CHAPTER IV

SEMILATTICE DECOMPOSITIONS

In this chapter, semilattice decompositions on orthodox semigroups and on quasi-inverse semigroups are studied.

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . Let $\alpha \in Y$ and $a \in S_{\alpha}$. Assume $x \in S$ and x is an inverse of a in S. Then $x \in S_{\beta}$ for some $\beta \in Y$ and a = axa, x = xax. Because a = axa, $a \in S_{\alpha} \cap S_{\alpha\beta\alpha}$ $= S_{\alpha} \cap S_{\alpha\beta}$, so $\alpha = \alpha\beta$. From x = xax, it follows that $x \in S_{\beta} \cap S_{\beta\alpha\beta} = S_{\beta} \cap S_{\alpha\beta}$ and hence $\beta = \alpha\beta$. Therefore $\alpha = \beta$. This shows that for any $\alpha \in Y$ and $a \in S_{\alpha}$, $V(a) \subseteq S_{\alpha}$.

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . If S_{α} is regular for each $\alpha \in Y$, then S is clearly regular. Assume S is regular. Let $\alpha \in Y$ and $a \in S_{\alpha}$. Because S is regular, there is $x \in S$ such that a = axa and x = xax. Because $a \in S_{\alpha}$, $V(a) \subseteq S_{\alpha}$ and hence $x \in S_{\alpha}$. Therefore S_{α} is regular for each $\alpha \in Y$.

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . If S is orthodox, then S_{α} is a regular subsemigroup of S for all $\alpha \in Y$ and hence, by Proposition 1.2, S_{α} is orthodox for all $\alpha \in Y$. The converse is also true. A proof is given in [6].

4.1 <u>Theorem</u> [6, Corollary IV.3.2]. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . Then S is orthodox if and only if S_{α} is orthodox for each $\alpha \in Y$.

The following proposition shows that Theorem 4.1 is still true if we replace "orthodox" by "right-inverse":

4.2 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . Then S is right-inverse if and only if S_{α} is right-inverse for each $\alpha \in Y$.

<u>Proof</u>: Assume S is right-inverse. Then S is regular. Therefore S_{α} is regular for all $\alpha \in Y$, so for each $\alpha \in Y$, S_{α} is a regular subsemigroup of the right-inverse semigroup S. By Proposition 1.7(1), S_{α} is right-inverse for each $\alpha \in Y$.

Conversely, assume S_{α} is right-inverse for all $\alpha \in Y$. Then S_{α} is regular for all $\alpha \in Y$, and therefore S is regular. Let e, $f \in E(S)$. Then $e \in E(S_{\alpha})$ and $f \in E(S_{\beta})$ for some α , $\beta \in Y$ which imply ef, $fe \in S_{\alpha\beta}$. Since S_{γ} is right-inverse for each $\gamma \in Y$, S_{γ} is orthodox for each $\gamma \in Y$. By Theorem 4.1, S is orthodox, so E(S) is a subsemigroup of S. Then ef, $fe \in E(S_{\alpha\beta})$ because ef, $fe \in E(S)$ and ef, $fe \in S_{\alpha\beta}$. Therefore

efe = effe = (fe)(ef)(fe) (since $S_{\alpha\beta}$ is right-inverse and ef, fe $E(S_{\alpha\beta})$)

= fe.

Hence S is right-inverse. #

Because a generalized inverse semigroup is regular and a regular subsemigroup of a generalized inverse semigroup is generalized inverse, the following proposition follows directly: 4.3 <u>Proposition</u>. Let $S = \underset{\alpha \in Y}{\bigcup} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . If S is generalized inverse, then S_{α} is generalized inverse for all $\alpha \in Y$.

The converse of Proposition 4.3 is not true in general. A counter example is given as follows:

Example. Let $S = \{I, E_1, E_2, E_3\}$ where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $E_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $E_3 = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$. Then, under the usual matrix multiplication, the table of multiplication of S is as follows:

		- 4		
• 1	I	E ₁	E 2	-E ₃
Ι	I	E ₁	E 2	E ₃
E ₁	E ₁	E ₁ .	E ₁	E ₁
E ₂	E ₂	E ₂	E ₂	E ₂
E ₃	E 3	E ₂	E ₁	I

Then S is a semigroup with identity I. Let Y = { α , β } be a semilattice with identity α and zero β . Let $S_{\alpha} = \{I, E_3\}$ and $S_{\beta} = \{E_1, E_2\}$. Then S = S_{α} U S_{β} and from the table S_{α} and S_{β} are subsemigroups of S and $S_{\alpha}S_{\beta}\subseteq S_{\beta}=S_{\alpha\beta}$, $S_{\beta}S_{\alpha}\subseteq S_{\beta}=S_{\beta\alpha}$. Then S is a semilattice Y of semigroups S_{α} and S_{β} . Because S_{α} is a group, S_{α} is generalized inverse. From the table, $E(S)=\{I, E_1, E_2\}$. Because $E(S_{\beta})=S_{\beta}$ and $E_1E_1E_2E_1=E_1=E_1E_2E_1E_1$, $E_1E_1E_2E_2=E_1=E_1E_2E_1E_2$, $E_2E_1E_2E_1=E_2=E_2E_1E_1$ and $E_2E_1E_2E_2=E_2=E_2E_2E_1E_2$, it then follows that S_{β} is generalized inverse. But $IE_1E_2I=E_1\neq E_2=IE_2E_1I$. Then S is not

generalized inverse. #

If T is a subsemigroup of a semigroup S and M is an inverse subsemigroup of T, then M is an inverse subsemigroup of S. Thus, from the definition of being quasi-inverse, it clearly follows that any semigroup which is a union of quasi-inverse subsemigroups is quasi-inverse. Hence, a semilattice of quasi-inverse semigroups is quasi-inverse.

It has been shown in Chapter I that a regular subsemigroup of a quasi-inverse semigroup is not necessarily quasi-inverse. However, we show in the next theorem that if $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a semilattice Y of semigroups S_{α} and S is quasi-inverse, then S_{α} is quasi-inverse for each $\alpha \in Y$.

4.4 <u>Theorem</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of semigroups S_{α} . Then S is quasi-inverse if and only if S_{α} is quasi-inverse for each $\alpha \in Y$.

Proof: Assume S is quasi-inverse. Let $\alpha \in Y$. To show S_{α} is quasi-inverse, let $a \in S_{\alpha}$. Because $a \in S$ which is quasi-inverse, there exists an inverse subsemigroup T of S containing a. Next, to show $T \cap S_{\alpha}$ is an inverse subsemigroup of S_{α} containing a. Because $T \cap S_{\alpha} \neq \emptyset$ and T and S_{α} are subsemigroups of S, $T \cap S_{\alpha}$ is a subsemigroup of S. But $T \cap S_{\alpha} \subseteq S_{\alpha}$. Then $T \cap S_{\alpha}$ is a subsemigroup of S_{α} . Let $X \in T \cap S_{\alpha}$. Then, there exists $X' \in T$ such that X = XX'X and X' = X'XX'. Because $X \in S_{\alpha}$, $Y(X) \subseteq S_{\alpha}$ and hence $X' \in S_{\alpha}$. Therefore $T \cap S_{\alpha}$ is a regular subsemigroup of T. Because a regular subsemigroup

of an inverse semigroup is an inverse semigroup, T \cap S $_{\alpha}$ is an inverse subsemigroup of T. Then T \cap S $_{\alpha}$ is an inverse subsemigroup of S $_{\alpha}$ containing a. Hence S $_{\alpha}$ is quasi-inverse. #

Let S be a semigroup and ρ be a semilattice congruence on S. Then ρ decomposes S to be a semilattice S/ρ of subsemigroups. Hence, by Theorem 4.1, Proposition 4.2, Proposition 4.3 and Theorem 4.4, the following proposition directly follows:

- 4.5 <u>Proposition</u>. Let S be a semigroup and ρ be a semilattice congruence on S. Then the following hold:
- If S is an orthodox semigroup, then each ρ-class forms an orthodox subsemigroup of S.
- (2) If S is a right-inverse semigroup, then each ρ -class forms a right-inverse subsemigroup of S.
- (3) If S is a generalized inverse semigroup, then each ρ-class forms a generalized inverse subsemigroup of S.
- (4) If S is a quasi-inverse semigroup, then each ρ -class forms a quasi-inverse subsemigroup of S.

It has been shown in Theorem 3.9 that for any regular subsemigroup T of an orthodox semigroup S,

•
$$\delta(T) = \delta(S) \cap (T \times T)$$

where $\delta(S)$ and $\delta(T)$ are the minimum inverse congruences on S and on T; respectively.

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of orthodox semigroups S_{α} . Then S is orthodox and for each $\alpha \in Y$, S_{α} is a regular subsemigroup of S. Therefore, for each $\alpha \in Y$,

$$\delta(S_{\alpha}) = \delta(S) \cap (S_{\alpha} \times S_{\alpha}).$$

Let ρ be congruence on a semigroup S. Then ρ is called a semilattice-of-inverse semigroups congruence on S if S/ρ is a semi-lattice of inverse semigroups.

Every inverse congruence on a semigroup S is clearly a semilattice-of-inverse semigroups congruence on S.

Let S be a semigroup and ρ be a semilattice-of-inverse semigroups congruence on S. Then S/ρ is a semilattice of inverse semigroups. Because a semilattice of inverse semigroups is an inverse semigroup [2, Theorem 7.5], S/ρ is an inverse semigroup and hence ρ is an inverse congruence on S.

Hence, the following remark follows :

4.6 Remark. In any orthodox semigroup S, the relation

$$\{(a, b) \in S \times S \mid V(a) = V(b)\}$$

gives the greatest decomposition of S to a semilattice of inverse semigroups.