al., 1989), that occur in every host species sampled to date, including > 200 terrestrial and aquatic species representing > 20 families of such diverse taxa as marine macroalgae, mosses, fern, "gymnosperm", monocots, and herbaceous and woody dicots (Lodge et al, 1996). Commonly, several to hundreds of fungal endophyte species can be isolated from a single plant, among them, at least one species showing host specificity. The environment condition under which the host is growing also affect the fungal population, and the fungal endophytes profile may be more diversified in tropical areas. Most endophytic fungi belong to the Ascomycetes and Fungi imperfecti (Petrini, 1991). Fungal endophytes are different from pathogenic fungi on the basis of asymptomatic growth under most conditions, and from mycorrhizaforming fungi on the basis of taxonomy and tissue-specificity. Endophytic fungi colonize living plant tissues by penetration of fungus hyphae between plants cells or may also grow intracellularly and must obtain nutrient materials through this intimate contact with the host (Isaac, 1992). Figure 2 shows evolution of endophyte-plant symbiosis (Saikkonen *et al.*, 2004).

The relationship between the endophytic fungi and its host plant may range from mutualistic symbiosis, or commensalisms to borderline parasitism (Strobel and Long, 1998). Certain fungal endophytes improve the ecological adaptability of hosts by enhancing their tolerance to environmental stresses and resistance to phytopathogens and/or herbivores including some insects feeding on the host plant. Endophyte-infected grasses usually possess an increased tolerance to drought and aluminium toxicity. Furthermore, some endophytes are able to provide the host plant with protection against some nematodes, mammal and insect herbivores as well as bacterial and fungal pathogens. (Tan and Zou, 2001).

(A) Life cycles of systemic grass endophytes

(B) Benefits to the partners

Benefits			
Plant	Fungus		
Increased : - Growth	- Refuge		
- Reproduction	- Nutrition		
- Resistance	- Transmission		

[Figure adapted from: Saikkonen et al. 2004 Trends in Plant Science 9: 276]

Figure 2 (A) Life cycles of systemic grass endophytes

(I) Hyphae grow internally and intercellularly throughout the above-ground tissues of the host plant and into the developing inflorescence and seeds and, thus, are transmitted the systemic fungi from plant to offspring via host seeds (Vertical transmission), e.g. *Neotyphodium* endophytes.

(II) *Epichlo*ë endophytes can also be transmitted sexually (spores) when the fungus forms external stromata with conidia around a developing inflorescence, causing abortion. Contagious spread should not be ruled out even in *Neotyphodium* endophytes because they produce asexual conidia on growth media and on living plants, and recent evidence indicates horizontal transmission in natural grass populations (III).

(B) Benefits to the partner

Grass endophytes are generally considered to be mutualists because the fungus subsists entirely on the resources of the host. The fitness of an endophytic symbiont that has lost or limited opportunities for contagious spread by spores depends largely on the fitness of the host plant. The host receives benefits through increased resistance to herbivores, pathogens and drought and flooding stress, and enhanced competitive abilities.

2.2 Study of bioactive compounds from the endophytic fungi

In the 1970's, endophytic fungi were initially considered only for identification and classification, not causing benefits nor showing detriment to plants. Until in the past two decades, the interest for endophytic fungi was as potential sources of novel bioactive compounds that exhibited interesting bioactivities such as anticancer, antifungal, insecticidal, antimicrobial, antimalarial, immunosuppressive, and antiviral activities (Azevedo *et al*, 2000).

For examples, Strobel et al. 1993 isolated paclitaxel (Taxol[®], anticancer drug) from the endophytic fungus Taxomyces andreanae from Pacific yew Taxus brevifolia. Furthermore, taxol is also found in endophytic fungi, Pestalotiopsis guepinii from Wollemia nobilis (Strobel et al, 1997), Periconia sp. from Torreya grandifolia (Li et al, 1998b), Pestalotiopsis microspora from Taxus wallachina (Metz et al., 2000, Li et al., 1998a), Tubercularia sp. from Taxus mairei (Wang et al., 2000), Aspergillus niger from Taxus chinensis (Wang et al., 2001), and Stegolerium kukenani from Stegolepis guianensis (Strobel et al. 2001). The fungus Pastalotiopsis jesteri from Fragraea bodenii is found to produce jesterone and hydroxy-jesterone, which exhibite selective antimycotic activity against the oomycetous fungi. Isopestacin, an isobenzofuranone, possessing antifungal and antioxidant activities, is secondary metabolites of Pestalotiopsis microspora (Strobel et al., 2002). Peramine and N-formylloline, The bioactive compounds with insecticidal activities, whereas lolitrem B and ergovaline are mammalian toxins, are secondary metabolites of Epichloë sp. from grass (Scott, 2001). Proposed pathways for biosynthesis of these metabolites are shown in Figure 3. A new antimicrobial metabolite, named colletotric acid, is isolated from Colletotrichum gloeosporioides, an endophytic fungus colonized inside the stem of Artemisia mongolica (Zou et al., 2000). Phomoxanthones A and B, two novel xanthone dimers with antimalarial activities are isolated from the endophytic fungus *Phomopsis* sp BCC 1323 that isolated from Tectona glandis leaf (Isaka, 2001). Subglutinols A and B, two immunosuppressive compounds, are isolated from Fusarium subglutinols, an endophytic fungus of Tripterygium wilfordii (Lee et al., 1995). Two novel p-tridepside antiviral compounds, cytonic acid A and B, are isolated from the endophytic fungus

Cytonaema sp. obtained from *Quercus* sp. (Guo *et al.* 2000a). The biological activities, sources and chemical compounds of secondary metabolites from fungal endophytes are summarized in Table A (in Appendix A).

[Figure adapted from: Scott 2001 Microbiology 4: 395]

Figure 3 Proposed pathways of secondary metabolites produced by *Epichlo*ë endophytes isolated from grass.

The primary metabolites is shown within the elipse. Proposed pathways for secondary metabolite systhesis are shown outside the elipse.

CHAPTER III

MATERIALS AND METHODS

3.1 Selection of endophytic fungal isolates

A total of forty five unidentified endophytic fungal isolates were studies. They were divided into two groups, the first seventeen isolates and the second twenty eight isolates. Seventeen isolates, as shown in Table 2, were selected based on their bioactivities in previous studies by Meevootisom *et al.*, 2002 (in www.sc.mahidol.ac.th/scmi/epf/Home.htm.). Twenty eight isolates, as shown in Table 3, were new isolates that have not yet been tested for bioactivities.

Table 2Endophytic fungal isolates selected based on their bioactivities (Meevootisomet al. 2002).

No.	Fungal	Scientific name of plant host	Culture	Biological activities of
	code	Scientific flame of plant flost	medium	fungal culture extract*
1	ACHI 4	Anthocephalus chinensis Rich. ex	MCz	Anti-C.
		Walp.	YES	Anti-F., C.
2	ALAK 6	Artocarpus lakoocha Roxb.	MCz	Not determine
		V A A	YES	Anti-B., F., C.
3	COBL 1	Croton oblongifolius Roxb.	MCz	Anti-B., F., C.
		г <u>А</u>	YES	Anti-B., F.
4	DOLI 5	<i>Dalbergia oliveri</i> Gamble.	MCz	Anti-V., C.
9			YES	Anti-F., V., C.
5	FHIS 2	Ficus hispida Linn.	MCz	Anti-B., F., M., V., C.
			YES	Anti-B., F., M., V.
6	GSPE 11	Gardenia sp.	MCz	Anti-B., F., M., C.
			YES	Anti-C.

Table 2 Continue

No.	Fungal code	Scientific name of plant host	Culture	Biological activities of
			medium	fungal culture extract*
7	HARO 1	Homalomena aromatica Schott.	MCz	Anti-B., F., C.
			YES	Anti-B., F., V., C.
8	MFER 5	<i>Mesua ferrea</i> Linn.	MCz	Anti-B., F.
			YES	Anti-B., F., C.
9	MSMI 11	Myxopyrum smilacifolium BI.	MCz	Not determine
			YES	Anti-C.
10	PSCA 1	Paramignya scandens Craib.	MCz	Anti-B., F., C.
			YES	Anti-B., F., V., C.
11	SILL 10	Streblus ilicifolius Corner.	MCz	Anti-B., F.
			YES	Anti-B., F.
12	SPIN 10	Spondias pinnata Kurz.	MCz	Anti-B., F., C.
		1212121212	YES	Anti-V., C
13	SSIA 2	Shorea siamensis Miq.	MCz	Anti-F., C.
		50140 11 11 18 18 18 18 18 18 18 18 18 18 18	YES	Anti-B., C
14	STUB 3	Stemona tuberosa Lour.	MCz	Anti-B., F., M., V., C.
			YES	Anti-B., F., M., V., C.
15	TCAM 1	Tetrastigma campylocarpum	MCz	Anti-F., C.
		Planch.	YES	Anti-B., F., C.
16	TLAU 7	Thunbergia laurifolia Linn.	MCz	Anti-F., C.
			YES	Anti-F., C.
17	USIA 5	Urobotrya siamensis Hiepko.	MCz	Anti-B., F.
C			YES	Anti-B., F.

*Anti-B: Antibacterial

Anti-C: Anticancer

Anti-F: Antifungal

Anti-M: Antimalarial

Anti-V; Antiviral

 Table 3
 Selected new endophytic fungal isolates that have not been evaluated for bioactivities.

No.	Fungal code	Scientific name of plant host	Family	Culture medium*
1	AGSP 3	<i>Agapetes</i> sp.	Ericaceae	MCz, MID
2	CTOM 1	Catunaregam tomentosa (Bl. Ex DC.)	Rubiaceae	MID
		Tirreng.		
3	CTOM8	Catunaregam tomentosa (Bl. Ex DC.)	Rubiaceae	MID
		Tirreng.		
4	CTOM 11	Catunaregam tomentosa (Bl. Ex DC.)	Rubiaceae	MCz, MID
		Tirreng.		
5	CTOM 12	Catunaregam tomentosa (Bl. Ex DC.)	Rubiaceae	MCz, MID
		Tirreng.		
6	CTOM 21A	Catunaregam tomentosa (Bl. Ex DC.)	Rubiaceae	MCz, MID
		Tirren <mark>g</mark> .		
7	GELL 3	<i>Gmelina elliptica</i> Sm.	Labiatae	MCz, MID
8	GELL 8	<i>Gmelina elliptica</i> Sm.	Labiatae	MCz,MID
9	GELL 12	<i>Gmelina elliptica</i> Sm.	Labiatae	MCz, MID
10	GELL 14	<i>Gmelina elliptica</i> Sm.	Labiatae	MCz
11	GLSP 11	<i>Gr<mark>ew</mark>ia</i> sp.	Tiliaceae	SDB
12	GLSP 12	<i>Grewia</i> sp.	Tiliaceae	MCz, MID
13	GLSP 19	<i>Grewia</i> sp.	Tiliaceae	YCz, MCz, MID
14	GLSP 23	<i>Grewia</i> sp.	Tiliaceae	MCz
15	GLSP 30	<i>Grewia</i> sp.	Tiliaceae	YCz
16	LRUB 1	<i>Leea rubra</i> Blume ex Spreng.	Leeaceae	YES
17	LRUB 20	<i>Leea rubra</i> Blume ex Spreng.	Leeaceae	MCz
18	RLYI 1	Rhododendron lyi Levl.	Ericaceae	PDB, MCz, MID
19	RLYI 6	Rhododendron lyi Levl.	Ericaceae	YCz
20	RLYI 7	Rhododendron lyi Levl.	Ericaceae	YCz
21	SMON 6	Sterculia monosperma Vent.	Sterculiaceae	YES
Table 3 Continue

No.	Fungal code	Scientific name	Family	Culture medium*
22	SMON 7	<i>Sterculia monosperma</i> Vent.	Sterculiaceae	MCz
23	SMON 10	Sterculia monosperma Vent.	Sterculiaceae	YES
24	SMON 14	Sterculia monosperma Vent.	Sterculiaceae	MEB
25	TASP 5	Tadehagi sp.	Leguminosae	YC _z , MC _z
26	TASP 13	Tadehagi sp.	Leguminosae	SDB
27	TASP 15	Tadehagi sp.	Leguminosae	YC _z , MC _z , MID
28	TORI 2	Trema orientalis (L.) Blume.	Ulmaceae	MES

*MCz: Malt Czapek broth MES: Malt Extract Sucrose broth PDB: Potato Dextrose Broth YCz: Yeast Czapek broth MEB: Malt Extract Broth

MID medium (Pinkerton and Strobel, 1976)

SDB: Sabouraud's Dextrose Broth

YES: Yeast Extract Sucrose broth

3.2 Culture media and chemicals

3.2.1 Culture media

Culture media used for cultivation of endophytic fungi were Corn meal agar (CMA) (Difco), Malt extract agar (MEA) (Merck), Potato dextrose agar (PDA) (Merck), Sabouraud's dextrose agar (SDA) (Merck), malt extract powder (Merck), yeast extract powder (Merck), soytone (Merck) and agar base (agar-agar ultrapure granulated, Merck). Other mycological media were Tap water agar (TWA), Yeast extract sucrose medium (agar and broth) (YES), Malt Czapek medium (agar and broth) (MCz), Malt Extract Broth (MEB), Malt Extract Sucrose broth (MES), Potato Dextrose Broth (PDB), Sabouraud's Dextrose Broth (SDB), Yeast Czapek broth (YCz), and MID medium, the formula are shown in Appendix B.

3.2.2 Chemicals

Chemicals used in this study are as the following: boric acid (Merck, GR), ammonium tartrate (Merck, GR), sodium nitrate (NaNO₂) (BHD, AR), sodium chloride (NaCl) (Merck, GR), sodium hydrogen carbonate (NaHCO₂) (Merck, GR), sodium acetate (NaOAc) (Sigma, AR), disodium hydrogen phosphate (Na₂HPO₄) anhydrous (Merck, GR), potassium dihydrogen phosphate (KH₂PO₄) anhydrous (Merck, GR), magnesium chloride (MgCl₂) (Merck, GR), calcium dinitrate [Ca(No₂)₂] (Merck, GR), potassium nitrate (KNO₂) (Merck, GR), ferric chloride (FeCl₂) (Merck, GR), manganese sulphate (MnSO₄) (Merck, GR), potassium iodide (KI) (Merck, GR), magnesium sulphate heptahydrate (MgSO₄.7H₂O) (Merck, GR), potassium chloride (KCl) (RiedeldeHaen, AR), dipotassium hydrogen phosphate (K_2 HPO₄) (Merck, GR), zinc sulphate heptahydrate (ZnSO₄.7H₂O) (Merck, GR), copper sulphate pentahydrate (CuSO₄.5H₂O) (Merck, GR), ferrous sulphate heptahydrate (FeSO₄.7H₂O) (Merck, GR), absolute ethanol (Merck, AR), 95 % ethanol (industrial grade), liquid paraffin (specific gravity of 0.83-0.89, medicinal grade), dichloromethane (CH₂Cl₂) (Labscan, AR), ethyl acetate (EtOAc) (Labscan, AR), phenol (C₆H₅OH) (Amersham, AR), Tris-HCI (Sigma), EDTA (Sigma, AR), methylene blue (Sigma), glycerol (Merck, GR), bromophenol blue (Sigma), chloroform-D, 99.9 atom %D (Labscan), acetone-d6, 99.9 atom %D (Labscan), and Sephadex LH-20 (Amersham).

Molecular biology grade reagent used were deoxynucleotide triphosphate (dATP, dCTP, dGTP, and dUTP) (FINNZYMES), *Taq* DNA polymerase (FINNZYMES), *Pst*l (FINNZYMES), and LE agarose (Seakerm[®], FMC).

3.3 Screening of selected endophytic fungal isolates for expected novel compounds

A total of 45 fungal isolates were grown in 1-L Erlenmeyer flasks, containing 200 ml of various media, as shown in Tables 2 and 3. After 3 weeks of still culture at 25 °C, the culture fluid was passed through four layers of cheesecloth to remove mycelium. After ethyl acetate extraction, the culture extract of each fungal isolate was examined by

analysis of its ¹H NMR spectrum data, together with the biological activities. Scheme 1 summarizes the whole process to get the crude extract.

Endophytic fungi isolate LRUB 20 from *Leea rubra* Blume ex Spreng. (Figure 4) and isolate USIA 5 from *Urobotrya siamensis* Hiepko. (Figure 5), were selected for further study due to their interesting ¹H NMR pattern (Appendix C). Further more, crude extract of isolate USIA 5 was found to exhibit activities against bacteria, e.g. *Staphylococcus aureus, Bacillus subtilis,* and *Mycobacterium tuberculosis* with the MIC value of 100 µg/ml. The extract of USIA 5 also exhibited antifungal activity toward *Candida albicans* and *Trichophyton mentagrophytes*, and results are summarized in Table 2.

Figure 4 Leea rubra Blume ex Spreng. (Leeaceae) - กะตั้งใบ

Figure 5 Urobotrya siamensis Hiepko. (Opiliaceae) - ผักหวานเมา

Both isolates, LRUB 20 and USIA 5, were grown on four different medium, including malt Czapek (MCz) broth, potato dextrose broth (PDB), coconut broth and MID medium (Pinkerton and Strobel, 1976), as summarized in Table 4.

Table 4Yields of crude extract (mg/100 ml) of fungi isolate LRUB 20 and isolate USIA5 cultured on four different media

Fungal	Types of medium			
isolate	MCz broth	PDB	Coconut broth	MID medium
LRUB 20	32	16	13	25
USIA 5	17	9	5	47

The fungi isolate LRUB 20 and isolate USIA 5 grown on malt Czapek (MCz) broth and MID medium provided high yield of crude extract, and also their extracts showed interesting ¹H NMR spectra, therefore, these fermentation conditions were selected for further study.

3.4 Cultivation, extraction and deposition of fungi

3.4.1 Cultivation of fungi

The fungi of interest were grown for three weeks at 25° C in still conditions. They were cultivated in 1-L Erlenmeyer flasks containing 200 ml of MCz broth for isolate LRUB 20 and MID medium for isolate USIA 5. Several flasks of culture were prepared to obtain 5 L of MCz broth and 1.6 L of MID medium.

3.4.2 Extraction of fungi

The culture broth was passed through four layers of cheese cloth and exhaustively pressed. The filtrate was extracted with an equal volume of ethyl acetate (EtOAc) 3 times. The solvent layers were then removed by evaporation at 40° C to yield a residue. The residue was dissolved in methanol or methylene chloride (CH₂Cl₂), and transferred to a vial. The crude extracts of isolate LRUB 20 and isolate USIA 5 were

obtained as brown viscous liquid (1,469 mg) and dark brown wax (747 mg), respectively. For the mycelium, they were extracted with MeOH (2 days) and CH_2CL_2 (2 days). The crude extracts from mycelium of isolate LRUB 20 and isolate USIA 5 were partitioned with EtOAc to yield extracts of 1050 mg and 198 mg (Figure C2 and C4 in Appendix C), respectively. The extractions of the culture broth and mycelium of the isolates LRUB 20 and USIA 5 are shown in Scheme 2 and Scheme 3, respectively.

3.4.3 Deposition of fungi

Endophytic fungi isolate LRUB 20 and isolate USIA 5 were deposited at the Bioactive Metabolite Unit (B600), Department of Microbiology, Faculty of Science, Mahidol University. For short-term storage (< 1 year), the fungi were placed in distilled H_2O , and for longer term storage they were kept frozen at -70°C in 15% glycerol.

Scheme 2 Extraction of culture broth and mycelia of the fungus isolate LRUB 20

Scheme 3 Extraction of culture broth and mycelia of the fungus isolate USIA 5

3.5 Chromatographic techniques

3.5.1 Analytical thin-layer chromatography

Technique	: one dimension ascending
Adsorbent	: silica gel F_{254} coated on aluminium sheet (E. Merck)
Layer thickness	: 250 µm
Distance	: 5 cm
Temperature	: laboratory temperature 25 °C
Detection	: 1. Visual detection under daylight
	2. Visual detection under ultraviolet light at wavelengths
	of 254 and 356 nm

3.5.2 Column chromatography

3.5.2.1 Gel filtration chromatography

Gel filter	: Sephadex LH-20 (Amersham)
Packing method	: Sephadex gel was suspended in the eluent and
	left overnight prior to use. It was then poured
	into the column and allowed to settle.
Sample loading	: The sample was dissolved in a small amount of
	eluent then applied gently on the top of the
	column.
Detection	: Fractions were examined by 1 H NMR (400 MH _z)
	spectroscophy.

3.5.2.2 High performance liquid chromatography (HPLC)		
Adsorbent	: Reversed-phase column (LichroCARTRP C_{18})	
Sample loading	: The sample was dissolved in a small amount of	
	eluent (MeOH and H_2O) then injected into the	
	loop of the column.	
Flow rate	: 4.0 or 8.0 ml/min	
Detection	: UV-photodiode array detector	

3.6 Isolation of bioactive compounds from endophytic fungi isolate LRUB 20 and isolate USIA 5.

3.6.1 Isolation of secondary metabolites from endophytic fungus isolate LRUB 20

Crude extract (1,469 mg) of the isolate LRUB 20 designated as L20B was purified by gel filtration chromatography using Sephadex LH-20 (column 3.0 x 60 cm), eluted with MeOH. Ten fractions (40 ml) were obtained and assigned as L20B1, L20B2, L20B3, L20B4, L20B5, L20B6, L20B7, L20B8, L20B9, and L20B10, as shown in Table 5

Fraction code	Weight (mg)
L20B1	5.1
L20B2	73.9
L20B3	227.9
L20B4	294.9
L20B5	356.5
L20B6	135.8
L20B7	198.5
L20B8	28.8
L20B9	10.3
L20B10	16.4

 Table 5
 Fractions obtained from Sephadex LH-20 column of crude extract L20B

Analysis of ¹H NMR spectral data as well as by X-ray crystallography revealed that fraction L20B7 was a pure compound and identified as asterric acid. Isolation of L20B7 is shown in Scheme 5. In addition, fraction L20B5 (356.5 mg) possessed high yield and exhibited interesting ¹H NMR pattern. It was then subjected to Sephadex LH-20 (2.5 x 52 cm) column using MeOH as mobile phase. Nine fractions (25 ml) were collected and assigned as L20B51, L20B52, L20B53, L20B54, L20B55, L20B56, L20B57, L20B58 and L20B59, as shown in Table 6.

Fraction code	Weight (mg)
L20B51	17.3
L20B52	21.2
L20B53	85.2
L20B54	69.9
L20B55	54.9
L20B56	38.4
L20B57	17.6
L20B58	13.2
L20B59	12.4

 Table 6
 Fractions obtained from Sephadex LH-20 column of fraction L20B5

Fractions L20B53 (85.2 mg) and L20B54 (69.9 mg) showed similar patterns of ¹H NMR spectral data. Both L20B53 and L20B54 were combined, and further purified by Sephadex LH-20 (1.5 x 43 cm) column using MeOH as mobile phase to obtain eight fractions (20 ml), as shown in Table 7.

Table 7Fractions obtained from Sephadex LH-20 column of fractions L20B53 andL20B54

Fraction code	Weight (mg)
L20B5(34)1	2.6
L20B5(34)2	1.5
L20B5(34)3	2.4
L20B5(34)4	10.8
L20B5(34)5	82.9
L20B5(34)6	39.1
L20B5(34)7	12.8
L20B5(34)8	6.1

Fraction L20B5(34)5 (82.9 mg) was light brown viscous liquid and identified as 2-hydroxymethyl-3-methyl-cyclopentanone. Isolation of L20B5(34)5 is displayed in Scheme 4. In addition, fraction L20B5(34)5 was selected for further study, as displayed in Scheme 8.

Fraction L20B4 (294.9 mg) exhibited interesting ¹H NMR pattern in Table 5. It was then subjected to Sephadex LH-20 (2.5 x 52 cm) column using MeOH as mobile phase. Nine fractions (20 ml) were collected and assigned as L20B41, L20B42, L20B43, L20B44, L20B45, L20B46, L20B47, L20B48, and L20B49, as shown in Table 8.

Fraction code	Weight (mg)
L20B41	12.3
L20B42	19.2
L20B43	24.8
L20B44	38.5
L20B45	54.9
L20B46	114.4
L20B47	17.6
L20B48	13.2
L20B49	8.9

Table 8 Fractions obtained from Sephadex LH-20 column of fraction L20B4

L20B46 fraction (114.4 mg) possessed high yield and showed interesting ¹H NMR pattern, and it was separated on Sephadex LH-20 (1.5 x 43 cm) using MeOH as mobile phase. Eight fractions were collected and assigned as L20B461, L20B462, L20B463, L20B464, L20B465, L20B466, L20B467, and L20B468, as shown in Table 9. Fraction L20B465 (65.7 mg) possessed high yield and exhibited interesting ¹H NMR pattern, which showed the presence of a mixture 2-hydroxymethyl-2-methyl-cyclopentanone and its derivative. However, this mixture could not separated by silica gel, Sephadex LH-20, and HPLC techniques. This fraction was derivatized with 2,4-dinitrophenylhydrazine, and their hydrazone mixture was further separated (Scheme 5).

Fraction code	Weight (mg)
L20B461	1.6
L20B462	7.8
L20B463	16.5
L20B464	65.7
L20B465	12.8
L20B466	4.4
L20B467	5.1
L20B468	0.5

 Table 9
 Fractions obtained from Sephadex LH-20 column of fraction L20B46

Scheme 4 Isolation of compounds L20B7 and L20B5(34)5

L20B7: Further elucidation by spectroscopic method

L20B5(34)5: Further elucidation by spectroscopic method and study by

condensation with hydrazine

Scheme 5 Isolation of compounds L20B464

3.6.2 Condensation of compounds L20B5(34)5 and L20B464 with hydrazine

Fraction L20B5(34)5 (30 mg) was treated with 2,4-dinitrophenylhydrazine to give a hydrazone derivative (L20B5(34)5R) 44.5 mg. It was then subjected to Sephadex LH-20 ($1.2 \times 52 \text{ cm}$) column using MeOH as mobile phase. Five fractions (10 ml) were obtained and assigned as L20B5(34)5R1, L20B5(34)5R2, L20B5(34)5R3, L20B5(34)5R4 and L20B5(34)5R5, as shown in Table 10 and Scheme 6.

Fraction code	Weight (mg)
L20B5(34)5R1	5.1
L20B5(34)5R2	16.2
L20B5(34)5R3	16.5
L20B5(34)5R4	3.8
L20B5(34)5R5	1.6

 Table 10
 Fractions obtained from Sephadex LH-20 column of fraction L20B5(34)5R

Fraction L20B5(34)5R3 (16.5 mg) was a pure compound and identified as {2methyl-5-[(4-methyl-2-nitro-phenyl)-hydrazono]-cyclopent-1-enyl}-methanol.

Fraction L20B464 (30 mg) was reacted with 2,4-dinitrophenylhydrazine to give a hydrazone derivative (L20B464R) 43.3 mg. It was then subjected to Sephadex LH-20 (1.2 x 52 cm) column using MeOH as mobile phase. Five fractions (10 ml) were obtained and assigned as L20B464R1, L20B464R2, L20B464R3, L20B464R4, and L20B464R5, as shown in Table 11 and Scheme 7.

Fraction code	Weight (mg)
L20B464R1	23.3
L20B464R2	12.8
L20B464R3	3.5
L20B464R4	2.1
L20B464R5	1.1

 Table 11
 Fractions obtained from Sephadex LH-20 column of fraction L20B464R

Fraction L20B464R2 (12.8 mg) was a pure compound, and identified as {2-[(2,4-dinitro-phenyl)-hydra-zono]-5-methyl-cyclopentyl}-methanol.

Scheme 6 Isolation of compound L20B5(34)5R3

Scheme 7 Isolation of compound L20B464R2

3.6.3 Isolation of bioactive compounds from endophytic fungus isolate USIA 5

Crude extract (U5B) (747 mg) of the isolate USIA 5 *was* purified by gel filtration chromatography using Sephadex LH-20 (column 3.0 x 43 cm), eluted with MeOH. Nine fractions (30 ml) were obtained and assigned as U5B1, U5B2, U5B3, U5B4, U5B5, U5B6, U5B7, U5B8 and U5B9, as shown in Scheme 8 and Table 12. Fractions U5B4 (146.6 mg), U5B5 (128.2 mg) and U5B6 (9.5 mg) were pure compound and identified as 3-nitropropionic acid.

Fraction code	Weight (mg)
U5B1	22.2
U5B2	70.8
U5B3	322.9
U5B4	146.6
U5B5	128.2
U5B6	9.5
U5B7	2.1
U5B8	2.2
U5B9	1.4

 Table 12
 Fractions obtained from Sephadex LH-20 column of crude extract U5B

Scheme 8 Isolation of compounds U5B4, U5B5 and U5B6

3.7 Spectroscopy

3.7.1 Ultraviolet (UV) spectroscopy

UV (in MeOH) spectra were obtained from a CARY 1 E UV-vis spectrophotometer, at the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand.

3.7.2 Infrared (IR) spectroscopy

IR spectra of pure compounds (film technique) were obtained from a Bruker Vector 22 FT-IR spectrophotometer, at the Bioresources Research Unit (BRU), the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand.

3.7.3 Mass spectroscopy (MS)

Electrospray ionization time of flight mass spectra (ESI-TOF-MS) were obtained on a Micromass LTC mass spectrometer, at the Bioresources Research Unit (BRU), the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand.

3.7.4 Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (¹H and ¹³C NMR) spectroscopy

¹H (500 MH_z) and ¹³C NMR (125 MH_z), DEPT 135, COSY, HMQC, HMBC and NOESY spectra were obtained from a Bruker ADVANCE DRX-500 FT-NMR spectrometer, at the Bioresources Research Unit (BRU), the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand.

Deuterated solvents; chloroform-*d* (CDCl₃), methanol-*d*4 (CD₃OD) and acetone*d*6 were used in NMR experiments. Reference signals were the signals of residual undeuterated solvents at δ 7.24 ppm (¹H) and 77.0 ppm *t* (¹³C) for CDCl₃; 3.35 ppm (¹H) and 49.0 ppm *spet* (¹³C) for CD₃OD; and 2.05 ppm (¹H) and 29.8 ppm *sept* (¹³C) and 206.0 ppm *s* (¹³C) for acetone-*d*6.

3.8 Derivatization of the isolated compounds

3.8.1 Condensations with hydrazine

Compounds L20B5(34)5 and L20B464 possess ketone functionality. Ketones normally condense with other ammonia derivatives, such as substituted hydrazines, to give imine derivatives. The equilibrium constants for these reactions are usually more favorable than those for reaction with simple amines. Ketone reacts with hydrazine derivatives react to fom hydrazones (Solomon and Fryhle, 2004).

Example

$$C=0 + H_2 NNH_2 \longrightarrow C=N_2^{NH_2} + H_2^{O}$$

Ketone

Hydrazine

Hydrazone

3.8.2 Condensations of acids with alcohols: The Fischer esterification

Compound U5B4-6 possesses a secondary alcohol moiety. Carboxylic acids are directly converted to esters by the Fischer esterification, an acid-catalyzed nucleophilic acyl substitution by alcohol. The net reaction is replacement of the acid OH group by the OR group of the alcohol. Acid chlorides of carboxylic acids also condense with alcohols.

Example

-HCI Acid chloride Alcohol Ester

3.9 Physical properties of bioactive compounds

: λ_{max} nm (**E**) in methanol; Figure C6 in Appendix C UV 213 (57052), 248 (14210), 314 (8421) : V_{max} cm⁻¹; Figure C7 in Appendix C IR 1053, 1358, 1603, 1689, 3005, 3419 : *m*/*z*; Figure C5 in Appendix C ESI-TOF MS m/z 371.0734 (found) 371.0743 (calculated for $C_{17}H_8O_{16}Na^+$) ¹H NMR : δ H (ppm), 500 MHz, in acetone-*d*6 see Figure C8 in Appendix C ¹³C NMR : δC (ppm), 125 MHz, in acetone-d6 see Figure C9 in Appendix C

3.9.1 Fraction L20B7 of fungus isolate LRUB 20

3.9.2 Fraction L20B5(34)5 of fungus isolate LRUB 20

UV	: $\lambda_{_{max}}$ nm (ϵ) in methanol; Figure C20 in Appendix	
	207 (5000)	
IR	: Y _{max} cm ⁻¹ ; Figure C21 in Appendix C	
	1066, 1254, 1644, 1689, 2879, 2925, 3423	
ESI-TOF MS	: <i>m</i> /z; Figure C19 in Appendix C	
	<i>m</i> / <i>z</i> 149.0586 (found)	
	149.0578 (calculated for $C_7H_{10}O_2Na^+$)	
¹ H NMR	: δ H (ppm), 500 MHz, in CDCl $_{_3}$	
	see Figure C22 in Appendix C	
¹³ C NMR	: δ C (ppm), 125 MHz, in CDCl $_{_3}$	
	see Figure C23 in Appendix C	

3.9.3 Fraction L20B5(34)5R3 of fungus isolate LRUB 20

UV

: λ_{max} nm (**E**) in methanol; Figure C29 in Appendix C 215 (28125), 255 (28579), 285 (16207), 384 (44886)

ESI-TOF MS	: <i>m/z</i> ; Figure C30 in Appendix C	
	<i>m</i> / <i>z</i> 307.1050 (found)	
	307.1042 (calculated for $C_{13}H_{14}O_5N_4Na^+$)	
¹ H NMR	: δ H (ppm), 500 MHz, in CDCl $_{_3}$	
	see Figure C31 in Appendix C	
¹³ C NMR	: δ C (ppm), 125 MHz, in CDCl $_{_3}$	
	see Figure C32 in Appendix C	

3.9.4 Fraction L20B464R2 of fungus isolate LRUB 20

UV	: $\lambda_{_{max}}$ nm (ϵ) in methanol; Figure C40 in Appendix C		
	227 (50308), 251 (39435), 366 (72974)		
IR	: V _{max} cm ⁻¹ ; Figure C41 in Appendix C		
	919, 1066, 1269, 1335, 1504, 2931, 3443		
ESI-TOF MS	: <i>m</i> / <i>z</i> ; Figure C39 in Appendix C		
	<i>m</i> /z 309.1190 (found)		
	309.1199 (calculated for $C_{13}H_{16}O_5N_4Na^+$)		
¹ H NMR	: δ H (ppm), 500 MHz, in CDCl ₃		
	see Figure C42 in Appendix C		
¹³ C NMR	: δ C (ppm), 125 MHz, in CDCl ₃		
	see Figure C43 in Appendix C		

3.9.5 Fraction U5B5 of fungus isolate USIA 5

UV	: $\lambda_{_{\text{max}}}$ nm ($m{\epsilon}$) in methanol; Figure C51 in Appendix, C
	205 (9967)
IR	: Y _{max} cm ⁻¹ ; Figure C53 in Appendix C
	1242, 1555, 1724, 3021
ESI-TOF MS	: <i>m</i> /z; Figure C50 in Appendix C
	<i>m</i> / <i>z</i> 142.0108 (found)
	142.0116 (calculated for $C_3H_5O_4NNa^+$)
¹ H NMR	: δ H (ppm), 500 MHz, in CDCl $_{\scriptscriptstyle 3}$
	see Figure C54 in Appendix C

13
C NMR : δ C (ppm), 125 MHz, in CDCl₃
see Figure C55 in Appendix C

3.10 Determination of biological activities

Determination of biological activities (Table 13) were performed by the Bioassay Research Facility (BRF), the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand. Brief methods of each assay were shown below.

 Table 13
 Biological activities tested in this study.

Biological activities		
Anticancer	BC cell line (IC ₅₀ , µg/ml)	
	KB cell line (IC ₅₀ , µg/ml)	
	NCI-H187:Small cell lung cancer (IC ₅₀ , µg/ml)	
Antiviral	Anti HSV-1 (IC ₅₀ , µg/ml)	
Antifungal	Anti <i>Candida albicans</i> (IC ₅₀ , μg/ml)	
Antibacterial	Anti Mycobacterium tuberculosis (MIC, µg/ml)	
Antimalarial	Anti <i>Plasmodium falciparum</i> (IC ₅₀ , µg/ml)	
Cytotoxicity	Vero cell line (IC ₅₀ , µg/ml)	

3.10.1 Cytotoxicity and Anticancer assays

The cytotoxic assay employed the colorimetric method reported by Skehan *et al.* (1990). Activities against KB cell line (human epidermoid carcinoma of cavity, ATTC CCL-17) and BC cell line (breast cancer cell line) were determined by colorimetric cytotoxicity assay that measured cell growth from cellular protein content according to Skehan *et al.* (1990). Elliptine was used as positive control. DMSO (10%) was used as negative control. Briefly, cells at a logarithmic growth phase were harvested and diluted to 10^5 cells/ml with fresh medium and gently mixed. Testing

compound was dissolved in DMSO (concentration at 20 mg/ml), and this solution was then diluted with distilled water to obtain a stock solution at 0.4 mg/ml (with 10% DMSO). The stock solution (10 μ l) and cell suspension (190 μ l) were transferred into microtiter plates (concentration at 20 μ g/ml with 0.05% DMSO). If the compound is active at 20 μ g/ml, a series of solutions were prepared by two-fold dilution of the stock solution (diluted with 10% DMSO solution), and exposed to cells as mentioned above, in order to obtain IC₅₀ value. Plates were incubated at 37°C under 5% CO₂ atmosphere for 72 h. After incubation period, cells were fixed by 50% trichloroacetic acid. The plates were incubated at 4°C for 30 min, washed with water, and air-dried at room temperature. The plates were stained with 0.05% sulforhodamine B (SRB) dissolved in 1% acetic for 30 min. After staining period, SRB was removed with 1% acetic acid. Plates were air-dried before bound dye was solubilized with 10mM Tris base for 5 min on shaker. Optical density was read in a microtiter plate reader at wavelength 510 nm. Ellipticine, the reference substance, exhibited activity toward BC and KB cell lines, both with the IC₅₀ of 0.3 μ g/ml.

3.10.2 Antimalarial assay

The parasite *Plasmodium falciparum* (K1, multidrug resistant strain) was cultured continuously according to the method of Trager and Jensen (1976). Quantitative assessment of antimalarial activity *in vitro* was determined by means of the microculture radioisotope technique based upon the method described by Desjardins *et al.* (1979). Briefly, a mixture of 200 μ l of 1.5% of erythrocytes with 1% parasitemia at the early ring stage was pre-exposed to 25 μ l of the medium containing a test sample dissolved in DMSO (0.1% final concentration) for 24 h employing the incubation conditions described above. Subsequently, 25 μ l of [³H]hypoxanthine (Amersham, USA) in culture medium (10 μ Ci) was added to each well and plates were incubated for an additional 24 h. Levels of incorporated radioactively labeled hypoxanthine indicating parasite growth were determined using the TopCount microplate scintillation counter (Packard, USA). An IC₅₀ value of 1.2±0.02ng/ml (n=3) was observed for the standard compound, dihydroartemisinin.

3.10.3 Antifungal assay

The antifungal activity was assessed employing a colorimetric method (Scudiero *et al.*, 1988; Plumb *et al.*, 1989). *Candida albicans* (ATCC 90028) was grown on a potato dextrose agar (PDA) plate at 30° C for 3 days. Three to five single colonies were then suspended in RPMI640 and cultured in a shaking flask until cell density reaches 2 x 10° CFU/ml. One hundred µl of the culture was added to each well of 96-well plate containing 100 µl of test sample and incubated at 37° C for 4 h. Fifty µl of 0.5 mg/ml MTT solution (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide; thiazolyl blue) in RPMI 1640 was added to each well and incubated at 37° C for an additional 4 h. After incubation period, the microplates were spinned down at 200xg for 5 min. MTT was then removed from the wells and the formazan crystals were dissolved in 200 µl of 100% DMSO and 25 µl of Sorensen' glycine buffer. Subsequently absorbance at 570 nm was determined using the multilabel counter Victor³V. Amphotericin B and 10% DMSO were used as a positive and a negative control, respectively. In our system, the IC₅₀ value of the standard drug, amphotericin B, was 0.04±0.01 µg/ml (n=3).

3.10.4 Anti-Mycobacterium assay

Activity against *Mycobacterium tuberculosis* H37Rv was assessed using the Microplate Alamer Blue Assay (MABA) (Collins and Franzblau, 1997). *M. tuberculosis* H37Rv was growth in 100 ml of 7H9GC containing 0.005% Tween 80. Culture was incubated in 500 ml plastic flask on a rotary shaker at 200 rpm and 37⁰C until they reached an optical density of 0.4-0.5 at 550 nm. Bacteria were washed and suspended in 20 ml of phosphate buffered saline and passed through an 8-μm-poresize filter to eliminate clumps. The filtrates were aliquot, stored at -80⁰C. Antimicrobial susceptibility testing was performed in 96-well microplates. Outer perimeter wells were filled with sterile water to prevent dehydration in experimental wells. Initial screenedsample dilutions were prepared in either DMSO or distilled deionized water. The dissolved-screened samples were then diluted by Middlebrook 7H9 media containing 0.2 % v/v glycerol and 1.0 g/l casitone (7H9GC), and subsequent two-fold dilutions were performed in 0.1 ml of 7H9GC in the microplates. Frozen inocula were diluted 1:100 in 7H9GC. Addition of 0.1 ml to the well resulted in final bacterial titers of about $5x10^4$ CFU/ml. Wells containing sample only were used to determine whether the tested samples themselves could reduce the dye or not. Additional control wells consisting of bacteria (B) or medium (M) were included. Plates were incubated at 37^{0} C. Starting at day 6 of incubation, 20 µl of Alamar Blue solution and 12.5 µl of 20% Tween 80 were added to B and M wells, and plates were re-incubated at 37^{0} C. Wells were observed at 24 h for a colour change from blue to pink. If the B wells became pink by 24 h, Alamar Blue solution was add to all testing plates. However, if a colour (blue) of M and B wells did not change, both wells were tested daily until a colour of B wells change from blue to pink. After the change of B well colour, Alamar Blue solution was subsequently added to all remaining wells. Plates were then incubated at 37^{0} C for 24 h, and the results were recorded with a fluorescence multi-well reader (CytoFluor, Series 4000) at the excitation and emission wavelengths of 530 and 590 nm, respectively. The standard drugs, isoniazid and kanamycin sulfate, showed respective MIC values of 0.040-0.090 and 2.0-5.0 µg/ml.

3.10.5 Antiviral assay

The colorimetric method previously described by Skehan and Coworkers (1990) was employed for antiviral assay. Herpes simplex virus type 1 (HSV-1) was maintained in the Vero cell line (kidney fibroblast of an African green monkey), which was cultured in the Eagle's minimum essential medium (MEM) with the addition of heatinactivated fetal bovine serum (FBS) (10%) and antibiotics. The test samples were put into wells of a microtiter plate at the final concentrations ranging from 20 to 50 µg/ml. The viral HSV-1 (30 PFU) was added into 96-well plate, followed by plating of Vero cells ($1x10^5$ cells/ml); the final volume was 200 µl. After incubation at 37^0 C for 72 h, under 5% of CO₂ atmosphere, cells were fixed and stained, and optical density was measured at 510 nm. Under the screening conditions, the reference compound, Acyclovir, typically exhibited the antiviral HSV-1 with the IC₅₀ of 2-5 µg/ml.

42

3.11 Classification of the endophytic fungi isolate LRUB 20 and isolate USIA 5

3.11.1 Conventional method

3.11.1.1 Macroscopic morphology

Both LRUB 20 and USIA 5 isolates were grown on five different media, including corn meal agar (CMA), malt extract agar (MEA), potato dextrose agar (PDA), Sabouraud's dextrose agar (SDA), and yeast extract sucrose agar (YEA). After cultivation for 14 days at room temperature they were photographed. Colony morphology of specimens such as shape, size, color, margin, pigment, and others were examined.

3.11.1.2 Microscopic morphology

Both LRUB 20 and USIA 5 isolates were grown on water agar and small pieces of sterilized banana leaves at room temperature for 2 months. Fungal spores and fruiting bodies appearing on the banana leaf fragments were examined by light microscopy.

3.11.2 Molecular method

3.11.2.1 DNA extraction

Both LRUB 20 and USIA 5 isolates were grown on potato dextrose broth at 25[°]C for 7 days. The mycelium were harvested by centrifugation and washed 3 times with sterile distilled water. The pellet were lyophilized and then ground into fine powder using a mortar and pestle. The ground powder would be further subjected to DNA extraction.

The ground mycelium was filled up to one third of a 1.5 ml microfuge tube and subjected to DNA extraction according to Lee and Taylor (1990). A 400- μ l volume of lysis buffer (Appendix B) was added and the mixture was mixed with vortex until being homogeneous. The tube was then incubated at 65 $^{\circ}$ C for 1 h. A 400- μ l volume of chloroform: phenol (Appendix B) was added to the mixture and the tube was inverted several times. The mixture was centrifuged at 10,000 rpm (Sigma 202MC) for

15 min at room temperature. The aqueous (top) phase containing the DNA was transferred to a new tube. Then, 10 μ l of 3M sodium acetate was added to the aqueous phase followed by 0.54 volume of cold isopropanol. The tube was inverted gently and DNA precipitate was spun down at room temperature as previously for 2 min. The pellet was washed once with cold 70% ethanol before leaving dry. The DNA pellet was resuspended in100 μ l TE (10mM Tris HCl pH 8.0, 0.1 mM EDTA) buffer.

3.11.2.2 Polymerase chain reaction (PCR) amplification

ITS1-5.8-ITS2 regions of ribosomal DNA (rDNA) (Figure 6) were amplified by PCR using the forward primer ITS5 and the reverse primer ITS4 according to White *et al*, (1990). The primer sequences are shown in Table 14. Oligonucleotide primers were synthesized using ABI PRISMTM, DNA/RNA synthesizer model 392, Perkin Elmer, by the Bioservice Unit (BSU) at the National Center for Genetic Engineering and Biotechnology (BIOTEC). The reaction mixture was prepared on ice. The amplification reaction was performed in the total volume of 50 µl: 2 ng/µl of template DNA , 0.5 mM of each primer, 0.2 mM of individual dNTP, 3 mM of MgCl₂, 50 mM KCl, 10 mM of Tris-HCl at pH 8.8 and 1.0 U of *Taq* DNA polymerase (Appendix B). For each test, a primer negative control was included without template DNA. Ice-cold PCR reaction tubes were transferred to an Eppendrof Mastercycler Gradient PCR machine.

The thermal cycling program was as follow: 3 min initial denaturation at $95 \,^{\circ}$ C, followed by 30 cycles of 50s denaturation at $95 \,^{\circ}$ C, 40s primer annealing at 48 $\,^{\circ}$ C, 40s extension at 72 $\,^{\circ}$ C, and a final 10 min extension at 72 $\,^{\circ}$ C.

Four microlitres of PCR products from each PCR reaction were examined by electrophoresis at 100V (4 V cm⁻¹) for 2 h in a 2% (w/v) agarose gel in Tris-acetate-EDTA (TEA) buffer (Appendix B) and visualized with UV light after staining with ethidium bromide (0.5 μ g/ml).

3.11.2.3 DNA sequencing

PCR products were purified using minicolumns (Wizard[®] PCR Preps DNA Purification System, Promega) according to the manufacture's protocol (Guo *et al.*, 2003). Primers ITS5 and ITS4 were used in the sequencing reactions. Both DNA strands were sequenced. Purified PCR products were sequenced using dye terminator cycle sequencing and reactions were resolved on the ABI Prism 3100 Genetic Analyzer (AME Bioscience). This was done at the Bioservice Unit (BSU), the National Center for Genetic Engineering and Biotechnology (BIOTEC).

[Diagram adapted from: White et al. 1990 PCR protocols: 316]

Figure 6 Location on nuclear rDNAs of primers ITS5 and ITS4. The arrow heads represent the 3' end of each primer.

Table 14Primers for amplification of ribosomal RNA genes of fungi isolate LRUB 20and isolate USIA 5

rRNA	GenePrimerª	Product Size (bp) ^b	<i>T</i> m ([°] C)
Nuclear, ITS	อาบัยเวิ่งเยเรีย	225	
ITS5	GGAAGTAAAAGTCGTAACAAGG	620	65
ITS4	TCCTCCGCTTATTGATATGC	620	58
9			

^a Primer ITS5 is forward primer; ITS 4 is reward primer.

^b Product sizes are approximated based on the rRNA genes of *Saccharomyces cerevisiae*; the side of the region amplified is the product size minus the primers.

^c Tm's were calculated by the method of Meinkoth and Wahl (1988).

3.11.3 Phylogenetic Analysis

ITS1-5.8S-ITS2 DNA sequence was used as query sequence to search for similar sequence from GenBank using BLASTN 2.2.10 (Altschul *et al.*, 1997). The similar reference sequences with query sequences were obtained and used for subsequent phylogenetic analyses. DNA sequence alignment and identity were performed and determined, respectively, using ClustalW (1.82) multiple sequence alignment program (Thompson *et al.* 1994). The alignment results were adjusted manually where necessary to maximize alignment using BioEdit. The alignment data were subsequently used for maximum-parsimony analysis in which searches for most parsimonious trees were conducted with the heuristic search algorithms with treebisection-reconnection (TBR) branch swapping in PAUP[®] (v 4.0b10) (Swofford, 2003). For each search, 10 replicates of random stepwise sequence addition were performed and 100 trees were saved per replicate. Gaps were treated as missing data. Character states were treated as unordered. Statistical support for the internal branches was estimated by bootstrap analysis with 1000 replications.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Structure elucidation of the isolated compounds from endophytic fungi isolate LRUB20 and isolate USIA 5

The ethyl acetate extract (L20B 1,469 mg) of MCz fermentation broth (5L) of the endophytic fungus isolate LRUB 20 gave three secondary metabolites, which were identified as asterric acid (L20B7, 198.5 mg, 13.51% of EtOAc extract), 2-hydroxymethyl-3-methyl-cyclopent-2-enone (L20B5(34)5, 82.9 mg, 5.64% of EtOAc extract), and 2-hydroxymethyl-3-methyl-cyclopentanone. While a secondary metabolite, 3-nitropropionic acid (U5B4-6, 284.3 mg, 38% of ethyl acetate extract), was obtained from EtOAc extract (U5B 747 mg) of MID fermentation broth (1.6L) of the endophytic fungus isolate USIA 5.

4.1.1 Structure elucidation of asterric acid (L20B7)

The compound L20B7 was obtained as white solid. The ESI-TOF MS of the compound L20B7 (Figure C5 in Appendix C) displayed the pseudomolecular ion peak $[M+Na]^+$ at m/z 371.0734 (calculated for $C_{17}H_{16}O_8Na^+$ at m/z 371.0743). The UV spectrum in MeOH (Figure C6 in Appendix C) of the compound L20B7 showed λ_{max} (ϵ) at 213 (57052), 248 (14210), and 314 (8421) nm. The IR absorption spectrum (Figure C7 in Appendix C) exhibited characteristic bands at 1053 cm⁻¹ (C-O stretching), 1358 cm⁻¹ (C-C stretching), 1603 cm⁻¹ (C=C stretching), 1689 cm⁻¹ (C=O stretching), 3005 cm⁻¹ (C-H stretching), and 3419 (O-H stretching).

The 500 MHz ¹H-NMR spectrum of the compound L20B7 in acetone- d_6 (Figure C8-C11 in Appendix C) (δ , ppm) showed signal attributable to: 2.15 (3H, *s*, ArCH₃), 3.74 (3H, *s*, OMe), 3.81 (3H, *s*, OMe), 5.91 (1H, *s*, ArH), 6.47 (1H, *s*, ArH), 6.91 (1H, *d*, ArH), and 7.06 (1H, *d*, ArH).

The 125 MHz ¹³C-NMR spectrum of compound L20B7 in acetone- d_6 (Figure C12 in Appendix C) gave seventeen carbon signals. The carbon signals were classified by DEPT 135 spectrum (Figure C13 in Appendix C) and HMQC spectrum (Figure C14 in Appendix C) as three methyl carbon signals at δ 21.11 ppm (C-16), 51.85 (C-9), and 55.77 ppm (C-7); four methine carbon signals at δ 104.50 (C-13), 105.18 (C-5), 108.35 (C-3), and 111.67 ppm (C-15); and ten quaternary carbonyl carbon signals at δ 164.81 (C-8), 170.78 ppm (C-17), 99.86 (C-11), 124.86 (C-2), 133.84 (C-1), 146.84 (C-14), 153.93 (C-6), 156.03 (C-12), 158.62 (C-4), and 163.33 (C-10).

The ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectra of the compound L20B7 in acetone- d_{6} (Figure C20 in appendix C) established the correlation from H-16 to H-13 and H-15, and H-3 to H-5, as shown in Figure 7.

Figure 7[¶] The correlations ¹H-¹H COSY spectrum (arrow) of compound L20B7

The complete ¹³C assignments of the compound L20B7 were obtained from the HMBC spectra (${}^{n}J_{HC} = 8$ Hz) (Figure 15-19 in Appendix C) showing the following long-range correlations; H-3 (δ 7.06) to C-5 (δ 105.18), C-1 (δ 133.84), C-4 (δ 158.62), and C-8 (δ
164.81); H-5 (δ 6.91) to C-3 (δ 108.35), C-1 (δ 133.84), and C-4 (δ 158.62); H-7 (δ 3.81) to C-6 (δ 153.93); H-9 (δ 3.71) to C-8 (δ 164.81); H-13 (δ 5.91) to C-11 (δ 99.86), C-15 (δ 111.67), and C-16 (δ 21.11); H-15 (δ 6.47) to C-10 (δ 163.33), C-11 (δ 99.86), C-13 (δ 104.5), and C-16 (δ 21.11); and H-16 (δ 2.10) to C-13 (δ 104.5), and C-15 (δ 111.67), and C-14 (δ 146.84).

The ${}^{1}\text{H}-{}^{13}\text{C}$ long-range correlations of compound L20B7 in acetone- d_{6} are summarized in Figure 8 and Table 15.

Figure 8 Long-range correlations from HMBC (${}^{n}J_{HC} = 8$ Hz) spectral data of the compound L20B7 in acetone- d_{6} .

Chemical structure of compound L20B7 could not be assembled by analysis of NMR data, therefore a single crystal of L20B7 was prepared and subjected to X-ray crystallographic analysis. Additional structural information needed to complete NMR shift assignments (i.e. heteroatom, positions, and connections), and the structure of L20B7 was finally solved by X-ray crystallographic analysis, its ORTREP plot is as shown in Figure 9. The X-ray analysis revealed an ether bond between aromatic rings, and compound L20B7

was identified as asterric acid, which was previously reported as fungal metabolite (from *Scytalidium* sp. and *Aspergillus* sp.).

Position of	δ H (ppm), <i>mult</i> ,	80 (2000)	Long-range correlations in
carbon	(<i>J</i> in Hz)	OC (ppm)	HMBC $^{n}J_{HC} = 8 \text{ Hz}$
1		133.84	-
2	-	124.86	-
3	7.06, <i>d</i> , (2.8)	108.35	C-1, C-4, C-5, C-8
4	- 6	158.60	-
5	6.91, <i>d</i> , (2.8)	105.18	C-1, C-3, C-4
6		153.93	-
7	3.81, s	55.77	C-6
8		164.81	-
9	3.74, s	51.85	C-8
10		163.33	-
11	· ·	99.86	-
12		156.03	-
13	5.91, s	104.50	C-11, C-15, C-16
14	าาบันกิ่	146.84	<u>รีการ</u>
15	6.47, s	111.67	C-10, C-11, C-13, C-16
16	2.10, s	21.11	C-13, C-14, C-15
17	I IIIOOK	170.78	

Table 15The 1 H, 13 C-NMR and HMBC spectral data of compound L20B7 in acetone- d_6

Figure 9 ORTREP plot of asterric acid

Stermitz *et al.* (1973) have reported that the fungus *Scytalidium* sp. grown on Bacto malt extract medium could produce asterric acid. In 2002, Jaih *et al.* isolated and characterized asteric acid, a secondary metabolite from the fermentation of *Aspergillus* sp. Comparison with the compound C20B7 are shown in Table 16.

Table 16	The ¹ H-NMR spectral data of L20B7 and asterric acid in acetone- d_6

Desition of	SUL (nom) mult of	δH (ppm), <i>mult</i> of	δ H (ppm), <i>mult</i> of
POSILION OF		asterric acid (Stermitz <i>et</i>	asterric acid (Jaih <i>et al</i> .
Carbon	compound (L20B7)	<i>al</i> . 1973)	2001)
1	-	-	-
2	-	-	-
3	7.06, d	7.10, d	7.04, d
4	-	COTTA -	-
5	6.9 <mark>1</mark> , d	6.95, d	6.92, d
6	-		-
7	3.81, s	3.85, s	3.81, s
8		- 3	-
9	3.74, s	3.78, s	3.73, s
10	<u> </u>	-	-
11	สภายัยเรื	โพยเปรี่การ	-
12	61 FL T L K		· _
13	5.91, s	5.95, s	5.91, s
14	<u> 164 7</u> 11 3 6	MAN I AND	1910
15	6.47, s	6.51, s	6.47, s
16	2.10, s	2.19, s	2.16, <i>s</i>
17	-	-	-

4.1.2 Structure elucidation of 2-hydroxymethyl-3-methyl-cyclopent-2-enone [L20B5(34)5]

Compound L20B5(34)5 was obtained as light brown viscous liquid, and its ESI-TOF MS of the compound L20B5(34)5 (Figure C21 in Appendix C) displayed the pseudomolecular ion peak $[M+Na]^+$ at m/z 149.0586 (calculated for $C_7H_{10}O_2H^+$ at m/z 149.0578). The UV spectrum in MeOH (Figure C22 in Appendix C) of the compound L20B5(34)5 showed λ_{max} (ϵ) at 207 (5000). The IR absorption spectrum (Figure C23 in Appendix C) exhibited characteristic bands at 1066 cm⁻¹ (C-O stretching), 1254 cm⁻¹ (C-C stretching), 1644 cm⁻¹ (C=C stretching), 1689 cm⁻¹ (C=O stretching), 2879, and 2925 cm⁻¹ (C-H stretching), and 3423 (O-H stretching).

The 500 MHz ¹H-NMR spectrum of compound L20B5(34)5 in CDCl₃ (Figure C24 and C25 in Appendix C) showed: one methyl proton signal at δ 2.12 ppm and three methylene proton signals at δ 2.39, 2.55, and 4.31 ppm.

The 125 MHz ¹³C-NMR spectrum of compound L20B5(34)5 in CDCl₃ (Figure C26 in Appendix C) gave seven carbon signals, which carbon signals were classified by DEPT 135 (Figure C27 in Appendix C) and HMQC spectral data (Figure C28 in Appendix C) as one methyl carbon signal at δ 19.17 ppm (C-7); three methylene carbon signals at δ 32.05 (C-4), 34.42 (C-5), and 54.92 ppm (C-6); three quaternary carbon signals at δ 138.62 (C-2), and 173.68 (C-3), and 210.60 ppm (C-1).

The ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectra of compound L20B5(34)5 in CDCl₃ (Figure C30 in Appendix C) established the correlation between H-4 and H-5, as shown in Figure 10.

Figure 10 The correlation of ¹H-¹H COSY spectrum (arrow) of compound L20B5(34)5

The complete ¹³C assignments of compound L20B5(34)5 were established from the HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (Figure 29 in Appendix C) showing the following longrange correlations; H-4 (δ 2.55) to C-5 (δ 34.42), C-2 (δ 138.62), and C-3 (δ 173.68); H-5 (δ 2.39) to C-4 (δ 32.05), C-1 (δ 210.60), and C-3 (δ 173.68); H-6 (δ 4.31) to C-1 (δ 210.60), C-2 (δ 138.62), and C-3 (δ 173.68); and H-7 (δ 2.12) to C-4 (δ 32.05), C-2 (δ 138.62), and C-3 (δ 173.68).

The ${}^{1}\text{H}-{}^{13}\text{C}$ long-range correlations from the HMBC spectrum of compound L20B5(34)5 in CDCl₃ are shown in Figure 11 and summarized in Table 17.

Based upon these spectral data, L20B5(34)5 was identified as 2-hydroxymethyl-3methyl-cyclopent-2-enone that is previously found to be chemically synthesized from 2bromo-3-methyl-2-cyclopenten-1-one ethylene ketal (Cho *et al.*, 2004). This is the first report of 2-hydroxymethyl-3-methyl-cyclopent-2-enone as a fungal metabolite.

Figure 11 Long-range correlations from HMBC (${}^{n}J_{HC} = 8$ Hz) spectral data of compound L20B5(34)5

Table 17	The 'H,	"C-NMR and HMBC	spectral data	(CDCl ₃) of	compound	L20B5(34)5
----------	---------	-----------------	---------------	-------------------------	----------	------------

	Position of	δ H (ppm), <i>mult</i> ,	δ C (ppm)	Long-range correlation in
	carbon	(J in Hz)		HMBC $^{n}J_{HC} = 8 \text{ Hz}$
	1		210.60	<u>.</u>
	2		138.62	- 6
_	3	งกรณ์เ	173.68	พาวอัย
	4	2.55, <i>m</i> , (4.6)	32.05	C-2, C-3, C-5
	5	2.39, <i>m</i> , (4.6)	34.42	C-1, C-3, C-4
	6	4.31, s	54.92	C-1, C-2, C-3
	7	2.12, s	19.17	C-2, C-3, C-4

4.1.3 Structure elucidation of {2-methyl-5-[(4-methyl-2-nitro-phenyl)-hydrazono]cyclopent-1-enyl}-methanol [L20B5(34)5R3]

The compound L20B5(34)5R3, red powder solid, was obtained after treating L20B5(34)5)R3 with 2,4-dinitrophenylhydrazine to give its corresponding hydrazone derivative. The ESI-TOF MS of compound L20B5(34)5R3 (Figure C31 in Appendix C) displayed the pseudomolecular ion peak $[M+H]^+$ at m/z 307.1050 (calculated for $C_{13}H_{14}O_5N_4Na^+$ at m/z 307.1042). The UV spectrum in MeOH (Figure C32 in Appendix C) of compound L20B5(34)5R3 showed λ_{max} (ϵ) at 215 (28125), 255 (28579), 285 (16207), and 385 (44886) nm

The 500 MHz ¹H-NMR spectrum of compound L20B5(34)5R3 in CDCl₃ (Figure C33-36 in Appendix C) exhibited: one methyl proton signal at δ 2. ppm; three methylene proton signals at δ 2.74, 2.74, and 4.51 ppm; and three aromatic proton signals at δ 7.85, 8.33, 9.15, and an exchangeable proton at δ 10.93 ppm.

The 125 MHz ¹³C-NMR spectrum of compound L20B5(34)5R3 in CDCl₃.(Figure C37 in Appendix C) showed thirteen carbon signals, which were classified by DEPT 135 spectrum (Figure C38 in Appendix C) and HMQC spectrum (Figure C39 in Appendix C) as one methyl carbon signal at δ 18.48 ppm (C-7); three methylene carbon signals at δ 25.55 (C-4), 34.86 (C-5), and 56.08 ppm (C-6); six quaternary carbon signals at δ 135.28 (C-2), 160.43 (C-3), 129.06 (C-9), 137.64 (C-11), 144.78, and 169.82; and three methine carbon signals at δ 115.91 (C-13), 123.52 (C-10), and 130.09 (C-12).

The ¹H-¹H COSY spectrum of compound L20B5(34)R3 in CDCl₃. (Figure C41 and C42 in Appendix C) showed correlation between H-4 and H-5; and H-12 and H-13, as shown in Figure 12.

Analysis of HMBC spectrum (Figure C40 in Appendix C) assisted in assignments of compound L20B5(34)5R3 from which the following correlations were observed: H-4 (δ 2.74) to C-5 (δ 34.86), C-2 (δ 135.28), and C-3 (δ 160.43); H-5 (δ 2.74) to C-4 (δ 25.55), C-1 (δ 169.82), and C-3 (δ 160.43); H-6 (δ 4.51) to C-1 (δ 169.82), C-2 (δ 135.28), and C-3

 $\begin{array}{l} (\delta \ \ 160.43); \ \text{and} \ \ \text{H-7} \ (\delta \ \ 2.08) \ \text{to} \ \ \text{C-4} \ (\delta \ \ 25.55), \ \text{C-2} \ (\delta \ \ 135.28), \ \text{and} \ \ \text{C-3} \ (\delta \ \ 160.43); \ \text{NH} \\ (\delta \ \ 10.93) \ \text{to} \ \ \text{C-13} \ (\delta \ \ 115.91), \ \text{C-1} \ (\delta \ \ 169.82), \ \text{and} \ \ \text{C-8} \ (\delta \ \ 144.78); \ \text{H-10} \ (\delta \ \ 9.15) \ \text{to} \ \ \text{C-12} \\ (\delta \ \ 130.09), \ \text{C-8} \ (\delta \ \ 144.78), \ \text{and} \ \ \text{C-11} \ (\delta \ \ 137.64); \ \text{H-12} \ (\delta \ \ 8.33) \ \text{to} \ \ \text{C-10} \ (\delta \ \ 123.52), \ \text{C-8} \ (\delta \ \ 144.78), \ \text{and} \ \ \text{C-11} \ (\delta \ \ 137.64); \ \text{H-13} \ \ (\delta \ \ 7.85) \ \text{to} \ \ \text{C-12} \ \ (\delta \ \ 130.09), \ \text{and} \ \ \text{C-11} \ \ (\delta \ \ 137.64). \end{array}$

The ${}^{1}\text{H}{}^{13}\text{C}$ long-range correlations from the HMBC spectrum of compound L20B5(34)5R3 in CDCl₃ are summarized in Figure 13 and Table 18.

Position of carbon	δ H (ppm), <i>mult</i> , (J in Hz)	δ C (ppm)	HMBC correlations
1	- 15	169.82	-
2	//-/	135.28	-
3		160.43	-
4	2.74, <i>m</i> , (4.2)	25.55	C-2, C-3, C-5
5	2.74, m, (4.2)	34.86	C-1, C-3, C-4
6	4.51, s	56.08	C-1, C-2, C-3
7	2.08, s	18.48	C-2, C-3, C-4
8	J	144.78	
9	- e -	129.06	-
10	9.15, <i>d</i> , (2.6)	123.52	C-8, C-11, C-12
11		137.64	
12	8.33, dd	130.09	C-8, C-10, C-11
13	7.85, <i>d</i> , (9.6)	115.91	C-11, C-12
NH	10.93, <i>s</i>	-	C-1, C-13

 Table 18
 The ¹H, ¹³C-NMR and HMBC spectral data (CDCl₃) of compound L20B5(34)5R3

Figure 13 Long-range correlations from HMBC (${}^{n}J_{HC} = 8 \text{ Hz}$) spectral data of compound L20B5(34)5R3

On the basis of these spectral data, compound L20B5(34)5R3 was identified as {2-methyl-5-[(4-methyl-2-nitro-phenyl)-hydrazono]-cyclopent-1-enyl}-methanol. Hydrazone L20B 5(34)5R3 was prepared because we need to transform L20B5(34)5R3, which is liquid, to be solid. This hydrazone derivative is expected to be crystallized to obtain single crystals for X-ray crystallographic analysis. However, a good single crystal could not be obtained for X-ray crystallographic analysis.

4.1.4 Structure elucidation of {2-[(2,4-dinitro-phenyl)-hydrazono]-5-methylcyclopentyl}-methanol (L20B464R2)

L20B464R2 (red solid) was a hydrazone derivative, which was obtained from reaction of fraction L20B464 with 2,4-dinitrophenylhydrazine. The ESI-TOF MS of compound L20B464R2 (Figure C43 in Appendix C) displayed the pseudomolecular ion peak $[M+H]^+$ at *m*/*z* 309.1190 (calculated for C₁₃H₁₆O₅N₄Na⁺ at *m*/*z* 309.1199). The UV spectrum in MeOH (Figure C44 in Appendix C) of compound L20B464R2 showed λ_{max} (ϵ) at 227 (50308), 251 (39435), and 366 (72974) nm. The IR spectrum (Figure C45 in Appendix C) exhibited characteristic bands at 919 cm⁻¹ (C-N stretching), 1066 cm⁻¹ (C-O stretching), 1269 cm⁻¹ (C-C stretching), 1335 cm⁻¹ (C=N stretching), 1504 cm⁻¹ (C=C stretching), 2931 cm⁻¹ (C-H stretching), and 3443 (O-H stretching). The optical rotation of compound L20B464R2 displayed the value of -79.6460 in MeOH at wavelength 589 nm.

The 500 MHz ¹H-NMR spectrum (CDCl₃) of compound L20B464R2 (Figure C46-49 in Appendix C) demonstrated methyl proton signal at δ 1.20. ppm; three methylene proton signals at δ 1.55 and 2.23, 2.46, and 2.71 ppm; three aromatic proton signals at δ 7.81, 8.33, and 9.15; two methine proton signals at δ 1.96, and 2.46 ppm, and exchangeable proton at δ 10.90 ppm.

The 125 MHz ¹³C-NMR spectrum of compound L20B464R2 in CDCl₃ (Figure C50 in Appendix C) gave thirteen carbon signals. The carbon signals were classified by DEPT 135 spectrum (Figure C51 in Appendix C) and HMQC spectrum (Figure C52 in Appendix C) as one methyl carbon signal at δ 18.46 ppm (C-7); three methylene carbon signals at δ 31.56

(C-4), 28.12 (C-5), and 62.23 ppm (C-6); four quaternary carbon signals at δ 129.40 (C-9), 138.04 (C-11), 144.84 (C-8), and 169.80 (C-1); and five methine carbon signals at δ 54.16 (C-2), 35.66 (C-3),115.98 (C-13), 123.62 (C-10), and 130.10 (C-12).

The 1 H- 1 H COSY spectrum of compound L20B464R2 in CDCl₃ (Figure C55 and C56 in Appendix C) established the connectivity from H-2 to H-5, and also showed the correlations between H-2 and H-6, H-3 and H-7, and H-12 and H13, as shown in Figure 14.

HMBC correlations (Figure C53 and C54 in Appendix C) well assembled the structure of compound L20B464R2 showing the following long-range correlations; H-2 (δ 2.46) to C-6 (δ 62.23), and C-1 (δ 169.80); H-3 (δ 1.96) to C-7 (δ 18.46); H-4 δ (1.55 and 2.23) to C-3 (δ 35.66), C-7 (δ 18.46), and C-1 (δ 169.80); H-5 δ (2.46 and 2.71), to C-4 (δ 31.56), C-1 (δ 169.80), C-2 (δ 54.16), C-3 (δ 35.66), and C-4 (δ 31.56); H-6 (δ 4.00) to C-1 (δ 169.80), C-2 (δ 54.16), and C-3 (δ 35.66); H-7 (δ 1.20) to C-2 (δ 54.16), C-3 (δ 35.66), and C-4 (δ 31.56); H-6 (δ 4.00) to C-1 (δ 169.80), C-2 (δ 54.16), and C-3 (δ 35.66); H-7 (δ 1.20) to C-2 (δ 54.16), C-3 (δ 35.66), and C-4 (δ 31.56); NH (δ 10.90) to C-13 (δ 115.98), C-1 (δ 169.80), and C-8 (δ 144.84); H-10 (δ 9.15) to C-12 (δ 130.10), C-8 (δ 144.84), and C-11 (δ 138.04); H-12 (δ 8.33) to C-10 (δ 123.62), C-8 (δ 144.84), and C-11 (δ 138.04); and H-13 (δ 7.81) to C-12 (δ 130.10) and C-11 (δ 138.04).

The ¹H-¹³C long-range correlations from the HMBC spectrum of compound L20B464R2 are summarized in Figure 15 and Table 19.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 15 Long-range correlations from HMBC (${}^{n}J_{HC} = 8 \text{ Hz}$) spectral data of compound L20B464R2

Position of	δ H (ppm), <i>mult</i> ,	δ C (ppm)	Long-range correlation in
carbon	(J in Hz)		HMBC $J_{HC} = 8 HZ$
1	-	169.80	-
2	2.46, <i>m</i>	54.16	C-1, C-2
3	1.96, <i>m</i>	35.66	C-7
4	1.55, <i>m</i>	31.56	C-3, C-7
	2.23, m		C-1, C-7
5	2.46, <i>m</i>	28.12	C-1, C-4
	2.71, m		C-1, C-2, C-3, C-4
6	4.00, <i>dd</i> , (6.0)	62.23	C-1, C-2, C-3
7	1.20, <i>d</i> , (6.5)	18.46	C-2, C-3, C-4
8		144.84	-
9	- (1999)	129.40	-
10	9.15, <i>d</i> , (2.6)	123.62	C-8, C-11, C-12
11	-	138.04	
12	8.33, dd	130.10	C-8, C-10, C-11
13	7.81, <i>d</i> , (9.6)	115.98	C-11, C-12
N-H	10.90, s	144.84	C-1, C-8, C-13
61 6			6 6

 Table 19
 The ¹H, ¹³C-NMR and HMBC spectral data (CDCl₃) of compound L20B464R2

จุฬาลงกรณ์มหาวิทยาลัย

Based on these spectral data, hydrazone L20B464R2 was identified as {2-[2,4-dinitrophenyl)-hydrazono]-5-methyl-cyclopentyl}-methanol. Therefore a fungal metabolite was 2-hydroxymethyl-3-methyl-cyclopentanone, and its structure is shown below (Figure 16).

Figure 16 Structure of {2-[2,4-dinitrophenyl)-hydrazono]-5-methyl-cyclopentyl}-methanol, a secondary metabolite from the fermentation of fungal isolate *Lrub* 20.

4.1.5 Structure elucidation of 3-nitropropionic acid (U5B4-6)

Compound U5B4-6 was obtained as white solid. The ESI-TOF MS of compound U5B4-6 (Figure C57 in Appendix C) displayed the pseudomolecular ion peak $[M+Na]^+$ at m/z 142.0108 (calculated for $C_3H_5NO_2Na^+$ at m/z 142.0116). The UV spectrum in MeOH (Figure C58 in Appendix C) of the compound U5B4-6 showed λ_{max} (ϵ) at 205 (9967). The IR spectrum (Figure C59 in Appendix C) exhibited characteristic bands at 3021 cm⁻¹ (O-H stretching); 1724 cm⁻¹ (C=O stretching); 1266 cm⁻¹ (C-C stretching); and 1555 cm⁻¹ (C-N stretching).

Compound U5B4-6 was identified as 3-nitropropionic acid (3-NPA, in Figure 30) by NMR spectroscopy (500 MHz for ¹H and 125 MHz for ¹³C NMR). Only two signals appearing as triplets (both with the coupling constant J = 6.02) with the same intensity could be observed at 4.67 and 3.07 ppm in the ¹H NMR spectrum (CDCl₃)(Figure 60-62) ¹³C NMR

spectrum contained three signals at 174.18 (C-1), 30.72 (C-2), and 69.33 (C-3) ppm (Figure C63). ¹H-¹H COSY spectrum of U5B4-6 (Figure C67 in Appendix C) showed that the two triplets coupled with each other, and the HMBC spectrum (Figure C66) demonstrated that the signals at 4.67 and 3.07 ppm were attached to the carbons at δ 69.33 (C-2) and 30.72 (C-3) ppm, respectively. The carbon at 174.18 (C-1) ppm was not protonated. In HMBC experiments, both proton signals gave long-range correlations to the carbon at δ 174.18 ppm, as shown in Table 20.

The downfield shift of methylene protons (at δ 4.67) suggested the attachment between this group and heteroatom (e.g. NO₂ and OH functionality). However compound U5B4-6 could not react with acid chloride (4-bromobenzenesulfonylchloride), suggesting that the attach is not OH group. The ESI-TOF MS data revealed the presence of NO₂ group in compound U5B4-6. Therefore, compound U5B4-6 was identified as 3-nitropropionic acid. Comparison of NMR spectra of U5B4-6 with those of authentic sample (sigma) readily confirmed (Figure C68 in Appendix C) that U5B4-6 is 3-nitropropionic acid, as shown in Figure 17.

Position of	δ H (ppm), <i>mult</i> ,	δ C (ppm)	HMBC correlation		
Carbon					
1	2 9	174.18	-		
2	3.07, <i>t</i> , (6.02)	30.72	C-1, C-2		
3	4.67, <i>t</i> , (6.02)	69.33	C-1, C-3		
	0 HO 1	3	NO ₂		

 Table 20
 The ¹H, ¹³C-NMR and HMBC spectral data (CDCl₃) of the compound U5B4-6

Figure 17 The structure of 3-nitropropionic acid (U5B4-6)

4.2 Biological activities of the isolated compounds

The isolated substances, asterric acid (L20B7), 2-hydroxymethyl-3-methylcyclopent-2-enone [L20B5(34)5], and 3-nitropropionic acid (U5B4-6) were tested for biological activities, while 2-hydroxymethyl-3-methyl-cyclopentanone was not biologically evaluated. The biological activities are summarized in Table 21.

Table 21Summary of biological activities of the compounds from endophytic fungi isolateLRUB 20 and isolate USIA 5

Piological activity	Compounds			
	L20B7	L20B5(34)5	U5B4-6	
Anticancer (IC ₅₀ , µg/ml)	1912-114			
- BC cell line	IA	IA	IA	
- KB cell line	IA	IA	IA	
- NCI-H187:Small cell lung	IA	IA	IA	
cancer				
Antiviral (IC ₅₀ , μg/ml)				
- HSV-1	IA	IA	IA	
Antifungal (IC ₅₀ , µg/ml)				
- Candida albicans	IA IS	IA	IA	
Antimycobacterial (MIC)	r e	. e		
- Mycobacterium tuberculosis	200	200	0.39	
Antimalarial (IC ₅₀ , μg/ml)				
- Plasmodium falciparum	IA	IA	IA	
Cytotoxicity (IC ₅₀ , µg/ml)				
- Vero cell line	> 50	> 50	> 50	

* IA: Inactive at 20 µg/ml

Asterric acid (L20B7) was found to exhibit activity against *Mycobacterium tuberculosis* (MIC value 200 µg/ml), but inactive toward other activities tested (Table 21). Recently, asterric acid was isolated from culture filtrates of *Aspergillus* sp. and was the first non-peptide endothelin (ET) binding inhibitor discovered. It specifically inhibited (IC_{50} 10⁻⁵ M) binding of ET-1 to the ETA receptor of A 10 cells. It is a secondary metabolite of unidentified fungal strain B90911 and exhibits potent and long-lasting vasoconstrictive activity (Ohashi *et al.*, 1992), and its derivatives inhibit vascular endothelial growth factor (VEGF)-induced tube formation of HUVECs (Lee *et al.*, 2002). A number of derivatives of asterric acid have been claimed to be useful in the treatment of myocardial infarction and renal insufficiency (Ishimaru *et al.*, 1992). The chlorinated derivatives of asterric acid have phosphodiesterase inhibitory activity (Katano *et al.*, 1985) and inhibit the formation of melanins in cultured human melanocytes (Yada *et al.*, 1994).

2-Hydroxymethyl-3-methyl-cyclopent-2-enone [L20B5(34)5] was found to exhibit activity against *Mycobacterium tuberculosis* (MIC value 200 µg/ml), but inactive against other cells tested (Table 21).

3-Nitropropionic acid (U5B4-6) was found to inhibit the growth of *Mycobacterium tuberculosis* (MIC value 0.39 µg/ml), but had no antimalarial, antiviral, anticancer, and cytotoxic activities (Table 21). In addition, this compound was produced by several endophytic fungi in this study, which were examined by ¹H NMR spectra of crude extracts. 3-Nitropropionic acid producing strains are listed in Table 22.

Fungal isolate	Culture medium	Scientific - name	Family	Plant source
1) GRSP 11	SDB	<i>Grewia</i> sp.	Tiliaceae	Pisanulok
		(no Thai name)		
2) GRSP 12	MID	<i>Grewia</i> sp.	Tiliaceae	Pisanulok
		(no Thai name)		
3) GRSP 19	MID	<i>Grewia</i> sp.	Tiliaceae	Pisanulok
		(no Thai name)		
4) MFER 5	MID	Mesua ferrea Linn.	Guttiferae	Chiangmai
(Phomopsis sp.)		(บุนนาค)		
5) RLYI 1	MID	Rhododendron lyi	Ericaceae	Pisanulok
		Levl. (กุหลาบขาว)		
6) TASP 15	MID	<i>Tadehagi</i> sp. (ไชหิน)	Leguminosae	Pisanulok
7) GELL 14	MCz	<i>Gmelina elliptica</i> Sm.	Labiatae	Pisanulok
		(ทองแมว)		
8) USIA 5	MID	Urobotrya siamensis	Opiliaceae	Nakornratchasima
(Phomopsis sp.)		Hiepko. (ผักหวานเมา)		

 Table 22
 List of endophytic fungal isolates capable of producing 3-nitropropionic acid.

3-Nitropropionic acid is a toxic metabolite produced by plants of the family *Fabeaceae*, in which it occurs both in the free from and as a component of the glycoside hiptagin (Carter and McChesney, 1949) and by fungi of the *Penicillium* and *Aspergillus* genera (Turner, 1979). The compound has been shown to be a suicide inhibitor of mammalian succinate dehydrogenases, being converted into 3-nitroacrylate which subsequently inactivates the enzyme by alkylation of an essential cysteine sulfydryl (Coles. *et al.*, 1982). Furthermore, several species of fungi from the genera *Aspergilus*, *Penicillium*, and *Neurospora* are capable of catalyzing the oxidation of aliphatic nitro compounds by O_2

(Doxtader and Alexander, 1966). Specifically, *Aspergilus flavus* and *Penicillium atrovenetum*, which synthesize the toxic antibiotic 3-nitropropionate, catalyze the oxidation of this nitroalkane by O_2 (Birkinshaw and Dryland, 1964).

Based on the biological activities summarized in Table 21, it is to be noted that Asterric acid (L20B7), 2-hydroxymethy-3-methy-cyclopent-2-enone (L20B5(34)5), and 3-nitropropionic acid (U5B4-6) were isolated from culture broth, while bioactive metabolites had not isolated from mycelial extracts in this study. Thus, the bioactive metabolites were mostly produced and secreted into the extracellular fluid. Perhaps this may explain the biological role of endophytic fungi in their host plants. They may survive in the plants as symbionts and provide protective substances that can accumulate in plant tissues to inhibit or kill invading pathogens.

4.3 Classification of the endophytic fungi isolate LRUB 20 and isolate USIA 5

Endophytic fungus isolate LRUB 20 was isolated from *Leea rubra* Blume Ex Spreng., while the isolate USIA 5 was obtained from *Urobotrya siamensis* Hiepko. Conventional and molecular methods were applied to classify the isolate LRUB 20 and isolate USIA 5.

4.3.1 Conventional method

The endophytic fungus isolate LRUB 20 did not produce conidia or spore on common mycological media, including corn meal agar (CMA), malt extract agar (MEA), potato dextrose agar (PDA), Sabouraud's dextrose agar (SDA), yeast Czapek agar (YCz) and yeast extract sucrose agar (YES), after cultivation for 14 days at room temperature, as shown Figure 17. The fungus isolate LRUB 20 did not sporulate when grown for 2 months on water agar and small pieces of banana leaves, a nutritionally weak medium. This condition is suggested for promoting sporulation (Smith and Onions, 1994). Therefore, LRUB 20 was classified as mycelia sterilia, and nucleotide sequences of rRNA genes provided an attractive approach in its taxonomy.

The endophytic fungus isolate USIA 5 did not produce conidia or spore on common mycological media, including corn meal agar (CMA), malt extract agar (MEA), potato dextrose agar (PDA), Sabouraud's dextrose agar (SDA), and Yeast extract sucrose agar (YES) (Figure 18). On banana leaf agar, it developed black pycnidia (Figure 19) with two morphological distinct conidia, α -conidia (hyaline fusiform with biguttulate) and β -conidia (hyaline fusiform), as shown in Figure 20. It was found that isolate USIA 5 produced α -conidia in common than β -conidia that were infrequently found. Based on its microscopic morphology, isolate USIA 5 could be classified in genus *Phomopsis*. General morphology of *Phomopsis* sp. is the production of two basic types α -or/and β -conidia such as *Phomopsis abdita*, α conidia; *P. archeri*, α and β conidia; *P. lantanae*, α conidia; *P. diachenii*, α and β conidia; and *P. obscurans*, α conidia (Sution, 1980).

Obverse

Figure 18 Colony morphology of endophytic fungus isolate LRUB 20 on six different media Culture: top left, Corn meal ager (CMA); top middle, Malt extract agar (MEA); top right, Potato dextrose agar (PDA); bottom left, Sabouraud's dextrose agar (SDA); bottom middle, Yeast Czapek agar (YCzA) and bottom right, Yeast extract agar (YEA).

Obverse

Figure 19 Colony morphology of endophytic fungus isolate USIA 5 on five different media culture: top left, Corn meal ager (CMA); top right, Malt extract agar (MEA); bottom left, Potato dextrose agar (PDA); bottom middle, Sabouraud's dextrose agar (SDA); and bottom right, Yeast extract agar (YEA).

Figure 20 Conidioma (arrow) of endophytic fungus isolate USIA 5 on banana leaf.

Figure 21 α and β conidia (arrow) of endophytic fungus isolate USIA 5.

4.3.2 Molecular method

Further efforts to taxonomically classify the endophytic fungal isolates LRUB 20 and USIA 5 were carried out with molecular method by determining the nucleotide sequence of ITS1-5.8S-ITS2 region of rRNA gene. Nucleotide sequence of 5.8S region is highly conserved, and it is used for the phylogenetic analysis at higher taxonomic levels (Phylum and Class). Whereas the highly variable internal transcribed spacers (ITS1 and ITS2) were used for phylogenetic analysis at lower taxonomic levels (order to species) (Mitchell *et al.*, 1995).

4.3.2.1 The PCR product of ITS1-5.8S-ITS2 region of rRNA gene

PCR conditions were optimized to amplify rRNA gene of the isolates LRUB 20 and USIA 5. The oligonucleotide primers ITS5 and ITS4 (White *et al.*, 1990) were used to amplify a DNA fragment at 3' end of 18S, ITS1-5.8S-ITS2, and 5' end of 28S rDNA. Figure 11 shows the PCR product for 30-amplication cycles by 2 % agarose gel electrophoresis. The optimization condition was previously described in the material and method section. The sizes of PCR products were compared with $\lambda Pst1$ the molecular marker. The PCR products amplified from chromosomal DNA of isolate LRUB 20 and isolate USIA 5 were found as single band with size between 600 to 700 bp, as shown in Figure 21, lanes 1 and 5, respectively.

์ สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 22 Agarose gel electrophoresis analysis of the PCR product from amplification of ITS1, 5.8S, and ITS2 regions of rDNA. Lanes M, 1, and 5 were the standard marker ($\lambda Pst1$), the PCR product of LRUB 20, and the PCR product of USIA 5, respectively.

4.3.2.2 Nucleotide sequence of partial 18S and 28S sequences and complete ITS-5.8S-ITS2 sequences of isolate USIA 5 and phylogenetic analysis

Sequencing of the PCR product amplified from chromosomal DNA of isolate USIA 5 resulted in a 554 bp fragment. This comprised partial of the 18S sequence, complete ITS1-5.8S-ITS2 sequences, and partial of the 28S sequence, as shown in Figure 12.

		18	SS 🚽 🚽	ITS1		
1	GTTGGTGAAC	CAGCGGAGGG	ATCATTGCTG	GAACGCGCCC	CAGGCGCACC	50
51	CAGAAACCCT	TTGTGAACTT	ATACCTTACT	GTTGCCTCGG	CGCAGGCTGG	100
101	TCCTCCGGGG	CCCCTCACCC	GCCACGGGTG	TTGAGACAGC	CCGCCGGCGG	150
151	CCAACCTAAC	TCTTGTTTTT	ACACTGAAAC	TCTGAGAATA	AACATAAATG	200
ITS1		5.8S				
201	аатсааааст	TTCAACAACG	GATCTCTTGG	TTCTGGCATC	GATGAAGAAC	250
251	GCAGCGAAAT	GCGATAAGTA	ATGTGAATTG	CAGAATTCAG	TGAATCATCG	300
301	AATCTTTGAA	CGCACATTGC	GCCCTCTGGT	ATTCCGGAGG	GCATGCCTGT	350
	5.8S <	→ IT	S2			
351	TCGAGCGTCA	TTTCAACCCT	CAAGCCTGGC	TTGGTGATGG	GGCACTGCTT	400
401	ТТАСАСАААА	GCAGGCCCTG	AAATTCAGTG	GCGAGCTCGC	CAGGACCCCG	450
451	AGCGCAGTAG	TTAAACCCTC	GCTTTGGAAG	GCCCTGGCGG	TGCCCTGCCG	500
		ITS2 🗲	→ 28	S		
501	TTAAACCCCC	AACCTTTGAA	AATTGACCTC	GGATCAGGTA	GGAATACCCG	550
	CTGA					

Figure 23 Nucleotide sequences of the partial 18S sequence, complete ITS1-5.8S-ITS2 sequences, and partial 28S sequence of the isolate USIA 5

The complete ITS1-5.8S-ITS2 sequences of isolate the USIA 5 was used as the query sequence to search for similar sequences from GenBank. It was found that *Phomopsis* and its teleomorph, Diaporthe, are the closest matches. A total of 23 known species (Table 23) with relative high % identity (88-97%) were selected for phylogenetic analysis.

 Table 23 Twenty three known species (taxa) with relatively high sequence similarity to

 isolate USIA 5 that were selected for phylogenetic analysis.

Known species	Taxa (GenBank)
1	Phomopsis amygdali
2	Phomopsis quercina
3	Phomopsis magnoliae
4	Phomopsis vaccinii
5	Phomopsis juniperivora
6	Diaporthe vaccinii
7	Phomopsis asparagi
8	Diaporthe caulivola
9	Phomopsis bougainvilleicola
10	Phomopsis liquidambari
11	Phomopsis phyllanthicola
12	Phomopsis averrhoae
13	Diaporthe phaseolorum
14	Diaporthe meridionalis
15	Diaporthe angelicae
16	Diaporthe arctii
17	Phomopsis chimonanthi
18	Phomopsis micheliae
19	Diaporthe helianthi
20	Phomopsis columnaris
21	Phomopsis glabrae
22	Phomopsis vexans
23	Phomopsis sclerotioides

76

Figure 23 shows % identity between complete ITS1-5.8S-ITS2 region of USIA 5 and the reference taxa. It was found that the isolate USIA 5 had relatively higher sequence similarity to *Phomopsis amygdali*, *P. quercina*, and *P. magnoliae* with 97% identity than with any other sequences. The isolate USIA 5 also had relatively high nucleotide similarity with 96% identity to that of *P. vaccinii* and *P. juniperivora*. The isolate USIA 5 also had relatively high sequence similarities with seven *Diaporthe* species (90-95 % identity), These results confirmed that USIA 5 is *Phomopsis* sp.

Alignment of ITS1-5.8S-ITS2 sequences of USIA 5 and 24 reference taxa including outgroup by ClustalW multiple alignment program and by manually resulted in a data matrix of 527 base sites, as shown in Appendix (Figure D1). The phylogenetic relationship inferred from these data is shown in Figure 24. This inferred phylogenetic trees was 50% majority rule consensus trees with 61 steps tree length, with consistency index (CI), retention index (RI) and rescaled consistency index (RC) of 0.5062, 0.7539, and 0.4662, respectively. Evolution of isolate USIA 5 was found to be most closely related to *P. amygdaii, P. asparagi, P. quercina, P. magnoliae, P. vaccinii, P. juniperivora*, and *D. vaccinii* with 95% bootstrap support, as shown in Figure 24.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

US	USIA 5																							
97	Ph	omoj	omopsis amygdali																					
97	99	<i>P</i> .	P. quercina																					
97	99	99	99 P. magnoliae																					
96	98	98	98 98 P. vaccinii																					
96	99	99	99 98 97 P. juniperivora																					
95	96	96	96 95 97 95 Diaporthe vaccinii																					
94	95	95	95 94 95 94 94 P. asparagi																					
93	93	93	93	94	92	92	93 D. caulivola																	
93	94	94	93	93	93	92	91	91	<i>P</i> .	P. bougainvilleicola														
93	92	92	92	93	92	92	93	95	93	<i>P</i> .	liqui	damb	ari											
93	93	93	93	93	93	91	92	95	94	97	<i>P</i> .	phyll	anthi	cola										
93	93	93	93	93	92	91	92	92	97	95 95 P. averrhoae														
92	92	92	92	93	91	92	93	94	92	94	94 93 94 D. phaseolorum													
91	92	92	92	93	92	91	92	95	92	95	94	94 92 93 D. meridionalis												
90	90	90	90	90	89	89	90	93	89	93	91	90	90	93 D. angelicae										
90	91	91	91	91	90	90	90	94	89	93	92 90 90 93 97 D. arctii													
90	90	90	90	91	90	89	89	93	89	92	91	89	90	91	94	95	Р.	chim 1	onan	thi				
90	90	90	90	91	90	89	89	93	89	92	91	89	90	91	94	95	90	Р.	mich I	eliae				
90	91	91	91	91	90	89	90	93	89	93	92	90	90	93	96	97	96	96	<i>D</i> .	helia I	nthi			
89	89	89	89	90	89	88	89	92	89	92	91	90	90	92	95	95	94	94	96	<i>P</i> .	colui 1	olumnaris B. alahuaa		
89	90	90	90	90	89	88	89	92	88	92	92	89	89	92	95	95	95	95	96	96	<i>P</i> .	glabrae		
88	89	88	88	89	89	88	89	92	89	92	91	89	89	92	95	95	94	94	95	93	94	P. vexans		
88	88	88	88	89	89	88	88	91	89	92	90	89	89	92	94	94	92	92	94	98	95	92	P. sclerotioides	

Figure 24 The alignment scores (% identity) of complete ITS1-5.8S-ITS2 sequences of the isolate USIA 5 and 23 reference taxa from GenBank.

Figure 25 Maximum-parsimony tree (50% majority-rule consensus tree) generated from the ITS1-5.8S-ITS2 sequences of 25 taxa (CI=0.5062, RI=0.7539, RC=0.4662, tree length=61 steps) showing the evolutionary relationship of USIA 5 with reference taxa. The numbers at internal node indicate the percentages of trees from 1,000 bootstrap replications. *Cytospora allantoidiopsis* was used as an outgroup.

This study shows that the fungal isolate USIA 5 could be species of *Phomopsis* and its telemorph, *Diaporthe*, whose several members were known to be plant pathogens. *D. meridionalis* was known to cause stem canker in soybean and *D. helianthi* causes brown stem canker in sunflower (Gulya and Masirevic, 1993). *P. amygdali* causes sunken canker in peach (Jones and Sutton, 2004; Mostert and Crous, 2004), and *P. vaccinii* causes twig blight in cranberry (Mcmanus, 2004). Despite of these evidences of plant pathogenic nature of *Phomopsis* sp. and *Diaporthe* sp., the USIA 5 is considered to be an endophytic fungus because it is also capable of living as a symptomless endophyte for prolonged periods within its host plant, *Urobotrya siamensis* Hiepko., and it did not sporulate when grown on common mycological media (normal condition) such as CMA, MEA, PDA, SDA, and YES except sporulating only on plant material.

It should be noted that some fungi are considered to be both endophytes and plant pathogens. For example, *M. betulinum* and other *Melanconium* spp. are known as endophytes and as causal agents of diebacks and cankers of various broad-leaved trees, including *Betula* spp. (Sieber *et al.*, 1991; Belisario, 1999; and Elamo *et al.*, 1999).

4.3.2.3 Nucleotide sequence of partial 18S and 28S sequences and complete ITS1-5.8S-ITS2 sequences of isolate LRUB 20 and phylogenetic analysis

Sequencing of the PCR product amplified from chromosomal DNA of isolate LRUB 20 resulted in a 572 bp fragment. This comprised partial of the 18S sequence, complete ITS1-5.8S-ITS2 sequences, and partial of the 28S sequence, as shown in Figure 25.

10	TGAACCTGCG	GAAGGATCAT	TACAAGTTGA	AACGGTTGCC	CTCGCGGTGA	50
51	CCGGTTCTTC	AAACCTCTGC	GTACCAAACC	TTTCAGTTGC	CTCCGGCGGC	100
101	CCTGGGCCGG	CGCGGCGCGC	GACCTCCCCC	TCGCGGGCGG	GGCCGCTCCT	150
151	CGCGGCGGAC	CACCCGCCGG	GCGGTCATAA	ACAAAACCTT	TTCGTCGAGA	200
				ITS1	→ 5.8S	
201	TGGCATCGTC	TAATTTCTTC	АТАТСААААТ	ATGAAATACA	ACTTTCAACA	250
251	ATGGATCTCT	TGGCTCCGGC	ATCGATGAAG	AACGCAGCGA	AATGCGATAA	300
301	CTAGTGTGAA	TTGCAGATTT	CAGTGAATCA	TCGAGTCTTT	GAACGCACAT	350
				5.	8S 🛶 🛶	ITS2
351	TGCGCCTCTT	GGTATTCCT	C GAGGCATGCO	C TGTTCGAGCO	G TCGTTACGCC	400
401	CCTCAAGCGC	GAGCTTGGTG	TTGGGGATCG	CCCCTGAGAT	ACGGCGGCGG	450
451	CCCTTAAATG	CATCGGCGGT	GCTGGTGTCA	GCCCGGAGCG	CAGCAGACAT	500
501	GCGGCTTCCA	GGCGACCACG	CGCCCGCCGG	ACAACGACCC	GACCTTCAAA	550
ITS2 <	▶ 28	S				
550	CGTCGACCTC	GGATCACCT	A GG 572			
550	00100110010		1 55 572			

Figure 26 Nucleotide sequences of the partial 18S sequence, complete ITS1-5.8S-ITS2 sequences, and partial 28S sequence of the isolate LRUB 20

The ITS1-5.8S-ITS2 sequence was used as the query sequence to search for similar sequences from GenBank using BLASTN 2.2.10 program (Altschul *et al.*, 1997). It was noticed that all 100 blast hit sequences show no similar sequence to ITS1 region of isolate LRUB 20 and some hit sequences show similarity in some region of ITS2 sequence. A total

81

of 40 known species from 100 blast hits were selected. *Mycoleptodiscus terrestris* was found to be the species that show the highest sequence similarity (72% identity). The % identity of ITS1-5.8S-ITS2 sequence of LRUB 20 and the other sequences was found to be 55-64%.

Alignment of ITS1-5.8S-ITS2 sequences of LRUB 20, 40 reference taxa and 2 outgroup taxa by ClustalW multiple alignment program and by manually resulted in a data matrix of 677 base sites, as shown in Appendix D (Figure D2). The phylogenetic relationship inferred from these data using maximum parsimony algorithm is shown in Figure 26. This inferred phylogenetic tree was 50% majority-rule consensus trees with 1,808 steps tree length, with consistency index (CI), retention index (RI) and rescaled consistency index (RC) of 0.5492, 0.6337, and 0.3480, respectively. It revealed that isolate LRUB 20 had evolution related to Mycoleptodiscus terrestris in Family Magnaporthaceae, with 95% bootstrap support, as shown in Figure 26. According to the low similarity between ITS1-5.8S-ITS2 sequences of LRUB 20 and the known blast hit species, 5.8S sequence of isolate LRUB 20 was used as the query sequence. A total of 20 known species from 100 blast hits were selected as representative (Table 24). Multiple sequence alignment by ClustalW program showed that LRUB 20 had relative highest identity (98%) to M. terrestris, as shown in Figure 27. Alignment of 5.8S sequences of LRUB 20, 20 reference taxa and 2 outgroup taxa by ClustalW multiple alignment program and by manually resulted in a data matrix of 165 base sites, as shown in Appendix D (Figure D3). The phylogenetic relationship inferred from these data using maximum parsimony algorithm is shown in Figure 28. This inferred phylogenetic trees was 50% majority-rule consensus trees with 62 steps tree length, with consistency index (CI), retention index (RI) and rescaled consistency index (RC) of 0.7419, 0.7895, and 0.5857, respectively. Maximum parsimony tree based on 5.8S sequences also showed evolutionary relationship of LRUB 20 to *M. terrestris* with 98% bootstrap support, as shown in Figure 28. In addition, It was found that LRUB 20 and *M. terrestris* clade was a sister clade to Aspergillus clade.

Figure 27 Maximum-parsimony tree (50% majority-rule consensus tree) generated from the ITS1-5.8S-ITS2 sequences of 43 taxa (CI=0.5062, RI=0.7539, RC=0.4662, tree length=1,808 steps) showing the evolutionary relationship of LRUB 20 with reference taxa. The numbers at internal node indicate the percentages of trees from 1,000 bootstrap replications. *Ustilago sparsa* and *Agaricus abruptibulbus* were used as outgroups.

Table 24Twenty known species (taxa) selected as representatives from 100 blast hitsthat obtained from GenBank when 5.8S sequence of LRUB 20 was used as the querysequence.

Known species	Taxa (GenBank)																				
1	Mycoleptodiscus terrestris																				
2	<i>Myrothecium</i> sp. Z16																				
3	Coniothyrium sporulosum																				
4	Montagnula opulenta																				
5	Paracoconiothyrium cyclothyrioides																				
6	Paraphaeosphaeria sp.																				
7	Paraphaeosphaeria pilleata																				
8	Conithyrium fuckelii																				
9	Conithyrium minitans																				
10	Massarina bipolaris																				
11	Massarina lacustris																				
12	Paraphaeosphaeria michotii																				
13	Lophiostoma arundinis																				
14	Aspergillus flavipes																				
15	Aspergillus niger																				
16	Aspergillus ellipticus																				
17	Fennellia nivea strain SRRC 333																				
18	Tuber rufum morphotype 5																				
19	Aporospora terricola																				
20	Humicola fuscoatra																				
	LRU	B 20																			
---	-----	------	--------	--------	---------	------------------	--------	-----------------	-----------------	---------	--------	---------	--------	--------	--------	--------	--------	--------	---------	---------	--------------------
	98	My	colept	odisci	us teri	restris															
	94	92	My	rothec	ium s	<i>n</i> sp. Z16															
1	94	92	100	Cor	iiothy	rium :	sporul	osum													
1	94	92	100	100	Mo	ntagn	ula op	ulente	a												
1	94	92	100	100	100	Par	acoco	onioth	yrium	cyclo	thyric	oides									
1	94	92	100	100	100	100	Par	aphae	eospha	aeria :	sp.										
1	94	92	100	100	100	100	100	Par	aphae	eosph	aeria	pillea	ta								
1	94	92	100	100	100	100	100	100	Cor	iithyri	ium fu	ickelii									
	94	92	100	100	100	100	100	100	100	Cor	iithyr	ium m	initan	s							
Ì	93	92	97	97	97	97	97	97	97	97	Ma	ssarin	a bip	olaris							
1	93	91	99	99	99	99	99	99	99	99	96	Ma	ssarin	a laci	ustris						
1	93	91	98	98	98	98	98	98	98	98	96	98	Par	apha	eosph	aeria	micho	tii			
1	92	91	96	96	96	96	96	96	96	96	99	96	96	Lop	ohiost	oma a	rundii	nis			
1	93	91	93	93	93	93	93	93	93	93	91	94	93	92	Asp	ergill	us fla	vipes			
l	92	91	93	93	93	93	93	93	93	93	91	93	93	92	99	Asp	ergill	us nig	er		
Ì	92	91	93	93	93	93	93	93	93	93	91	93	93	92	99	100	Asp	ergill	us elli	pticu	5
Ì	92	91	93	93	93	93	93	93	93	93	91	93	93	92	99	100	100	Fenr	iellia	nivea	strain SRRC 333
l	91	89	96	96	96	96	96	<mark>96</mark>	<mark>96</mark>	96	94	95	95	94	92	91	91	91	Tube	er rufi	um morphotype 5
	94	92	100	100	100	100	100	100	100	100	97	99	98	96	93	93	93	93	96	Apo	rospora terricola
	93	91	98	98	98	98	98	98	98	98	96	98	98	96	93	93	93	93	95	98	Humicola fuscoatra

The alignment scores (% identity) of complete 5.8S sequence of the isolate Figure 28 LRUB 20 and 20 reference taxa from GenBank

Figure 29 Maximum-parsimony tree (50% majority-rule consensus tree) generated from the 5.8S sequences of 23 taxa (CI=0.7419, RI=0.7895, RC=0.5857, tree length=62 steps) showing the evolutionary relationship of LRUB 20 with reference taxa. The numbers at internal node indicate the percentages of trees from 1,000 bootstrap replications. *Ustilago sparsa* and *Agaricus abruptibulbus* were used as outgroups.

In order to confirm evolutionary relationship of LRUB 20 and *M. terrestris*, other six representative species of Magnaporthaceae were further selected for phylogenetic analysis together with *Aspergillus* species, as shown in Table 25. Alignment of 5.8S sequences of LRUB 20 and these reference taxa including outgroup taxa by ClustalW multiple alignment program and by manually resulted in a data matrix of 158 base sites, as shown in Appendix D (Figure D4). The phylogenetic relationship inferred from these data is shown in Figure 30. This inferred phylogenetic trees was 50% majority-rule consensus tree with 54 steps tree length, with consistency index (CI), retention index (RI) and rescaled consistency index (RC) of 0.7407, 0.7846, and 0.5812, respectively. Phylogenetic anlysis based on 5.8 sequence of LRUB 20, selected representative species from Magnaporthaceae and Trichocomaceae also showed that LRUB 20 and *M. terrestris* were in the same clade with 99% bootstrap support that was sister clade to *Aspergillus* species, as shown in Figure 30.

Molecular method is a possible tool to classify the endophytic fungal isolate LRUB 20 because it is sterile. There are several studies to identify endophytic fungi using molecular techniques (e.g. Arnold *et al.*, 2000; Okane, 2001; and Baayen *et al.*, 2002). However, there are limitations in the identification of mycelia sterilia by means of DNA sequence analyses (Guo *et al.* 2000b, 2001). All phylogenetic analyses and sequence similarity attempted suggested that LRUB 20 should be novel species in family Magnaporthaceae, class Sordariomycetes, and subphylum Pezizomycotina, phylum Ascomycota. The endophytic fungus isolate LRUB 20 in this study that was given taxonomic placement at family level (could not be classified to lower taxonomic level) could be further resolved once more references are available in the databases. Nevertheless, molecular identification based on nucleotide sequences is a powerful tool that could potentially become a routine approach in future studies of fungal diversity, especially for sterile mycelia.

Table 25 Representative species of families Magnaporthaceae and Trichocomaceaeobtained from GenBank sequences used for phylogenetic analysis.

Known species	Taxa (GenBank)			
1	Mycoleptodiscus terrestris			
2	Aspergillus flavipes			
3	Aspergillus niger			
4	Aspergillus ellipticus			
5	Fennellia nivea			
6	Buergenerula spartinea			
7	Gaeumannomyces amomi			
8	Magnaporthe grisea			
9	Pyricularia angulata			
10	Harpophora maydis			
11	Phialophora bofulispora			

Lrub 20

98	Mycoleptodiscus terrestris										
93	91	91 Aspergillus flavipes									
92	91	99	9 Aspergillus niger								
92	91	99	100	Aspergillus ellipticus							
92	91	99	100	100	Fen	Fennellia nivea					
88	87	94	94	94	94	94 Buergenerula spartinea					
87	87	94	94	94	94	99	Gae	umann	omyce.	s amor	ni
88	87	94	94	94	94	100	99	Magi	naporti	he gris	sea
88	87	94	94	94	94	100	99	100	Pyri	iculari	a angulata
88	88	93	93	93	93	96	97	96	96	Hai	rpophora maydis
89	89	93	93	93	93	96	96	96	96	94	Phialophora bofulispora

Figure 30 The alignment scores (% identity) of complete 5.8S sequence of the isolate LRUB 20 and 11 reference taxa from GenBank

Figure 31 Maximum-parsimony tree (50% majority-rule consensus tree) generated from the 5.8S sequences of 14 taxa (CI=0.7407, RI=0.7846, RC=0.5812, tree length=54 steps) showing the evolutionary relationship of LRUB 20 with reference taxa. The numbers at internal node indicate the percentages of trees from 1,000 bootstrap replications. *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe* were used as outgroups.

CHAPTER V

CONCLUSION

The endophytic fungus isolate LRUB 20 was isolated from the surface-sterilized stem of *Leea rubra* Blume Ex Spreng. (Leeaceae). In the present investigation, three compounds were isolated from MCz culture of the endophytic fungus isolate LRUB 20. The isolated compounds include asterric acid, 2-hydroxymethyl-3-methyl-cyclopent-2-enone, and 2-hydroxymethyl-3-methyl-cyclopentanone. Asterric acid and 2-hydroxymethyl-3-methyl-cyclopent-2-enone were found to exhibit activity against *Mycobacterium tuberculosis* H37Rv with the MIC value of 200 µg/ml. Based on conventional method, the fungal isolate LRUB 20 limited in spore formation. Nucleotide sequencing of ITS1-5.8S-ITS2 sequences of rDNA was applied to classify the endophytic fungal isolate LRUB 20. It was found to be in the family Magnaporthaceae. However, the fungal isolate LRUB 20 could not be identified at the taxonomic level of genus and species due to the highly variable internal transcribed spacers (ITS1 and ITS2) of rDNA sequence that did not match with any known fungi in the GenBank database.

The endophytic fungus isolate USIA 5 was isolated from the surface-sterilized leaf of *Urobotrya siamensis* Hiepko. (Opiliaceae). In the present investigation, 3-nitropropionic acid was isolated from MID culture of the endophytic fungus isolate USIA 5. 3-Nitropropionic acid exhibited activity against *Mycobacterium tuberculosis* H37Rv with the MIC value of 0.39 µg/ml. The endophytic fungus isolate USIA 5 produced black pycnidia with α -conidia and β -conidia (rarely) on banana leaf. Based on the microscopic morphology and the nucleotide sequencing of ITS1-5.8S-ITS2 sequences of rDNA, endophytic fungus isolate USIA 5 was identified as *Phomopsis* sp. in the family Diaporthaceae.

REFERRENCES

- วิทยา มีวุฒิสม, นงลักษณ์ ศรีอุบลมาศ, สุเทพ ไวยครุฑธา และ นิจศิริ เรื่องรังษี. 2544. <u>การตรวจ</u> <u>กรองหาสารมีฤทธิ์ทางชีวภาพของราเอนโดไฟท์ในต้นพืชสมุนไพรไทย</u>. รายงานการวิจัย พัฒนาและวิศวกรรม ฉบับสมบูรณ์ BRT 642003.
- Altschul, S. F., Madden, T.L., Schaffer, A. A., Zhang, J., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. <u>Nucleic Acids Res</u>. 25: 3389-3402.
- Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P.D. and Kursar, T. A. 2000. Are tropical fungi endophytes hyperdiverse?. <u>Ecology Letters</u>. 3: 267-274.
- Azevedo, J. L., Maccheroni, Jr. W., Pereira., J. O. and Araujo., W. L. 2000. Endophytic Microorganisms: a review on insect control and recent advances on tropical plants. <u>J. Biot</u>. 3: 40-65.
- Baayen, R. P., Bonants. P. J. M., Verkley, G., Carroll, G. C., van der Aa, H. A., de
 Weerdt, M., van Brouwershaven, I. R. Schutte, G. C., Maccheroni. W. jr.
 de Blanco, C. G. and A zevedo, J. L. 2002. Nonpathogenic isolates of the citrus
 black spot fungus. *Guignardiacitricarpa*, identified as a cosmopolitan endophyte
 of woody plants, *G. mangiferae (Phyllosticta capitalensis)*. Phytopathology. 92:
 464-477.
- Belisario, A. 1999. Cultural characteristics and pathogenicity of *Melanconium juglandinum*. Eur. J. Forest Pathol. 29: 317-322.
- Brady, S. F. and Clardy, J. 2000. CR377, a new pentaketide antifungal agent isolated from an endophytic fungus. <u>J. Nat. Prod</u>. 63: 1447-1448.
- Berny, P., Jaussaud, P., Durix, A., Ravel, C. and Bony, S. 1997. Rapid determination of the mycotoxin lolitrem B in endophyte-infected perennial ryegrass by high – performance thin-layer chromatography a validated assay. <u>Journal of</u> <u>Chromatography A</u> 769:343-348.
- Chanway, C.P. 1996. Endophytes: they're not just fungi. Can. J. Bot. 74: 321-322.
- Charlie, M.J. and Watkinson,S.C. 2001. <u>The Fungi: Fungi Diversity</u> . p.11 . London: Academic Press.

- Chen, G., Lin, Y., Wen, L., Vrijmoed, L.L.P. and Gareth Jones, E.B. 2003. Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the south china sea coast. <u>Tetrahedron</u> 59: 4907-4909.
- Cho, E. S., Won, Y. C., Lee, S. Y., Lee, B. Y., Shin., D. M. and Chung, Y. K. 2004.
 Syntheses, characterization, and olefin polymerizations of methylene-bridged
 1,3-dimethylcyclopentadienyl/indenyl and 1,3-dimethylcyclopentadienyl/
 tetrahydroindenyl zirconium complexws. Inorganica Chimica Acta. 357: 2301-2308.
- Christensen, M. J., Ball, O. J.-P., Bennett, R and Schardi, C. L. 1997. Fungi and host geno-ype effects on compatibility and vascular colonisation by *Epichloë festucae*. <u>Mycol. Res</u>. 101: 493-501.
- Christopher L.S. 2001. *Epichloë festucae* and related mutualistic symbionts of Grasses. <u>Fungal Genetics and Biology</u>. 33: 69-82.
- Collins, L. and Franzblau, S.G. 1997. Microplate Alamar Blue Assay versus BACTEC 460 system for high-throughput screening of compounds against *Mycobacterium tuberculosis* and *Mycobacterium avium*. <u>Antimicrobial Agents and Chemotherapy</u>. 41: 1004-1009.
- Desjardins, R.E., Canfield, C.J., Haynes, J.D. and Chulay, J.D. 1979. Quantitative assessment of antimalarial activity *in vitro* by a semiautomated microdilution technique. <u>Antimicrobial Agents and Chemotherapy</u>. 16: 710-718.
- Elamo, P., Helander, M.L., Salonniemi, I. and Neuvonen, S. 1999. Birch family and environmental conditions affect endophytic fungi in leaves. <u>Oecologia</u>. 118:151-156.
- Ellis, M.B. 1971. Dematiaceous hyphomycetes, p. 308. Surrey: CAB internaltional.
- Freeman,S., and Rodriguez, R.J. 1993. Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. <u>Science</u> 260:75.
- Ganer, G.B., Rottinghaus, G.E., Cornell, C.N. and Testereci, H. 1993. Chemistry of compounds associated with endophyte/grass interaction: ergovaline- and ergopeptine-related alkaloids. <u>Agriculture, Ecosystems and Enviroment</u> 44: 65-80.

- Gatenby, W.A., Munday-Finch, S.C., Wilkins, A.L. and Miles, C. O. 1999. TerpendoleM, a novel indole-diterpenoid isolated from *Lolium perenne* infected with the endophytic fungus *Neotyphodium Iolii*. J. Agric. Food Chem. 47: 1092-1097.
- Gulya, T. J. and Masirevic, S. Disease of sunflower (*Helianthus annuus* L.) and Jerusalem Artichoke (*H. tuberosus* L.). [Online]. The American Phytopathological Society. 1993. Available from: <u>http://www.scisoc.org/resource/common/names</u> /sunflower.htm [Accessed 2004 Dec 24].
- Guo, B., Dai, J. R., Ng, S., Huang, Y., Leong, C., Ong, W. and Karte, B.K. 2000a.
 Cytonicacids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus *Cytonaema* species. J. Nat. Prod. 63: 602-604.
- Guo, L. D., Hyde, K. D. and Liew, E. C. Y. 2000b. Identification of endophytic fungi from Livistoma chinensis based on morphology and rDNA sequences.
 <u>New Phytologist</u>. 147: 617-630.
- Guo, L. D., Hyde, K. D. and Liew, E. C. Y. 2001. Detection and taxonomic placement of endophytic fungi Guo, L. D., Hyde, K. D. and Liew, E. C. Y. 2000. within frond tissues of *Livistona chinensis* based on rDNA sequences. <u>Molecular</u> Phylogentics and Evolution. 20: 1-13.
- Harper, J.K., Arif, A.M., Ford, E.J., Strobe, G.A., Porco, J.A., Tomor, D.P., Oneill K.L.,
 Heider, E. M. and Grant, D. M. 2003. Pestacin: a 1,3-dihydro isobenzofuran from *Pestalotiopsis microspora* possesing antioxidant and antimycotic activities.
 <u>Tetrahedron</u> 59: 2471-2476.
- Hawksworth, D. L. 1993. <u>The Tropical Fungal Biota</u>. pp. 265-293. Cambridge University Press.
- Isaac, S. 1992. Fungal-plant interactions. London: Chapman & Hall.
- Isaka, M., Jaturapat, A., Rukseree, K., Danwisetkanjana, K., Tanticharoen, M. and Thebtaranonth, Y. 2001. Phomoxanthones A and B, novel xanthone dimmers from the endo-phytic fungus *Phomopsis* species. <u>J. Nat. Prod</u>. 64: 1015-1018.
- Ishimaru, T., Tsuboya, S., Shirafuji, H., Terashita, Z. and Kokai, T. K. 1992. Endothelin receptor antagonist containing compound TAN-1415 derivatives for treatment of myocardial infarction and renal insufficiency. <u>Chem. Abstr</u>. 117: 178329-178338.

- Jaih, H., Ja-on, P., Emilio, L. G., Sivasithamparam, K., Brian, W. S. and Allan, H. W. 2002. New Chlorinated Diphenyl Ethers from an *Aspergillus* Species. <u>J. Nat.</u> <u>Prod.</u> 65:7-10.
- Jayasuriya, H., Bills, G.F., Cascales, C., Zink, D.L., Goetz, M.A., Jenkins, R.G., Silverman, K.C., Lingham, R.B. and Singh, S.B. 1996. Oreganic acid: a potent novel inhibitor of ras farnesyl-protein transferase from an endophytic fungus.
 <u>Bioorganic and Medicinal Chemistry Letters</u> 6(17): 2081-2084.
- Jones, A. B. and Sutton, T. B. Fusicoccum canker, *Phomopsis amygdale* [online]. Kearneysville tree fruit research and education center, West verginia Uni; Available from: <u>http://www.caf.wvu.edu/kearneysville/disease_descriptions</u> /fusicom.html [Access 2004 Dec 24]
- Ju, Y., Sacalis, J.N. and Still, C.C. 1998. Bioactive flavonoids from endophyte infected blue Grass (*Poa ampla*). J. Agric. Food Chem. 46: 3785-3788.
- Katano, T., Goto, K, Murakami, E, Yamazaki, R., Uenoyama, T., Sugimoto, T. and
 Kawashima. 1985. New chlorinated diphenyl ethers from an *Aspergillus* species.
 <u>Chem Abstr</u>. 104: 49846-49852.
- Konig, G.M., Wright, A.D., Aust, H., Draeger, S. and Schulz, B. 1999. Geniculol, a new biologically active diterpene from the endophytic fungus *Geniculosporium* sp. <u>J. Nat. Prod.</u> 62: 155-157.
- Kongsaeree, P., Prabpai, S., Sriubolmass, N., Vongvein, C. and Wiyakrutta, S. 2003. Antimalarial dihydroisocoumarins produced by *Geotrichum* sp., an endophytic fungus of *Crassocephalum crepidiodes*. J. Nat. Prod. 66: 709-711.
- Krohn, K., Florde, U., John, M., Root, N., Steingrover, K., Aust, H., Draeger, S., Schulz, B., Antus, S., Simonyi, M. and Zsila, F. 2001. Biologically active metabolites from fungi. Part 16: New preussomerins J, K and L from and endophytic fungus: structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. <u>Tetrahedron</u> 57: 4343-4348.
- Lee, H. J., Lee, J. H., Hwang, B. Y., kim, H. S. and Lee, J. J. 2002. Fungal metabolites, asterric acid derivatives inhibit vascular endothelial growth factor (VEGF)induced tube formation of HUVECs. <u>Journal of Antibiotics</u>. 55: 552-556.

- Lee, J.C., Lobkovsky, E., Pliam, N. B., Strobel, G. and Clardy, J. 1995. Subglutinols A and B; immunosuppressive compounds from the endophytic fungus *Fusarium subglutinans*. J. Org. Chem. 60: 7076-7077.
- Lee, S. and Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single spores. In: Innis, M.A., Gelfand, D. H., Sninsky, J.J. and White, T.J., eds. <u>PCR Protocols:</u> <u>a guide to method and applications</u>, pp. 282-287. London: Academic Press.
- Li, J.Y., Harper, J.K., Grant, D.M., Tombe, B.O., Bashyal, B., Hess, W.M. and Strobel, G.A. 2001. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from *Pestalotiopsis* spp. and *Monochaetia* sp. <u>Phytochemistry.</u> 56: 463-468.
- Li, J., Sidhu, R.S., Bollon, A. and Strobel, G.A. 1998a. Stimulation of taxol production in liquid cultures of *Pestalotiopsis microspora*. <u>Mycol. Res.</u> 102(4): 461-464.
- Li, J., Sidhu, R.S., Ford, E.J., Long, D.M., Hess, W.M. and Strobel, G.A. 1998b. The induction of taxol production in the endophytic fungus *Periconia* sp. from *Torreya grandifolia*. Journal of Industrial Microbiology and Biotechnology 20: 259-264.
- Li, J.Y. and Strobel, G.A. 2001. Jesterone and hydroxy-jesterone antioomycetes cyclohexenone epoxides from the endophytic fungus *Pestalotiopsis jesteri*. <u>Phytochemistry</u> 57: 261-265.
- Li, J., Strobel, G., Sidhu, R. and Hess, W.M. 1996. Endophytic taxol-producing fungi from bald cypress, *Taxodium distichum*. <u>Microbiology</u> 142: 2223-2226.
- Lodge, D. J., Fisher, P. J. and Sutton, B.C. 1996. Endophytic fungi of *Manilkara bidentata* leaves in Puerto Rico. <u>Mycologia</u> 88: 733-738.
- Lu, H., Zou, W.X., Meag, J.C., Hu, J. and Tan, R.X. 2000. New bioactive metabolites produced by *Colletotrichum* sp., an endophytic fungus in *Artemisia annua*. <u>Plant</u> <u>Science</u> 151: 67-73.
- Lumyong, S., P. Lumyong, S. Pongsomboon and K. Hyde. <u>Endophytic fungi from</u>
 <u>Indigenous dicotyledonous plants at Doi Suthep-Pui area, Thailand.</u> p. 89.
 Abstract of the International Union of Pure and Applied Chemistry (IUPAC).
 International conference on biodiversity & bioresources-conservation & utilization.

- McManus, P. *Monilinia oxycocci* and *Phomopsis vaccinii*. [Online] University of Wisconsin-Madison. Available from: <u>http://www.plantpath.wisc.edu/fpath</u> /moniphom.htm. [Access 2004 Dec 24]
- Meinkoth, J. and Wahl G. 1988. Hybridization of nucleic acids immobilized on solid supports. <u>Anal. Biochem</u>. 138: 267-284.
- Metz, A.M., Haddad, A. and Worapong, J. 2000. Induction of the sexual stage of *Pestalotiopsis microspora*, a taxol-producing fungus. <u>Microbiology</u> 146: 2079-2089.
- Mitchell, J. I., Roberts, P. J. and Moss, S. T. 1995. Sequence or structure? A short review on the application of nucleic acid sequence information to fungal taxonomy. <u>Mycologist</u>. 9(2)
- Moore-Landecker, E. 1998. <u>Fundamental of the Fungi</u>, p. 511. Englewood Cliffs: Prentice Hall.
- Ohashi, H., Akiyama, H., Nishikori, K. and Mochizuki, J. 1992. Asterric acid, a new endothelin binding inhibitor. Journal of Antibiotics. 45(10): 1684-1685.
- Okane, I., Nakagiri, A. and Ito, T. 2001. Identify of *Guignardia* sp. inhabiting ericaceous plants. <u>Canadian Journal of Botany</u>. 79: 101-109.
- Petrini, O. 1991. Fungal endophytes of tree. In: Andrews, J.W., Hirano S.S. <u>Microbial</u> <u>Ecology of leaves</u>. P.179-197. New York : Springer-Verlag.
- Pinkerton, R. and Strobel, G. 1976. Serinol as an activator of toxin production in attenuated cultures of *H. sacchari*. <u>Proc. Natl. Acad. Sci. USA</u>. 73, 4007-4011.
- Plumb, J. A., Milroy, R. and Kaye, S. B. Effect of the pH Dependence of 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide-formazan Absorption on Chemosensitivity Determined by a Novel Tetrazolium-based Assay. <u>Cancer Res.</u> 49: 4435-4440.
- Polishook, J.D., Dombrowski, A.W., Tsou, N.N., Salituro, G.M. and Curotto, J.E. 1993. Preussomerin D from the endophyte *Hormonema dematioides*. <u>Mycologia</u> 85(1): 62-64.
- Pulici, M., Sugawara, F., Koshino, H., Uzawa, J. and Yoshida, S. 1996. Pestalotiopsis A and B: New caryphyllenes from an endophytic fungus of <u>Taxus brevifolia</u>. <u>J. Org.</u> <u>Chem</u>. 61: 2122-2124.

- Ratnayake, A.S., Yoshida, W.Y., Mooberry, S.L. and Hemscheidt, T. 2001. The structure of microcarpalid, a microfilament disrupting agent from an endophytic fungus. <u>Organic Letters</u> 3(22): 3479-3481.
- Ratnayake, A.S., Yoshida, W.Y., Mooberry, S.L. and Hemscheidt, T.K. 2001. Nomofungin: a new microfilament disrupting agent. <u>J. Org. Chem.</u> 66: 8717-8721.
- Rossman, A. Y. 1994. A strategy for an all-taxa inventory of fungi biodiversity. *In* C. –I. Peng and C. H. Chou (eds.) Biodiversity and terrestrial ecosystems. <u>Inst.</u> <u>Botany</u>. Acad. Sinica Monograph Series No. 14.
- Rowan, D.D. 1993. Loitrems, peramine and paxilline: mycotoxins of the ryegrass/ endophyte interaction. <u>Agriculture, Ecosystems and Environment</u> 44: 103-122.
- Saikkonen, K., Wali, P., Helander, M. and Stanley, H.F. 2004. Evolution of endophyteplant symbioses. <u>Trends in Plant Science</u>. 9: 275-280.
- Santos, R.M.G. and Rodrigues-Fo, E. 2002. Meroterpenes from *Penicillium* sp. found in association with *Melia azedarach*. <u>Phytochemistry</u> 61: 907-912.
- Schulz, B., Sucker, J., Aust, H.J., Krohn, K., Ludewig, K., Jones, P.G. and Doring, D. 1995. Biologically active secondary metabolites of endophytic *Pezicula* species. <u>Mycol. Res</u>. 99(8): 1007-1015.
- Scott, B. 2001 *Epichlo*ë endophytes: fungal symbionts of grasses. <u>Microbiology</u>. 4: 393-398.
- Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monk, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. <u>Cancer Res.</u> 48: 4827-4833.
- Sieber, T. N., Sieber-Canavesi, F., Petrini, O., Ekramoddoulah, A. K. M. and Dorworth, C.
 E.1991. Characterization of Canadian and European *Melanconium* from some *Alnus* species by morphological, culture, and biochemical studies. <u>Can. J. Bot.</u>
 69: 2170-2176.

- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S. and Boyd, M.R. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. <u>Journal of National Cancer Institute</u>. 82: 1107-1112.
- Smith, D., and Onions, A. H. S. 1990. <u>IMI Technical Handbooks No.2 The preservation</u> <u>and maintenance of living fungi</u>. 2nd ed. International Mycological Institute: CAB international.
- Solomon, G. and Fryhle, C. B. 2004. <u>Organic Chemistry</u>. 8th ed. New York: John Wiley & Sons Inc.
- Stermitz, F. R., Schroeder, H. A. and Geigert, I. 1973. Asterric acid from *Scytalidium*. <u>Phytochemistry</u>. 12 (1173).
- Stierle, A.A., Stierle, D.B. Bugni, T. 1999. Sequoiatones A and B: novel antitumor metabolites isolated from a redwood endophyte. J. Org. Chem. 64: 5479-5484.
- Stierle, A. and Strobel, G. 1995. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific Yew, *Taxus brevifolia*. Journal of Natural Products. 58(9): 1315-1324.
- Stierle, A., Strobel, G. and Stierle, D. 1993. Taxol and taxane production by *Taxomyces andreanae*, an endophytic fungus of Pacific Yew. <u>Science</u> 260: 214-216.
- Stinson, M., Ezra, D., Hess, W.M., Sears, J. and Strobel, G. 2003. An endophytic *Gliocladium* sp. of *Eucryphia cordifolia* producing selective volatile antimicrobial compounds. <u>Plant Science</u> 165: 913-922.
- Strobel, G. 2003. Endophytes as sources of bioactive products. <u>Microbes and</u> <u>Infection</u> 5: 535-544.
- Strobel, G., Ford, E., Worapong, J., Harper, J.K., Arif, A.M., Grant, D.M. and Chau, R.M.W. 2002. Isopestacin, an isobenzofuranone from *Pestalotiopsis microspora*, possessing antifungal and antioxidant activities. <u>Phytochemistry</u> 60: 179-183.
- Strobel, G., Hess, W.M., Baird, G., Ford, E., Li, J.Y. and Sidhu, R.S. 2001. *Stegolerium kukenani* gen. et sp. nov. an endophytic, taxol producing fungus from the Roraima and Kukenan tepuis of Venezuela. <u>Mycotaxon</u> LXXVIII: 353-361.

- Strobel, G., Hess, W.M., Li, J., Ford, E. and Sears, J. 1997. *Pestalotiopsis guepinii*, a taxol producing endophytic of the Wollemi Pine, *Wollemia nobilis*. <u>Aust.J. Bot.</u> 45: 1073-1082.
- Stroble, G. and Long, D.1998. Endophytic microbes embody pharmaceutical potential. <u>ASM News</u> 64 : 263-268.
- Strobel, G., Miller, R.V., Martinez-Miller, C., Condron, M.M., Teplow, D.B. and Hess,
 W.M. 1999. Cryptocandin, a potent antimycotic from the endophytic fungus *Cryptosporiopsis* cf. *quercina*. <u>Microbiology</u> 145: 1919-1926.
- Strobel, G. and Stierle, A. 1993. *Taxomyces andreanae*, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific Yew (*Taxus brevifolia*). <u>Mycotaxon</u> XLVII: 71-80.
- Strobel, G., Torczynski, R. and Bollon, A. 1997. *Acremonium* sp. a leucinostatin A producing endophyte of European yew (*Taxus baccata*). <u>Plant Science</u> 128: 97-108.
- Strobel, G., Yang, X., Sears, J. and Kramer, R. 1996. Taxol from *Pestalotiopsis microspora*, an endophytic fungus of *Taxus wallachiana*. <u>Microbiology</u> 142: 435-440.
- Sutton, B.C. 1980. <u>The Coelomycetes: Fungi imperfecti with Pycnidia, Acervuli and</u> <u>Stroma.</u> Surrey: Commonwealth Mycological Institute.
- Swofford, D.L. 2003. <u>Phylogenetic Analysis Using Parsimony (PAUP)</u>. Version 4. Sinauer Associates. Sunderland. MA.
- Tan, R.X. and Zou, W.X. 2001. Endophytes: a rich source of functional metabolites. <u>Natural Product Reports</u>. 18: 448-459.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. 1994. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. <u>Nucleic Acids Research</u>. 24: 4876-4882.
- Trager, W., Jensen, J. B. 1976. Human malaria parasites in continuous culture. <u>Science</u>. 193: 673-675.
- Turner, W. B. 1971. Fungal Metabolites. pp. 303-304. London: Academic Press.

- Vilgalys, R. and Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococus species. <u>J.</u> <u>Bacteriol</u>. 172: 4238-4246
- Wagenaar, M.M. and Clardy, J. 2001. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus *Phomopsis longicolla* isolated from an Endangered Mint. J. Nat. Prod. 64: 1006-1009.
- Wagenaar, M.M., Corwin, J., Strobel, G. and Clardy, J. 2000. Three new cytochalasins produced by an endophytic fungus in the Genus *Rhinocladiella*. <u>J. Nat. Prod.</u> 63: 1692-1695.
- Wang, J., Li, G., Lu, H., Zheng, Z., Huang, Y. and Su, W. 2000. Taxol from *Tubercularia* sp. strain TF5, an endophytic fungus of *Taxus mairei*. <u>FEMS Microbiology Letters</u> 193:249-253.
- Wang, C., Wu, J. and Mei, X. 2001. Enhancement of taxol production and excretion in *Taxus chinensis* cell culture by fungal elicitation and medium renewal. <u>Appl.</u> <u>Microbiol. Biotechnol.</u> 55: 404-410.
- Wang, J., Huang, Y., Fang, M., Zhang, Y., Zheng, Z., Zhao, Y. and Su, W. 2002.
 Brefeldin A, a cytotoxin produced by *Paecilomyces* sp. and *Aspergillus clavatus* isolated from *Taxus mairei* and *Torreya grandis*. <u>FEMS Immunology and Medical Microbiology</u> 34: 51-57.
- White, T. J., Bruns, T., Lee, S. and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA gene for phylogenetics. In:Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., eds. <u>PCR Protocols: a guide to method and applications</u>, pp. 315-322. London: Academic Press.
- Wilson, D. 1995. Endophyte-the Evolution of a Term, and Clarification of Its Use an definition. <u>Oikos</u> 73: 274-279
- Wiyakrutta, S., Sriubolmas, N., Panphut, W., Thongon, N., Danwisetkanjana, K., Ruangrungsi, N. and Meevootisom, V. 2004. Endophytic fungi with antimicrobial, anti-cancer and anti-malarial activities isolated from Thai medicine plants. J. of Microbiology and Biotechnology. 20: 265-272.

- Yang, X., Strobel, G., Stierle, A., Hess, W.M., Lee, J. and Clardy, J. 1994. A fungal endophyte-tree relationship: *Phoma* sp. in *Taxus wallachiana*. <u>Plant Science</u> 102:1-9.
- Yada, Y., Kimura, M., Morizaki, N. and Imokawa, G. 1995. Skin-lightening cosmetics containing diphenyl ethers. <u>Chem. Abstr</u>. 122: 169695-169702.
- Yue, Q., Miller, C.J., White, J.F. and Richardson, M.D. 2000. Isolation and characterization of fungal inhibitors from *Epichloe festucae*. <u>J. Agric. Food</u> <u>Chem.</u> 48: 4687-4692.
- Zou, W.X., Meng, J.C., Lu, H., Chen, G.X., Shi, G.X., Zhang, T.Y. and Tan, R.X. 2000.
 Metabolites of *Colletrichum gloeosporioides*, and endophytic fungus in *Artemisia mongolica*. J. Nat. Prod. 63: 1529-1530.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDICES

APPENDIX A

 Table A The chemical compounds, sources, biological activities of bioactive compounds of endophytic fungi.

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
1	Taxol	Taxomyces andreanae	Taxus brevifolia	Anticancer	Strobel <i>et al.</i> , 2003,
			100		Stierle and Strobel,1995,
					Stierle <i>et al.</i> , 1993,
			azan (Strobel and Stierle, 1993
		Stegolerium kukena <mark>n</mark> i	Stegolepis guianensis	Anticancer	Strobel <i>et al.</i> , 2001
		Aspergillus niger	Taxus chinensis	Anticancer	Wang <i>et al.</i> , 2001
		Tubercularia sp.	Taxus mairei	Anticancer	Strobel <i>et al.</i> , 2003,
		9	2		Wang <i>et al.</i> , 2000
		Pestalotiopsis microspora	Taxus wallachina	Anticancer	Strobel <i>et al.</i> , 2003,
					Metz <i>et al.</i> , 2000,
		e e	A		Li <i>et al</i> ., 1998,
		ลถาบนว	ทยบรการ		Strobel <i>et al</i> ., 1996
			Taxodium distichum	Anticancer	Li <i>et al.</i> ,1996
		<i>Periconia</i> sp.	Torreya grandifolia	Anticancer	Li <i>et al.</i> , 1998
		Pestalotiopsis guepinii	Wollemia nobilis	Anticancer	Strobel <i>et al.</i> , 1997

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
2	1,3,5,7 cyclooctatetraene	Gliocladium sp.	Eucryphia cordifolia	Antimicrobial	Stinson <i>et al.</i> , 2003
	or [8]annulene				
3	Lactone 1893 A	Endophytic fungus No. 1893	Kandelia candel	Cytotoxic	Chen <i>et al.</i> , 2003
4	Lactone 1893 B		CT A		
5	Pestacin	Pestalotiopsis microspora	Rainforest	Antioxidant and	Harper <i>et al.</i> , 2003
				antimycotic	
6	7-Butyl-6,8-dihydroxy-	Geotrichum sp.	Crassocephalum	Antimalarial,	Kongsaeree <i>et al</i> ., 2003
	3(<i>R</i>)-pent-11-		crepidioides	antituberculous and	
	enylisochroman-1-one	0	C Carriero C	antifungal	
7	7-Butyl-15-enyl-6,8-		1		
	dihydroxy-3(R)-pent-11-				
	enylisochroman-1-one	0/			
8	7-Butyl-6,8-dihydroxy-	สถาบับก็	โทยบริการ	5	
	3(R)-pentylisochroman-1-				
	one	ฉพาลงกรถ	แมหาวิทย	าลัย	

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
9	Brefeldin A	Paecilomyces sp. and	Taxus mairei and	Cytotoxic	Wang <i>et al.</i> , 2002
		Aspergillus clavatus	Torreya grandis		
10	Isopestacin	Pestalotiopsis microspora	Terminalia morobensis	Antifungal and	Strobel <i>et al.</i> , 2002
			101	antioxidant	
11	Preaustinoid A	Penicillium sp.	Melia azedarach	Bacteriostatic	Santos and Rodrigues-Fo,
12	Preaustinoid B	3.4			2002
13	Alkaloid verruculogen		S/24/3/A		
14	Ambuic acid	Pestalotiopsis spp.,	Rainforests	Antifungal	Li <i>et al.</i> , 2001
		Monochaetia sp.	A CHART		
15	Jesterone	Pestalotiopsis jesteri	Fragraea bodenii	Antioomycete	Li <i>et al.</i> , 2001
16	hydrosy-jesterone				
17	Preussomerin G	Mycelia sterile	Atropa belladonna	Antibacterial,	Krohn <i>et al.</i> , 2001
18	Preussomerin H	สถาบับก็	พยบริการ	antifungal and	
19	Preussomerin I			antialgal	

จุฬาลงกรณ์มหาวิทยาลัย

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
20	Preussomerin J	Mycelia sterile	Atropa belladonna	Antibacterial,	Krohn <i>et al.</i> , 2001
21	Preussomerin K			antifungal and	
22	Preussomerin L		a log of	antialgal	
23	Dicerandrol A	Phomopsis longicolla	Dicerandra frutescens	Antibiotic and	Wagenaar and Clardy,
24	Dicerandrol B		12222	cytotoxic	2001
25	Dicerandrol C	34	CLOWER A		
26	Microcarpalide	Unidentified endophytic	Ficus microcarpa	Microfilament	Ratnayake <i>et al</i> ., 2001
		fungus	The second s	disrupting agent	
27	Nomofungin	Unidentified endophytic	Ficus microcarpa L.	Microfilament	Ratnayake <i>et al.</i> , 2001
		fungus	3	disruptin agent and	
				cytotoxic	
28	Isoprenylindole-3-	Collectotrichum sp.	Artemisia annua	Antibacterial and	Lu <i>et al.</i> , 2000
	carboxylic acid	สถาบน	โทยบริกา	antifungal	

จุฬาลงกรณ์มหาวิทยาลัย

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
29	3beta,5alpha-Dihydroxy-	Collectotrichum sp.	Artemisia annua	Antibacterial and	Lu <i>et al.</i> , 2000
	6beta-acetoxy-ergosta-			antifungal	
	7,22-diene		2 <u>5 6 0</u>		
30	3beta,5alpha-Dihydroxy-	3			
	6beta-phyenylacetyloxy-				
	ergosta-7,22-diene		2/2/2/		
31	Indole-3-acetic acid (IAA)	Epichloe/Neotyphodium spp.	Grasses	Antifungal	Yue <i>et al.</i> , 2000
32	Indole-3-ethanol (IEtOH)	1993 - A. B. B.	AN YING STATE		
33	Methylindole-3-				
	carboxylate				
34	Indole-3-carboxaldehyde				
35	Diacetamide	U .			
36	Cyclonerodiol	ุ ลถาบน	เทยบรกา	5	
37	Colletotric acid	Colletotrichum	Artemisia mongolica	Antimicrobial	Zou <i>et al.</i> , 2000
		gloeosporioides	นมหาวทย	าลย	
L	1	9	1	1	1

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
38	CR377, pentaketide	Fusarium sp.	Selaginella pallescens	Antifungal	Brady and Clardy, 2000
39	Cytochalasin 1	Rhinocladiella sp.	Tripterygium wilfordii	Cytotoxic	Wagenaar <i>et al</i> ., 2000
40	Cytochalasin 2				
41	Cytochalasin 3				
42	Cytochalasin E				
43	Cryptocandin	Cryptosporiopsis cf. quercina	Tripterigeum wilfordii	Antimycotic	Strobel <i>et al.</i> , 1999
44	Geniculol	Geniculosporium sp.	Teucrium scorodania	Antialgal	Konig <i>et al.</i> , 1999
45	Cytochalasin F				
46	Sequoiatone A	Aspergillus parasiticus	Sequoia sempervirens	Antitumor	Stierle <i>et al.</i> , 1999
47	Sequoiatone B	0			
48	Terpendole M	Neotyphodium Iolii	Lolium perenne	neurotoxins	Gatenby <i>et al.</i> , 1999
49	Tricin (1)	Neotyphodium typhnium	Poa ampla	Insecticidal	Ju <i>et al.</i> , 1998
50	7-O-(B-D-glucopyranosyl)	e .			
	tricin	ลลาบน	เทยบรกา	5	
51	Isoorientin (3)		۳		

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
52	7- Ο -[α -L-	Neotyphodium typhn <mark>ium</mark>	Poa ampla	Insecticidal	Ju <i>et al.</i> , 1998
	Rhamnopyranosyl(1-6)- eta -				
	D-glucopy-ranosyl]tricin				
53	Lolitrem B	Acremonium Iolii	Lolium perenne	Neurotoxic	Berny <i>et al.</i> , 1997
54	Leucinostatin A	Acremoium sp.	Taxus baccata	Antifungal and	Strobel <i>et al</i> ., 1997
			shenh (anticacer	
55	Oreganic acid (1)	Endophytic fungus (MF 6046)	Berberis oregana	Anticancer	Jayasuriya <i>et al.</i> , 1996
56	Trimethyester (2)		Calcava da		
57	Desulfated analog (3)		118 21 1 11 2 3		
58	Desulfated analog (4)	0			
59	Pestalotiopsin A	Pestalotiopsis sp.	Taxus brevifolia	-	Pulici <i>et al</i> ., 1996
60	Pestalotiopsin B				
61	(R)-mellein	Pezicula sp.	Deciduous and	Fungicidal,	Schulz <i>et al.</i> , 1995
62	(-)-mycorrhizin A	สถาบบ่	coniferous trees	herbicidal, algicidal	
				and antibacterial	

จุฬาลงกรณมหาวทยาลย

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
63	2-methoxy-4-hydroxy-6-	Pezicula sp.	Deciduous and	Fungicidal,	Schulz <i>et al.</i> , 1995
	methoxymethyl-		coniferous trees	herbicidal, algicidal	
	benzaldehyde			and antibacterial	
64	(+)-cryptosporiopsin		a e		
65	4-epi-ethiosolide				
66	Altersolanol A	Phoma sp.	Taxus wallachiana	Antibacterial	Yang <i>et al.</i> , 1994
67	2-hydroxy-6-	3.4	Comp 4		
	methylbenzoic acid		12.2.2		
68	Preussomerin D	Hormonema dematioides	Conifer wood	Antifungal	Polishook <i>et al.</i> , 1993
69	Lolitrem C	Acremonium Iolii	Lolium perenne	Neurotoxic and	Rowan <i>et al.</i> , 1993
70	Peramine R=H	Sec.		insect antifeedant	
71	Diacetylperamine R=Ac				
72	Paxilline	0.7			
73	Loline alkaloid	สถาบับก็	พยบริการ	- 1	
74	Ergovaline	ыргар		j 0.7	
		241224252	ໂດເພດກົດກາ	226	

ฬาลงกรณมหาวทยาลย

No.	Compounds	Endophytic fungi	Host plants	Biological activities	References
75	Lysergic acid	Acremonium coenophialun	Festuca arundinacea	Toxin	Garner <i>et al</i> ., 1993
76	Isolysergic acid				
77	Pospalic acid				
78	Lysergol				
79	Lysergic acid amide				
80	Lysergic acid diethyl-	1.1	Comp A		
	amide	R	22.20		
81	Lycergic acid-2-	0.000	SCHOOLS .		
	propanolamide or	are the	NY/MASS-		
	(Ergonovine)		5		

[2] 1,3,5,7 cyclooctatetraene or (8)-annulene

Figure A Structure of bioactive compounds of endophytic fungi of listed in Table A.

[6] 7-Butyl-6,8-dihydroxy-3(R)-pent-11-enylisochroman-1-one

[7] 7-Butyl-15-enyl-6, 8-dihydroxy-3(R)-pent-11-enylisochroman-1-one

[8] 7-Butyl-6, 8-dihydroxy-3(R)-pentylisochroman-1-one

Dihydroisocumarins [6-8]

Figure A (continued)

Figure A (continued)

Figure A (continued)

[20] Preussomerin J

[21] Preussomerin K

[22] Preussomerin L

[29] 3beta,5alpha-Dihydroxy-6beta-acetoxy-ergosta-7,22-diene, R=COCH₃

[30] 3beta,5alpha-Dihydroxy-6beta-phyenylacetyloxy-ergosta-7,22-diene, $\mathsf{R}=\mathsf{COCH}_2\mathsf{C}_6\mathsf{H}_5$

Figure A (continued)

CH₂CH₂OH N

[31] Indole-3-acetic acid (IAA)

[32] Indole-3-ethanol (IEtOH)

[33] Methylindole-3-carboxylate

[34] Indole-3-carboxaldehyde

[35] Diacetamide

[36] Cyclonerodiol

[37] Colletotric acid

[41] Cytochalasin 3

[54] Leucinostatin A

OCH₃ HOH C

[59] Pestalotiopsin A

ò С ö

[61] (R)-mellein

[62] (-)-mycorrhizin A

[60] Pestalotiopsin B

[63] 2-methoxy-4-hydroxy-6-methoxymethyl-benzaldehyde

[68] Preussomerin D

R₂= H, HCO, Ac

Ergovaline R_1 =Me, R_2 =i-Pr

Figure A (continued)

[81] Lysergic acid-2-propanolamide (Ergonovine)

Figure A (continued)

APPENDIX B

1. Media

1.1 Yeast Extract Sucrose Agar (YEA)	
Yeast extract	20 g
Sucrose	150 g
Distilled water up to	1 L
Composition of Yeast Extract Sucrose (YES) is similar to YEA bu	ıt not
supplemented with agar.	

1.2 Malt Czapek Broth (MCz)	
Czapek stock solution A	50 ml
Czapek stock solution B	50 ml
Sucrose	30 g
Malt Extract	40 g
Distilled water up to	1 L
Czapek stock solution A	
NaNO ₃	4.0 g
KCL	1.0 g
MgSO ₄ .7H ₂ O	1.0 g
FeSO ₄ .7H ₂ O	0.02 g
Dissolved in distilled water up to	100 ml
Keep in a refrigerator.	
Czapek stock solution B	
K ₂ HPO ₄	2.0 g
A solution	1.0 g
B solution	1.0 g

Dissolved in distilled water up to	100 ml
Keep in a refrigerator	

A solution			
ZnSO ₄ .7H ₂ O	1.0 g		
Dissolved in distilled water up to	100 ml		
B solution			
CuSO ₄ .5H ₂ O	1.0 g		
Dissolved in distilled water up to	100 ml		
1.3 Sabouraud's Dextrose Agar (SDA)			
Dextrose	40 g		
Neopeptone	10 g		
Distilled water up to	1 L		

Composition of Sabouraud's Dextrose Broth (SDB) is similar to SDA but not supplemented with agar.

1.4 Potato Dextrose Agar (PDA)	
Potato	200 g
Dextrose	20 g
Distilled water up to	1 L
Composition of Potato Dextrose Agar (PDB) is similar to PDA bu	ıt not
supplemented with agar.	

I.5 Yeast Czapek Broth (Ycz)	
Czapek solution agar	49.0 g
Yeast extract	4.9 g
Distilled water up to	1 L

1.6 Malt Extract Sucrose Broth (MES)

Yeast extract	20 g
Sucrose	200 g
Distilled water up to	1 L

1.7 Malt Extract Agar (MEA)

Malt extract	20.0 g
Peptone	1.0 g
Glucose	20.0 g
Distilled water up to	1 L

Composition of Malt Extract Agar (MEB) is similar to MEA but not supplemented with agar.

Ca(NO ₃) ₂	1.2 mM
KNO ₃	0.79 mM
KCI	0.87 mM
MgSO ₄	3.0 mM
NaH ₂ PO ₄ .H ₂ O	0.007mM
FeCl ₃	0.0074 mM
MnSO ₄	0.03 mM
ZnSO ₄ .H ₂ O	0.0087 mM
H ₃ BO ₃	0.0022 mM
KINASALSISAAS	0.0045 mM
Sucrose	87.6 mM
Ammonium Tartrate	27.1 mM
Yeast Extract	0.5 g
Soytone	1.0 g
Distilled water up to	1 L
pH = 5.5 with 1 N HCl	

1.8 MID Medium (Pinkerton and Strobel, 1976)

1.9 Water Agar	
Agar	15 g
Distilled water up to	1 L
1.10 Corn Meal Agar	
Corn meal	30 g
Agar	15 g
Distilled water up to	1 L

2. Reagent and buffer for DNA amplification by PCR.

2.1 Lysis buffer		
Tris-HCI (pH 7.2)	50 mM	
EDTA	50 mM	
SDS	3%	
2-mercaptoethanol	1%	
2.2 Chlorofrom : TE-saturated phenol	1:1,v/v	
2.3 TE for resuspending pellet		
Tris-HCI	10 mM	
EDTA	0.1 mM	
2.4 Gel loading buffer		
Bromophenol blue	0.25%	
Sucrose in water	40% (w/v)	
Store temperature at 4 [°] C		

2.5 5-X Tris-Borate-EDTA (TBE)

Tris base	54 g
Boric acid	27.5 g
0.5 M EDTA pH 8.0	20 ml

The working solution was 1X TBE, diluted with four volume of distilled water.

6.6 10X Buffer

Tris HCl pH 9.0	100 ml
KCL	500 mM
Triton X-100	1%

6.7 2mM dNTP (dATP, dCTP, dGTP, dTTP mix)

dATP	100 mM
dCTP	100 mM
dGTP	100 mM
dTTP	100 mM

Mixed equal volume of each dNTP to get 25 mM dNTP, then dilute to 2 mM

dNTP with sterile double distilled water.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX C

Figure C1 The 400 MHz ¹H-NMR (in CDCl₃) spectrum of crude extract L20B of endophytic fungus isolate LRUB 20

Figure C2 The 400 MHz 1 H-NMR (in CDCl₃) spectrum of mycelia extract L20C of endophytic fungus isolate LRUB 20

Figure C3 The 400 MHz ¹H-NMR (in CDCl₃) spectrum of crude extract U5B of endophytic fungus isolate USIA 5

Figure C4 The 400 MHz 1 H-NMR (in CDCl₃) spectrum of mycelia extract U5C of endophytic fungus isolate USIA 5

Figure C5 The ESI-TOF spectrum of compound L20B7

Figure C6 The UV spectrum of compound L20B7 in methanol

Figure C7 The IR spectrum of compound L20B7

Figure C8 The 500 MHz ¹H-NMR (in acetone–*d*6) spectrum of compound L20B7

Figure C9 Expansion 500 MHz ¹H-NMR (in acetone – d6) spectrum of compound L20B7 (δ = 0-2.4 ppm)

Figure C10 Expansion 500 MHz ¹H-NMR (in acetone – *d*6) spectrum of compound L20B7 (δ = 3.5-4.0 ppm)

Figure C11 Expansion 500 MHz ¹H-NMR (in acetone – *d*6) spectrum of compound L20B7 (δ = 5.7-7.2 ppm)

Figure C12 The 125 MHz ¹³C-NMR spectrum of compound L20B7

Figure C13 The DEPT 135 spectrum of compound L20B7

Figure C14 The HMQC spectrum of compound L20B7

Figure C15 The HMBC spectrum of compound L20B7

Figure C16 The HMBC spectrum of compound L20B7 (partial expanded: δ H 0-2.7 ppm, δ C 0-40 ppm)

Figure C17 The HMBC spectrum of compound L20B7 (partial expanded: δ H 3.2-4.4 ppm, δ C 45-64 ppm)

Figure C18 The HMBC spectrum of compound L20B7 (partial expanded: δ H 5.6-7.4 ppm, δ C 94-118 ppm)

Figure C19 The HMBC spectrum of compound L20B7 (partial expanded: δ H 5.6-7.4 ppm, δ C 142-170 ppm)

Figure C20 Expansion ¹H-¹H COSY spectrum of compound L20B7

Figure C21 The ESI-TOF spectrum of compound L20B5(34)5

Figure C22 The UV spectrum of compound L20B5(34)5 in methanol

Figure C23 The IR spectrum of compound L20B5(34)5

Figure C24 The 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B5(34)5

Figure C25 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B5(34)5 (δ H = 2.0-2.7 ppm)

Figure C26 The 125 MHz ¹³C-NMR spectrum of compound L20B5(34)5

Figure C27 The DEPT 135 spectrum of compound L20B5(34)5

Figure C28 The HMQC spectrum of compound L20B5(34)5

Figure C29 The HMBC spectrum of compound L20B5(34)5

Figure C30 Expansion ¹H-¹H COSY spectrum of compound L20B5(34)5

Figure C31 The ESI-TOF spectrum of compound L20B5(34)5R3

Figure C32 The UV spectrum of compound L20B5(34)5R3 in methanol

Figure C33 The 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B5(34)5R3

Figure C34 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B5(34)5R3 (δ H = 1.0-2.8 ppm)

Figure C35 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B5(34)5R3 (δ H = 3.4-6.0 ppm)

Figure C36 Expansion 500 MHz <code>'H-NMR</code> (in CDCl₃) spectrum of compound L20B5(34)5R3 (δ H = 7.6-9.2 ppm)

Figure C37 The 125 MHz ¹³C-NMR spectrum of compound L20B5(34)5R3

Figure C38 The DEPT 135 spectrum of compound L20B5(34)5R3

Figure C40 The HMBC spectrum of compound L20B5(34)5R3

ż

ppm

Figure C41 Expansion ¹H-¹H COSY spectrum of compound L20B5(34)5R3 (δ H = 0-7.0 ppm)

Figure C42 Expansion 1 H- 1 H COSY spectrum of compound L20B5(34)5R3 (δ H = 7.0-12.0 ppm)

Figure C43 The ESI-TOF spectrum of compound L20B464R2

Figure C44 The UV spectrum of compound L20B464R2 in methanol

Figure C45 The IR spectrum of compound L20B464R2

Figure C46 The 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B464R2

Figure C47 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B464R2 (δ H = 0-3.0 ppm)

Figure C48 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B464R2 (δ H = 3.6-6.2 ppm)

Figure C49 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound L20B464R2 (δ H = 7.6-9.4 ppm)

Figure C50 The 125 MHz ¹³C-NMR spectrum of compound L20B464R2

Figure C51 The DEPT 135 spectrum of compound L20B464R2

Figure C52 The HMQC spectrum of compound L20B464R2

Figure C53 The HMBC spectrum of compound L20B464R2

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure C54 Expansion HMBC spectrum of compound L20B464R2 (δ H=0-6.5 ppm, δ C=100-180 ppm)

Figure C55 Expansion ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of compound L20B464R2 (δ H=0-7.0 ppm)

Figure C56 Expansion ¹H-¹H COSY spectrum of compound L20B464R2 (δ H=7.0-9.6 ppm)

Figure C57 The ESI-TOF spectrum of compound U5B4-6

Figure C58 The UV spectrum of compound U5B4-6 in methanol

Figure C59 The IR spectrum of compound U5B4-6

Figure C60 The 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound U5B4-6

Figure C61 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound U5B4-6 (δ H = 2.7-3.4 ppm)

Figure C62 Expansion 500 MHz ¹H-NMR (in CDCl₃) spectrum of compound U5B4-6 (δ H = 4.4-5.0 ppm)

Figure C63 The 125 MHz ¹³C-NMR spectrum of compound U5B4-6

Figure C64 The DEPT 135 spectrum of compound U5B4-6

Figure C65 The HMQC spectrum of compound U5B4-6

Figure C66 The HMBC spectrum of compound U5B4-6

Figure C67 The ¹H-¹H COSY spectrum of compound U5B4-6

Figure C68 The 400 MHz ¹H-NMR (in CDCl₃) spectrum of 3-nitropropionic acid from Sigma

APPENDIX D

		···· ··· 10	···· ···) 20	···· ····) 30	···· ···) 40	···· ···· 50
1C.	. allantoidiopsis	TTGGAACGCG	CTCCGC	ACCTCCAGAC	AACCC-TTTG	TGAACTTATA
USI	EA 5	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	amygdali	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCCATTTG	TGAACTTATA
P.	quercina	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	magnoliae	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	vaccinii	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	junipervora	TTGGAACGCG	CCCCAGGGGC	ACCCA-A-	AACCC-TTTG	TGAACTGATA
D.	vaccinii	CTGGAA-GCC	CCCCAGAAGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	asparagi	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
D.	caulivola	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	bougainvilleicola	aCTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	liquidambari	CTGGAACGCG	CCCTAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	phyllanthicola	CTGGAACGCG	CCCTAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	averrhoae	CTGGAACGCG	CCCTAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
D.	phaseolorum	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
D.	meridionalis	CTGGAACGCG	CCCCAGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTCATA
D.	angelicae	CTGGAACGCG	CC-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
D.	arctii	CTGGAACGCG	CC-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	chimonanthi	CTGGAACGCG	CT-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	micheliae	CTGGAACGCG	CT-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
D.	helianthi	CTGGAACGCG	CT-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
Ρ.	columnaris	CTGGAACGCG	CT-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
P.	glabrae	CTGGAACGCG	CT-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
Ρ.	vexans	CTGGAACGCG	CC-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
Ρ.	sclerotioides	CTGGAACGCG	CT-TCGGCGC	ACCCAGA-	AACCC-TTTG	TGAACTTATA
		···· ··· 60	····· ····)7(···· ····)	···· ····)	
1C .	. allantoidiopsis	CCTATACTGT) 7(TGCCTCGGCG) 80 TC-GGCTGGC	 9(CCCCCTCGG-) 100 -GGGGTCCC-
1C USI	. allantoidiopsis IA 5	CCTATACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG	 80 TC-GGCTGGC -CAGGCTGGT	 9(CCCCCTCGG- CCTCC	-GGGGTCCC- -GGGGCCCC-
1C . USI P.	. allantoidiopsis IA 5 amygdaliae	CCTATACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CAGGCTGGT	 9(CCCCCTCGG- CCTCC CCTTC	
1C USI P. P.	. allantoidiopsis IA 5 amygdaliae quercina	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT	 9(CCCCCTCGG- CCTTC CCTTC CCTTC	
1C USI P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC	
1C USI P. P. P.	allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGG-	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CCTTC	
1C USI P. P. P. P.	allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CCTTC CCTTC	
1C . USI P. P. P. P. D.	allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TATCGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CCTTC CCTTC CCTTC	
1C US P. P. P. P. D. P.	allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi azuliuolo	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CC-CCCTC CCTTC CCTCC CCTCC	
1C US P. P. P. D. P. D.	allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CCCCTC CCTTC CCCCTC CCTCC CCTCC CCCCTT-GG-	
1C US P. P. P. P. D. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola	CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGG- -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT	 9(CCCCCTCGG- CCTCC CC-TTC CC-TTC CCCCTC CC-TTC CCCCTC CC-CCCTC CCCCTT-GG- CTCT-AGT	
1C US P. P. P. D. P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola	CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGC	 9(CCCCCTCGG- CCTCC CC-TTC CC-TTC CCCCTC CC-TTC CCCCTC CCCCTC CCCCTT-GG- CTCT-AGT CCCCCTC	
1C. US: P. P. P. P. D. P. P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGC -CATGCTGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC -CCCCTC CCTTC CCTCC CCTCC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT CCCCTT	
1С. USI P. P. P. D. P. P. P. P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum	CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT -CATGCTGGT -CATGCTGGT -CATGCTGGT -CATGCTGGT	CCCCCTC CCTTC CCTTC CCTTC CCTTC CCTTC CCTTC CCTCC CCTCC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT CTCT-AGT	
1C US P. P. P. D. P. P. P. D. P. D.	allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT -CATGCTGGT T-ACGCTGG- -CAGGCCGGC	CCCCCTC CCTTC CCTTC CCTTC CCTTC CCTTC CCTTC CCTCC CCTCC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT CCCCTT-AGT -CCCCT-AG-	
1C US P. P. P. P. P. P. P. P. P. P. D. D.	allantoidiopsis A 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGG- -CAGGCCGGC -CAGGCCGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC CCCCTC CCTCC CCCCTT-GG- CCCCTT-GG- CCCCTT-AGT CCCCCTC CCCCTT-AGT -CCCCT-AG- CCCCCT-AG- CCCCCC-AG- CCCCCC-AG-	
1C. US: P. P. P. P. P. P. P. P. P. D. D. D. D.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT T-ACGCTGGT T-ACGCTGGT -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC CCTTC CCCCTC CCCCTC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT CCCCTT-AGT -CCCCT-AG- CCCCCC-AG- CCTTTCTCGGT CCCCCCAGT	 100 -GGGGTCCC- -GGGGCCCC- -GGGGCCCC- -GGGGCCCC- -GGGGCCCC- -GGGGCCCCC- -GGGGCCCCC- -GGGGCCCCC AGGCCCC- -GGGGTCCCC- -GGGGTCCCC- -GGGGCCCCC- AGG-CCCCC- -GGGGCCCCC- AGG-CCCCC- -GGGGCCCCC- AAAGGCCCCC AGGGCCCCC
1C. US: P. P. P. P. P. P. P. P. D. D. D. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCTATACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGGT T-ACGCTGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC -CCCCTC CCTCC CCTCC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT CTCT-AGT -CCCCT-AG- CCCCCC-AG- CTTTCTCGGT CCCTCTCGTT CCCCTCCGTT	
1C. US: P. P. P. D. P. P. P. D. D. D. D. D. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCT-ATTGT CCT-ATTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGGT T-ACGCTGGC -CAGGCCGGC -CAGGCCGGC TCAGGCCGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC CCTTC CCCCTC CCTCC CCCCTT-GG- CTCT-AGT CCCCTT CCCCTT CTCT-AGT -CCCCT-AG- CCCCCC-AG- CTTTCTCGGT CCCTCTCGTT CTC-TTCACT	
1C. US P. P. P. D. P. P. D. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCCAAACTGT CCC-ATTGT CCC-ACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGG- -CATGCTGGC -CATGCTGGC -CAGGCCGGC -CAGGCCGGC TCAGGCCGGC -CAGGCCGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC -CCCCTC CCTCC CCTCC CCTCC CCCCTT-GG- CTCT-AGT CCCCCTC CTCT-AGT -CCCCT-AG- CCCCCC-AG- CTTTCTCGGT CCCTCTCGTT CTC-TTCACT CTC-TTCACT	
1C. US: P. P. P. D. P. P. D. P. D. D. D. D. P. P. D. D. D. P. P. D. P. P. P. P. P. P. P. P. P. P. P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris	CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCCAAACTGT CCT-ATTGT CCC-ACTGT CCC-ACTGT	TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGGT T-ACGCTGGC -CAGGCCGGC CAGGCCGGC TCAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC	 9(CCCCCTCGG- CCTTC CCTTC CCTTC CCTTC CCTCC CCTCC CCCCTC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT-AGT -CCCCT-AG- CCCCCC-AG- CTTTCTCGGT CCCCCC-AG- CTTTCTCGTT CTC-TTCACT CTC-TTCACT CTC-TTCACT	
1C. US: P. P. P. D. P. P. D. P. D. D. D. P. P. D. P. P. P. P. P. P. P. P. P. P. P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACCGT CCT-TACCGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT CCTATACTGT CCT-ATTGT CCC-ACTGT CCC-ACTGT CCT-TACTGT CCC-ACTGT	70 TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGGT T-ACGCTGGC -CAGGCCGGC CAGGCCGGC TCAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CCTTC CCCCTC CCCCTC CCCCTT-GG- CCCCTT-GG- CCCCTT-AGT CCCCCTC CCCCTT-AGT -CCCCT-AG- CCCCCT-AG- CCCCCT-AG- CCCCCC-AG- CTTTCTCGGT CCCCTCCGTT CTC-TTCACT CTC-TTCACT CTC-TTCACT CTC-TTCACT	
1C. US P. P. P. D. P. P. D. P. D. D. P. P. D. P. P. D. P. P. P. P. P. P. P. P. P. P. P. P. P.	. allantoidiopsis IA 5 amygdaliae quercina magnoliae vaccinii juniperivora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae vexans	CCTATACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCTATACTGT CCTATACTGT CCT-ATTGT CCT-ATTGT CCT-ACTGT CCT-ACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT CCT-TACTGT	70 TGCCTCGGCG 70 TGCCTCGGCG TGCCTCGGCG	TC-GGCTGGC -CAGGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CTAGCTGGT -CAGGCCGGC -CATGCTGGT -CATGCTGGT T-ACGCTGGT -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC -CAGGCCGGC	CCCCCTCGG- CCTCC CCTTC CCTTC CCTTC CCTCC CCTCC CCCCTC CCCCTT-GG- CTCT-AGT CCCCCTC CCCCTT CCCCTT-AGT -CCCCT-AG- CCCCCT-AG- CCCCCC-AG- CTTTCTCGGT CCCCCCC-AG- CTTTCTCGGT CTC-TTCACT CTC-TTCACT CTC-TTCACT CTC-TTCACT CTC-CTCACC CTC-CTCACC CTCCCTGGC	

Figure D1 Alignment data of complete ITS1-5.8S-ITS2 sequences of isolate USIA 5 and 23

refernce taxa from GenBank (1C=Cytospora)

10 allantoidionsis		CGGT	GAGG		
USIA 5	TCACCCGCCA	C-GGGTGTT-	GAGACAG	CCCG	CCGGCGGCCA
P. amvqdali	TCACCCTC	GGGTGTT-	GAGACAG	CCCG	CCGGCGGCCA
P. quercina	TCACCCTC	GGGTGTT-	GAGATAG	CCCG	CCGGCGGCCA
P. magnoliae	TCACCCTC	GGGTGTT-	G	AGACAGCCCG	CCGGCGGCCA
P. vaccinii	TCACCCTC	GGGTGTT-	GAGACGG	CCCG	CCGGCGGCCA
P. junipervora	TCACCCTC	GGGTGTT-	GAGACAG	CCCG	CCGGCGGCCA
D. vaccinii	TCACCCTCG-	GGT-T	GAGACGG	CCCG	CCGGCGGCCA
P. asparaqi	TCACC-TCGC	CAGGGTGTC-	GG	AGAGAGCACG	CCGGCGGCCA
D. caulivola		CG	GAGAC-GGGG	AGCAG-CCCG	CCGGCGGCCA
P. bougainvilleicola	aTCACCC	CGGTG-AG	GAGACGG	CACG	CCGGCGGCCA
P. liquidambari	T	G	GAGACAG-GG	AGCAGGCACG	CCGGCGGCCA
P. phyllanthicola	Т	G	GAGACAG-GG	AGCAGGCACG	CCGGCGGCCA
<i>P. averrhoae</i>	TCACTC	CGGTG-AG	GAGA	AGGCACG	CCGGCGGCCA
D. phaseolorum	TCACTC	CGGT	GAGG	AGCAGGCGCG	CCGGCGGCCA
D. meridionalis	TC	G	GAAAC-GAGG	AGCAGGCCCG	CCGGCGGCCA
D. angelicae	T	G	GAGACAG-GG	AGCAG-CCCG	CCGGCGGCCA
D. arctii	T	G	GAGACAG-GG	AGCAG-CCCG	CCGGCGGCCG
P. chimonanthi	-C	G	GAGAC-GGGG	AGCAG-CCCG	CCGGCGGCCA
P. micheliae	-C	G	GAGAC-GGGG	AGCAG-CCCG	CCGGCGGCCA
D. helianthi	T	G	GAAACAG-GG	AGCAG-CCCG	CCGGTGGCCA
P. columnaris	TC	G	GAAAC-GAGG	AGCAG-CCCG	CCGGCGGCCA
P. glabrae	T	G	GAGACAG-GG	AGCAG-CCCG	CCGGCGGCCA
P. mvexans	T	G	GAGACAG-GG	AGCAGCTCCG	CCGGCGGCCA
P. sclerotioides	TC	G	GAAAC-GAGG	AGCAG-CCCG	CCGGCGGCCG
	•••• <mark>•</mark> •••				
	160) 170	180) 190	200
1C. allantoidiopsis	AGTTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CAAAAATGAA
USIA 5	ACCTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAT-AAA	CATAAATGAA
P. amygdale	ACCCAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA

00.	111 5	nee mierer	10111111011	CIOIMMCICICI	Olioluli luui	CHILINNICHI
P.	amygdale	ACCCAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA
P.	quercina	ACCCAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA
P.	magnoliae	ACCCAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA
P.	vaccinii	ACCCAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA
P.	junipervora	ACCCAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA
D.	vaccinii	ACC-AACTCT	TGTTTTTACA	CTGAAACTCT	GAGAATAAAA	CATAAATGAA
P.	asparagi	GCCTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGGATAAAA	CATAAATGAA
D.	caulivola	AGCTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAATAAA	CATAAATGAA
P.	bougainvilleicol	AAGTTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAAAA-	CACAAATGAA
P.	liquidambari	AGTTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAAAAA	CACAAATGAA
P.	phyllanthicola	AGTTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAAAA-	CACAAATGAA
P.	averrhoae	AGTTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAAAA-	CACAAATGAA
D.	phaseolorum	AGTTAACTCT	TGTTTTTACA	CTGAAACTCT	GAGAAAAAA	CA-AAATGAA
D.	meridionalis	AGCCAACTCT	TGTTTTTACA	CCGAAACTCT	GAGCAAAAAA	CACAAATGAA
D.	angelicae	GCCAAACTCT	-GTTTCTATA	GTGGATCTCT	GAGTAAAAAA	CATAAATGAA
D.	arctii	ACCAAACTCT	-GTTTCTATA	GTGAATCTCT	GAGTAAAAA	CATAAATGAA
P.	chimonanthi	ACTAAACTCT	TGTTTCTATA	GTGAATCTCT	GAGTAAAAA	CATAAATGAA
Ρ	micheliae	ACTAAACTCT	TGTTTCTATA	GTGAATCTCT	GAGTAAAAA	CATAAATGAA
D.	helianthi	ACTAAACTCT	-GTTTCTATA	GTGAATCTCT	GAGTAAAAA	CATAAATGAA
P.	columnaris	ACCAGACTCT	TGTTTCT-TA	GTGGATCTCT	GAGTAAAAA	CATAAATGAA
P.	glabrae	AACAAACTCT	TGTTTCT-TA	GTGAATCTCT	GAGTAAAAAA	CATAAATGAA
P.	vexans	GCTAAACTCT	TGTTTCTACA	GTGAATCTCT	GAGTAAAAA-	CATAAATGAA
P.	sclerotioides	ACCAAACTCT	TGTTTCT-CA	GTGGATCTCT	GAGTAAAAAA	-AAAAATGAA

				$\cdots \cdots $		
10	- 1 1 +	<u>ل</u> ے ت	LU 220			250
IC.	. allantoidiopsis	TCAAAAC'I"I"I"	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
US.	LA 5	TCAAAAC'I"I"I"	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	amygdali	TCAAAAC'I"I"I'	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	quercina	TCAAAAC'I"I"I"	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	magnollae	TCAAAAC'I"I"I"	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	vaccinii	TCAAAAC'I"I"I'	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	Junipervova	TCAAAAC'I"I"I"	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
D.	vaccinii	TCAAAAC'I"I"I'	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	asparagi	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
D.	caulivola	TCAAAAC'I"I"I	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	bougainvilleicola	a'I'CAAAAC'I''I''I'	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	liquidambari	TCAAAAC'I"I"I	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
P.	phyllanthicola	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	averrhoae	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
D.	phaseolorum	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGG	TGAAGAACGC
D.	meridionalis	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
D.	angelicae	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
D.	arctii	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	chimonanthi	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	micheliae	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
D.	helianthi	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	columnaria	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	glabrae	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	vexans	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Ρ.	sclerotioides	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
		 260) 270	···· ····) 280	···· ····) 290	 300
1C .	. allantoidiopsis	 260 AGCGAAATGC) 27(GATAAGTAAT) 280 GTGAATTGCA) 290 GAATTCAGTG) 300 AATCATCGAA
<i>1C</i> USI	. allantoidiopsis IA 5	 260 AGCGAAATGC AGCGAAATGC) 27(GATAAGTAAT GATAAGTAAT) 280 GTGAATTGCA GTGAATTGCA) 29(GAATTCAGTG GAATTCAGTG) 300 AATCATCGAA AATCATCGAA
1C USI P.	allantoidiopsis IA 5 amygdali	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC	 27(GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA
1C USI P. P.	. allantoidiopsis IA 5 amygdali quercina	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	 270 GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C USI P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	CATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C . USI P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C . USI P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C USI P. P. P. P. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C USI P. P. P. P. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C USI P. P. P. P. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	CAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C USI P. P. P. P. D. P. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C US P. P. P. D. P. D. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C. US: P. P. P. D. P. D. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	CALL CALL CALL CALL CALL CALL CALL CALL	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C. US: P. P. P. D. P. P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae	 2260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	CALL CALL CALL CALL CALL CALL CALL CALL	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C. US P. P. P. P. D. P. P. D. P. P. D.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum	 2260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	CALL CALL CALL CALL CALL CALL CALL CALL	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C. US P. P. P. P. D. P. P. P. P. D. D.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis	 260 AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC AGCGAAATGC	CATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	CAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C. US: P. P. P. P. P. P. P. P. D. D. D.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae	 260 AGCGAAATGC	CATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	CAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C US P. P. P. P. D. P. P. P. D. P. D. D. D. D.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii	 260 AGCGAAATGC	CATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA GTGAATTGCA	CAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C US P. P. P. P. D. P. P. D. P. D. D. D. D. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi	 2260 AGCGAAATGC	CATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA	CAATTCAGTG GAATTCAGTG	 300 AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA AATCATCGAA
1C US P. P. P. P. D. P. P. D. D. D. D. D. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae	 2260 AGCGAAATGC	CATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA	CAATTCAGTG GAATTCAGTG	 300 AATCATCGAA
1C US P. P. P. P. P. P. P. D. P. D. D. D. D. P. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi	 2260 AGCGAAATGC	CATAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG	 300 AATCATCGAA
1C. US. P. P. P. P. P. P. P. D. D. D. P. P. D. D. D. P. P. D. D. P. D. D. P. D. D. P. D. D. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris	 2260 AGCGAAATGC	CALAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG	 300 AATCATCGAA
1C . US: P. P. P. P. P. P. P. D. P. P. P. D. P. P. D. D. D. P. P. P. D. D. P. P. P. D. P.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae	 2260 AGCGAAATGC	CALAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG	 300 AATCATCGAA
1C UP. P. P. P. P. P. P. P. D. D. D. D. P. P. D. D. D. D. P. P. D. D. D. P. D. D. D. D. D. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae vexans	 2260 AGCGAAATGC	CALAGTAAGTAAT GATAAGTAAT	CTGAATTGCA GTGAATTGCA	 290 GAATTCAGTG	 300 AATCATCGAA

10	- 1 loutoidionaia					
10.			CACATIGCGC	CCICIGGIAI		AIGCCIGIIC
051			CACATIGCGC	CCICIGGIAI		AIGCCIGIIC
Ρ.	amygdall	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	quercina	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	magnollae	TCTTTGAACG	CACATTIGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	vaccinii	TCTTTGAACG	CACATTIGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	Junipervora	TCTTGAACG	CACATTIGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
D.	vaccinii	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	asparagi	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
D.	caulivola	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	bougainvilleicola	a TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	liquidambari	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	phyllanthicola	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	averrhoae	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
D.	phaseolorum	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
D.	meridionalis	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
D.	angelicae	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
D.	arctii	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	chimonanthi	TCTTTGAACG	CACATTGCGC	CCCCTGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Ρ.	micheliae	TCTTTGAACG	CACATTGCGC	CCCCTGGTAT	TCCGGGGGGGC	ATGCCTGTTC
D.	helianthi	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	columnaris	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	glabrae	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	vexans	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
Ρ.	sclerotioides	TCTTTGAACG	CACATTGCGC	CCTCTGGTAT	TCCGGAGGGC	ATGCCTGTTC
				1 1	1 1	1 1
		···· ···· 30	···· ···	···· ···· 70	···· ···· 30 39	···· ··· 90 400
1C.	. allantoidiopsis	 36 GAGCGTCATT	 50 31 TCAACCCTCA	 70 38 AGCCTGGCTT	 30 39 GGTGATGGGG	 90 400 CACTTGCCTT
<i>1C</i> . USI	. allantoidiopsis IA 5	GAGCGTCATT	TCAACCCTCA	 70 38 AGCCTGGCTT AGCCTGGCTT	 30 39 GGTGATGGGG GGTGATGGGG	 90 400 CACTTGCCTT CACT-GCTTT
1C. USI P.	allantoidiopsis IA 5 amyqdali	GAGCGTCATT GAGCGTCATT GAGCGTCATT	5037TCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT
1C. USI P. P.	allantoidiopsis IA 5 amygdali quercina	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT
1C. USI P. P.	allantoidiopsis IA 5 amygdali quercina maqnoliae	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCTTC
1C. USI P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 30 39 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCTTC
1C. USI P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503TCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT
1C. USI P. P. P. P. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GC-TT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GC-TT CACT-GC-TT
1C. USI P. P. P. P. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCATCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GC-TT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT
1C. USI P. P. P. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 30 39 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 20 400 CACTTGCCTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT-
1C. USI P. P. P. D. P. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG	 20 400 CACTTGCCTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USI P. P. P. D. P. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liguidambari	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 20 400 CACTTGCCTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USJ P. P. P. D. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 20 400 CACTTGCCTT CACT-GC-TT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USJ P. P. P. D. P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	503"TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT
1C. USJ P. P. P. D. P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3" TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GC-TT CACT-GC-TT CACT-GC-TT CACT-GC-TT
1C. USI P. P. P. D. P. P. P. D. P. P. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3" TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 O 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GC-TT CACT-GC-TT CACT-GC-TT CACT-GCCT- CACT-GCCT-
1C. USI P. P. P. P. P. P. P. P. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3'' TCAACCCTCA TCAACCCTCA	 AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 A 0 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GC-TT CACT-GC-TT CACT-GC-TT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USI P. P. P. P. P. P. P. P. D. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3'' TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG	 O 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USI P. P. P. P. P. P. P. P. D. D. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3' TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 30 39 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG	 O 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USJ P. P. P. P. D. P. P. D. D. D. D. D. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3" TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT		 A CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT-
1C. USJ P. P. P. P. P. P. P. P. D. D. D. D. P. D. D. D. D. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi	GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT GAGCGTCATT	50 3" TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT		 A 0 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GC-TT CACT-GC-TT CACT-GC-TT
1C. USJ P. P. P. D. P. P. D. D. D. D. D. P. P. D. D. D. D. D. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris	GAGCGTCATT GAGCGTCATT	50 3" TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT		 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GC-TT CACT-GC-TT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT-
1C. USI P. P. P. D. P. P. D. P. D. D. D. D. P. P. D. D. D. D. P. P. P. P. P. P. P. P. P. P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae	GAGCGTCATT GAGCGTCATT	TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCTTC CACT-GCCTT CACT-GCCTT CACT-GCCT- CACC-GCCT- CACC-GCCT-
1C. USI P. P. P. D. P. P. D. D. D. D. P. P. D. D. D. D. P. P. P. P. P. P. P. P. P. P. P. P. P.	allantoidiopsis IA 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae vexans	GAGCGTCATT GAGCGTCATT	CAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGATGGGG GGTGTTGGGG GGTGATGGGG GGTGT C C C C C C C C C C C C C	 20 400 CACTTGCCTT CACT-GCTTT CACT-GC-TT CACT-GC-TT CACT-GCCTT CACT-GCCTT CACT-GCCTT CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACT-GCCT- CACC-GCCT- CACC-GCCT- CACC-GCCT-
1C. USI P.P. P.D. P.P. D.D. D.D. P.P. P. P. P. P. P. P. P. P. P. P. P.	allantoidiopsis A 5 amygdali quercina magnoliae vaccinii junipervora vaccinii asparagi caulivola bougainvilleicola liquidambari phyllanthicola averrhoae phaseolorum meridionalis angelicae arctii chimonanthi micheliae helianthi columnaris glabrae vexans sclerotioides	GAGCGTCATT GAGCGTCATT	50 3' TCAACCCTCA TCAACCCTCA TCAACCCTCA TCAACCCTCA	AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCATTGCTT AGCATTGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT AGCCTGGCTT	 GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGTTGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTTGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGATGGGG GGTGTGG GGTGGTGG GGTGTGGG GGTGGTGG GGTGTGG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGTG GGT G G G G G G G G G G G G G	400CACTTGCCTT400CACT-GCTTCACT-GCTTCACT-GC-TTCACT-GCTTCACT-GCCTTCACT-GCCTTCACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GC-TTCACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GC-TTCACT-GCCT-CACT-GC-TTCACT-GCCT-CACT-GCCT-CACT-GCCT-CACT-GCCT-CACC-GCCT-CACC-GCCT-CACC-GCCT-CACC-GCCT-CACC-GCCT-CACC-GCCT-CACC-GCCT-

..... 410 420 430 440 450 1C. allantoidiopsis CGGTAA-GAA ---GGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC USIA 5 T---ACACAA A--AGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. amyqdali T--TACCCAA --GAGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. quercina T--TACCCAA --GAGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. magnoliae T--TACCCAA -GAAGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. vaccinii ---TACCCAA A-G-GCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. junipervora T--TACCCAA --GAGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC D. vaccinii ---TACAGAA A-GGGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. asparagi -G-TA---AA A-GGGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC D. caulivola -G-TA---AA A-GGGCAGGC CCTGAAATTC ATTGGCGAGC TCGCCAGGAC P. bougainvilleicola--TAACG-- --GAGCAGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC P. liquidambari -G-TA---AA A-GGGCAGGC CCTGAAATCT AGTGGCGAGC TCGCTAGGAC P. phyllanthicola T--TAACCAA ----GCAGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC T--TAACGAA ----GCAGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC P. averrhoae D. phaseolorum -GTTA---AA --GGGCAGGC CCTCAAATAT AGTGGCGAGC TCGCCAGGAC D. meridionalis -G-TA---AA A-GGGCAGGC CCTGAAATCT AGTGGCGGGC TCGCCAGGAC D. angelicae -G-T---GAA A-GGGCAGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC D. arctii -GTT----AA A-GGGCAGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC P. chimonanthi CG----AA AGGAGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC P. micheliae CG-----AA AGGAGCAGGC CCTGAAATTC AGTGGCGAGC TCGCCAGGAC -G-TA---AA A-GGGCAGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC D. helianthi P. columnaris -G-TA---AA A-GGGCGGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC TG----CAAA A-GGGCGGGC CCTGAAATCT AGTGGCGAGC TCGCCAGGAC P. glabrae P. vexans -G-T---GAA A-GGGCAGGC CTTGAAATCT AGTGGCGAGC TCGCCAGGAC P. sclerotioides -G-TA---AA A-GGGCGGGC CCTGAAATCT AGTGGCGAGC TCGCCGGGAC 460 470 480 490 500 1C. allantoidiopsis CCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGACTGTACT GGTGCGG-GC USIA 5 CCCGAGCGCA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC CCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGAAGGCCCT GG--CGGTGC P. amygdale P. quercina CCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGAAGGCCCT GG--CGGTGC P. magnoliae CCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGAAGGCCCT GG--CGGTGC CCCGAGCGCA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC P. vaccinii P. junipervora CCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGAAGGCCCT GG--CGGTGC D. vaccinii CCCGAGCGCA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GGCGCGGTG-CCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGAAGGCCCT GG--CGGTGC P. asparagi D. caulivola CCCGAGCGTA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC P. bougainvilleicolaCCCGAGCGCA GTAG-TTAAA CCCTCGCTCT GGAAGGCCCT GG--CGGTGC CCCGAGCGTA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC P. liquidambari P. phyllanthicola CCCGAGCGCA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC P. averrhoae CCCGAGCGTA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC D. phaseolorum CCCGAGCGTA GTAG-TTAAA CCCTCGCTTT GGAAGGCCCT GG--CGGTGC CCCGAGCGCA GTAG-TTAAA CCCTCGCTC- GGGAGGCCCT GG--CGGTGC D. meridionalis D. angelicae CCCGAGCGTA GTAG-TTACA -TCTCGCTCT GGGAGGCCCT GG--CGGTGC D. arctii CCCGAGCGTA GTAG-TTACA -TCTCGCTCT GGAAGGCCCT GG--CGGTGC CCCGAGCGTA GTAG-TTATA -TCTCGCTTT GGAAGGCCCT GG--CGGTGC P. chimonanthi P. micheliae CCCGAGCGTA GTAG-TTATA -TCTCGCTTT GGAAGGCCCT GG--CGGTGC D. helianthi CCCGAGCGTA GTAG-TTATA -TCTCGCTCT GGAAGGCCCT GG--CGGTGC P. columnaris CCCGAGCGTA GTAA-TTATA -TTTCGTTCT GGAAGGCCCT GG--CGGTGC P. glabrae CCCGAGCGTA GTAG-TTATA -TCTCGTTCT GGAAGGCCCT GG--CGGTGC P. vexans CCCGAGCGTA GTAG-TATTA -TCTCGCCCT GGAAGGCCCT GG--CGGTGC

P. sclerotioides CCCGAGCGTA GTAAATTATA -TTTCGTTCT GGAAGGCCCC GG--CGGTGC

		51	LO 52	20 530
1C	. allantoidiopsis	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
US:	EA 5	CCTGCCGTTA	AACCCCC-AA	CCTTTGAAAA
P.	amygdale	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	quercina	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	magnoliae	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	vaccinii	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	junipervora	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
D.	vaccinii	-CTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	asparagi	CCTGCCGTTA	AACCCCC-AA	CTTTTGAAAA
D.	caulivola	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	bougainvilleicola	ACCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	liquidambari	CCTGCCGTTA	AACCCCC-AA	CTTTTGAAAA
P.	phyllanthicola	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	averrhoae	CCTGCCGTTA	AACCCCC-AA	CTTTTGAAAA
D.	phaseolorum	CCTGCCGTTA	AACCCCC-AA	CTTTTGAAAA
D.	meridionalis	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
D.	angelicae	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
D.	arctii	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	chimonanthi	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	micheliae	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
D.	helianthi	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	columnaris	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAA
P.	glabrae	CCTGCCGTTA	AACCCCC-AA	CTTCTGAAAT
P.	vexans	CCTGCCGTTA	AACCCCCCAA	CTCCTGAAAA
P.	sclerotioides	CCTGCCGTTA	AACCCCC-AA	CTCCTGAAAA

	
	10) 20) 30) 40	50
Ustillago sparsa	C-GATG	AAAC-CC-TT	TTTTCTTGAG	GTGTGGCT	CGCACCT-GT
Agaricus abrupti	TTGAATTATG	TTTCTAAATG	GGTTGTAGCT	GGCTCTTT	AGAGCAT-GT
LRUB 20	TTGAAACGGT	TGCCCTCGCG	GTGACCG	GTTCTTC	AA
4C. fuckeli	TCCATCTC	AACC-AGGTG	CGGTCGCG	GCCCT	CGGGG
<i>Myrothecium</i> sp.	TCTATTC	CATG-AGGTG	CGGTCGCG	GCCCT	CGGCGG
Paraphaeosphaeria sp	.CCAATTC	AACGGTG	TGGTCGCG	GCCTC	CGGGG
4C. minitans	TCCATCC-TT	AACAGGTG	CGGTCGCG	GCCCC	TGGGG
P. pilleata	TCCATCT-TT	AACC-AGGTG	CGGTCGCG	GCCTC	CGGGT
2M. terrestris	GAAAAGGG	TGCC-TCGCG	GCCCCGAT	T	CTCAA
Aspergillus flavipes	CCGAGTGAGG	GTCC-TCGTG	GCCCAAC-		
<i>1C. cetrarioides</i>	CCGAGAGCGG	GGCT-TCATG	CTCCCGGA	GGCTTC	-GG-CCTCTA
1C. chicitae	CCGAGAGCGG	GGCT-TCATG	CCCCCGGA	GGCTCC	-GG-CCTCTA
1C. braunsiana	CCGAGAGCGG	GGCT-CTATG	CTCCCGGA	GGCTTC	-GG-CCTCTA
1C. japonica	CCGAGAGCGG	GGCT-CTATG	CTCCCGGA	GGCTTC	-GG-CCTCTA
1P. quernea	CTGAGAGAGG	GGCT-TCGCG	CCCCCGGG	GGCTCC	-GG-CCTCCA
3C. prancei	CGGCGGGTGT	TTGT-CCAAG	CCCTAGCG	GGCTT-	-GGACAGCGA
<i>3C. corallifera</i>	CGGCGGGTGT	TTGT-CCAAG	CCCTAGTG	GGCTT-	-GGACAGCGA
Lobaria amplissima	TCGAGAACGA	GGCG-CCCCG	CCTCCGGG	GGGGCTCC	-GGCCCCCCC
Cetraria odontella	CTGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGTCTC	-GG-CCTCTA
Cetraria nigricans 🚽	CTGAGAGAGG	GGCT-TCGCG	CTCCTGGG	GGTCTC	-GG-CCCCTA
Oropogon sp.	CCGAGAGAGG	GGCT-CCGCG	CCCCCGGG	GGCTTC	-GG-CCCTCG
Sulcaria sulcata	CCGAGAGAGG	GGCT-CCGCG	CCCCCGGG	GGCTTC	-GG-CCCTCG
Cetraria leucostigma	CCGAGAGAGG	GGCT-TCGCG	CCCCCGGA	GGCTCC	-GG-CCTCCA
Cetraria melalom	CCGAGAGAGG	GGCT-TCGCG	CCCCCGGA	GGCTCC	-GG-CCTCCA
Tuckneraria ahtii	CCGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGCTAC	-GA-CCCTCA
T. pseudocomplicata	ATGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGCTTC	-GG-CCCTCA
N. morrisonicola	ATGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGCTTC	-GGGCCCTCA
N. pallescens	CTGAGAGAGG	GGCT-CCGCG	CTCCCGGG	GGCTCC	-GG-CCCCCA
N. stracheyi	CTGAGAGG	GGCT-TCGCG	CTCCCGGG	GGCTCC	-GG-CCCCCC
Tuckneraria laureri	ATGAGAGAGG	GCCT-CCGCG	CTCCCGGG	GGCTTC	-GG-CCCCTA
Ahtiana pallidula	CTGAGAGAGG	GGCC-TCGTG	CTCCCGGG	GGCTCC	CGCCTCCA
A. nigricascens	TTGAGAGAGG	GGCT-TCGTG	CTCCCGGG	GGTTTC	-GG-CCTCCA
Cetraria nivalis	CTGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGCTTC	-GG-CCTCCA
K. merrillii	TCGAGAGAGG	GGCT-TCGTG	CTCCCGGG	GGTTTC	-GG-CCTCCA
1A. oakesiana	CTGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGTTTC	-GG-CCTCTA
F. cucullata	CTGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGTTTC	-GG-CCTCTA
M. richardsonii	CTGAGAGG	GGCT-TCGCG	CTCCCCGG	GGCTTC	-GG-CCCCTA
2C. islandica	CTGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGTCTC	-GG-CCCCTA
2C. crispiformis	CTGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGTCTC	-GG-CCCCTA
2C. antarctica	CTGAGAGAGG	GGCT-TCGCG	CTCCTGGG	GGTCTC	-GG-CCCCTA
Cetraria sepinco	CTGAGAGG	GGCT-TCGCG	CTCCGGG	GGTCTC	-GG-CCCCCA
1M. fuliginosa	CCGAGAGAGG	GGCT-TCGCG	CTCCCGGG	GGTTTC	-GG-CCCCCG
1M. subauri	CCGAGAGAGG	GGCT-TCGGG	CTCCGGGG	GGTTTC	-GG-CCCCCG
Codes of genus are shown in	Figure D2	เน่นท	77712	าลย	

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

Figure D2 Alignment data of complete ITS1-5.8S-ITS2 sequences of isolate LRUB 20 and 42 refernce taxa from GenBank.

..... 60 70 80 90 100 Ustillago sparsa CTAACTAAAC TTGAGCTA-- CCTTTTTTCA ACACG--GTT G-CATCGGTT Agaricus abrupti GCACGCCTGT TTGGACTT-- CATTTTCAT- CCACC--TGT G-CACCTATT LRUB 20 AC--CTCT-- -----G CGTACCAA-A CCTTTCAGTT G-----CCT 4C. fuckeli G----TTCTC TCCC-GGGTG -GTAGGGGTA ----- -ACAC--CCT Myrothecium sp. GAGCA---- ACAGCTGCCG TCGGGCGGTA GAGGTA--- -ACACT--TT Paraphaeosphaeria sp.CTCC CCCC-GGGCG -GTAGAGGTA ----- -ACACT--CT G----CTCC -CCC-AGGTG -GTA-AGGT- GAAATA---- --CCCT--AT 4C. minitans P. pilleata GAAAG----- -CCC-GGGTG -GTTT----- ------2M. terrestris AC-----C AC---TGTT- --TACCAA-A CGTTTC-GTT G-----CC Aspergillus flavipes ----CTCC-C ACCC--GT-G ACTACTGT-A CCACT--GTT G-----CT 1C. cetrarioides AC---TCTTC ACCCC-ATTG CCTATCT-TA CCTTT--GTT G-----CT 1C. chicitae AC---TCTTC ACCCC-ATTG CCTATCT-TA CCTTT--GTT G-----CT 1C. braunsiana AC---TCTTC ACCCA-AT-G CCTACCT-TA CCTTT--GTT G-----CT 1C. japonica AC---TCTTC ACCCG-AT-G CCTACCT-TA CCTTT--GTT G-----CT AC---TCTTC ACCC--TTTG ACTACC--TA -CTTT--GTT G-----CT 1P. quernea TC----- ----GTCG TGTATCTCGA CCCCAT-GTT TACCATACCT 3C. prancei TC-----GTCG TGTATCTCGA CCCCAT-GTT TACCATACCT *3C. corallifera* Lobaria amplissima AC--CTCTTC ACCC--GATG GGTACC--CA GCAGC--GTT T-----CT Cetraria odontella AC---TCTTC ACCC--TTTG CGTACC--AA CCTTT--GTT G-----CT AC---TCTTC ACCC--TTTG CGTACC--AA CCTTT--GTT G-----CT Cetraria nigricans AC---TCTTC CCCC--TCTG CGTACCC-TA CCTTT--GTT G-----CT Oropogon sp. AC---TCTTC CCCC--TCTG CGTACCC-TA CCTTT--GTT G-----CT Sulcaria sulcata Cetraria leucostigma AC---TCTTC ACCC--GTTG CCTACC--TA CCTTT--GTT G-----CT Cetraria melalom AC---TCTTG ACCC--GTTG CCTACC--TA CCTTT--GTT G-----CT Tuckneraria ahtii AC---TCTTC ACCC--ACTG TCTACC--TA CCTTT--GTT G-----CT T. pseudocomplicata AC---TCTTC ACCC--GTGG ACTATC--TA CCTTT--GTT G-----CT N. morrisonicola AT---TCTTC ACCC--ATTG TCTACC--TA CCTTT--GTT G-----CT N. pallescens AC---TCTTC ACCC--GTTG TCTACC--TA CCTTC--GTT G-----CT N. stracheyi AC---TCTTC ACCC--GTTG TCTACC--TA CCTTT--GTT G-----CT Tuckneraria laureri AC---TCTTC ACCC--TTTG TCTACC--TA CCTTT--GTT G-----CT AC---TCTTC ACCC--ATTG TCTACC--TA CCTAT--GTT G-----CT Ahtiana pallidula AC---TCTTC ACCC--ATTG TCTACC--TA CCTTT--GTT G-----CT A. nigricascens AC---TCTTC ACCC--ATTG TCTACC--TA CCTAT--GTT G-----CT Cetraria nivalis AC---TCTTC ACCC--ATTG TCTACC--TA CCTAT--GTT G-----CT K. merrillii GC---TCTTC GCCC--ATTG TCTACA--TA CCTTT--GTT G-----CT 1A. oakesiana GC---TCTTC ACCC-ATTG TCTACA--TA CCTTT--GTT G-----CT F. cucullata AC---TCTTC ACCC--ATTG TCTACA--TA CCTTT--GTT G-----CT M. richardsonii 2C. islandica AC---TCTTC ACCC--TTTG TGTACC--AA CCTCT--GTT G-----CT AC---TCTTC ACCC--TTTG TGTACC--AA CCCTT--GTT G-----CT 2C. crispiformis 2C. antarctica AC---TCTTC ATCC--TTTG TGTACC--AA CCTTT--GTT G-----CT AC---TCTTC ACCC--ATTG ACTACC--TA CCTTT--GTT G-----CT Cetraria sepinco 1M. fuliginosa AC---TCTTC ACCC--GTTG CATACCA-TA CCTTT--GTT G-----CT 1M. subauri AC---TCTTC ACCC--GTTG CATATCG-TA CCTTT--GTT G-----CT

Codes of genus are shown in Figure D2

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

Figure D2 (Continued)

..... 110 120 130 140 150 Ustillago sparsa GGCCTGTCAA ACAGTGCG-G CGGTCGC-GA AATTGATTTT TC-GCAGCTG Agaricus abrupti GTA--GTCTT TGGTTGGGTT AGGAGGAAGT GGTCATCCTG TCAGCATTTG LRUB 20 CCGGCGGCCC T---GGGCC- GGCGC---- GGC---GCGC G-ACCTCCC-4C. fuckeli CACGCGCCGC ----ATTCC- TGCATCCTTT TTTTACGAGC --ACCTTTCG Myrothecium sp. CACGCGCCGC ----ATGTC- TGAATCCTTT TTTTACGAGC --ACCTTTCG Paraphaeosphaeria sp.TACGCGCCAC ----ATGTC- TGAATCCTTT TTTTACGAGC --ACCTTTCG --CGCGCCGC ----ATACC- TGCATCCTTT TTTTACGAGC --ACCTTTCG 4C. minitans P. pilleata --CGCGCCGC ---ATTCC- TGCACCCTTT TTATACGAGC --ACCTTTCG 2M. terrestris TCGGCGGGCC ----GGCCA ----TTT GGCT-CGACC --AGCGGCCC Aspergillus flavipes TCGGCGGGCC CGCCA-GCC- TAGCT---- GGC--CG-CC G-GGGGGC--1C. cetrarioides TTGGCGGGCC -TCGAGGTTC ----CCTC-- GCG-CCGACC C-TCGGGTCG 1C. chicitae TTGGCGGGCC -TCGAGGTCC ----CCTC-- GCG-CCGACC C-TCGGGTCG 1C. braunsiana TTGGCGGGCC -TCGGGGTCT ----CCTC-- GCG-CTGACC T-TCCGGTCG 1C. japonica TTGGCGAGCC -TCGGGGGTCT ----CCCCC-- GCG-TTGGCC T-TTGGGTCG TTGGCGGGAC -TTGGGGGCAA ---GCCTC-- ACA-CCGGCT TCTCCGGCCG 1P. quernea TTTGTTGCTT TGGCGGGCCT TGAGTA---- GGCTATACGG CTCATGCCAG 3C. prancei TTTGTTGCTT TGGCGGGCCT TGAGTA---- GGCTATACGG CTCATGCCAG 3C. corallifera Lobaria amplissima TTGGCGG--C TCGCACGCC- ---G-CCC-- GAAGACCCCC CCCCAAACTC TTGGCGGGCC --CGAGGACC T--CTC---- GCG-CCG--C GTACAAACCG Cetraria odontella TTGGCGGGCC --CGAGGACC T--CTC--- GCG-CCG--C GTACAAACCG Cetraria nigricans TTGGCGGG-T CCCGGGGGCTT G--CTCCC-- GCA-CCGGCC GCGCC---CG Oropogon sp. TTGGCGGG-T CCCGGGGCTT G--CTCCC-- GCA-CCGGCC GCGCC---CG Sulcaria sulcata Cetraria leucostigma TTGGCGGGG-T CTCGGGTACC ---ATCCC-- GTG-CCGACC G-ACCGGTCG Cetraria melalom TTGGCGGG-T CTCGGGTACC ---ATCCC-- GTG-CCGACC G-ACCGGTCG Tuckneraria ahtii TTGGCGGGCC -TCGGGTACC ---CTCCC-- GTG-CCGACT T-ACCGGTCG T. pseudocomplicata TTGGCGGGCC -TCGGGCACC ---ATCCC-- GTG-CCGACC G-ACCGGTCG N. morrisonicola TTGGCGGGCC -TCGGGCATC ---TTCCC-- GTG-CCGGCC G-ACCGGTCG

N. pallescens TTGGCGGGCC -TCGGGTACC ---ATCCT-- GTG-CCGGCC C-AGCGGTCG N. stracheyi TTGGCGGGCC -TCGGGTACC ---ATCCC-- GTG-CCGGCT G-ATCGGTCG Tuckneraria laureri TTGACGGG-T CTCGGACATC ---GTTCC-- GTG-CCGACC C-ACCGGTCG TTGGCGGGCC -TCGGGTACC ---ATCCC-- GTG-TCGGCC T-ACCGGCCG Ahtiana pallidula Cetraria nivalis TTGGCGGGCC -TCGGGTACC ---ATCCC-- GTG-TCGGCC T-ACCGGTCG K. merrillii TTGACGGGTC -TCGGGTACC ---ATCCC-- GTG-TCGGCT T-ACCGGTCG 1A. oakesiana TTGGCGGGCC -TCGGGCACC ---GTCCC-- GTG-TCGACT G-ACTGGTCG F. cucullata TTGGCGGGCC -TCGGGCACC ---GTCCC-- GTG-TCGACT G-ACTGGTCG M. richardsonii TTGGCGGG-T CTCGGG-GTT ---ATCCC-- GCG-TCGGCT T-TCGGGTCG 2C. islandica TTGGCGGG-T C-CGAGGACC ----TCTC-- GCG-CCG-CC C-ACAGGCCG TTGGCGGG-T C-CGAGGACC ----TCTC-- GCG-CCG-CC C-ACAGGCCG 2C. crispiformis TTGGCGGG-T C-CGAGGACC ----TCTC-- GCG-CCG-CC C-CCAGGCCG 2C. antarctica Cetraria sepinco TTGGCGGGCC C-CGAGGACC ----TCTC-- GCG-CCG-CG T-ACAGGCCG TTGGCGGGCC C-CGGG--TC ---GCCCC-- GCG-CCGGCC T-CTGGGCCG 1M. fuliginosa 1M. subauri TTGGCGGACC C-CGGG--TC ---GCCCC-- GCG-CTGGTT T-TCGGGCCG

Codes of genus are shown in Figure D2

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

Figure D2 (Continued)

	···· ···	 50 11	 70 18	 30 19	···· ··· 90 200
Ustillago sparsa	CCCAACTCGG	CGACGGACC-	GACACTTTTT	ACCAAACACT	TTT-GATGAT
Agaricus abrupti	CTGGATGTGA	GGACTTGCAT	TGTGAAAACT	GTGC-TGTCT	TTATG-TGAT
LRUB 20	CCT-CGC	GGG-CGGGGC	CGCTCCTC	GCG-GCG-	GACCACCCGC
4C. fuckeli	TTCTCC T-	TCGGCGG GO	GCAAC C	IGCC-GCT	
Myrothecium sp.	TTCTCC T-	TCGGCGG GO	GCAAC C	IGCC-GTT	
Paraphaeosphaeria sp.	TTCTCC	TTCGGTGG	GGCAAC	CTGCC-GTT-	
4C. minitans	TTCTCC	TTCGGCGG	GGCAAC	CTGCC-GCT-	
P. pilleata	TTCTCC	TTCGGCGG	GGCAAC	CTGCC-GCT-	
2M. terrestris	CCCCCTCCGC	CCCTCGGGGC	GAGGAAGG	GAGCA-GCCC	GCCCA
Aspergillus flavipes	TTCTGC	CCC-CGGGCC	CGCGC	CC-GCC-	
<i>1C. cetrarioides</i>	GCGAGCGCCC	GCCAGAGG	TCCATTAA	ATTCTATT	T-ATC
1C. chicitae	GCGAGCGTCC	GCCAGAGG	TCCATTAA	ATTCTACT	TT
1C. braunsiana	GCGAGTGTCC	GTCAGAGG	TCCATTAA	ATTCTATT	T-ATC
1C. japonica	GCGAGTGTCC	GTCAGAGG	TCCATTAA	ATTCTATT	T-ATC
1P. quernea	GTGAGCGTCC	GTCAGAGG	CCCCCTTTAA	ACTCTT	T-ATC
3C. prancei	CCCCCAGCGT	T-TTCTTGCT	GGAGG	GGGCTCGCGC	CCGCC
<i>3C. corallifera</i>	CCCCCAGCGT	T-TTCTTGCT	GGAGG	GGGCTCGCGC	CCGCC
Lobaria amplissima	CAGTGATCCC	T-GTC-GTC-	GGAGCC	ATA-TCGAAT	ACGCA
Cetraria odontella	GCGAGCGCCC	GCCAGAGG	CCCATTAA	AATCTGCT	T-ATT
Cetraria nigricans 🚽	GCGAGCGCCC	GCCAGAGG	CCCATTAA	AATCTGCT	T-ATT
<i>Oropogon</i> sp.	GTGAGCGCCC	GCCAGAGG	CCTATTGC	ATTCCGAT	TTATC
Cetraria leucostigma	GCGAGCGCCC	GTCAGAGG	CCCATCAA	ATTCT-CT	TC
Cetraria melalom	GCGAGCGCCC	GTCAGAGG	CCCATCAA	ATTCT-AT	TC
Tuckneraria ahtii	GCGAGCGCCC	GTCAGAGG	CCCTCAA	ATTCTATT	TCATC
T. pseudocomplicata	GCGAGCGCCC	GTCAGAGG	CCCTCAA	ATTCTATT	TTATC
N. morrisonicola	GCGAGCGCCC	GTCGAAGG	CTCTTTAA	ATTCGATT	T-ATC
N. pallescens	GCGAGCGCCC	GTCGGAGT	CCCATGAA	ATTCTCCT	CTATC
N. stracheyi	GCGAGCGCCC	GTCAGAGG	CCCTTTAA	ATTCTACT	CTATC
Tuckneraria laureri	GCGAGCGCCC	GTCAGAGG	CCCTTTAA	ATCCTATT	T-ATC
Ahtiana pallidula	GCGAGCGCCC	GTCAGAGG	CCAATCAA	ATTCTATT	T-ATT
Cetraria nivalis	GCGAGCGCCC	GTCAGAGG	CCAATCAA	ATTCTATT	T-ATC
K. merrillii	GCGAGCGCCC	GTCGGAGG	CCAATCAA	ATCCTATT	T-ATT
1A. oakesiana	GCGAGCGCCC	GTCAGAGG	CCCATTAA	ATCCTGTT	TTATC
F. cucullata	GCGAGCGCCC	GTCAGAGG	CCAATCAA	ATTCTATT	T-ATC
M. richardsonii	GCGAGCGCCC	GTCAGAGG	CCAATCAA	ATTCTATT	T-ATC
2C. islandica	GCGAGCGCCC	GTCAGAGG	CCATTTAA	ACTCTGTT	T-ATC
2C. crispiformis	GCGAGCGCCC	GCCAGAGG	CCCATTAA	AATCTGCT	T-ATT
2C. antarctica	GCGAGCGCCC	GCCAGAGG	CCCATTAA	AATCTGCT	T-ATT
Cetraria sepinco	GCGAGCGCCC	GCCAGAGG	CCCATTAA	AATCTGCT	T-ATT
1M. fuliginosa	GCGAGCGCCC	GCCAGAGG	CCCATTCA	ATTCTGTT	T-ATC
1M. subauri	GCGAGTGTCC	GTCAGAGG	CCCATTAC	ATTCTGTT	T-ATT

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

	 210				···· ···) 250
Ustillago sparsa	CTAGGATT	TGAATGAGAA	AAGTTCATTT	TTACAAATGA	AATCGACTGG
Agaricus abrupti	CATGAAATCA	CTTTCT-CAC	CAGAGTCTAT	GTCTTTCATT	ATACTCTGTC
LRUB 20	CGGGCGGTCA	TAAACAAAAC	C-TTTTCGT-	-CGAG-ATGG	CATCGTCTA-
4C. fuckeli	-GGAACTT	AACAAAAC	C-TTTTTT	GCA	TCTAGCATT-
Myrothecium sp.	-GGAACCT	ATCAAAAC	C-TTTTTTTT	GCA	TCTAGCATT-
Paraphaeosphaeria sp.	-GGAACTT	ATCAAAAC	C-TTTTTTT-	GCA	TCTAGCATT-
4C. minitans	-GGAACCT	-GATAAAC	C-TTTTTT	GCA	TCTAGTATT-
P. pilleata	-GGAACTT	AACAAAAC	C-TTTTTTT-	GCA	TCTAGCATT-
2M. terrestris	-GGACGCT	ACAAAAAC	CATTCCGTT-	-CGAAGAACG	TCTGATTTT-
Aspergillus flavipes	-GGAGACC	CCAACACG	AACACTGTT-	TCTGAAAG	CCTG-TATGA
1C. cetrarioides				AG	TG
1C. chicitae				AG	TG
1C. braunsiana				CA	TG
1C. japonica				CG	TG
1P. quernea				ACAA	TG
3C. prancei	-GGAGGTT	CAACCACATC	C-TGTTTAT-	TAGTGAAG	TC-CGAGTAA
3C. corallifera	-GGAGGTT	CAACCACATC	C-TGTTTAT-	TAGTGAAG	TC-CGAGTAA
Lobaria amplissima 👘					
Cetraria odontella				AG	TG
Cetraria nigricans 🚽				AG	TG
Oropogon sp.				CG	TG
Sulcaria sulcata				CG	TG
Cetraria leucostigma				AG	TG
Cetraria melalom	<mark></mark>			AG	TG
Tuckneraria ahtii				AG 7	[G
T. pseudocomplicata				GG	TG
N. morrisonicola				AG	TG
N. pallescens				AG	TG
N. stracheyi				AG	TG
Tuckneraria laureri				AG	TG
Ahtiana pallidula				AG	TG
A. nigricascens				AG	TG
Cetraria nivalis				AG	TG
K. merrillii				AG	TG
1A. oakesiana				AG	TG
F. cucullata				AG	TG
M. richardsonii				AG	TG
2C. islandica				AG	TG
2C. crispiformis				AG	TG
2C. antarctica				AG	TG
Cetraria sepinco		4.1.1.1.1.1.	التبليلية ال	AG	TG
1M. fuliginosa				AG	TG
1M. subauri	100000	ราวัสวาสาร	00000	AG	AG

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	k
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	Ν

1C=Cetrelia2C=Cetraria islandica subsp.F=FlavocetrariaK=kaernefeltia2M=MycoleptodiscusN=Nephromopsis

1P=Pyrrhospora

	 260	···· ···) 270	···· ···) 280	···· ···) 290	···· ··· 300
Ustillago sparsa	TAATGCGGTC	GTCTAATTTT	TAAA		
Agaricus abrupti	GAATGTCATT	GAATGTCTTT	ACATGGGCTT	GTATGCCTAT	GAAAATTGTA
LRUB 20	-ATTTCTTC-	ATAT	CAAA		ATATGAA
4C. fuckeli	-ACCTGTTC-	TGATA-	CAAA		CAATC-G
Myrothecium sp.	-ACCTGTTC-	TGATA-	CAAA		CAATC-G
Paraphaeosphaeria sp.	-ACCTGTTC-	AGATA-	CAAA		CAATC-G
4C. minitans	-ACCTGTTC-	TGATA-	CAAA		CAATC-G
P. pilleata	-ACCTGTTC-	TGATA-	CAAA		CAATC-G
2M. terrestris	-ACCTTCG	CGAATGCGA-	TAAA		
Aspergillus flavipes	ATCCGATTC-	TTTG			TAATCAG
<i>1C. cetrarioides</i>	GTGTCCG	AGTC	AAAA		-CACAAATAG
1C. chicitae	GTGTCCG	AGTC	AAAA		-CACAAATAG
1C. braunsiana	GTGTCTG	AGTC	GAAA		-CGCAAATAG
1C. japonica	GTGTCCG	AGTC	CAAA		-TACAAATAG
1P. quernea	TTGTCCG	AGTT	ACACG		-CAAACA-GT
3C. prancei			-AAA		-TTAAAT-AA
<i>3C. corallifera</i>			-AAA		-TTAAAT-AA
Lobaria amplissima 👘					
Cetraria odontella	ATGTCCG	AGTGA	AAAA		-CACAATAAA
Cetraria nigricans 🚽	ATGTCCG	AGTGA	AAAA		-CACAATAAA
Oropogon sp.	CCGTCCG	AGTAC	CAAA		-CACAATA-G
Sulcaria sulcata	CCGTCCG	AGTAC	CAAA		-CACAATA-G
Cetraria leucostigma	ATGTCGG	AGCA	AAAC		-CT-AATAAT
Cetraria melalom	ATGTCGG	AGCA	AAAC		-CT-AATAAT
Tuckneraria ahtii	ATGTCCG	AGCG	AAAA		-CAATAATCT
T. pseudocomplicata	ATGTCCG	AGCG	AAAA		-CACAATAAT
N. morrisonicola	ATGTCCG	AGCA	AAAA		-CACAATAAT
N. pallescens	ACGTCCG	AGCG	AAAA		-CACAATAAT
N. stracheyi	ATGTCCG	AGCG	AACAA		-CCCAATAAT
Tuckneraria laureri	ACGTCCG	AGCG	AAAA		-CACAATAAT
Ahtiana pallidula	ATGTCCG	AGCT	AAAA		-CACAATAAT
A. nigricascens	ATGTCCG	AGCC	AAAA		-CATAAT
Cetraria nivalis	ATGTCCG	AGTA	AAAA		-CACAATAGT
K. merrillii	ATGTCCG	AGCA	AAAA		-CACAATAAT
1A. oakesiana	ATGTCCG	AGCA	AAAA		-CACAATAAT
F. cucullata	ATGTCCG	AGCA	AAAA		-CGCAATAAT
M. richardsonii	AAGTCCG	AGCA	AAAGA		-CACAATAAT
2C. islandica	ATGTCCG	AGCG	AAAA		-CACAATAAA
2C. crispiformis	ATGTCCG	AGCG	AAAA		-CACAATAAA
2C. antarctica	ATGTCCG	AGCG	AAAA		-CACAATAAA
Cetraria sepinco	ATGTCCG	AGTG	AAAA	Q	-CACAATCAA
1M. fuliginosa	ACGTCCG	AGTA	CAAAC		-CACAATAGT
1M. subauri	-TGACGTCCG	AGTA	TAAAC	1975101	-CACAATAAT

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

		$ \dots \dots $			
IIstillago sparsa	- אממאמייייי אמאמאמייייי		20 J. TATATA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Agaricus abrunti		CACCAACGGA	TCTCTTGGTT	CTCCCATCGA	TGAAGAACGC
I.RIIB 20		CAACAATGGA	TCTCTTCCCT	CCCCCATCCA	TGAAGAACGC
AC fuckeli		CAACAATGGA	TCTCTTCCCT	CTGCCATCGA	TGAAGAACGC
Myrothecium sp		CAACAATGGA	TCTCTTCCCT	CTGCCATCGA	TGAAGAACGC
Paranhaeosnhaeria sn		CAACAATGGA	TCTCTTCCCT	CTGGCATCGA	TGAAGAACGC
4C minitans		CAACAATGGA	тстсттссст	CTGGCATCGA	TGAAGAACGC
P nilleata		CAACAATGGA	TCTCTTCCCT	CTGGCATCGA	TGAAGAACGC
2M terrestris		CAACAATGGA	тстсттссст	CCAGCATCGA	TGAAGAACGC
Aspergillus flavines		CAACAATGGA	TCTCTTCCTT	CCGCCATCGA	TGAAGAACGC
10 cetrarioides	TAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
1C chicitae	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
10 braunsiana	TAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCACCATCGA	TGAAGAACGC
1C japonica	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
1P quernea	TAAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
3C prancei	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
3C. corallifera	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Lobaria amplissima	-CAAAACTTT	CAACAACGGA	TCTCTTGGTT	CTGGCATCGA	TGAAGAACGC
Cetraria odontella	T-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Cetraria nigricans	T-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Oropogon sp.	TAAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Sulcaria sulcata	TAAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Cetraria leucostigma	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Cetraria melalom	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Tuckneraria ahtii	CAAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
T. pseudocomplicata	CTAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
N. morrisonicola	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
N. pallescens	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
N. stracheyi	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Tuckneraria laureri	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Ahtiana pallidula	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
A. nigricascens	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Cetraria nivalis	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
K. merrillii	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
1A. oakesiana	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
F. cucullata	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
M. richardsonii	C-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
2C. islandica	T-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
2C. crispiformis	T-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
2C. antarctica	T-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
Cetraria sepinco 🛛 🔍	TCAAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
1M. fuliginosa	A-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC
1M. subauri	A-AAAACTTT	CAACAACGGA	TCTCTTGGTT	CCAGCATCGA	TGAAGAACGC

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

		\ldots	···· ····		
IIstillago sparsa	AGCGAATTGC	Сатаастаат	СТСААТТССА	GAAGTG	
Agaricus abrupti	AGCGAAATGC	GATAAGTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
I.RIIB 20	AGCGAAATGC	GATAACTAGT	GTGAATTGCA	GATTTCAGTG	AATCATCGAG
4C fuckeli	AGCGAAATGC	GATAAGTAGT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
Myrothecium sp	AGCGAAATGC	GATAAGTAGT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
Paraphaeosphaeria sp	AGCGAAATGC	GATAAGTAGT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
4C. minitans	AGCGAAATGC	GATAAGTAGT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
P. pilleata	AGCGAAATGC	GATAAGTAGT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
2M. terrestris	AGCGAAATGC	GATAACTAGT	GTGAATTGCA	GATTTCAGTG	AATCATCGAG
Aspergillus flavipes	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
1C. cetrarioides	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
1C. chicitae	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
1C. braunsiana	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
1C. japonica	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
1P. quernea	AGCGAAATGC	GATAAGTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
3C. prancei	AGCGAAATGC	GATAAGTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
<i>3C. corallifera</i>	AGCGAAATGC	GATAAGTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
Lobaria amplissima	AGCGAAATGC	GATAAGTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAA
Cetraria odontella	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Cetraria nigricans	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Oropogon sp.	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Sulcaria sulcata	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Cetraria leucostigma	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Cetraria melalom	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Tuckneraria ahtii	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
T. pseudocomplicata	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
N. morrisonicola	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
N. pallescens	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
N. stracheyi	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Tuckneraria laureri	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Ahtiana pallidula	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
A. nigricascens	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Cetraria nivalis	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
K. merrillii	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
1A. oakesiana	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
F. cucullata	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
M. richardsonii	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
2C. islandica	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
2C. crispiformis	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
2C. antarctica	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
Cetraria sepinco	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
1M. fuliginosa	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG
1M. subauri	AGCGAAATGC	GATAACTAAT	GTGAATTGCA	GAATTCAGTG	AATCATCGAG

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

	· · · · · · · · 41	 LO 42	 20 43	 30 44	 40 450
Ustillago sparsa	TCTTTGAACG	CACCTTGCGC	TCCCGGCAGA	TCTAATCTGG	GGAGCATGCC
Agaricus abrupti	TCTTTGAACG	CATCTTGCGC	TCCTTGG	TATTCCGA	GGAGCATGCC
LRUB 20	TCTTTGAACG	CACATTGCGC	CTCTTGGTAT	TCCTCGAGGC	ATGCCTGTTC
4C. fuckeli	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCATGGGGC	ATGCCTGTTC
Myrothecium sp.	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCATGGGGC	ATGCCTGTTC
Paraphaeosphaeria sp.	. TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCATGGGGC	ATGCCTGTTC
4C. minitans	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCATGGGGC	ATGCCTGTTC
P. pilleata	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCATGGGGC	ATGCCTGTTC
2M. terrestris	TCTTTGAACG	CACATTGCGC	CTCTTGGTAT	TCCTCGAGGC	ATGCCTAT-C
Aspergillus flavipes	TCTTTGAACG	CACATTGCGC	CCCCTGGTAT	TCCGGGGGGGC	ATGCCTGTCC
<i>1C. cetrarioides</i>	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGGGGGGGC	ATGCCTGTTC
1C. chicitae	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGGGGGGGC	ATGCCTGTTC
1C. braunsiana	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGAGGGGC	ATGCCTGTTC
1C. japonica	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGAGGGGC	ATGCCTGTTC
1P. quernea	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGTGGGGC	ATGCCTGTTC
3C. prancei	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGGGGGGGC	ATGCCTGTTC
<i>3C. corallifera</i>	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Lobaria amplissima	TCTTTGAACG	CACATTGCGC	CCCTTGGTAT	TCCGAGGGGC	ATGCCTGTCC
Cetraria odontella	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Cetraria nigricans 🚽	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Oropogon sp.	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Sulcaria sulcata	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Cetraria leucostigma	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Cetraria melalom	TTTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Tuckneraria ahtii	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
T. pseudocomplicata	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
N. morrisonicola	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
N. pallescens	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
N. stracheyi	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Tuckneraria laureri	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Ahtiana pallidula	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGAGGGGC	ATGCCTGTTC
A. nigricascens	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Cetraria nivalis	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
K. merrillii	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
1A. oakesiana	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
F. cucullata	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
M. richardsonii	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
2C. islandica	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
2C. crispiformis	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
2C. crispiformis	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
Cetraria sepinco 🛛 🔍	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
1M. fuliginosa	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC
1M. subauri	TCTTTGAACG	CACATTGCGC	CCCTCGGTAT	TCCGGGGGGGC	ATGCCTGTTC

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

	· · · · · · · · 46	 50 47	···· ··· 70 48	 30 49	···· ··· 90 500
Ustillago sparsa	TGTTTGAGGG	CCGCGAATTG	TTTCGAAC	-GACAACTTT	TTTCAC
Agaricus abrupti	TGTTTGAGTG	TCATTAAAT-	TCTCAACTCT	CTTATACTGT	GTTGT
LRUB 20	GAGCGTCGT-	TACGCCCCTC	AAGCGCGA	-GCTTGGT	GTTGGGGA
4C. fuckeli	GAGCGTCATC	TACA-CCCTC	AAGCTCT	-GCTTGGT	GTTGGG-CGT
Myrothecium sp.	GAGCGTCATC	TACA-CCCTC	AAGCTCT	-GCTTGGT	GTTGGG-CGT
Paraphaeosphaeria sp.	GAGCGTCATC	TACA-CCCTC	AAGCTCT	-GCTTGGT	GTTGGG-CGT
4C. minitans	GAGCGTCATC	TACA-CCCTC	AAGCTCT	-GCTTGGT	GTTGGG-CGT
P. pilleata	GAGCGTCATC	TACA-CCCTC	AAGCTCT	-GCTTGGT	GTTGGG-CGT
2M. terrestris	GAGCGTCGT-	TTCGACCATC	AAGCGCA	-ACTTGGT	GTTGG-GGAC
Aspergillus flavipes	GAGCGTCAT-	TACTGCCCTC	AAGCCCG	-GCTTG-T	ATTGGGTCCT
1C. cetrarioides	GAGCGTCAT-	TACACCCCTC	AAGCGTC	-GCTTGGT	ATTGGG-TTT
1C. chicitae	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-TTT
1C. braunsiana	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-TCT
1C. japonica	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-TCT
<i>1P. quernea</i>	GAGCGTCAT-	TACACCCCTC	AAGCGCG	-GCTTGGT	GTTGGGCTCT
<i>3C. prancei</i>	GAGCGTCAT-	TACACCCCTC	AAGCGCA	-GCTTGGT	ATTGGA-CGT
<i>3C. corallifera</i>	GAGCGTCAT-	TACACCCCTC	AAGCGCA	-GCTTGGT	ATTGGA-CGT
Lobaria amplissima	GAGCGTCAT-	TACACCCGTC	AAGCGCGT	-GCTTGGT	GTTGGG-CCG
Cetraria odontella	GAGCGTCAT-	TATACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-TCT
Cetraria nigricans	GAGCGTCAT-	TATACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-TCT
Oropogon sp.	GAGCGTCAT-	TACACCCCTC	AAGCGCG	-GCTTGGT	ATTGGGTCCT
Sulcaria sulcata	GAGCGTCAT-	TACACCCCTC	AAGCGCG	-GCTTGGT	ATTGGGTCCT
Cetraria leucostigma	GAGCGTCAT-	TACACCCCTC	AAGCGCA	-GCTTGGT	ATTGGG-CCT
Cetraria melalom	GAGCGTCAT-	TACACCCCTC	AAGCGCA	-GCTTGGT	ATTGGG-CCT
Tuckneraria ahtii	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
T. pseudocomplicata	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
N. morrisonicola	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CGT
N. pallescens	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
N. stracheyi	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CTT
Tuckneraria laureri	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-TCT
Ahtiana pallidula	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
A. nigricascens	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CTT
Cetraria nivalis	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	CTTGGG-CCT
K. merrillii	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
1A. oakesiana	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CTT
F. cucullata	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CTT
M. richardsonii	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CTT
2C. islandica	GAGCGTCAT-	TATACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
2C. crispiformis	GAGCGTCAT-	TATACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
2C. crispiformis	GAGCGTCAT-	TATACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CGT
Cetraria sepinco	GAGCGTCAT-	TACACCCCTC	AAGCGTA	-GCTTGGT	ATTGGG-CCT
1M. fuliginosa	GAGCGTCAT-	TACACCCCTC	AAGCGCA	-GCTTGGT	ATTGGGCCAT
1M. subauri	GAGCGTCAT-	TACACCCCTC	AAGCTCA	-GCTTGGT	ATTGGGTCCT

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

IIstillago sparsa	5. מממ–כמכדידכ	LU 54 CCCCATCCCT	20 5: <u> </u>	30 54 T	±0 550 ידידידידים⊂_רא
Agaricus abrupti	AAAGGAGAGC	TTGGAT-TGT	GGAGGCTTGC	таассастта	TTTGGGGTCA
LRIB 20		TGAGATAC	GGCG-GCGGC	CCTT-AAAT-	GCATCGG
4C fuckeli	CTGTCCCGCC	TTCGC	GCGCGGACTC	GCCC-CAAAT	TCATTGGCAG
Myrothecium sp	CTGTCCCGCC	TCTGC	GCGCGGACTC	GCCC-CAAAT	TCATTGGCAG
Paraphaeosphaeria sp	CTGTCCCGCC	TCTGC	GCGTGGACTC	GCCC-CAAAT	TCATTGGCAG
4C. minitans	CTGTCCCGCC	TTTGC	GCGCGGACTC	GCCC-CAAAC	TCATTGGCAG
P. pilleata	CTGTCCCGCC	TCTGC	GCGCGGACTC	GCCC-CAAAT	TCATTGGCAG
2M. terrestris	CCGCCCC	TGAAATACGC	GAGGCGGC	CCTT-GAA-T	CCATCGGC
Aspergillus flavipes	CGTCCCCCC-	GGGG-	-ACGGGCCC-	GAAA-GGCA-	GCGGCGGCAC
1C. cetrarioides	C-GTCCCT		GAGGCGT-	GCCC-GAAAG	TTAGTGG
1C. chicitae	C-GTCCCT		GAGGCGT-	GCCC-GAAAG	TTAGTGG
1C. braunsiana	C-GTCCCT		GAGGCGT-	GCCC-GAAAG	TCAGTGG
1C. japonica	C-GTCCCT		GAGGCGT-	GCCC-GAAAG	TCAGTGG
1P. quernea	C-GCCCCCG-		TAGGCGG-	GCCC-GAAAG	TCAGTGG
3C. prancei	TCGCGGGCCC	TCTT-TTGGG	GGCCTGCGT-	GCCC-GAAAA	ACAGTGG
<i>3C. corallifera</i>	TCGCGGGCCC	TCTT-TTGGG	GGCCTGCGT-	GCCC-GAAAA	ACAGTGG
Lobaria amplissima	GCGTCCCCCC		GGGACGG-	GTCC-GAATG	GCAGTGG
Cetraria odontella	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAGTGG
Cetraria nigricans	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAGTGG
Oropogon sp.	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
Sulcaria sulcata	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
Cetraria leucostigma	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
Cetraria melalom	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
Tuckneraria ahtii	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
T. pseudocomplicata	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
N. morrisonicola	C-GCCCCA		GCGGCGT-	GCCC-GAAAA	GCAGTGC
N. pallescens	C-GCTCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
N. stracheyi	C-GCCCCC		GCGGCGT-	GTCC-GAAAA	ACAGTGG
Tuckneraria laureri	C-GCCCCC		GCGGCGT-	ACCC-GAAAA	GCAGTGG
Ahtiana pallidula	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	TCAGCGG
A. nigricascens	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
Cetraria nivalis	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
K. merrillii	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	TCAGTGG
1A. oakesiana	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
F. cucullata	C-GCCCCC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
M. richardsonii	C-GTCCTC		GCGGCGT-	GCCC-GAAAA	GCAGTGG
2C. islandica	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAATGG
2C. crispiformis	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAGTGG
2C. crispiformis	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAGTGG
Cetraria sepinco	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAGTGG
1M. fuliginosa	C-GCCCCC		GTGGCGT-	GCCC-GAAAA	GCAGTGG
1M. subauri	C-GCCTCCC-	51001000	GGGGCGT-	GCCC-GAAAA	TTAGTGG

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

	56	50 51	70 58	30 59	90 600
Ustillago sparsa	-TTCA-CCGT	GGC	TCTCTCGAAA	T-GCATTAGC	GCATCCATTT
Agaricus abrupti	GCTCCTC	TGA-AATGCA	TTA-GCGGAA	CCGTCTGCGA	TCTGCCACAA
LRUB 20	CG-GTGCT	GGTGTCAGCC	CGGAGCG	CAGCAGACA-	-TGCGG
4C. fuckeli	CG-GT-CCTT	GCC-TCC	TCTCGCG	CAGCACAA	TTGCGT
<i>Myrothecium</i> sp.	CG-GT-CCTT	GCC-TCC	TCTCGCG	CAGCACA	TTGCG
<i>Paraphaeosphaeria</i> sp.	CG-GT-CTTT	GCC-TCC	TCTCGCG	CAGCACA	TTGCG
4C. minitans	CG-GT-TTTT	GCC-TCC	TCTCGCG	CAGCACAA	TTGCGT
P. pilleata	CG-GT-CTTT	GCC-TCC	TCTCGCG	CAGCACAA	TTGCGT
2M. terrestris	-G-GTGCC	GGTGT-AGCC	TGGAGCG	CAGCAGCAA-	-TGCAG
Aspergillus flavipes	CGCGT-CC	GGTCC	TCGAGCG	TA-TGGGGCT	TTGTCACCCG
<i>1C. cetrarioides</i>	CG-GT-CC	GGCG-TGAC-	TTTAAGCG	TAGTAAAA-T	TTATCCCG
1C. chicitae	CG-GT-CC	GGCG-TGAC-	TTTAAGCG	TAGTAAAA-T	TTATCCCG
1C. braunsiana	CG-GT-CC	GGCG-TGAC-	TTTAAGCG	TAGTAAAA-T	TTATCCCG
1C. japonica	CG-GT-CC	GGCG-TGAC-	TTTAAGCG	TAGTAAAA-T	TTATCCCG
1P. quernea	CG-GT-CC	GGCG-TGAC-	-TTC-GAGCG	TAGTAAAT-T	TTATCCCG
3C. prancei	CG-GT-CC	-CCGGGGA	TTTC-GCGCG	TAGTAAATC-	TTCTCCCG
<i>3C. corallifera</i>	CG-GT-CC	-CCGGGGA	TTTC-GCGCG	TAGTAAATC-	TTCTCCCG
Lobaria amplissima	CG-GT-CC	GGCG-TGAC-	-TTC-GAGCG	CAGTAGAACC	TTGTTTCG
Cetraria odontella	CG-GT-CC	GG-G-CGAC-	TTTAAGCG	TAGTAAAA	TCATCCCG
Cetraria nigricans 💻	CG-GT-CC	GGGG-CGAC-	TTTAAGCG	TAGTAAAA	TTATCCCG
Oropogon sp.	CG-GT-CC	GGTG-CGGC-	TTTAAGCG	TAGTAATTTT	TCATCCCG
Sulcaria sulcata	CG-GT-CC	GGTG-CGGC-	TTTAAGCG	TAGTAATTTT	TCATCCCG
Cetraria leucostigma	CG-GT-CC	GGTG-TGAC-	TTTAAGCG	TAGTAAAACT	TCATCCCG
Cetraria melalom	CG-GT-CC	GGTG-TGAC-	TTTAAGCG	TAGTAAAACT	TCATCCCG
Tuckneraria laureri	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAACT	TCGTCCCG
T. pseudocomplicata	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAACT	TCATCCCG
N. morrisonicola	CG-GC-CC	GGTG-CGGC-	TTTAAGCG	TAGTAAAACT	TCATCCCG
N. pallescens	CG-GT-CC	GGCG-TGAC-	TTTAAGCG	TAGTAAAACC	TCATCCCG
N. stracheyi	CG-GT-CC	GGTG-CGAC-	TTCAAGCG	TAGTAAAACT	TCCTCCCG
Tuckneraria laureri	CG-GT-CC	GGCG-CGAC-	TTTAAGCG	TAATAAAACT	CCATCCCG
Ahtiana pallidula	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAT-T	TCATCCCG
A. nigricascens	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAT-T	TCATCCCG
Cetraria nivalis	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAT-T	TCATCCCG
K. merrillii	CG-GT-CC	GGTG-CTAC-	TTTAAGCG	TAGTAAAT-T	TCATCCCG
1A. oakesiana	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAT-T	TCATCCCG
F. cucullata	CG-GT-CC	GGTG-CGAC-	TTTAAGCG	TAGTAAAT-T	TTATCCCG
M. richardsonii	CG-GT-CC	GGGG-CGAC-	TTTAAGCG	TAGTAAAT-T	TCATCCCG
2C. islandica	AG-GT-CC	GGGG-TGAC-	TTTAAGCG	TAGTAAAA	TTATCCCG
2C. crispiformis	CG-GT-CC	GGGG-TGAC-	TTTAAGCG	TAGTAAAA	TTATCCCG
2C. crispiformis	CG-GT-CC	GGGG-CGAC-	TTTAAGCG	TAGTAAAA	TTATCCCG
Cetraria sepinco	CG-GT-CC	GTGG-TGGC-	-TTC-AAGCG	TAGTAAAA	TCATCCCG
1M. fuliginosa	CG-GT-CC	GGAG-CGGC-	TTTAAGCG	TAGTAATA-T	TTATCCCG
1M. subauri	CG-GT-CC	GGAG-CGAC-	TTTAAGCG	TAGTAAAA-T	TTATCCCG

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

	61	LO 62	20 63	30 64	10 650
Ustillago sparsa	GATAGGCAAG	ACGGACGAA-	AGCTC	ATCTTTTCGC	TCTCTCTTCC
Agaricus abrupti	GTGTGAT	AAATTATCTA	CAC-TGGCGA	GGG-GATTGC	TCTCTGTGAT
LRUB 20	CTTCC	AGGCGACCA-	CGCG-CCC	GCCGGA	CAACGACC
4C. fuckeli	CTGCGG	GGGGGCGT	GGCCC	G-CGTCCA-C	GAAGC
Myrothecium sp.	CTTCTCG	AGGGGCGC	GGCCC	G-CGTCCA-C	GAAGC
Paraphaeosphaeria sp.	.CTTCAG	AGGGGTGT	GGGCC	G-CGTCCA-C	GAAGC
4C. minitans	CTGCGA	GGGGGCGT	GGCCC	G-CGTCCA-C	GAAGC
P. pilleata	CTGCGA	GGGGGCGT	GGCCC	G-CATCCA-C	GAAGC
2M. terrestris	CTTCTT	-GGGGCA	G-CCC	G-AAGCCA-G	CCGGACAAT-
Aspergillus flavipes	CTCTGT	AGGCCC	GGCCG	G-CG-CCA	GCCCA
<i>1C. cetrarioides</i>	CCTTTAA-	GTTCGCGCC-	GTGGCCC	GCCA	GACA
<i>1C. chicitae</i>	CCTTTAA-	GTTCGCGCC-	GTGGCCC	GCCA	AACAA
1C. braunsiana	CCGTTAA-	GTTCGCGCC-	GTGGCCC	GCCA	GACAA
1C. japonica	CCTTTAA-	GTTCGCGCC-	GTGGCCC	GCCA	GACAA
<i>1P. quernea</i>	CTTTGGAG	TTTCGCGTC-	GCGGCTG	GCCA	GGATGCC
3C. prancei	CGTTGG				
<i>3C. corallifera</i>	CGTTGG				
Lobaria amplissima	CTCGGGAG	GCACGC-CC-	GGGTCCG	GCCAGT	CAACCGTGAA
Cetraria odontella	CTTTGAAA	GTTCGCTTC-	GTGGCCG	GCCA	GACAACC
Cetraria nigricans 📕	CTTTGAAA	GTTCGCTTC-	GTGGCCG	GCCA	GACAACC
Oropogon sp.	CTTTGAAG	GCCCGCCCC-	GAGGCTG	GCCA	GACAACC
Sulcaria sulcata	CTTTGAAG	GCCCGCCCC-	GAGGCTG	GCCA	GACAACC
Cetraria leucostigma	CTTTGAAA	GCTCGCCCC-	GCGACCG	GCCA	GACAACC
Cetraria melalom	CTTTGAAA	GCTCGCCCC-	GCGACCG	GCCA	GACAACC
Tuckneraria laureri	CTTTGAAA	GCTCGCCCC-	GCGACCG	GCCA	GACAACC
T. pseudocomplicata	CTTTGAAA	GTCCGCCCC-	GCGACCG	GCCA	GACAACC
N. morrisonicola	CTTTGAAA	GCCCGCCCC-	GCGGCCG	GCCA	GACAACC
N. pallescens	CTTTGAAA	GTCTGCCCC-	GCGACCG	GCCA	GACAACC
N. stracheyi	CTCTGGAA	GTTCGCCCC-	GCGATCG	GCCG	GACAACC
Tuckneraria laureri	CTTTGAAA	GTTCGCCTC-	GCGACCG	GCCA	GACAACC
Ahtiana pallidula	CTTTGAAA	GTTCGCCTC-	GTGGCCG	GCCA	GACAGCC
A. nigricascens	CTTTGAAA	GTTCGCCTC-	GTGGCCG	GCCA	GACAACC
Cetraria nivalis	CTTTGAAA	GTTCGCCCC-	GTGGCCG	GCCA	GACAACC
K. merrillii	CTTTGAAA	GTTCGCCCC-	GTGGCTG	GCCA	GACAACC
1A. oakesiana	CTTTGAAA	GTTCGCCCC-	GTGGCTG	GCCA	GACAACC
F. cucullata	CTTTGAAA	GTTCGCCCC-	GTGGCTG	GCCA	GACAACC
M. richardsonii	CTTTGAAA	GTTCGCCCC-	GCGGCTG	GCCA	GATAACC
2C. islandica	CTTTGAAA	GTTCGCCTC-	GTGGCCT	GCCA	GACAACC
2C. crispiformis	CTTTGAAA	GTTCGCCTC-	GTGGCCT	GCCA	GACAACC
2C. crispiformis	CTTTGAAA	GTTCGCCTC-	GTGGCCT	GCCA	GACAATC
Cetraria sepinco	CTTTGAAA	GCTCGTCTC-	GTGGCCG	GCCA	GACAACC
1M. fuliginosa	CTTTGAAA	GTCCGCCCC-	GTGGCCT	GCCA	GGTAACC
1M. subauri	CTTTGAAA	GTTCGCTCC-	GCGGCTG	GCCA	AGTAACC

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

			···· ··
Ilstillago sparsa	CTGCCGGGTT	ͲͲϤϪͲϪϪͲϪͲ	САССАСТ
Agaricus abrunti	GTTCAGCTTC	TAATC-GTCT	ACGGACA
I.RIIB 20	CCA-CCT		
AC fuckeli		$T = \Delta = CCC = -T$	CT
Myrothecium sp		T = A = CCC = -T	CT
Paranhaeosnhaeria sp		T = A = TCG = -T	CT
4C minitans		T = A = CCG = -T	CT
P nilleata		T = A = CCC = -T	CT
2M terrestris	CGAAACCT		
Aspergillus flavines	CG-CAGATCA	TCOTTTTTTT	C = A = GG
10 cetrarioides		TCCTTTTT ΨΨΨΨΦ ΨΨΨΨΨ	
10 chicitae	TAA-	TTTTTTTT ΨΨΨΨΨΔΨΨΨΨ	C-CATAA
10 braunsiana			С-ААТАА
1C japonica			C-AATAA
1P quernea	-GAAAGCC	TTC AT	CTCA-CA
30 prancei	AAAG	AI	
3C corallifera	AAAG		
Lobaria ampliggima	CCCCAT-	CAT	CT-CT
Cetraria odontella	CCG		САРАТСА
Cetraria nigricans	CCG	TACAT II	CAAATCA
Oropogon sp	CC2	$-\Delta - \Delta T - T T$	CCACCA-
Sulcaria sulcata	CCA	$-\Delta - \Delta T T T T$	CCA-CGA
Cetraria leucostigma	CCA	-ACACTT	
Cetraria melalom	CCA	-ACACTT	
Tuckneraria laureri	CCA	-ACACTT	
T pseudocomplicata	CCA	-CCACTT	
N morrisonicola	CCA	-ACACTTT	CA - TCA
N pallescens	CCA		
N strachevi	CCA	-ACGCCT	CGA-CAA
Tuckneraria laureri	CTCA-	-ACATCT	
Abtiana nallidula	C		
A nigricascens	C		
Cetraria nivalis	CCA		
K merrillii	C	CATTATTT	
1A oakesiana	C		CAA-TAA
F cucullata	C	CA-TACTT	CAA-TAA
M richardsonii	C		
2C islandica	C		Садатса
2C. crispiformis	с	-CGTACATTT	САААТСА
2C. crispiformis	č	-CGTACATTT	САААТСА
Cetraria sepinco	Č	-CATATCTTC	САТАТСА
1M fuliginosa	C	-CGATGACTT	САА-ТАА
1M subauri	~ C		САА-ТАА
	งกรส	CONTRETT	···· ···
Codes of denus are shown in	Figure D2		

A=Arctocetraria	1A=Allocetraria	1C=Cetrelia	2C=Cetraria islandica subsp.
3C=Cladonia	4C=Coniothyrium	F=Flavocetraria	K=kaernefeltia
M=Masonhalea	1M=Melanelixnia	2M=Mycoleptodiscus	N=Nephromopsis

1P=Pyrrhospora

..... 10 20 30 40 50 Ustillago affinis TAACTTTGGG CAACGGATCT CTTGGTTCTC CCATCGATGA AGAACGCAGC A. abruptibulbus CAACTTTCAG CAACGGATCT CTTGGCTCTC GCATCGATGA AGAACGCAGC LRUB 20 CAACTTTCAA CAATGGATCT CTTGGCTCCG GCATCGATGA AGAACGCAGC M. terrestris CAACTTTCAA CAATGGATCT CTTGGCTCCA GCATCGATGA AGAACGCAGC Myrothecium sp. CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC C. sporulosum CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC Montagnula opulenta CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC 1P. cyclothyrioides CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC Paraphaeosphaeria sp.CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC P. pilleata CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC C. fuckelii CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC C. minitans CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC Massarina bipolaris CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC CAACTTTCAA CAATGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Massarina lacustris P. michotii CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC Lophiostoma arundinisAAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC 1A. flavipes AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC 1A. niger 1A. ellipticus AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC Fennellia nivea Tuber rufum AAACTTTCAA CAACGGATCT CTTGGCTCTC GTATCGATGA AGAACGCAGC Aporospora terricola CAACTTTCAA CAATGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC CAACTTTCAA CAATGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Humicola fuscoatra 60 70 80 90 100 Ustillago affinis GAATTGCGAT AAGTAATGTG AATTGCAGA- ---AGTGAAT CATCGAATCT A. abruptibulbus GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT LRUB 20 GAAATGCGAT AACTAGTGTG AATTGCAGAT TTCAGTGAAT CATCGAGTCT M. terrestris GAAATGCGAT AACTAGTGTG AATTGCAGAT TTCAGTGAAT CATCGAGTCT GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Myrothecium sp. C. sporulosum GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Montagnula opulenta GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT 1P. cyclothyrioides GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Paraphaeosphaeria sp.GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT P. pilleata C. fuckelii GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT C. minitans GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Massarina bipolaris GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Massarina lacustris P. michotii GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Lophiostoma arundinisGAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT 1A. flavipes GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT 1A. niger 1A. ellipticus GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT Fennellia nivea GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT Tuber rufum GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Aporospora terricola GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Humicola fuscoatra GAAATGCGAT AAGTAGTGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT

Figure D3 Alignment data of complete 5.8S sequences of isolate LRUB 20 and 22 refernce taxa from GenBank (*A=Agaricus*, 1*A=Aspergillus*, *C=Coniothyrium*, *M=Mycoleptodiscus 1P=Paracoconiothyrium*).

	11() 120) 130) 140) 150
Ustillago affinis	TTGAACGCAC	CTTGCGCTCC	C-GGCAGATC	TAATCTGGGG	AGCATGCCTG
A. abruptibulbus	TTGAACGCAT	CTTGCGCTCC	TTGG	TATTCCGAGG	AGCATGCCTG
LRUB 20	TTGAACGCAC	ATTGCGCCTC	TTGG	TATTCCTCGA	GGCATGCCTG
M. terrestris	TTGAACGCAC	ATTGCGCCTC	TTGG	TATTCCTCGA	GGCATGCCTA
Myrothecium sp.	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
C. sporulosum	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
Montagnula opulenta	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
1P. cyclothyrioides	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
Paraphaeosphaeria sp	. TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
P. pilleata	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
C. fuckelii	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
C. minitans	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
Massarina bipolaris	TTGAACGCAC	ATTGCGCCCT	TTGG	TATTCCTTAG	GGCATGCCTG
Massarina lacustris	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
P. michotii	TTGAACGCAC	ATTGCGCCCC	TCGG	TATTCCGTGG	GGCATGCCTG
Lophiostoma arundinis	STTGAACGCAC	ATTGCGCCCT	TTGG	TATTCCTTAG	GGCATGCCTG
1A. flavipes	TTGAACGCAC	ATTGCGCCCC	CTGG	TATTCCGGGG	GGCATGCCTG
1A. niger	TTGAACGCAC	ATTGCGCCCC	CTGG	TATTCCGGGG	GGCATGCCTG
1A. ellipticus	TTGAACGCAC	ATTGCGCCCC	CTGG	TATTCCGGGG	GGCATGCCTG
Fennellia nivea	TTGAACGCAC	ATTGCGCCCC	CTGG	TATTCCGGGG	GGCATGCCTG
Tuber rufum	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCTTGG	GGCATGCCTG
Aporospora terricola	TTGAACGCAC	ATTGCGCCCC	TTGG	TATTCCATGG	GGCATGCCTG
Humicola fuscoatra	TTGAACGCAC	ATTGCGCCCC	TCGG	TATTCCTTGG	GGCATGCCTG

.....|....|| 160

	ΤC	50	
Ustillago affinis	TTTGAGGGCC	GCGAA	
A. abruptibulbus	TTTGAGTGTC	AT-TA	
LRUB 20	TTCGAGCGTC	GT-TA	
M. terrestris	T-CGAGCGTC	GT-TT	
Myrothecium sp.	TTCGAGCGTC	ATCTA	
C. sporulosum	TTCGAGCGTC	ATCTA	
Montagnula opulenta	TTCGAGCGTC	ATCTA	
1P. cyclothyrioides	TTCGAGCGTC	ATCTA	
Paraphaeosphaeria sp	. TTCGAGCGTC	ATCTA	
P. pilleata	TTCGAGCGTC	ATCTA	
C. fuckelii	TTCGAGCGTC	ATCTA	
C. minitans	TTCGAGCGTC	ATCTA	
Massarina bipolaris	TTCGAGCGTC	AT-TT	
Massarina lacustris	TTCGAGCGTC	ATCTA	
P. michotii	TTCGAGCGTC	ATCTA	
Lophiostoma arundini:	STTCGAGCGTC	AT-TT	
1A. flavipes	TCCGAGCGTC	AT-TA	
1A. niger	TCCGAGCGTC	AT-TG	
1A. ellipticus	TCCGAGCGTC	AT-TG	
Fennellia nivea	TCCGAGCGTC	AT-TG	
Tuber rufum	TTCGAGCGTC	A-CTA	
Aporospora terricola	TTCGAGCGTC	ATCTA	
Humicola fuscoatra	TTCGAGCGTC	ATCTA	

..... 10 20 30 40 50 S. cerevisiae AAACTTTCAA CAACGGATCT CTTGGTTCTC GCATCGATGA AGAACGCAGC 1S. pombe AAACTTTCAG CAACGGATCT CTTGGCTCTC GCATCGATGA AGAACGCAGC LRUB 20 CAACTTTCAA CAATGGATCT CTTGGCTCCG GCATCGATGA AGAACGCAGC B. spartinae AAACTTTCAA CAACGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Gaeumannomyces amomi AAACTTTCAA CAACGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Magnaporthe grisea AAACTTTCAA CAACGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Harpophora maydis AAACTTTCAA CAACGGATCT CTTGGCTCTG GCATCGATGA AGAACGCAGC 1M. terrestris CAACTTTCAA CAATGGATCT CTTGGCTCCA GCATCGATGA AGAACGCAGC 1P. botulispora AAACTTTCAA CAACGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Pyricularia angulata AAACTTTCAA CAACGGATCT CTTGGTTCTG GCATCGATGA AGAACGCAGC Aspergillus flavipes AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC A. niger AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC A. ellipticus AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA AGAACGCAGC Fennellia nivea 60 70 80 90 100 S. cerevisiae GAAATGCGAT ACGTAATGTG AATTGCAGAA TTCCGTGAAT CATCGAATCT 1S. pombe GAAATGCGAT ACGTAATGTG AATTGCAGAA TTCCGTGAAT CATCGAATCT LRUB 20 GAAATGCGAT AACTAGTGTG AATTGCAGAT TTCAGTGAAT CATCGAGTCT GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT B. spartinae Gaeumannomyces amomi GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Magnaporthe grisea Harpophora maydis GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGCGAAT CATCGAATCT 1M. terrestris GAAATGCGAT AACTAGTGTG AATTGCAGAT TTCAGTGAAT CATCGAGTCT 1P. botulispora GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Pyricularia angulata GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT Aspergillus flavipes GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT A. niger GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT A. ellipticus GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT Fennellia nivea 110 120 130 140 150 S. cerevisiae TTGAACGCAC ATTGCCCCCT T-GGTATTCC AGGGGGGCATG CCTGTTTGAG TTGAACGCAC ATTGCGCCTT TGGGTTCTAC CAAAGGCATG CCTGTTTGAG 1S. pombe TTGAACGCAC ATTGCGCCTC TTGGTATTCC TCGAGGCATG CCTGTTCGAG LRUB 20 TTGAACGCAC ATTGCGCCCG CCGGTATTCC GGCGGGCATG CCTGTTCGAG B. spartinae Gaeumannomyces amomi TTGAACGCAC ATTGCGCCCG CCGGTATTCC GGCGGGCATG CCTGTCCGAG Magnaporthe grisea TTGAACGCAC ATTGCGCCCG CCGGTATTCC GGCGGGCATG CCTGTTCGAG Harpophora maydis TTGAACGCAC ATTGCGCCCG CTGGTATTCC AGCGGGCATG CCTGTCCGAG 1M. terrestris TTGAACGCAC ATTGCGCCTC TTGGTATTCC TCGAGGCATG CCTAT-CGAG TTGAACGCAC ATTGCGCCCT GTGGTATTCC GCAGGGCATG CCTGTTCGAG 1P. botulispora Pyricularia angulata TTGAACGCAC ATTGCGCCCG CCGGTATTCC GGCGGGCATG CCTGTTCGAG Aspergillus flavipes TTGAACGCAC ATTGCGCCCC CTGGTATTCC GGGGGGCATG CCTGTCCGAG TTGAACGCAC ATTGCGCCCC CTGGTATTCC GGGGGGGCATG CCTGTCCGAG A. niger A. ellipticus TTGAACGCAC ATTGCGCCCC CTGGTATTCC GGGGGGGCATG CCTGTCCGAG TTGAACGCAC ATTGCGCCCC CTGGTATTCC GGGGGGGCATG CCTGTCCGAG Fennellia nivea

Figure D4 Alignment data of complete 5.8S sequences of isolate LRUB 20 and 13 refernce taxa from GenBank (*B=Buergenerula*, 1*M=Mycoleptodissus*, 1*P=Phialophora* S=Saccharomyces, 1S=Schizosaccharomyces)

	158
S. cerevisiae	CGTCATTT
1S. pombe	TGTCATTA
Lrub 20	CGTCGTTA
B. spartinae	CGTCATTT
Gaeumannomyces amomi	CGTCATTT
Magnaporthe grisea	CGTCATTT
Harpophora maydis	CGTCATTT
1M. terrestris	CGTCGTTT
1P. botulispora	CGTCATTT
Pyricularia angulata	CGTCATTT
Aspergillus flavipes	CGTCATTA
A. niger	CGTCATTG
A. ellipticus	CGTCATTG
Fennellia nivea	CGTCATTG

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

BIOGRAPHY

Mr. Porntep Chomcheon was born on December 4, 1977 in Uttaradit province, Thailand. He graduated with a Bachelor Degree of Science in Biotechnology from the Faculty of Science and Technology, Thammasat University, Thailand in 2000. He has been studying for a Master Degree of Science in Biotechnology, Faculty of Science, Chulalongkorn University, Thailand since 2002.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย