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CHAPTER I

Introduction

1.1 Background and Motivation

Software Engineering is not only a technical discipline of its own, but also a problem

domain where technologies coming from other disciplines are relevant and can play an

important role in the development process. One important example is knowledge en-

gineering [33], a term that is used in broad sense to encompass arti�cial intelligence,

computational intelligence, knowledge base, data mining, and machine learning. Many

typical software development bene�ts from these disciplines. Two popular methodologies

of high potential impact on software development productivity and reliability are formal

speci�cation and reuse. Reuse has a larger potential impact at early stages in the devel-

opment process while formal speci�cation allows increase in reuse automation process.

Adoption of these technologies requires signi�cant investment in building libraries, edu-

cating designers, and constructing domain models. Therefore, to make this development

investment economically attractive, there is a need for methodologies and automated

tools to support development activities, especially design reuse, at the speci�cation level

to attain a usable software product.

From software engineering standpoint, reuse is a popular design methodology com-

mon to engineering discipline. It has two primary aspects: (a) cost reduction resulting

from not design a new solution from scratch; and (b) increased con�dence in the solu-

tion because of its successful reuse history. For reuse to be an e�ective problem solving
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methodology, the designer must be able to reuse appropriate solutions, adapt a solu-

tion to �t the new problem, and evaluate the resulting solution. In practice, reuse is

popularly applied in the design domain. Owing to creativity and complexity of design

paradigms, approaches, and the process itself, design reuse must, in many cases, be

tailored to suit speci�c requirements. Moreover, automated software reuse support has

been slow to emerge due to the diÆculty in providing a useful design representation

for software components. Thus, this design representation must be able to eÆciently

support component retrieval, adaptation, and veri�cation. For this reason, software

components are commonly stored in repository with the help of knowledge engineering,

neural networks, and fuzzy logic techniques.

Classi�cation is automated by using formal descriptions to de�ne features describing

a component. These de�nitions control the classi�cation scheme in place of a human

domain expert. A feature is assigned to a component if a corresponding predicate is

logically implied by the component speci�cation. This method of assigning features

ensures that components more likely to match reuse criteria will have similar feature

sets. Full scale speci�cation matching, using automated theorem proving, can be applied

to the retrieved components to precisely evaluate their reusability.

Automatic software component classi�cation is one of the prime objectives in component-

based development. Existing classi�cation approaches focus on creating a component

structure index to aid in the deposit and retrieval processes. The underlying principle

rests on intelligent clustering mechanism where neural network technique seems to be

the norm of choices.

Such automated component classi�cation support is conducive toward the application

of software reuse. Developers can make use of available classi�cation support to acquire

the desired components for the task at hand. As a consequence, software development

will become more productive at higher quality and less laborious than existing state-of-
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the-practice.

1.2 Contributions

This dissertation proposes a formal method for software component speci�cation based

on three identi�cation properties, namely, structural, functional, and behavioral prop-

erties. These properties are used to classify software components to be stored in a

repository. The proposed approach focuses on establishing a rigorous framework to

arrive at a formal method for software component speci�cation and employs neural net-

work techniques to classify for software components. Thus, the main contributions of

this work are:

(1) Formally de�ne the "three views of the system" of software component speci�ca-

tions using Z language based on object-oriented paradigm;

(2) Present a software component matrix representation based on the above well-

de�ned software component speci�cation;

(3) Gather and classify sample software components in coarse and �ne grains based on

formal de�nitions so established for archival purpose according to their attributes. The

classi�cation process calls for intelligent knowledge engineering techniques to sort out

the components under investigation, for instance, Self Organizing Map (SOM) Network,

Fuzzy Subtractive Clustering (FSC), or Rival Penalized Competitive Learning (RPCL)

technique;

(4) Conduct component retrieval with the help of an indexing structure constructed

according to component clusters in two di�erent fashions, namely, 1) Non-hierarchical

indexing and 2) Hierarchical indexing; and

(5) Analyze classi�ed components and establish a retrieval process based on their

reuse component speci�cations, classi�cation techniques, and retrieval procedures.
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1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Some related work is presented in

Chapter 2. Chapter 3 describes software component con�guration. The principal and

fundamental software component formulation and classi�cation process are elucidated in

Chapter 4 and Chapter 5, respectively. Chapter 6 describes the experiment. Component

retrieval process is discussed in Chapter 7. Summary of the proposed method, together

with future work, is given in Chapter 8.



CHAPTER II

Related Works

Software component library construction, as presented in [28] using information retrieval

techniques to automatically assemble various components, can be divided into two steps.

First, component attributes are extracted from natural language documentation through

an indexing algorithm. Second, a hierarchical indexing structure is generated using

a clustering technique based on analysis of natural language documentation obtained

from manual pages or comments. Despite being a rich source of conceptual information,

natural language is not rigorous for specifying the behavioral speci�cation of software

components. As such, a formal speci�cation language can serve as precise de�nitions

and a means for communication among software clients, speci�ers, and implementers

[40].

The MAPS system [31] applies formal speci�cations termed case-like expressions to

specify software modules. MAPS exploits the uni�cation capability to search through

reusable modules in the library. Jeng, et. al, [19] utilizes formal methods to specify

software component in a hierarchically organized library. However, both approaches

still have granularity limitations.

Hong and Kim [18] proposed three classi�cation methods to systematically orga-

nize the components according to their formal speci�cation so developed, namely, the

enumerative method, the facet method, and the information retrieval method using clus-

tering technique. Some of the related works [1], [5], [6], [7], [18], [20], [37], [41], [44] also
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investigate on such issues as component identi�cation, component reuse, formal method

for component reuse, and classi�cation of software components.

A popular method for describing repositories of reusable software components is a

faceted classi�cation scheme [32]. Using this methodology, components are classi�ed by

a set of attribute-value pairs or features. A domain expert who is required to analyze

the repository of software components and classify them according to prede�ned terms

classi�es the components. The knowledge of domain expert is implicit in the classi�ca-

tion. To provide a basis for similarity calculations, the terms that represent the set of

possible values for a feature are often related by a conceptual distance graph [32]. The

informality and imprecision of these classi�cation schemes complicate the automation of

the overall classi�cation, as well as the reuse process. Automation of the classi�cation

process requires reverse engineering from source code. The imprecision of this classi-

�cation scheme does not support formal component veri�cation since reasoning about

identically classi�ed components requires source code analysis.

The use of formal speci�cations to augment software reuse has been proposed to

solve various software design problems [11], [14], [19], [20], [34], [36], [45], [46]. There

are many bene�ts to applying formal methods to software reuse. First, formal speci-

�cations provide an explicit representation of structure, function, and behavior of the

software component, independent of many implementation details. This is valuable be-

cause the structure, function, and behavior of the designed software components are the

primary concern in reusability. Additional bene�ts stem from the expressiveness of for-

mal speci�cation languages that allows precision beyond that of faceted classi�cation,

e.g., equivalent speci�cation can be derived to yield equivalent properties of software

components. Finally, formal speci�cations and their associated formal system provide

a basis for automated reasoning. A formal speci�cation de�nes the structure, function,

and behavior within a domain model, which is a collection of axioms that de�ne the
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data types and operations used in the system. As such, formal reasoning based on the

domain model can be used logically to verify the reusability of a software component,

which can serve as a foundation of machine learning in automated software classi�cation

and reuse.



CHAPTER III

Software Component Con�guration

The fundamentals of software component usage primarily rests on object-oriented con-

cepts, but aim at much larger speci�cation than that of a single object. Despite the fact

that the concepts encompass various reusability provisions, component classi�cation and

archival principles are still diÆcult to administer for reuse. In a software repository, soft-

ware component retrieval is usually accomplished through some classi�cation schemes

[6], [7], [18], [28]. The users must supply as much relevant descriptions as possible for

the closest match of the desired component. The underlying implementation details of

retrieval process are often transparent to the users. As such, it is imperative for every

archived component that the components be correctly identi�ed, classi�ed, and stored

to e�ectively support subsequent retrieval.

To achieve such goals, a well-de�ned component speci�cation and classi�cation frame-

work based on conventional object-oriented paradigm, formal approach, and computa-

tional intelligence is proposed for systematic component storage and retrieval.

The process requires software component identi�cation and speci�cation to be rig-

orously de�ned which is based on three aspects of software component, namely, struc-

tural, functional, and behavioral properties. A component modeling technique (CMT)

is employed to specify and construct a visual component model using Uni�ed Modeling

Language (UML) [29]. The essence of this approach is to capture as much information

pertaining to the fundamental properties of the component as possible. Such information
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is then described through formal speci�cation by means of Z language [35], [41].

3.1 Component Identi�cation

The basic premise of software component rests on the notions of reuse building blocks.

Every component is made up of zero or more subcomponent in the form of concrete

classes. Thus, a component can be regarded as a self-contained complex entity. Figure

3.1 illustrates the composition of a component having a subcomponent, a class, or a

family of subcomponents or classes, common data, and common methods. Each part

is linked to its structurally related subcomponents or classes de�ned by some interac-

tions, which are eventually connected to the outside world via the interface. Thus, any

component can be linked to other components via di�erent interactions. The behav-

ioral interactions among these subcomponents or classes are described in the form of

transactions. This procedure is recursively applied to create and identify component

interrelationships.

<<component name>>

Operation:

Class name

Attribute:

Class name

<<Subcomponent
name>>

Attribute:

Class name

Operation:

Attribute:

Class name

Operation:

Figure 3.1: Component Model.

The following de�nitions de�ned in [4], [38], [36] are reiterated here for use in subse-
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quent library analysis and composition.

Class: is a general speci�cation or description for a set of objects that share a

common behavior. It de�nes the properties (attributes), methods (operations), mes-

sages (requests for operations), relationship, and semantics of a similar group of objects.

Classes may themselves be objects (entities). Classes usually are templates from which

individual objects can be created.

Abstraction: is a design technique that focuses on the essential aspects of an entity

and ignores or conceals less important or non-essential aspects. It is an important

tool concerning with both the \attributes" and \behavior (operation)" for simplifying a

complex situation to a level where analysis, experimentation, or understanding can take

place.

Object: is a concept, an abstraction, and a thing with sharp boundaries and meaning

for an application, all of which represent an instance of a class. An object has identity,

state, and behavior.

Common Class: is a class that can be requested from other classes, consisting of

� Common Data Class: is the class that collects common data of others classes in

the component and can be accessed by default operations (read, update, delete,

and insert); and

� Common Method Class: is the class that collects the common operations of other

classes in the component from which the operations can be requested.

Relationship: is an association among one or more objects or components. It is either

a fact or a reference. Occasionally, a relationship is nested (or objecti�ed) so that the

relationship itself can participate in other relationships. There are class relationship and

component relationship. The former composes of dependency, association, generaliza-

tion, and realization [26], [29], whereas the latter associates components that may either



11

be abstract (speci�cations) or concrete (implementations). An abstract component de-

scribes functional behavior{what services a subsystem provides. A concrete component

describes an implementation{how a subsystem's services are provided. Such relation-

ships entail data abstraction, information hiding, multiple implementation, and self-

contained descriptions of component behavior. This work focuses on component rela-

tionship that is further characterized as implements, uses, and extends relationships.

The �rst fundamental component relationship upon which all others rely for meaning

and utility is implements. Implements describe the key relationship between an imple-

mentation (a concrete component) and a speci�cation (an abstract component). The

implements relationship may be de�ned informally as follows:

� A concrete component X implements abstract component Y if and only if X

exhibits the behavior speci�ed by Y [12].

This is a fairly intuitive relationship between a speci�cation and an implementation.

However, a fully formal and general de�nition of the implements relationship is very

intricate and has been the subject of much research. Implements express a dependency

between two components in the following sense. If component X implements component

Y , then X depends on Y to provide an abstract, client-level description of its behavior

{ a \cover story" hiding all implementation details.

Justifying a claim that X implements Y may require signi�cant e�ort, especially if

done formally, whereby considerable leverage can be gained from doing so. If two di�er-

ent concrete components both implement the same abstract component, then either of

them may be used in a context requiring the functional behavior described by the ab-

stract component. In this case, the two implementations are behaviorally substitutable

with respect to the speci�cation they both implement. The two implementations may

di�er in non-functional characteristics such as execution time, space requirements, cost,
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warranty, legal use restrictions, level of trust in correctness, and so forth.

While implements relationship describes a dependency between an implementation

and a speci�cation, uses relationship describes a dependency that exists between two

di�erent abstractions. The relation name uses actually applies to three di�erent yet

closely related component relationships. Uses may describe a dependency between two

implementations, between two speci�cations, or between an implementation and speci-

�cation. The last of these three relationships is de�ned as follows:

� A concrete component X uses abstract component Y if and only if X depends on

the behavior speci�ed by Y [12].

This form of the uses relationship expresses a polymorphic relationship between

implementations. Any component that implements abstract component Y may serve as

the actual concrete component used by instances of component X. Thus, this form of

uses reduces unnecessary dependencies between components. Note that none of the three

uses relationships is equivalent to the is�a� part� of relationship. If implementation

X uses implementation Y , Y may or may not be a part of the data representation of X.

The client wishing to use component X does not need to know the speci�c role of Y in

relation to X in order to use component X.

The third component relationship is extends. The name extends applies to two dif-

ferent, yet closely related component relationships. One extends expresses a dependency

between two abstract components. The other expresses a dependency between two con-

crete components. Both extends relationships may be de�ned informally as follows:

� A component X extends component Y if and only if all of the interface and

behavior described by Y is included in the interface and behavior described by X

[12].
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This de�nition conveys the intuitive meaning of extends, that is, component X ex-

tends the interface and behavior of component Y . It implies the essential property of

behavioral substitutability. If abstract component X extends abstract component Y ,

concrete component X1 implements X, and concrete component Y 1 implements Y ,

then X1 is behaviorally substitutable for Y 1 with respect to Y . Note that Y 1 is not

behaviorally substitutable for X1 with respect to X in this case. Thus behavioral sub-

stitutability is a ternary relationship, not a binary equivalence relation. In some cases,

the extends relationship may sound very much like an inheritance relationship. It is

important to understand that extends is not an inheritance relationship. Extends de-

scribes a behavioral relationship between two components, whereas inherits � from

does not. Furthermore, while inheritance may be a convenient programming language

mechanism for expressing structural aspects of the extends relationship, extends may

be encoded in programming languages without any use of inheritance. Figure 3.2 shows

the component relationship.

<<component
name>>

<<component
name>>

<<component
name>>

<<component
name>>

Figure 3.2: Component Relationship.

Interface: de�nes the access points to components that are a collection of operations

used to specifying service of a component. In an interface, each operation's semantic
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is speci�ed. This speci�cation provides implementation of the interface and the clients

who use the interface. The interface of a component is important for the composition

and customization of component by the users since it allows the users to �nd suitable

components and to understand their purpose, functionality, usage, and restrictions.

The description of a component interface consists of a signature and a behavior part.

The signature de�nes operations or methods, parameters (type and size), and return

values. The behavior part, on the other hand, describes how the component acts or

reacts to requests (messages) from other components.

Components can implement (export) one or more interfaces and can also use (import)

interfaces from other components. Therefore, export interfaces correspond to the services

a component provides and import interfaces correspond to the services a component

needs.

Interface allows the heterogeneous components to interoperate. At a minimum, the

components' interface should provide a contract that states both the services a compo-

nent o�ers and the services the component requires in ful�lling its commitment.

3.2 Component Modeling Technique (CMT)

Component Modeling Technique adheres to the \three views of a system" paradigm,

namely, structure, behavior, and function. The static model is termed the structural

model; the representation of system dynamic is termed the behavioral model; and the

representation of component process is termed the functional model. Each model is

used to build a set of component views de�ned on a domain. As stated in Section 3.1,

it is possible to recursively represent embedded component view based on the covering

domain. Con�guration detail of each model will be discussed in the sections that follow

to establish a formal approach which will denote the component speci�cations.
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3.2.1 Structural Model

The structural model in CMT consists of:

� Component box with small rectangles representing methods on one side and little

lollipops connected by solid line representing the interface on the other side;

� Internal box representing classes with a mandatory class name, optional attribute

name or declarations, and optional operation names and declarations;

� Dashed line representing dependency relationship;

� Solid line representing association relationship;

� Solid line with open arrow representing generalization relationship;

� Dash line with close arrow representing realization relationship;

� Solid line with close arrow representing uses relationship;

� Dash line with open diamond representing implements relationship;

� Dash line with close diamond representing extends relationship; and

� Bracketed textual items denoting constrains.

Figure 3.3 shows the structural model of an example component Array Stack Data Structure

consisting of two subcomponents (Array and Stack), common classes (Method class and

Attribute class), and their interactions.

3.2.2 Functional Model

The functional model in CMT speci�es how operations derive output values from input

values without regarding to the order of computations. The original illustration utilizes
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Array_Stack_Data_Structure

Insert
Delete

Method

A : ArrayItem
Data : Item

Attribute

Stack

Array

use

call

call

Sort_A

Insert_A

             Insert_S

Delete_S

     
  D

ele
te_

A

Empty_S

use

Sort()

Index: integer

    
    

use

Empty_Stack ()

Top : integer

Sort()

Insert()

Delete()

Empty()

Figure 3.3: Component Model Example.

data 
ow diagrams with directed named edges linking process nodes to process nodes or

data nodes. The directed named edges denote data 
owing in and out of each process.

Throughout this document, UML diagrams are employed in place of classical DFD for

the discussion.

3.2.3 Behavioral Model

The behavior model in CMT re�nes the activity model, proposed capabilities, and com-

ponent capability requirements. Some capabilities may be ful�lled by a combination of

multiple behaviors. The behavior model, as depicted in Figure 3.3, is divided into two

parts:

� Component interaction part that shows the messages (behavior name and/or mes-

sage argument) sent between components (subcomponents, classes).

� State transition part that presents the state transitions of each component (sub-

component, class) or the interaction between the components (or subcomponent,

class).
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A state can be viewed as an equivalent class or subcomponent of attribute values

and association values of an object class or subcomponent. This equivalent class or

subcomponent is formed under a relation of \same behavior" with respect to the real

world situation or requirements being modeled. The state thus de�nes a \transitory

subtype" of the object class or subcomponent to which it belongs [30].

State description can be incorporated in the graph, based on David Harel, et. al

[26], that consists of a name, optional internal actions (instantaneous operations), activ-

ities (operations that take time to complete), optional entry (trigger) and exit actions.

Edges represent transitions between states. Figure 3.4 depicts a behavioral model of a

component interaction.

State0

state3

state1

state2

A
ction8A

ct
io

n5

A
ction 3

A
ct

io
n 

2

Action6

Action4

Action1

Action7

Stop

start

Figure 3.4: Component Interaction.

3.3 Component Speci�cations

In order to establish formal component speci�cations, the syntax and semantics must

be analyzed and represented. A mathematical representation by means of Z speci�ca-

tion language [35], [41] is given to denote formal component speci�cation. A software
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component (hereafter SC) is a 5-tuple element having the form:

SC := (n; SSC;CL; S; In)

where

n : a unique name of the software component

SSC : (sub-software component) a set of software component

CL : member class (MCL) and common class (CCL ) (both are sets of classes) encom-

passing:

CL =MCL [ CCL

CCL : method class (MetC) and attribute class (AtbC) (both are sets of classes)

CCL = MetC [ AtbC

S : a set of 6-tuple signature describing the operation having

S := f (nO; InO; LocalO; OutO; P reO; P ostO) g

where

nO : name of operation

InO : set of input parameters

LocalO : set of local variables

OutO : set of output parameters

PreO : pre-condition expression

PostO : post-condition expression

In : a set of 3-tuple interaction describing the transaction such that

In := f(SI ; BH ; DI)g

where

SI : interaction source
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BH : a set of 4-tuple behavioral part describing all behavior between SI and DI

having

BH := f (nb; Start; St Ac St; Stop) g

where

nb : name of behavior

Start : set of states

St Ac St : set of cartesian product between state, action, and state

Stop : set of states

DI : interaction destination

Based on the above de�nitions, standard Z notations (See Appendix B for details)

for software component are developed.

Step 1 : Denoting basic type sets which are declared and enclosed in square brackets.

[operation name] [input parameter]

[output parameter] [local variable]

[expression] [behavioral name]

[component name] [class name]

[request] [action]

[state] [class]

[string]

Step2 : Denoting composite/aggregate types in the form of set.

member class : F class

method class : F class

attribute class : F class

common class : method class [ attribute class

interaction source : component name [ class name [ operation name
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interaction destination : component name [ class name [ operation name

ProperComponent name : set of component name

ProperOperational name : set of operation name

ProperBehavior name : set of behavior name

Step3 : Denoting software component.

Software component (�) == fSC : (n; SSC;CL; S; In) j

8 n : component name

SSC : P (set of software component)

CL : P class

S : P OP

In : P Tr �

(n; SSC;CL; S; In) 2 SC )

n 2 ProperComponent name ^

SSC 2 F (set of software component ) ^

CL 2 common class [ member class ^

S 2 F OP ^ In 2 F Tr g

Step4 : denoting the signature.

Signature (�) == f OP : set of (nO; InO; LocalO; OutO; P reO; P ostO) j

8 nO : operation name

InO : P input parameter

LocalO : P local variable

OutO : P output parameter

PreO : expression

PostO : expression �

(nO; InO; LocalO; OutO; P reO; P ostO) 2 OP )

nO 2 ProperOperational name ^
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InO 2 F input parameter ^

LocalO2 F local variable ^

OutO 2 F output parameter ^

PreO 2 expression ^

PostO 2 expression g

Step5 : denoting the interaction.

Interaction (�) == fTr : set of (SI ; BH ; DI) j

8 SI : interaction source

BH : �

DI : interaction destination �

(SI ; BH ; DI) 2 Tr )

SI 2 interaction source ^ BH 2 � ^

DI 2 interaction destination g

Step6 : denoting the behavior.

Behavior (�) == f B : set of (nb; Start; St Ac St; Stop) j

8 nBh : behavior name

Start : state

St Ac St : P (state � action � state)

Stop : state �

(nBh; Start; St Ac St; Stop) 2 B )

nBh 2 ProperBehavior name ^ Start 2 state ^

St Ac St 2 F (state � action � state) ^ Stop 2 state g

Step7 : Putting all notations (step3 - step6) into Z schema as shown in Figure 3.5-3.8
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  SpecifySoftwareComponent
n?   :  component name

 SSC?   :  P (set of software component)
CL?    :  P class
S?   :  P OP

In?   :  P Tr
SC!   :  set of

n?       F string      SSC?       F (set of software component)
CL?        common class       member class
S?       F  OP        In?      F Tr      SC!     set of

Figure 3.5: Software Component Speci�cation.

Other de�nitions such as constants in declaration part and conditions in predicate

part can also be included. Figure 3.9-3.12 demonstrate a step by step component spec-

i�cation formulation of the Array Stack Data Structure example of Figure 3.3.
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SpecifySignature
 nO ? : operation name

                InO? :  P input parameter
                  LocalO?  :  P local variable
                           OutO? :  P output parameter
                 PreO? :  expression

PostO? :  expression
OP !    :

nO?        F string
    InO?      F input parameter
                  LocalO ?       F local variable
                         OutO ?       F output parameter
                            PreO ?       expression
 PostO ?       expression      OP!

Figure 3.6: Signature Speci�cation.

     SpecifyInteraction

 SC?    : interaction source
BH?    : B
DC?   : interaction destination
Tr!    :

SC?          F string
BH?      B
DC?      F string
Tr! 

Figure 3.7: Interaction Speci�cation.
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     SpecifyBehavior
  nBh?  :  behavior name

 Start : state
 St_Ac_St?  :  P (state       action       state)
 Stop : state
 B!     :

nBh?         F string       Start      state
St_Ac_St?         F  (state      action      state)
Stop        state
B!  

Figure 3.8: Behavior Speci�cation.

Specify Static_Sequential_Data_Structure
Array_Stack_Data_Structure?   :  component name

 {Array?, Stack?}   :  P (set of software component)
{Method?, Attribute?}    :  P class
{Sort()?, Insert()?, Delete()?, Empty()?}   :  P OP

{Sort_A?, Insert_A?, Delete_A?…}   :  P Tr
Array_Stack_Data_Structure Component!   :  set of

Array_Stack_Data_Structure?       F string   
{Array?, Stack?}       F ( set of software component)
{Method?, Attribute?}       common class        member class
{Sort()?, Insert()?, Delete()?, Empty()?}       F OP   
{Sort_A?, Insert_A?, Delete_A?}       F Tr
 Array_Stack_Data_Structure Component!       set of

Figure 3.9: Example of Structural Speci�cation.
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    SpecifyInsert
 Max : N
 Insert? : operation name

                {Data ?:integer} :  P input parameter
                  {Index_A ?: integer, Top_S?: integer, A?:ArrayType}   :  P local variable

                           {A’?:ArrayType}  :  P output parameter
                 Pre?:len(A)<Max  :  expression

Post ?:len(A’) = len(A) +1      A’(( len(A)) = Data
(Index_A’ = Index_A + 1      Top _S’ = Top_S +1) : expression
Insert Signature!    :

Max £ 100
Insert  ?      F strings

    {Data?:integer}            F input parameter
                  {Index_A ?: integer, Top_S?: integer, A?:ArrayType}       F local variable

                         {A’?:ArrayType}         F output parameter
 Pre?:len(A)<Max       expression
Post ?:len(A’) = len(A) +1       A’(( len(A))=Data   
(Index_A’ = Index_A + 1      Top _S’ = Top_S +1)       expression
Insert Signature!

Figure 3.10: Example of Signature Speci�cation.

SpecifyArray_Sort

 Sort()?    : interaction source
Sort_A?    : B
Array?   : interaction destination
Array_Sort Interaction!    :

Sort()?      F string
Sort_A?      B
Array?      F string
Array_Sort Interaction!

Figure 3.11: Example of Interaction Speci�cation.
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       Specify Sort_A

  Array Sorting?  :  behavior name
 Idle Array? : state
 {(Idle Array,Checkempty(),Check Array)?,
(Check Array, Return(Empty),Idle Array)?,
(Check Array, Sort(Array), Sort Array)?,
(Sort Array, Return(Sorted Array),Idle Array)?}  :  P (state     action      state)
 Idle Array? : state
 Sort_A Behavior!     :

Array Sorting?         F string   
 Idle Array?      state
 {(Idle Array,Checkempty(),Check Array)?,
   (Check Array, Return(Empty),Idle Array)?,
   (Check Array, Sort(Array), Sort Array)?,
   (Sort Array, Return(Sorted Array),Idle Array)?}       F (state     action      state)
 Idle Array?      state
Sort_A Behavior!     

Figure 3.12: Example of Behavior Speci�cation.
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Software Component Formulation

In order to represent software component for subsequent classi�cation process, formal

speci�cations are required to denote structural, functional, and behavioral properties,

whereby accurate, succinct, and implementation independent details can be captured.

The formulation is represented in a matrix form. As a consequence, a step-by-step

process describing the transformation is given.

De�ne software component X to be

X = (S; F;B)

where S denotes structural properties, F denotes functional properties, and B denotes

behavioral properties. Each property is a list of the form

S = fS1; S2; S3; : : : ; Smg,

F = fF1; F2; F3; : : : ; Fng, and

B = fB1; B2; B3; : : : ; Bpg, respectively.

Each member of the list S, F , and B is also a list of the form

Si = fSi;1; Si;2; Si;3; : : : ; Si;uig; 1 � i � m and Si;j 2 D(Si)

Fi = fFi;1; Fi;2; Fi;3; : : : ; Fi;vig; 1 � i � n and Fi;j 2 D(Fi)

Bi = fBi;1; Bi;2; Bi;3; : : : ; Bi;wig; 1 � i � p and Bi;j 2 D(Bi)

and ui, vi, and wi denote the number of members in Si , Fi, and Bi, respectively. Each

members is ordered from left to right, followed by the software component speci�cation

[30]. Thus, D(Si), D(Fi), and D(Bi) de�ne separate equivalent classes (EC). For
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example, a system designer may wish to de�ne a family of data objects to be stack-like,

all belonging to the class LIFO. This formulation entails a set of equivalent classes to

be prede�ned within a component repository system by the designer or the developer.

Two preamble assumptions of this component repository stipulate that the number of

elements in a set of equivalent classes for a given software component be �nite, and that

the number of each equivalent property classes of the components be known. Denote

the number of each structural, functional, and behavioral equivalent class property by

TSi , TFj , and TBk , where 1 � i � m, 1 � j � n, and 1 � k � p, respectively. De�ne the

property matrix representation as follows:

Cols = max(TSi; 1 � i � m); Rows = m

Colf = TF1; Rowf = 1 +
Pn

i=2 TFi

Colb = TB1
; Rowb = 1 +

Pp

i=2 TBi

The software component matrix X can thus be written as follows:

C = (SRows�Cols; FRowf�Colf ; BRowb�Colb)

For example, suppose S= fS1g; TS1 = 5 (S1 represents the component name of structural

property of the software component), F= fF1; F2; F3g; TF1 = 5; TF2 = 10; TF3 = 10

(F1, F2, F3 represent the functional name, input, and output in functional property

of the software component), B= fB1; B2g; TB1
= 5; TB2

= 10 (B1, B2 represent the

behavioral name and action in behavioral property of the software component). C is

further assumed to be made up of 3 functions and 4 behaviors, that is,

CS1 = fS1;1g

is the component structure name S1 of C that contains S1;1. The function name F1,

input F2, and output F3 of C that represent the functional properties are positionally

arranged in matrix form. Thus, function 1 becomes

CF1 = fF1;1g

CF2 = fF2;1; F2;2; F2;3g
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CF3 = fF3;2; F3;2g

Similarly, function 2 becomes

CF1 = fF1;2g

CF2 = fF2;3; F2;10g

CF3 = fF3;2; F3;3g

and function 3 becomes

CF1 = fF1;5g

CF2 = fF2;1; F2;7g

CF3 = fF3;9; F3;10g

By the same token, the behavioral properties of behavior 1 are denoted by

CB1
= fB1;1g

CB2
= fB2;2; B2;3; B2;5g

Similarly, behavior 2 becomes

CB1
= fB1;3g

CB2
= fB2;3; B2;3; B2;6g

and behavior 3 becomes

CB1
= fB1;4g

CB2
= fB2;5; B2;5; B2;8; B2;9g

and behavior 4 becomes

CB1
= fB1;5g

CB2
= fB2;2; B2;3; B2;7; B2;10g

The software component matrix is formed by concatenating individual ith component

property vertically. Thus, S = fCS1;ng where n denotes the column, F = fCF1;n concat

CF2;n concat CF3;ng and B = fCB1;n concat CB2;n concat CB3;n concat CB4;ng. Any

missing property columns are denoted by zero. The resulting matrices S, F, and B are

depicted in Figure 4.1.
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1  0  1  1  1
0  0  0  0  0
1  0  0  0  1
1  0  2  0  1
0  0  0  0  0
1  0  0  2  0
0  0  1  0  0
0  0  0  0  1
0  0  0  1  0
0  0  0  1  0
0  0  0  0  1

1  0  1  1  1
0  0  0  0  0
1  0  0  0  1
1  0  2  0  1
0  0  0  0  0
1  0  0  2  0
0  0  1  0  0
0  0  0  0  1
0  0  0  1  0
0  0  0  1  0
0  0  0  0  1

B =

          [  1  0  0  0  0  ]

1  1  0  0  1
1  0  0  0  1
1  0  0  0  0
1  1  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  1
0  0  0  0  0
0  0  0  0  0
0  1  0  0  0
0  0  0  0  0
2  1  0  0  0
0  1  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  1
0  0  0  0  1

1  1  0  0  1
1  0  0  0  1
1  0  0  0  0
1  1  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  1
0  0  0  0  0
0  0  0  0  0
0  1  0  0  0
0  0  0  0  0
2  1  0  0  0
0  1  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  1
0  0  0  0  1

F =

S = =
1SC

=
1BC

=
2BC

=
1FC

=
2FC

=
3FC

Figure 4.1: Software Component Matrix Representation.

Based on the above example, the algorithm for component matrix formulation pro-

ceeds as in Figure 4.2, where Fnum denotes the number of function in software com-

ponent and Bnum denotes the number of behavior in the component. The �nal matrix

becomes

X = (S; F;B).

This matrix will be transformed for use by subsequent proposed neural network computa-

tions. A sample component matrix formulation and transformation is given in Appendix

A.
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First: S (Row_s * Col_s)
        For i = 1 to m
            For j = 1 to TSi

S  (i,j) = l (Si  has l terms in equivalence class j)

Second: F (Row_f * Col_f)
For i = 1 to Fnum

                 Begin
                         j = Eq_class_number(function(i))

F(1,j) = 1
                        For k = 2 to Row_f

     F(k,j) = m (Fj  has m terms in equivalence class k)
 End for i

Third: B (Row_b * Col_b)
For i = 1 to Bnum

                 Begin
                         j = Eq_class_number(function(i))

B(1,j) = 1
                        For k = 2 to Row_b

                  B(k,j) = p (Bj  has p terms in equivalence class k)
End for i

Figure 4.2: Matrix Calculation Algorithm.



CHAPTER V

Software Component Classi�cation Model

The preceding standard software component notations identi�ed and represented are

employed in this chapter as a basis for component classi�cation. The �rst step is to

examine how software component is reused in order to establish a classi�cation frame-

work over applicable component domains. A formal classi�cation approach will then be

presented, along with a simple example to demonstrate the applicability of the proposed

framework.

5.1 Software Reuse Model

The software reuse model encompasses a repository which stores formal speci�cations of

software components and retrieval mechanisms to facilitate component check-in/check-

out during the development process. The underlying principles of the proposed classi�ca-

tion scheme rely on component similarity comparison that is derived from a user-de�ned

classi�cation function. This o�ers a quantitative technique to enumerate the component

suitability in coarse grain level. The proposed approach experiments with three neural

network techniques in an e�ort to classify the software components as accurate as it

can be, namely, FSC, SOM, and RPCL. Preliminary �nding concluded that RPCL was

the preferred approach. In so doing, a set of clusters and their corresponding centers

are obtained, whereby an indexing structure holding cluster centers is set up to enhance

the search and retrieve operations. Software components are denoted in matrix form as
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discussed in Chapter 4. Evaluation process determines a similarity value of the designed

component and the components stored in the repository using rival penalized competi-

tive learning (RPCL) clustering algorithm. However, searching for similar components

can be time-consuming as the repository grows. An indexing structure is constructed

not only to speed up the process, but also to classify component indexing structure. All

software components belonging to the cluster partition whose center is closest to the

designated software component will be retrieved for subsequent selection process, i.e.,

the �ne grain level that supports certi�cation methods for the most suitable software

component. This process is depicted in Figure 5.1.

 Software 
component 

requirements 
(Based on formal 

specification) 

The most similarity 
software compoent 

Assign value of 
software 

component 
 (Matrix 

representation) 

Compute the 
similarlity of SC using 

 fuzzy and neural 
network techiques 

(Coarse Grain) 

Select SC using 
fine grain selection 

or  certification 
method 

(Fine Grain) 

Similarity software 
component 

Similarity function 

Software 
component 
repository 

Assign value of 
software 

component 
(Matrix 

representation) 

Figure 5.1: Software Reuse Model.

The following sections will describe how the clusters are established using conven-

tional statistical approach in comparison with the neural network techniques for better

performance.
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5.2 Cluster Center Establishment

Based on the above Software Reuse Model, components that possess similar prede�ned

attributes or characteristics are grouped together to form a cluster. Each cluster has a

center which denotes the designated properties of that cluster. The process of grouping

software components to forming similar cluster calls for intensive computations required

by the underlying clustering approach.

Each computational approach is carried out with respect to its training and testing

strategy, along with experimental results. This study ran MATLAB 5.3 software on

Toshiba Genuine Intel Pentium III Processor with 312 MB RAM.

5.2.1 Conventional Statistical Approach

A distribution-free approach known as the Minimum (Mean) Distance Classi�er (MDC)

is used as a baseline measure of the experiment with which subsequent classi�cation

approaches can be compared. The technique is described below.

Let x be a prototype (or mean) vector of a training class:

mj =
1

Nj

X
x2wj

x for j = 1; 2; : : : ;M (5.1)

where Nj is the number of training pattern vectors of class j,M is the number of classes,

and wj is the all vectors in individual class. An arbitrary pattern vector x in the class

whose prototype vector is the closest in term of the Euclidean distance is given by

Dj(x) = kx�mjk for j = 1; 2; : : : ;M (5.2)
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This is equivalent to computing and assigning x to class wj if dj(x) yields the largest

value, i.e.,

dj(x) = mjx
T
�

1

2
(mjm

T
j ) for j = 1; 2; : : : ;M (5.3)

Finally, the decision boundary, which separates class wi from wj can be obtained

from

di(x)� dj(x) = 0 (5.4)

In general, MDC works well when there are suÆcient data to enhance the weight

spread (or randomness) converging toward the mean, i.e., the cluster center of each

class.

5.2.2 Self-Organizing Map

The Self-Organizing Map (SOM), as proposed in [23], [24] and described thoroughly in

[25], is one of the most well-known unsupervised arti�cial neural network models. This

model consists of a layer of input units, each of which is fully connected to a grid of

output units. These output units are arranged in some topology represented by a two-

dimensional grid. The network is �rst initialized, followed by three essential processes

involving the formation of the self-organizing map as summarized below:

1. Competition. For each input pattern, the neurons in the network compute their

respective values of a discriminant function. This discriminant function provides a basis

for competition among the neurons. The particular neuron with the largest value of

discriminant function is declared the winner of the competition.
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2. Cooperation. The winning neuron determines the spatial location of a topological

neighborhood of excited neurons, thereby providing the basis for cooperation among

neighboring neurons.

3. Synaptic=Adaptation. This last mechanism enables the excited neurons to in-

crease their individual value of the discriminant function in relation to the input pattern

through suitable adjustments applied to their synaptic weights. The adjustments made

are such that the response of the winning neuron to the subsequent application of a

similar input pattern is enhanced and subsequently adapted to be a number of the clus-

ter. This process is decomposed into two phases, namely, an ordering or self-organizing

phase and convergence phase as follows:

3.1. Self-organizing or ordering phase. This phase may take as many as 1000 itera-

tions or higher. Careful considerations must be given to the choice of the learning rate

parameter and neighborhood function.

3.2. Convergence phase. This phase is needed to �ne tune the feature map and

therefore provides an accurate statistical quanti�cation of the input space. As a general

rule, the number of iterations constituting the convergence phase must be at least 500

times the number of neurons in the network. Thus, the convergence phase may have to

go on for thousands and possibly tens of thousands of iterations.

Given the above adaptation process, it is apparent that both phases constitute a

combinational explosion of iterations. As a consequence, this approach is subsequently

the least eÆcient.

The following steps summarize the overall learning algorithm [17]:

1. Choose small random values for the initial weight vectors that serve as the can-

didate center of cluster, that is, for neuron j, the random value is wj(0). The only

restriction here is that the wj(0) be di�erent for j = 1, 2,. . . , l, where l is the number

of neurons in the lattice.
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2. Draw a pattern x from the input space with a certain probability [17]

3. Find the winning neuron i(x) at the nth iteration based on minimum Euclidean

criterion

i(x) = argmin
j
kx(n)� wjk ; for j = 1; 2; : : : ; l (5.5)

4. Adjust the weight vectors of all neurons according to

wj(n+ 1) = wj(n) + �(n)hj;i(x)(n)(x(n)� wj(n)) (5.6)

where �(n) is the learning rate, and hj;i(x)(n) is the neighborhood function centered at

i(x). Here, �(n) and hj;i(x)(n) vary with time during learning as indicated.

5. Repeat step 2 until no noticeable changes in the feature map are observed. In so

doing, the weighted vectors move toward the input vectors and often tend to follow the

distribution of the input vectors.

5.2.3 Fuzzy Subtractive Clustering

Fuzzy Subtractive Clustering (FSC) [2], [3], [10], [13], [22] does not require a prede-

�ned number of clusters. Each data point is regarded as a potential cluster center. A

measure of centering potential of each data point is determined from the density of the

surrounding data points.

The FSC approach sets up the cluster centers using a parameter ra which is the

maximum distance between any two points in the same cluster, yet less than the distance

between any two points from di�erent clusters. The multiplier Sqsh = 1.25 is the default

squash factor value of MATLAB 5.3.
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The criteria for cluster center consideration are based on acceptance and rejection

ratios. Acceptance ratio is the fractions of the potential �rst cluster center above which

another data point will be accepted. Rejection ratio is the condition to reject a data

point to be a cluster center, obtained from the fraction of the potential �rst cluster

center below which a data point will be rejected as a cluster center. The default value

from MATLAB version 5.3 of 0.5 was chosen as the accepted ratio for the �rst cluster

center. The rejection ratio (�) was set between 0.15-0.5 to derive other cluster centers.

The resulting rejection ratios from various cluster centers were used to compare and

evaluate the component classi�cation. The procedure for grouping 50 data point clusters

fX1; X2; X3; : : : ; Xn=50g in the training set is described below.

1. Compute the initial potential value for each data point (xi)

Pi =

nX
j=1

e
��kxi�xjk

2

(5.7)

where � = 4
r2a

k:k is the Euclidean distance

ra is a positive constant representing a normalized neighborhood data radius.

Any point falls outside this encircling region will have little in
uence on the potential

point. The point with the highest potential value is selected as the �rst cluster center.

This tentatively de�ne the �rst cluster center.

2. A point is quali�ed as the �rst center if its potential value P (1) is equal to the

maximum of initial potential value P (1)�

P
(1)� = max

i
(P (1)(xi)) (5.8)

3. De�ne a threshold Æ to be the decision to continue or stop the cluster center

search. This process will continue if the current maximum potential remains greater
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than Æ.

Æ = (rejection ratio)� (potential value of the first cluster center)

where the rejection ratio (�) used in this work is 0.15-0.5, and P
(1)� is the potential

value of the �rst cluster center.

4. Remove the previous cluster center from further consideration.

5. Revise the potential value of each remaining data point according to the equation

Pi = Pi � P
�

k e
��kxi�x

�

k
k2 (5.9)

where x�k is the data point of the kth cluster center, P �
k is its potential value, and � =

4
(sqsh�ra)

.

6. For the point having the maximum potential value, calculate the acceptance value.

If this value is greater than the prede�ned constant (0.5), the point is accepted to be

the next cluster center. Otherwise, if the acceptance value is greater than the prede�ned

threshold (� = 0.15-0.5), and it achieves a good balance between having a reasonable

potential and being far from all existing cluster centers, this data point can be accepted

as the next cluster center.

This procedure is repeated to generate each cluster center until the maximum po-

tential value in the current iteration is equal to or less than the threshold Æ.

5.2.4 Rival Penalized Competitive Learning

Rival Penalized Competitive Learning (RPCL) [9], [42], [43] is a new version of Compet-

itive Learning by adding some mechanisms to Frequency Sensitive Competitive Learning

(FSCL) method [42], [43]. The main idea is to accept the input weight vector wc (which
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subsequently becomes the winner) and to reject (or de-learned) the weight vector wr of

the rival vector by a given learning rate. The RPCL process reduces the total learning

cost to a global minimum as a result of the convergence of all weight vectors to the

winner in the cluster.

The RPCL approach establishes the cluster centers with learning (�c) and de-learning

(�r) rates in the range 0 � �c; �r � 1 [42], where �r << �c for each step. In this

experiment, the values �c = 0.5 and �r = 0.004 are chosen from a priori information.

The number of initial centers is set to greater than or equal to the number of equivalent

classes established earlier, in this case, 10, 20, 30, 40, and 50.

The procedures for grouping the training data proceed as follows:

Given D fd(k); x(k)g, where d(k) = [d1(k); : : : ; d10(k)] is the desired output set,

x(k) = [x1(k); : : : ; x1320(k)] denote the input vector, p = 10 equivalent classes, and k =

1, . . . , 50.

Step 1: Initialization:

Randomly select n seeded centers cj; j = 1, . . . , n in the observation space containing

the data set D. The value of n is determined either from a priori information on p or

by simply setting n large enough. In this case, n = 10. Initialize the mj = 1, j = 1,. . . ,

n and approximate 
j by


j = mj=

X
i

mi (5.10)

Step 2: Adaptive learning:

Sequentially take each x(k) from the data set D, determine the winner seed point

Cc(k) and a rival seed point Cr(k) in relation to the proximity of each x(k) from Cc(k) and

Cr(k), that is,
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c(k) = arg min
1�j�n

Ej(k) (5.11)

r(k) = arg min
j 6=c;1�j�n

Ej(k) (5.12)

Ej(k) = 
j kx(k)� cjk
2

(5.13)

The winner is moved closer to x(k), whilst the rival is moved away from x(k). That is,

c
new
j = c

old
j +�cj(k) (5.14)

with

�cj =

8>>>><
>>>>:

�c(k)(x(k)� cj); if j = c(k)

��r(k)(x(k)� cj); if j = r(k)

0; otherwise

(5.15)

The count of winner mc(k) is incremented by 1 and 
j is updated according to Eq.(6).

Step 2 is repeated until the winner of seed points is unchanged for all x(k). The winning

seed point converges to a position surrounded by data points. This position is taken

to be a preliminary cluster center. The points that diverge away from the center are

excessive and consequently discarded.

The experiment was repeated with di�erent initial centers, namely, 20, 30, 40, and

50 to study variation e�ects on cluster centers of the classi�cation process. The results

were analyzed and evaluated accordingly.



CHAPTER VI

Experiment

6.1 Data Collection

One hundred software components were gathered according to formal component speci�-

cation [30]. These component data were separated into their respective equivalent classes

based on the three properties whose ranges were de�ned by a priori class properties. The

data were arranged in matrix form as described in Chapter 4, where each element of the

matrix denoted a speci�c property falling in the above range. For instance, in Figure

4.1, one software component data CF3 = fF3;2; F3;3g of function 2 rendered the second

column of the 2nd and the 3rd rows of the third partition in matrix F to be [ 2 1 0 0 0 ]

and [ 0 1 0 0 0 ], respectively. As such, each component data vector encompassed 1320

dimensions.

The data set was divided into two groups, namely, 50 training data and 50 test data

to be used by our proposed algorithm. Each data point was normalized according to the

following criteria:

vnew =
vold � vmin

vmax � vmin

(6.1)

where vnew is the new value of the designated variable for that data point, vold is the old

value of the data point, vmin is the minimum value of the variable from all data points,
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and vmax is the maximum value of the variable from all data points.

6.2 Method Learning and Clustering

Two measures of software component retrieval performance used in this study are recall

and precision [16]. Recall is the ratio of the number of relevant items retrieved to the

total number of relevant items in the repository. High recall indicates that relatively

few relevant software components were overlooked. Precision is the ratio of the number

relevant items retrieved to the total number of items retrieved. High precision means

that relatively few irrelevant software components were retrieved. In general, there is

tradeo� between precision and recall. The goal is to �nd a practical balance between the

two. The relevant conditions are fundamental to the evaluation of a retrieval system.

It was also informative to observe the number of software components retrieved by

the system. This number helped estimate the load that would be placed on the designer

to interpret the results of a query in an interactive system, or similarly, the search space

that would be utilized by an adaptation system when considering software component

compositions.

Given a set of prede�ned clusters C = c
n
1 and the calculated RPCL clusters, C 0 = c

0m
1 ,

the performance measures of RPCL is de�ned as follows [15]:

Recall = Number of target software component retrieved/Number of target software

component

=
X

cj2C^c
0

j2C
0

ci \ c
0
j

]ci
(6.2)

Precision = Number of target software component retrieved/Number of software com-

ponent retrieved
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=
X

cj2C^c
0

j2C
0

ci \ c
0
j

]c
0
j

(6.3)

where ]ci denoted the number of elements on the cluster ci and 0 � recall;

precision � 1. Recall shows the ratio of the target repository objects are actually

retrieved out of all the expected target repository objects, whereas precision indicates

the ratio of target repository objects in the retrieved set. For example, there are 10

repository objects and 4 of them are pre-speci�ed as target repository objects. Given

a query retrieving 5 objects and 3 out of those �ve objects are target objects, recall is

0.75 and precision is 0.6. The higher the recall and precision, the more accurate the

method for retrieval. The accuracy for each RPCL clusters can be calculated based on

the information pertaining to their natural clusters. The response time of the system is

measured to determine the practicality of the method. For each measured quality, the

minimum and median are computed from every scenario in the experiment, which will

be discussed in the next section.

6.3 Evaluation

From the one hundred vector data participated in the experiment, the experiment reg-

ulated di�erent classi�cation approaches, namely, MDC, SOM, FSC, and RPCL to de-

termine the recall, precision, training time, and the amount of derived cluster.

Table 6.1, 6.2, 6.3, and 6.4 show the precision, recall, average computation time,

and derived cluster number results obtained from the MDC, SOM, FSC, and RPCL

approaches, respectively. Figure 6.1 illustrates the comparative magnitude of the indi-

vidual results so obtained.

Some comparative inferences as shown in Table 6.5 can be drawn from the above

experimental outcomes as follows:
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Table 6.1: Comparison of precision performance

Data Type MDC SOM FSC RPCL

Well-separated clusters 100.00% 97.02% 100.00% 100.00%

1st set Overlapping clusters 87.50% 93.33% 91.67% 96.67%

2nd set Overlapping clusters 92.50% 98.21% 96.38% 100.00%

3rd set Overlapping clusters 92.50% 92.86% 95.00% 96.15%

4th set Overlapping clusters 95.00% 94.64% 97.50% 98.21%

Overall 93.50% 95.21% 96.11% 98.21%

Table 6.2: Comparison of recall performance

Data Type MDC SOM FSC RPCL

Well-separated clusters 100.00% 68.57% 100.00% 100.00%

1st set Overlapping clusters 88.00% 65.33% 45.00% 64.00%

2nd set Overlapping clusters 92.00% 70.00% 41.74% 66.67%

3rd set Overlapping clusters 92.00% 65.71% 47.00% 73.85%

4th set Overlapping clusters 94.20% 67.14% 48.00% 70.00%

Overall 93.20% 67.35% 56.35% 74.90%
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Table 6.3: Comparison of average computation time

Data Type MDC SOM FSC RPCL

Well-separated clusters 0.06 38008 5.20 219.37

1st set Overlapping clusters 0.06 37890 5.27 270.45

2nd set Overlapping clusters 0.05 36797 5.55 274.69

3rd set Overlapping clusters 0.06 37890 5.22 262.49

4th set Overlapping clusters 0.06 38182 5.22 255.68

Overall 0 < TMDC � 1 TSOM > 10000 1 < TFSC � 10 100 < TRPCL � 300

Table 6.4: Comparison of derived cluster number

Data Type MDC SOM FSC RPCL

Well-separated clusters 10 14 10 10

1st set Overlapping clusters 10 15 20 15

2nd set Overlapping clusters 10 14 23 15

3rd set Overlapping clusters 10 14 20 13

4th set Overlapping clusters 10 14 20 14

Overall NCMDC = 10 14 � NCFSC � 15 10 < NCFSC � 23 10 < TRPCL � 15

Table 6.5: Comparison of the four methods of clustering performance

Data Type MDC SOM FSC RPCL

Precision Lowest Moderate High Highest

Recall Highest Moderate Lowest High

Preprocessing Speed Fastest Very slow Fast Moderate

Number of Clusters Fewest Moderate High Moderate
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Figure 6.1: Box Plot of precision, recall, average computation time, and number of

derived clusters.

1. Although MDC possesses the highest recall and speed, its precision is the lowest.

The de�ciency of this method is because it is a supervised classi�cation. The number of

equivalent classes must be known in advance.

2. The recall and precision of SOM are lower than RPCL. The time performance is

also the poorest among all approaches. As such, the method is not considered to be a

viable candidate.

3. Despite the second best time performance and acceptable precision result, FSC

yields too many centers to consolidate the dispersion of classifying clusters.

An entirely unsupervised experiment (without MDC) was conducted with �xed num-

ber of cluster centers revealed the same outcomes. The results are shown in Table 6.6,

6.7, 6.8, and 6.9. It is apparent from Table 6.9 and Figure 6.2 that FSC method performs

poorly as the number of cluster centers decreases (�xed in this case) since the method

builds the clusters by utilizing the data points as cluster centers as oppose to SOM and

RPCL methods that use the initial weights to be the cluster centers. Hence, some data

points will be misclassi�ed since they are forced into a cluster where they don't belong.
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Table 6.6: Unsupervised Methods Comparison of precision performance

Data Type SOM FSC RPCL

Well-separated clusters 97.02% 100.00% 100.00%

1st set Overlapping clusters 93.33% 88.65% 97.22%

2nd set Overlapping clusters 98.21% 83.67% 100.00%

3rd set Overlapping clusters 92.86% 77.72% 97.02%

4th set Overlapping clusters 94.64% 77.72% 98.21%

Overall 95.21% 85.55% 98.49%

Table 6.7: Unsupervised Methods Comparison of recall performance

Data Type SOM FSC RPCL

Well-separated clusters 68.57% 71.43% 71.42%

1st set Overlapping clusters 65.33% 57.33% 64.00%

2nd set Overlapping clusters 70.00% 57.14% 71.73%

3rd set Overlapping clusters 65.71% 54.29% 68.57%

4th set Overlapping clusters 65.71% 54.29% 68.57%

Overall 67.35% 58.90% 69.14%
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Table 6.8: Unsupervised Methods Comparison of average computation time

Data Type SOM FSC RPCL

Well-separated clusters 38768.16 5.30 223.76

1st set Overlapping clusters 38647.80 5.38 275.86

2nd set Overlapping clusters 37532.94 5.66 280.18

3rd set Overlapping clusters 38647.80 5.32 267.74

4th set Overlapping clusters 38945.64 5.32 260.79

Overall TSOM > 10000 1 < TFSC � 10 100 < TRPCL � 300

Table 6.9: Comparison of the three methods of clustering performance

Data Type SOM FSC RPCL

Precision Moderate lowest Highest

Recall Moderate Lowest Highest

Preprocessing Speed Very slow Fastest Moderate
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Figure 6.2: Box Plot of precision, recall, and average computation time.

Bearing the aforementioned shortcomings of all methods, RPCL exhibits near opti-

mal performance measures in all categories summarized below.

1. RPCL is a fast clustering methods and moderately over SOM.

2. RPCL o�ers a good clustering approximation owing to its straightforward cluster

center computations.

3. The actual number of clusters can usually be determined from the input data set.

4. RPCL consumes low storage utilization because only the information pertaining

to cluster centers is maintained [15].

5. RPCL employs tree-indexing approach which lends itself to myriad of tree-related

analyses, algorithms, tools, and implementations.



CHAPTER VII

Component Classi�cation and Retrieval

7.1 Non-hierarchical Indexing Classi�cation of Software Com-

ponents

Software component classi�cation process divides software components into groups using

rival penalized learning clustering. A 
at indexing structure accompanying these clusters

is constructed as shown in Figure 7.1, which serves as a retrieval mechanism supporting

software component repository. This classi�cation process is called non-hierarchical

indexing.

C1

C(n-1)

Cj

Cn

C2

...

...

C1

C2

.

.

.

Cj

.

.

.

C(n-1)

Cn

Center Index Generated
from ANN techniques

Figure 7.1: The n cluster partitions generated by ANN technique. The dots are the

repository software component whereas the crosses are the centers. The center index is

used for indexing
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7.2 Hierarchical Indexing Classi�cation of Software Compo-

nents

There are two principal content-based indexing methods, namely, rectangle-based index-

ing and partition-based indexing. Various content-based indexing methods have been

successfully applied in some cases. The short-falls of content-retrieval are caused by

components whose contents (properties) lie on the partition boundary of the adjacent

clusters. The querying algorithm merely searches for matching contents, thus failing

to take property distribution into account. This property distribution, in some cases,

may be incorrectly partitioned into di�erent clusters, whereby yielding multiple clusters

of di�erent characteristics that encompass the same components with natural property.

This phenomenon is known as the boundary search problem. As a consequent, the re-

trieval precision will decrease when a query falls near the boundary of a partition in

the indexing structure, which is derived directly from the systematic yet unfavorable

overlapping clusters.

For example, the rectangle-based indexing [21], [27] such as R-tree, R+-Tree, and R*-

tree are built on the input sequence of the data objects so that they are not a�ected by

the distribution of the input data and the calculated natural cluster. The partition-based

indexing method such as MDC and VP-tree partition the data object space according to

the median distance between the data objects and the cluster points. Such approaches

still cannot exactly determine the natural cluster of the component for retrieval. As

a consequence, the performance of nearest-neighbor retrieval for these methods su�ers

from the boundary problem.

To solve the boundary problem for classi�cation and retrieval, various unsupervised

ANN techniques are employed to group the clusters and derive the corresponding cluster

index structure, namely, RPCL, SOM, and FSC. The experiment described in Chapter
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6 was carried out to compare each technique in terms of their precision, recall, time

performance, and derived clusters.

The above ANN techniques utilize non-hierarchical approach to construct a property

vector space that is derived from constituent components. Straightforward as the process

may sound, the approach poses some inherent limitations [21], [27]. First, the 
at

non-hierarchical structure lacks the relationship between nodes that exist if created

in hierarchical fashion. As such, component classi�cation and retrieval follows a non-

hierarchical indexing which renders ineÆcient insertion and deletion operations. The

target node must be explicitly located for the ensuing deletion or insertion. Second,

the non-hierarchical structure still possesses some overlapping classi�cation-mix, which

results in the perpetual boundary problem in nearest-neighbor query search.

In order to lessen the above problems, the RPCL technique is employed to build a

hierarchical content-based indexing structure to facilitate subsequent classi�cation and

retrieval of software components in the repository. The index structure is based on

nearest-neighbor search result. In nearest-neighbor search, a group of properties are

retrieved as the result of a query. The proximity of each member of the group from

the cluster's center is employed as the basis to arrange the indexing placement. As

such, the relationship between nodes in di�erent levels can be embedded into the index

structure. The hierarchical approach recursively transforms a property vector space into

a sequence of clusters. In so doing, all property vectors are progressively organized into

nested clustered as shown in Figure 7.2. This con�guration not only lends itself to easy

index structure update, but also supports backtracking and elimination rules required

by the branch-and-bound algorithm. Consequently, 100% nearest-neighbor results can

be obtained.

The approach is formulated as follows [21], [27]. Let the property vector set X having

n components be denoted by
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C2

C1

C6

C5

C3

C4

Figure 7.2: C3 and C4 are the clusters inside C1 while C5 and C6 are clusters inside

C2. The black dots represent repository software components (property vector), the

crosses represent the center of each cluster

X = fXig
n
i=1 (7.1)

A cluster C of X breaks X into subsets C1, C2,. . . , Cm satisfying the following

conditions

Ci \ Cj = �, 1 � i; =j � m, i 6= j, and C1 [ C2 [ : : : [ Cm = X

Cluster B is nested inside cluster A if every component of B is a proper subset of

A. The dichotomy of cluster C entails a derivation of a binary mapping function that

ties all the constituent components into the indexing structure so constructed. This

is illustrated in Figure 7.3. From the root level C0, there are 2i subsets (clusters) at

depth i to be directly located by the index. At the top level, a nearest-neighbor query

q (for a designated software component) is compared to the centers of the clusters of

the immediate lower level. The cluster whose center is the closest to the query point q

is selected. The elements in the selected cluster will be the result of the query if they
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satisfy the criteria of the nearest-neighbor search. Otherwise, the search will proceed to

the next lower levels. Further details of this method can be found in [21], [27].

C0

C2C1

C6C3 C4 C5

Dist(RC,c1)<=Dist(RC,c2) Dist(RC,c2) < Dist(RC,c1)

Figure 7.3: Indexing structure for hierarchical clustering. C0 is the root node which

contains all software components in repository. Dist(RC;Ci) is the Euclidean Norm

Distance between the nearest-neighbor designated component RC and the center Ci of

cluster Ci

7.3 Software Component Selection Technique (Fine Grain Level)

This level locates the most suitable software component for reuse. The degree of signif-

icance de�ned by the user will be used as the selection criteria. The following notations

are used:

� �S, �F , and �B are the degree of signi�cance of structural, functional, and behav-

ioral properties, respectively, satisfying 0 � �S; �F ; �B � 1 and �S + �F + �B = 1.

The degree of signi�cance depends on system environment under which developers

can de�ne in accordance with the underlying system;
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� Nr is the number of retrieved software components from the cluster whose center

is closest to the required software component;

� Xi is the i
th retrieved software component in the component matrix described in

Chapter 4, i.e., Xi = (S, F , B) where 1 � i � Nr;

� Xr is the component requirements; and

� SC is the most suitable software component which can be determined as follows:

SC = Xreuse (7.2)

where the value of reuse can be computed from

reuse = arg min
1�i�Nr

(
X

p=S;F;B

�pkXpr �Xpik) (7.3)

7.4 Application of Neural Network

In performance comparison depicted in Figure 6.1, the proposed methods, namely,

FSC and RPCL, yield satisfactory performance, while SOM [33], [8] is the most time-

consuming method. The supervised MDC method that is used as the benchmark method

gives the lowest correction. The following section will compare the results of experiment

with FSC and RPCL which was conducted on well-separated data clusters.

7.4.1 Coarse Grain RPCL Selection

From 50 training data sets of 10 equivalent classes, �ve trials with 10, 20, 30, 40, and

50 initial centers were utilized to derive coarse grain clusters based on RPCL algorithm.

Each set consists of one hundred 1320-dimension random feature vectors. The other 50
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Table 7.1: RPCL recall and precision performance of 10 random initialized centers.

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

4 SC1,SC2,SC3,SC4,SC5 SC1,SC2,SC3,SC4,SC5 1.00 1.00

1 SC6,SC7,SC8,SC9,SC10 SC6,SC7,SC8,SC9,SC10 1.00 1.00

3 SC11,SC12,SC13,SC14,SC15 SC11,SC12,SC13,SC14,SC15 1.00 1.00

8 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

9 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

10 SC26,SC27,SC28,SC29,SC30 SC26,SC27,SC28,SC29,SC30 1.00 1.00

6 SC31,SC32,SC33,SC34,SC35 SC31,SC32,SC33,SC34,SC35 1.00 1.00

7 SC36,SC37,SC38,SC39,SC40 SC36,SC37,SC38,SC39,SC40 1.00 1.00

5 SC41,SC42,SC43,SC44,SC45 SC41,SC42,SC43,SC44,SC45 1.00 1.00

2 SC6,SC47,SC48,SC49,SC50 SC46,SC47,SC48,SC49,SC50 1.00 1.00

Average 1.00 1.00

test data sets of the same size were then fed into the PRCL network, whereby recall and

precision performance measure were taken.

The results can be described as follows. The initial 10, 20, 30, 40, and 50 random

centers became 10, 10, 10, 19, and 23, respectively. Table 7.1, 7.2, 7.3, 7.4, and 7.5 show

the recall and precision measure so obtained. Table 7.6 shows the comparison of recall

and precision performance of all 5 clusters. Note that RPCL algorithm yields a 100%

precision with no fault classi�cation, hence closely-related software component clusters.

Moreover, similar software components can be retrieved in less attempts with fewer

number of centers from the indexing structure (the recall percentage). A slight drop

in the recall measure merely implies more centers in each equivalent class (suggesting

further subdivision may be recommended).
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Table 7.2: RPCL recall and precision performance of 20 random initialized centers.

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

9 SC1,SC2,SC3,SC4,SC5 SC1,SC2,SC3,SC4,SC5 1.00 1.00

11 SC6,SC7,SC8,SC9,SC10 SC6,SC7,SC8,SC9,SC10 1.00 1.00

7 SC11,SC12,SC13,SC14,SC15 SC11,SC12,SC13,SC14,SC15 1.00 1.00

13 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

18 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

15 SC26,SC27,SC28,SC29,SC30 SC26,SC27,SC28,SC29,SC30 1.00 1.00

5 SC31,SC32,SC33,SC34,SC35 SC31,SC32,SC33,SC34,SC35 1.00 1.00

3 SC36,SC37,SC38,SC39,SC40 SC36,SC37,SC38,SC39,SC40 1.00 1.00

8 SC41,SC42,SC43,SC44,SC45 SC41,SC42,SC43,SC44,SC45 1.00 1.00

20 SC6,SC47,SC48,SC49,SC50 SC46,SC47,SC48,SC49,SC50 1.00 1.00

Average 1.00 1.00

Table 7.3: RPCL recall and precision performance of 30 random initialized centers.

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

12 SC1,SC2,SC3,SC4,SC5 SC1,SC2,SC3,SC4,SC5 1.00 1.00

14 SC6,SC7,SC8,SC9,SC10 SC6,SC7,SC8,SC9,SC10 1.00 1.00

5 SC11,SC12,SC13,SC14,SC15 SC11,SC12,SC13,SC14,SC15 1.00 1.00

14 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

2 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

27 SC26,SC27,SC28,SC29,SC30 SC26,SC27,SC28,SC29,SC30 1.00 1.00

28 SC31,SC32,SC33,SC34,SC35 SC31,SC32,SC33,SC34,SC35 1.00 1.00

8 SC36,SC37,SC38,SC39,SC40 SC36,SC37,SC38,SC39,SC40 1.00 1.00

18 SC41,SC42,SC43,SC44,SC45 SC41,SC42,SC43,SC44,SC45 1.00 1.00

29 SC6,SC47,SC48,SC49,SC50 SC46,SC47,SC48,SC49,SC50 1.00 1.00

Average 1.00 1.00



59

Table 7.4: RPCL recall and precision performance of 40 random initialized centers.

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

23 SC1,SC2,SC3,SC4,SC5 SC1,SC2 0.40 1.00

4 SC1,SC2,SC3,SC4,SC5 SC3,SC4,SC5 0.60 1.00

1 SC6,SC7,SC8,SC9,SC10 SC6,SC7 0.40 1.00

18 SC6,SC7,SC8,SC9,SC10 SC8,SC9,SC10 0.60 1.00

3 SC11,SC12,SC13,SC14,SC15 SC11,SC12 0.40 1.00

12 SC11,SC12,SC13,SC14,SC15 SC13,SC14,SC15 0.60 1.00

35 SC16,SC17,SC18,SC19,SC20 SC16,SC17 0.40 1.00

8 SC16,SC17,SC18,SC19,SC20 SC18,SC19,SC20 0.60 1.00

30 SC21,SC22,SC23,SC24,SC25 SC21,SC25 0.40 1.00

28 SC21,SC22,SC23,SC24,SC25 SC22,SC23,SC24 0.60 1.00

16 SC26,SC27,SC28,SC29,SC30 SC26,SC29 0.40 1.00

29 SC26,SC27,SC28,SC29,SC30 SC27,SC28,SC30 0.60 1.00

34 SC31,SC32,SC33,SC34,SC35 SC31,SC32 0.40 1.00

39 SC31,SC32,SC33,SC34,SC35 SC33,SC34,SC35 0.60 1.00

27 SC36,SC37,SC38,SC39,SC40 SC36,SC37,SC38,SC39,SC40 1.00 1.00

26 SC41,SC42,SC43,SC44,SC45 SC41,SC42 0.40 1.00

37 SC41,SC42,SC43,SC44,SC45 SC43,SC44,SC45 0.60 1.00

25 SC6,SC47,SC48,SC49,SC50 SC46,SC47 0.40 1.00

13 SC6,SC47,SC48,SC49,SC50 SC48,SC49,SC50 0.60 1.00

Average 0.53 1.00
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Table 7.5: RPCL recall and precision performance of 50 random initialized centers.

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

5 SC1,SC2,SC3,SC4,SC5 SC1,SC2 0.40 1.00

19 SC1,SC2,SC3,SC4,SC5 SC3,SC4 0.40 1.00

1 SC1,SC2,SC3,SC4,SC5 SC5 0.20 1.00

37 SC6,SC7,SC8,SC9,SC10 SC6,SC7 0.40 1.00

22 SC6,SC7,SC8,SC9,SC10 SC8,SC9,SC10 0.60 1.00

21 SC11,SC12,SC13,SC14,SC15 SC11,SC12 0.40 1.00

33 SC11,SC12,SC13,SC14,SC15 SC13,SC14,SC15 0.60 1.00

25 SC16,SC17,SC18,SC19,SC20 SC16,SC17 0.40 1.00

45 SC16,SC17,SC18,SC19,SC20 SC18,SC19,SC20 0.60 1.00

6 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC25 0.60 1.00

46 SC21,SC22,SC23,SC24,SC25 SC23 0.20 1.00

43 SC21,SC22,SC23,SC24,SC25 SC24 0.20 1.00

2 SC26,SC27,SC28,SC29,SC30 SC26,SC29 0.40 1.00

42 SC26,SC27,SC28,SC29,SC30 SC27,SC28 0.40 1.00

32 SC26,SC27,SC28,SC29,SC30 SC30 0.20 1.00

7 SC31,SC32,SC33,SC34,SC35 SC31,SC32 0.40 1.00

18 SC31,SC32,SC33,SC34,SC35 SC33,SC34,SC35 0.60 1.00

36 SC36,SC37,SC38,SC39,SC40 SC36,SC37 0.40 1.00

29 SC36,SC37,SC38,SC39,SC40 SC38,SC39,SC40 0.60 1.00

4 SC41,SC42,SC43,SC44,SC45 SC41,SC42 0.40 1.00

30 SC41,SC42,SC43,SC44,SC45 SC43,SC44,SC45 0.60 1.00

44 SC6,SC47,SC48,SC49,SC50 SC46,SC47 0.40 1.00

10 SC6,SC47,SC48,SC49,SC50 SC48,SC49,SC50 0.60 1.00

Average 0.43 1.00



61

Table 7.6: RPCL recall and precision performance comparison.

Number of Initialized Center Number of Centers Select Recall Precision

for Indexing Structure

10 10 1.00 1.00

20 10 1.00 1.00

30 10 1.00 1.00

40 19 0.53 1.00

50 23 0.43 1.00

7.4.2 Coarse Grain FSC Selection

The FSC algorithm was evaluated in a similar manner as that of RPCL. From the 50

training data sets of 10 equivalent class, �ve trials with di�erent rejection ratio (�) groups

(0.15-0.20, 0.25, 0.30, and 0.35-0.50) were conducted to derive the �nal cluster centers

and the measure their recall and precision performance with the help of 50 testing data

sets.

Table 7.7, 7.8, 7.9, and 7.10 show the recall and precision results of the initial 0.15-

0.20, 0.25, 0.30, and 0.35-0.50 rejection ratio (�). Table 7.11 shows the comparison of

recall and precision performance of all 4 rejection ratio (�) groups.

Table 7.11 shows the recall and precision results based on FSC which, in most cases,

classi�es the software component correctly. The precision performance yields 98-100%

depending on the rejection ratio.

7.4.3 Fine Grain RPCL Selection

The selection process utilizes cluster indexing structure obtained from Table 7.1 to re-

trieve the most suitable candidate software component. An essential selection criterion

that places the weighted emphasis on structure, function, and behavior of the software
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Table 7.7: FSC recall and precision performance of 0.15-0.20 rejection ratio (�) value

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

SC1 SC1,SC2,SC3,SC4,SC5 SC1 0.20 1.00

SC3 SC1,SC2,SC3,SC4,SC5 SC2,SC3,SC4,SC5 0.80 1.00

SC6 SC6,SC7,SC8,SC9,SC10 SC6,SC7 0.40 1.00

SC8 SC6,SC7,SC8,SC9,SC10 SC8,SC9,SC10 0.60 1.00

SC11 SC11,SC12,SC13,SC14,SC15 SC11 0.20 1.00

SC12 SC11,SC12,SC13,SC14,SC15 SC12 0.20 1.00

SC15 SC11,SC12,SC13,SC14,SC15 SC13,SC14,SC15 0.60 1.00

SC19 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

SC22 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

SC26 SC26,SC27,SC28,SC29,SC30 SC26 0.20 1.00

SC28 SC26,SC27,SC28,SC29,SC30 SC27,SC28,SC29,SC30 0.80 1.00

SC31 SC31,SC32,SC33,SC34,SC35 SC31 0.20 1.00

SC33 SC31,SC32,SC33,SC34,SC35 SC32,SC33,SC34,SC35 0.80 1.00

SC37 SC36,SC37,SC38,SC39,SC40 SC36,SC37 0.40 1.00

SC38 SC36,SC37,SC38,SC39,SC40 SC38,SC39,SC40 0.60 1.00

SC43 SC41,SC42,SC43,SC44,SC45 SC41,SC42,SC43,SC44,SC45 1.00 1.00

SC46 SC46,SC47,SC48,SC49,SC50 SC46 0.20 1.00

SC50 SC46,SC47,SC48,SC49,SC50 SC49,SC50,SC49,SC50 0.80 1.00

Average 0.56 1.00
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Table 7.8: FSC recall and precision performance of 0.25 rejection ratio (�) value

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

SC1 SC1,SC2,SC3,SC4,SC5 SC1 0.20 1.00

SC3 SC1,SC2,SC3,SC4,SC5 SC2,SC3,SC4,SC5 0.80 1.00

SC6 SC6,SC7,SC8,SC9,SC10 SC6,SC7 0.40 1.00

SC8 SC6,SC7,SC8,SC9,SC10 SC8,SC9,SC10 0.60 1.00

SC11 SC11,SC12,SC13,SC14,SC15 SC11,SC12 0.40 1.00

SC15 SC11,SC12,SC13,SC14,SC15 SC13,SC14,SC15 0.60 1.00

SC19 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

SC22 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

SC26 SC26,SC27,SC28,SC29,SC30 SC26,SC27,SC28,SC29,SC30 1.00 1.00

SC28 SC26,SC27,SC28,SC29,SC30 SC26,SC27,SC28, 1.00 1.00

SC33 SC31,SC32,SC33,SC34,SC35 SC31,SC32,SC33,SC34,SC35 1.00 1.00

SC37 SC36,SC37,SC38,SC39,SC40 SC36 0.20 1.00

SC38 SC36,SC37,SC38,SC39,SC40 SC37,SC38,SC39,SC40 0.80 1.00

SC43 SC41,SC42,SC43,SC44,SC45 SC44,SC45,SC44,SC45 0.80 1.00

SC50 SC46,SC47,SC48,SC49,SC50 SC46,SC47,SC48,SC49,SC50 1.00 1.00

Average 0.73 1.00
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Table 7.9: FSC recall and precision performance of 0.30 rejection ratio (�) value

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

SC3 SC1,SC2,SC3,SC4,SC5 SC1,SC2,SC3,SC4,SC5 1.00 1.00

SC6 SC6,SC7,SC8,SC9,SC10 SC6 0.20 1.00

SC8 SC6,SC7,SC8,SC9,SC10 SC8,SC9,SC10 0.60 1.00

SC15 SC11,SC12,SC13,SC14,SC15 SC11,SC12,SC13,SC14,SC15 1.00 1.00

SC19 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

SC22 SC21,SC22,SC23,SC24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

SC28 SC26,SC27,SC28,SC29,SC30 SC7,SC26,SC27,SC28,SC29,SC30 1.00 0.83

SC33 SC31,SC32,SC33,SC34,SC35 SC31,SC32,SC33,SC34,SC35 1.00 1.00

SC38 SC36,SC37,SC38,SC39,SC40 SC36,SC37,SC38,SC39,SC40 1.00 1.00

SC43 SC41,SC42,SC43,SC44,SC45 SC41,SC42,SC43,SC44,SC45 1.00 1.00

SC50 SC46,SC47,SC48,SC49,SC50 SC46,SC47,SC48,SC49,SC50 1.00 1.00

Average 0.89 0.98

Table 7.10: FSC recall and precision performance of 0.35-0.50 rejection ratio (�) value

Cluster Number Software Component Relevant Software Component Retrieved Recall Precision

Selected as Index

SC3 SC1,SC2,SC3,SC4,SC5 SC1,SC2,SC3,SC4,SC5 1.00 1.00

SC8 SC6,SC7,SC8,SC9,SC10 SC6,SC8,SC9,SC10 0.80 1.00

SC15 SC11,SC12,SC13,SC14,SC15 SC11,SC12,SC13,SC14,SC15 1.00 1.00

SC19 SC16,SC17,SC18,SC19,SC20 SC16,SC17,SC18,SC19,SC20 1.00 1.00

SC22 SC21,SC22,SC23S,C24,SC25 SC21,SC22,SC23,SC24,SC25 1.00 1.00

SC28 SC26,SC27,SC28,SC29,SC30 SC7,SC26,SC27,SC28,SC29,SC30 1.00 0.83

SC33 SC31,SC32,SC33,SC34,SC35 SC31,SC32,SC33,SC34,SC35 1.00 1.00

SC38 SC36,SC37,SC38,SC39,SC40 SC36,SC37,SC38,SC39,SC40 1.00 1.00

SC43 SC41,SC42,SC43,SC44,SC45 SC41,SC42,SC43,SC44,SC45 1.00 1.00

SC50 SC46,SC47,SC48,SC49,SC50 SC46,SC47,SC48,SC49,SC50 1.00 1.00

Average 0.98 0.98
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Table 7.11: FSC recall and precision performance comparison

Rejection Ratio (�)Value Number of Centers Select Recall Precision

for Indexing Structure

0.15-0.20 18 0.56 1.00

0.25 15 0.73 1.00

0.30 11 0.89 0.98

0.35-0.50 10 0.98 0.98

Table 7.12: RPCL software component selection with di�erent degree of signi�cance.

Structural Functional Behavioral SC1 SC2 SC3 SC4 SC5 Component

Selected

0.1 0.1 0.8 8.244 7.542 7.775 7.509 8.223 SC4

0.1 0.8 0.1 7.146 7.269 7.486 7.565 7.717 SC1

0.8 0.1 0.1 4.369 4.277 4.390 4.392 4.554 SC2

0.3 0.3 0.3 5.928 5.726 5.895 5.840 6.148 SC2

component is used to determine the degree of signi�cance every participating software

component. The most suitable component is one which has the highest degree of signif-

icance. This value is obtained by a simple procedure described below.

Suppose X denotes some arbitrarily chosen software requirements expressed in matrix

form. A simple look-up over the indexing structure yields SC4, SC1, SC2, and SC2,

depending on the degree of signi�cance in structural, functional, and behavioral weights.

This is shown in Table 7.12.
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Table 7.13: FSC software component selection with di�erent degree of signi�cance

Structural Functional Behavioral SC16 SC17 SC18 SC19 SC20 Component

Selected

0.8 0.1 0.1 4.255 4.231 3.943 4.083 4.328 SC18

0.1 0.8 0.1 7.220 7.328 6.868 6.834 7.684 SC19

0.1 0.1 0.8 7.537 7.277 7.205 7.366 7.482 SC18

0.3 0.3 0.3 5.702 5.648 5.404 5.484 5.846 SC18

7.4.4 Fine Grain FSC Selection

The FSC selection process was carried out in the same fashion as that of the RPCL,

using cluster indexing structure from Table 7.7. The results are depicted in Table 7.13.



CHAPTER VIII

Conclusion

8.1 Concluding results

This work has demonstrated the viability of formal approach and Z speci�cation to

de�ne and classify existing software components based on their structural, functional,

and behavioral property according to CMT guidelines. The assessment so obtained is

further classi�ed according to the de-facto standard certi�cation procedures to ensure

the closest similarity of the component being retrieved. The rigor and correctness of

formal application to software component identi�cation, speci�cation, classi�cation, and

certi�cation can ease the burden of software reuse in today's cyber-pace development

cycle. As a consequence, the ever-growing software development cost and time can be

reduced, as well as considerable improvement on the end-product quality.

This research proposed two computational intelligent approaches to classify soft-

ware components for e�ective archival and retrieval purposes, namely, fuzzy subtractive

clustering algorithm and neural network technique. Component speci�cations are repre-

sented in matrix form to quantitatively organize these software artifacts for subsequent

applications.

The classi�cation process utilizes four models to determine the proper model rep-

resentation, namely, MDC, SOM, FSC, and RPCL. The MDC method is used as the

baseline for comparative purpose. The remaining methods are unsupervised ANN tech-

niques to be compared. A comprehensive experiment has been conducted to assess the
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applicability of each model. All models yielded very good classi�cation results. From

precision, recall, and computation time, the results are apparent that RPCL outper-

forms other methods. The SOM took the longest time (over 30,000 time units) to train,

as oppose to lesser magnitude (below 300 time units) performance by RPCL, FSC, and

MDC. As far as classi�cation is concerned, RPCL has the highest accuracy and requires

moderate amount of training time. Under unsupervised �xed number of clusters sit-

uation, the RPCL method yields the highest precision, recall, and computation time

performance. On the contrary, the performance of FSC method degrades drastically

from 96% to 85% in precision, as explained in Chapter 6. Consequently, the RPCL

is adopted as the proposed approach in classi�cation and indexing for better retrieval

eÆciency.

Extensive computations are performed to arrive at a collection of clusters whose

centers represent the structural, functional, and behavioral properties of member soft-

ware components. The next step is to index all cluster centers of software components.

As such, subsequent reference and retrieval can be carried out eÆciently through this

indexing mechanism This process is called software component classification. An ex-

periment was conducted to assess the validity of the proposed approach. It turned out

to be quite satisfactory.

The proposed classi�cation and indexing approach o�ers a viable step toward auto-

mated component repository storage and retrieval management.

8.2 Future work

Each ANN approach presented in this research possesses a number of inherent limitations

of its own. There might be di�erent advanced ANN techniques that are more eÆcient

and suitable to software development classi�cation application. The optimal mix of
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structural, functional, and behavioral degree of signi�cance can then be automatically

computed by the underlying NN technique.

In addition, alternate indexing structures such as trees, pointers, hashing, or multi-

layered hierarchical index will improve the speed and eÆciency of retrieval operation.

It is envisioned that this work will furnish a viable basis for software certi�cation.

The rigor of formal speci�cation will serve as a means for obtaining reliable component

measure, which may either be direct (actual reliability) or indirect (Mean Time Between

Failure) forms of acceptance or rejection measure. Future development will greatly

support prevalent reuse with the help of reliable software classi�cation. This in turn

will enhance the productivity and quality of software products. The entire creation,

classi�cation, and certi�cation process of software components will eventually evolve to

machine learning research endeavor. As a consequence, component-based software reuse

can be realized as their hardware counterpart.
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Appendix A

A-1 Abstract Data Type Repository (ADTR)

This section illustrates an abstract data type example, component equivalent classes,

and component matrix formulation and transformation.

A-1.1 Structural Property Equivalence

Component name equivalent classes are composed of

EC(S1;1) = LIFO STR

EC(S1;2) = LILO STR

EC(S1;3) = GRAPH STR

EC(S1;4) = LIST STR

. . .

EC(S1;Ts1) = : : :

Subcomponent name equivalent classes are composed of

EC(S2;1) = LIFO STR

EC(S2;2) = LILO STR

EC(S2;3) = GRAPH STR

. . .

EC(S2;Ts2) = : : :

Common Class name equivalent classes are composed of

EC(S3;1) = Attribute STR

EC(S3;2) = Method STR
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. . .

EC(S3;Ts3) = : : :

Signature name equivalent classes are composed of

EC(S4;1) = LIFO PUSH

EC(S4;2) = LIFO POP

EC(S4;3) = LIFO UPDATE

EC(S4;4) = LIFO CHECKDATA

EC(S4;5) = LILO INSERT

EC(S4;6) = LILO DELETE

EC(S4;7) = LILO UPDATE

. . .

EC(S4;Ts4) = : : :

Interaction name equivalent classes are composed of

EC(S5;1) = LIFO Pushing

EC(S5;2) = LIFO Popping

EC(S5;3) = LIFO Updating

EC(S5;4) = LIFO EmptyChecking

EC(S5;5) = LILO Inserting

EC(S5;6) = LILO Deleting

EC(S5;7) = LILO Updating

EC(S5;8) = LILO EmptyChecking

. . .

EC(S5;Ts5) = : : :
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A-1.2 Functional Property Equivalence

Function name equivalent classes are composed of

EC(F1;1) = LIFO PUSH

EC(F1;2) = LIFO POP

EC(F1;3) = LIFO UPDATE

EC(F1;4) = LIFO CHECKDATA

EC(F1;5) = LILO INSERT

. . .

EC(F1;Tf1) = : : :

Input data equivalent classes are composed of

EC(F2;1) = Integer

EC(F2;2) = Character

EC(F2;3) = String

EC(F2;4) = Real

. . .

EC(F2;Tf2) = : : :

Local Data equivalent classes are composed of

EC(F3;1) = Integer

EC(F3;2) = Character

EC(F3;3) = String

EC(F3;4) = Real
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. . .

EC(F3;Tf3) = : : :

Output Data equivalent classes are composed of

EC(F4;1) = Integer

EC(F4;2) = Character

EC(F4;3) = String

EC(F4;4) = Real

. . .

EC(F4;Tf4) = : : :

Pre-Expression equivalent classes are composed of

EC(F5;1) = Single Exp

EC(F5;2) = AND Exp

EC(F5;3) = OR Exp

EC(F5;4) = NOT Exp

. . .

EC(F5;Tf5) = : : :

Post-Expression equivalent classes are composed of

EC(F6;1) = Single Exp

EC(F6;2) = AND Exp

EC(F6;3) = OR Exp

EC(F6;4) = NOT Exp

. . .
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EC(F6;Tf6) = : : :

A-1.3 Behavioral Property Equivalence

Behavioral name equivalent classes are composed of

EC(B1;1) = LIFO Pushingg

EC(B1;2) = LIFO Popping

EC(B1;3) = LIFO EmptyChecking

EC(B1;4) = LILO Inserting

EC(B1;5) = LILO Deleting

. . .

EC(B1;Tb1) = : : :

These two prede�ned equivalent classes are used to identify the last three equivalent

classes.

Behavioral State equivalent classes are composed of

EC(B2;1) = Idle LIFO

EC(B2;2) = Check LIFO

EC(B2;3) = Push LIFO

EC(B2;4) = Pop LIFO

EC(B2;5) = Update LIFO

EC(B2;6) = Idle LILO

EC(B2;7) = Check LILO

EC(B2;8) = Insert LILO

. . .
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EC(B2;Tb2) = : : :

Behavioral Action equivalent classes are composed of

EC(B3;1) = ReturnStatus LIFO

EC(B3;2) = CheckEmpty LIFO

EC(B3;3) = PushData LIFO

EC(B3;4) = PopData LIFO

EC(B3;5) = UpdateData LIFO

EC(B3;6) = ReturnStatus LILO

EC(B3;7) = CheckEmpty LILO

EC(B3;8) = InsertData LILO

. . .

EC(B3;Tb3) = : : :

Behavioral Start State

Behavioral Start State equivalent classes are the set of prede�ned start states.

Behavioral Action

Behavioral Action equivalent classes are composed of the cartesian product between

prede�ned state, prede�ned action, and prede�ned state. These equivalent classes will be

re-labeled as the new equivalent classes. For example if all of prede�ned state equivalent

class is equal 3 and prede�ne action equivalent class is equal 4, the behavioral action

equivalent class is equal to 36 equivalent classes.

Behavioral Stop State

Behavioral Stop State equivalent classes are the set of prede�ned terminating states.
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Other equivalent ADTR classes in the software component repository can be de�ned

by the users or system developers, namely, STACK, QUEUE, TREE, and LIST .

A-2 Component Requirement Example

Component = f fPriorityQueueg, f g, f g, fInsert, Delete, Updateg, fInteract1, Inter-

act2, Interact3, Interact4gg

S1 = fPriorityQueueg = fS1;2g

S2 = fg = �

S3 = fg = �

S4 = fInsert;Delete; Updateg = F = fS4;5; S4;6; S4;7g

S5 = fInteract1; Interact2; Interact3; Interact4g = B = fS5;5; S5;6; S5;7; S5;8g

F1 = ffInsertPQg; fInput1 : integer; Input2 : real; Input3 : realg; fLocal1 :

integer; Local2 : stringg; fOutput1 : integerg; fPreEx1ANDPreEx2g; fPostEx1gg

= ffF1;5g; fF2;1; F2;4; F2;4g; fF3;1; F3;3g; fF4;1g; fF5;2g; fF6;1gg

F2 = ffDeletePQg; fInput1 : integer; Input2 : integerg; fLocal1 : integerg;

fOutput1 : integerg; fPreEx1g; fPostEx1gg

F3 = ffUpdatePQg; fInput1 : integerg; fLocal1 : integerg; fOutput1 : integerg;

fPreEx1ORPreEx2g; fPostEx1gg

Equivalent class mapping of F2 and F3 can be carried out in the same manner as F1.

B1 = ffPQInsertingg; fIdleStatePQg;

fIdleStatePQ CheckActionPQ CheckStatePQ;
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CheckStatePQ ReturnActionPQ InsertStatePQ;

InsertStatePQ InsertActionPQ IdleStatePQg; fIdleStatePQgg

= ffB1;4g; fB2;6g; fB2;6 B3;7 B2;7; B2;7 B3;6 B2;8; B2;8 B3;8 B2;6g; fB2;6gg

B2 = ffInteracPQ2g; fStartStateName1g; fBehavioralActionName1;

BehavioralActionName2; BehavioralActionName3; BehavioralActionName4g;

fStopStateName1gg

B3 = ffInteracPQ3g; fStartStateName1g; fBehavioralActionName1;

BehavioralActionName2; BehavioralActionName3g; fStopStateName1gg

B4 = ffInteracPQ4g; fStartStateName1g; fBehavioralActionName1;

BehavioralActionName2; BehavioralActionName3; BehavioralActionName4g;

fStopStateName1gg

Equivalent class mapping of B2; B3; andB4 can be carried out in the same manner as

B1.

Alternatively, if the component requirement is STACK, the equivalent class mapping

becomes

Component = f fSTACKg, f g, f g, fInsert, Delete, Updateg, fInteract1, Interact2,

Interact3, Interact4gg

S1 = fSTACKg = fS1;1g

S2 = fg = �

S3 = fg = �

S4 = fInsert;Delete; Updateg = F = fS4;1; S4;2; S4;3g

S5 = fInteract1; Interact2; Interact3; Interact4g = B = fS5;1; S5;2; S5;3; S5;4g

Likewise,
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F1 = ffInsertSTACKg; fInput1 : integer; Input2 : real; Input3 : realg; fLocal1 :

integer; Local2 : stringg; fOutput1 : integerg; fPreEx1ANDPreEx2g; fPostEx1gg

= ffF1;1g; fF2;1; F2;4; F2;4g; fF3;1; F3;3g; fF4;1g; fF5;2g; fF6;1gg

By the same token,

B1 = ffSTACKInsertingg; fIdleStateSTACKg;

fIdleStateSTACK CheckActionSTACK CheckStateSTACK;

CheckStateSTACK ReturnActionSTACK InsertStateSTACK;

InsertStateSTACK InsertActionSTACK IdleStateSTACKg; fIdleStateSTACKgg

= ffB1;1g; fB2;1g; fB2;1 B3;2 B2;2; B2;2 B3;1 B2;3; B2;3 B3;3 B2;1g; fB2;1gg
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B-1 Z language and Notations

This section furnishes only standard Z language syntax and notations used in this dis-

sertation. Full coverage of Z can be found in [35] [41]

B-1.1 Syntax and Notations

1. The basic types of a speci�cation are declared by enclosing them in square brackets,

for example:

[Book, Car]

[Item]

2. A declaration may take the form x : T or x : S, where T is a type or S is a subset of

a type. Constraints may be added by following the declaration(s) with a j Pred part

which expresses some relationships amongst the declared variables. If the declaration

is global, then an axiomatic description is needed (see below). The following examples

show how a collection of variables may be declared, some are of the same type, some are

of di�erent types:

m;n : N

i; j : 1 :: 8 j i 6= j

e1; e1 : S; s : PS j e1 2 s ^ e2 =2 s

3. New sets can be created from old ones using the powerset and cartesian product

operators, i.e., P and x. If P and x are applied to types, new types results. Every Z

variable and expression belongs to one and only one type, although it may belong to

many di�erent sets.

4. An abbreviation de�nition introduces a global constant which takes the following
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form:

name == f declaration part j predicate partg

or

name == f declaration part j predicate part � Expression part g

For example,

Signature (�) == f OP : set of (nO; InO; LocalO; OutO; P reO; P ostO) j

8 nO : operation name

InO : P input parameter

LocalO : P local variable

OutO : P output parameter

PreO : expression

PostO : expression �

(nO; InO; LocalO; OutO; P reO; P ostO) 2 OP )

nO 2 ProperOperational name ^

InO 2 F input parameter ^

LocalO2 F local variable ^

OutO 2 F output parameter ^

PreO 2 expression ^

PostO 2 expression g

Note that,

== is used to mean \is de�ned as"

) is the connective stands between two true propositions. Such a proposition as \X

is bigger than any city in Europe" can paraphrase to \For every city c, if c is in Europe

then X is bigger than c" and can be formally written as follows:

8 c : city � c is in Europe ) X is bigger than c
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B-1.2 Schema

Schema notation describes some aspects of a system, which is identi�ed by the schema

name. There are some points to note about schema notation:

� The name of the schema is introduced in the top line of the box.

� The central horizontal line separates the declaration part from the predicate part

of the schema as depicted in Figure B-1. Figure B-2 is an example of schema

notation.

       SchemaName

Declaration Part

Predicate Part

Figure B-1: Format Schema Type.

� If the predicate is of the form P1^P2, then P1 ^ P2 may be written on separate

lines and the ^ symbol elided; this may of course be extended to any number of

conjunctions making up the predicate part.

� Similar declarations D1; D2 may be written on separate lines, in which case, the

semicolon can be omitted.

� By analogy with the declaration part, a predicate P1 ^ P2 may also be written

as P1; P2. This also applies to any number of conjunctions.
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    SpecifyInsert
 Max : N
 Insert? : operation name

                {Data ?:integer} :  P input parameter
                  {Index_A ?: integer, Top_S?: integer, A?:ArrayType}   :  P local variable

                           {A’?:ArrayType}  :  P output parameter
                 Pre?:len(A)<Max  :  expression

Post ?:len(A’) = len(A) +1      A’(( len(A)) = Data
(Index_A’ = Index_A + 1      Top _S’ = Top_S +1) : expression
Insert Signature!    :

Max £ 100
Insert  ?      F strings

    {Data?:integer}            F input parameter
                  {Index_A ?: integer, Top_S?: integer, A?:ArrayType}       F local variable

                         {A’?:ArrayType}         F output parameter
 Pre?:len(A)<Max       expression
Post ?:len(A’) = len(A) +1       A’(( len(A))=Data   
(Index_A’ = Index_A + 1      Top _S’ = Top_S +1)       expression
Insert Signature!

Figure B-2: Example of Signature Speci�cation.

� The order of declaration makes no di�erence to the meaning of a schema nor does

the order of the conjunctions in the predicate.

� P S is the set of all subsets of the set S and F S is the set of all �nite subsets of

a given set S. This can be expressed as follows:

F S � P S

� input identi�er has ? as �nal character.

� output identi�er has ! as �nal character.

� preceding objects are represented in plain variables, whereas the corresponding

succeeding objects by dashed variables.
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