CHAPTER IV

SEMILATTICE DECOMPOSITIONS

In this chapter, semilattice decompositions on orthodox semi-

groups and on quasi-inverse semigroups are studied.

Let S = aLe'YSa be a semilattice Y of semigroups Sa’ Let o €Y
and a € Sa' Assume X € S and x is an inverse of a in S. Then x€ SB
for some B € Y and a = axa, X = xaxX. Because a = axa, a & Sa n SaBa
= 'Sa N saB’ so o = af., From x = xax, it follows that .x € SB n SBuB =

s, N Su and hence B = aB. Theréfofe o = B. This shows that for any

B B
¢ €Y and a € Sa, V(a) & Su.
Let S = US be a semilattice Y of semigroups S . If § is
. aeY o a a
regular for each a € Y, then S is clearly regular. Assume S is regu-
lar., Let o €Y and a ¢ Sa' Because S is regular, there is x € S

such that a = axa and x = xax. Because a € Su’ V(a) & Sa and hence

X € ,Sa. Therefore Su is regular for each a € Y.

Let S = U S be a semilattice Y of semigroups S . If S is

oeY o i o
orthodox, then So. is -a regular subsemigroup of S for all o € Y and
hence, by Proposition 1.2, Sa is orthodox for all a € Y. The con-

verse is also true. A proof is given in [6].

4.1 Theorem [6, Corollary IV.3.2]. Let S = aLé’YSa be a semilattice
Y of semigroups Sa' Then S is orthodox if ‘and only if §, is ortho-

dox for each a-€ Y,
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The following proposition shows that Theorem 4.1 is still

true if we replace "orthodox" by '"right-inverse' :
p .

4.2 Proposition. Let S = égYSu be a semilattice Y of semigroups

Sa' Then S is right-inverse if and only if Su is right-inverse for

each a € Y.

Proof : Assume S is right-inverse. Then S is regular.
' Therefore S, is regular for all d € Y, so for each @ € Y, S is a
regular subsemigroup of the riéht-inverse semigroup S. By Proposi-
tion 1.7(1), Su is right-inverse for each o € Y.

._Conversely, assume Sa is right-inve?se for all o € Y. Then
Sa is regular for all o € Y, and therefore S is regular. Let e, f
‘€ E(S). Then e & E(Sa) and f € E(SB) for some o, B€Y which imply

ef, fe € Sa Since SY is right-inverse for each y ¢ Y, SY is or-

BC
thodox for each y € Y. By Theorem 4.1, S is orthodox, so E(S) is a

subsemigroup of S. Then ef, fe € E(Sas) because ef, fe € E(S) and

ef, fe € Su Therefore

Bo

efe = effe (fe) (ef) (fe) (since Sa is right-inverse and ef, fe €

B
E(S,g))
= fe,

Hence S is right-inverse. #

Because a generalized inverse semigroup is regular and a re-
gular subsemigroup of a generalized inverse semigroup is generalized

inverse, the following proposition follows directly :
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4.3 Proposition. Let S = JEQSa be a semilattice Y of sémigroups S .
If S is generalized inverse , then Sa is generalizeﬂ inverse for all

[« B g 4

The converse of Proposition 4.3 is not true in geﬁeral; A

counter example is given' as follows :

” - _irX 0) (1 0)
Example, Let S = {I, El’ Ez, EE} where I = 01/ El =\1 0/
E2 = 3 g) and E3 = i_g). Then, under the usual matrix multipli-

cation, the table of multiplication of S is as follows :

Then S is a semigroup with identity I. Let Y = {a, B} be a semilat-‘

tice with identity o and zero B. Let Sa = {I, E3} and'S8 = {El,-Ez}o

~ Then S = SalJ S, and from the table Sa and S, are subsemigroups of §

B B

and saSB c S, = Then S is a semilattice Y of

B SaB’ Ba®-

semigroups Sa and S_ .« Because Sa is a group,_SOL is generalized in-

B
verse, From'the.table, E(S) = {I, E

SBSaQ SB =5

1° B
Mg Ny EEE T EE R, = B = BERE R &5 =

EzEzElEl'and E2E1E2E2.= E2 = E2E2E1E2’ it then follows that SB is

generalized inverse. But IElEZI = El # E2 = IEzEfI. Then S is not

Ez}. Because E(SB) = §_ and
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generalized inverse. #

If T is a subsemigroup of a semigroup S and M is an inverse
subsemigroup of T, then M is an inverse subsemigroup of S.. Thus,
from the defihition of being quasi-inverse, it clearly follows that
any semigroup which is a union of quasieinéerse subsemigroups is
quasi—invefse. Hence, a semilattice of quasi-inverse semigroups ié
quasi-inverse.

It has been shown in Chapfer I that a regular subsemigroup
of a quasi-inverse sémigroup ié not necessarily quasi-inverse. How-
ever, we show in the next theorem that if S = JgYSa is a semilattice

Y of semigroups Su and S is quasi—-iﬁverse,.then'sOl is quasi-inverse

for each o € Y.

4.4 Theorem. Let S = JéYSa be a semilattice Y of semigroups Sa'
Then S is quasi-inverse if and only if Sa is quasi-inverse for each

o €Y.

Proof : Assume S is quasi-inverse. Let a € Y. To show Su
is quasi-inverse, let a € Sa‘ Because a € S which is quasi-inverse,
‘there exists aﬁ inverse subsemigroup T of S containing a. Next, to
show T N Sa ig an inverse subsemigroup of Sa cantaining a. Because
TN Sy # ¢ and T and S, are subsemigroups of S, TN Sy is a subsemi-
group of S, But T FISa C.Sa. Then T N Sa is a subsemigroup of Sa'
Let x €T N Sa' Then, there exists x' € T such.that x = xx'x and

1

x' = x'xx'. Because x € Su’ V(x) @ Sa and hence x' € Sa' Therefore

T rusa is a regular subsemigroup of T. Because a regular subsemigroup



of an inverse semigroup is an inverse semigroup, T N Sa is an inverse
subsemigroup of T. Then T N Sa is an inverse subsemigroup of Sa

containing a. Hence Sa is quasi-inverse.

Let S be a semigroup and p be a semilattice congruence on S.
Then p decomposes S to be a semilattice S/p of subsemigroups. Hence,
by -Theorem 4,1, Proposition 4.2, Proposition 4.3 and Theorem 4.4, the

following proposition directly follows :.

4,5 Proposition. Let S be a semigroup and p be a semilattice con--
gruence on S. Then the following hold :

(1) If-Slis an orthodox semigroup, then each p-class forms
an orthodox subsemigroup of S.

(2) 1If S is a ‘right-inverse semigroup, then each p-class
forms a right-inverse subsemigroup of S.

(3) If S is a generalized inverse semigroup, then each
p-class forms a generalized invérse subsemigroup of S.

(4) 1If S is a quasi-inverse semigroup, then each p-class

forms. a quasi-inverse subsemigroup of S.

It has been shown in Theorem 3.9 that for any regular sub-
semigroup T of an o;thodox semigroup S,
= 8(T) = §6(S)YN (T x T)
where 6(S) and 6(T) ére the minimum inverse congruences on S and on
T; respectively.
Let S = éiYSa be a sémilattice Y of orthodox semigroups'Sa.

Then S is orthodox and for each a € Y, Sa is a regular subsemigroup
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of S. Therefore, for each o € Y,

8(s,)) = &(S)N (s, xS,).

Let p be congruence on a semigroup S. Then p is called a

semilattice-of-inverse semigroups congruence on S if S/p is a semi-

lattice of inverse semigroups.

Every inverse congruence on a semigroup S is clearly a semi-
lattice-of-inverse semigroups congruence on S.

Let S be a semigroup and p be a semilattice-of-inverse semi-
groups congruence on S. Then S/p is a semilattice of inverse semi-
groups. Because 'a semilattice of inverse semigroups is an inverse
semigroup [2, Theorem 7.5], S/p is an inverse semigroup and hence p
is an inverse congruence on S.

Hence, the following remark follows

4.6 Remark. In any orthodox semigroup S, the relation
{(a, b) € S x S | V(a) = V(b)}
gives the greatest decomposition of S to a semilattice of inverse

semigroups.



	Chapter IV Semilattice Decompositions

