CHAPTER TIII

CONGRUENCES ON ORTHODOX SEMIGROUPS

Hall has given an explicit form of the minimum inverse con-
gruence on any orthodox semigroup in [4]. We show in this éhapter
that the restriction of the minimum inverse congruence on orthodox
semigroup S to E(S) is the minimum semilattice congruence on E(S).
An explicit form of the minimum right-inverse congruence on a gene- -
ralized inverse semigroup is given. It is shown that the restric-
tion of the minimum inverse congruence on an orthodox semigroup S
to any regular subsemigroup T of S is ‘the minimuﬁ inverse congruence

on T.

Let S be a regular semigroup. Let & be the congruence on S
generated by the relation {(ef, fe) | e, £ € E(5)}. Then § is the
minimum inverse congruence on S. Because a homomorphic image of a
regular semigroup is regular, S/¢ is regular, so § is a regular con-
gruence on S, Sinte S is regular, E(S/§) = {ed | e € E(S)}. Let
e, f € E(S). Then (ef, fe) € &, so (ed)(f8) = (ef)s = (fe)s = (£6) (ed).
Hence, any two idempotents of S/6 commute. Therefore S/§ is inverse,
and so & is an inverse congruence on S. Next, let p be an inverse
congruence on S. Let e, f € E(S). Then ep, fp & E(S/p). But S/p is
inverse. Then (ef)p = (ep) (fp) = (fp)(ep) = (fe)p, that is; (ef, fe)
€ p. This shows that {(ef, fe) | e, f € E(S)} € p. But § is the

smallest congruence on S containing {(ef, fe) | e, £ € E(S)}.
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Therefore § € p. Hence, § is the minimum inverse congruencé'on S.

Recall the following : A regular semigroup S is a right-
inverse semigroup if efe = fe for all e, £ € E(S). A regular semif
group S is a generalized inverse semigroup if for any e, f, g, h €
E(S), efgh = egfh. .Right-inverse semigroups and generalized inverse
semigroups are generalizations of inverse semigroups.

Let S be a regular semigroup. The similar proof as above,
if v is the congruence on S generated by {(efe, fe) | e, f € E(S)},
then v is the minimum right-inverse congruence on S, and if T is the
congruence on S generated by {(efgh, egfh) | e, f, g, h € E(S)}, theﬁ

T is the minimum generalized inverse congruence on S.

For the remaining of this thesis, in any regular semigroup,

the following notation will be used :

§ = the minimum inverse congruence,
v = the minimum right-inverse congruence,
T = the minimum generalized inverse congruence on S,

If the emphasis of the semigroup S is needed, we used §(S),
v(8) and t(S) for §, v and T3 respectively.

Becﬁuse every inverse semigroup is right-inverse and genera-
lized inverse, the following relationships follow : In any regular
semigroup, v 8§ and T € 8.

In a semigroup S, for a € S, recall that the notation V(a)
denotes the set of all inverses of a in.S, that is;

V@ = {x€S|a = axa and x = xax}.
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The following theorem characterizes an orthodox semigroup in

terms of the sets of inverses of its elements :

3.1 Theorem [4, Theorem 2]. A regular semigroup S is orthodox if
and only if, for any elements a, b in S, V(a)N V(b) # ¢.implies
V(a) = V(b). In fact, a regular semigroup 8 is orthodox if for any

idempotents e, f in S, V(e)n V(f) # ¢ implies V(e) = V(£).

Hall has given an explicit form of the minimum inverse con-

gruence on an orthodox semigroup in [4] as follows :

3.2 Theorem [4, Theorem 3]. If S is an orthodox semigroup, then
the relation § = {(x, y) € SxB | V(x) = V(y)} is the minimum inverse
congruence on S,

’ Moreover, if S is a regular semigroup and the relation
8§ = {(x, y)€ SxS | V(x) = V(y)} is an inverse congruence on S, then

S is an orthodox semigroup.

Let S be an orthodox semigroup. Then E(S) is a band, so it
is als§ orthodox. By Theorem 1.1, for each e € E(S), V(e) QKE(S).
Let & and 8(E(S)) denote the minimum inverse congruences on S and on
E(S); respectively. Hence, we can easily see that S(E(S)) = 6N (E(S)
x E(S)). Since E(S) is a band, E(S) / 6(E(S)) is also a band. Be-
cause E(S) / 8(E(S)) is also an inverse semigroup, it follows that
E(S) / 6(E(S)) is a semilattice, and hence & (E(S)) is a semilattice

congruence. Hence, we can conclude the following :
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3.3 Proposition. Let S be an orthodox semigroup. Then
§(E(S)) = 6N (E(S) x E(S))

and it is a semilattice congruence on S.

A semigroup S-is called a rectangular band if x = xyx for

each x, ¥y € S.

Let S be an orthodox semigroup and & be the minimum inverse
congruence on S, Then for a € S, ad = V(a') for any inverse a' of
a, Hence, if e € E(S), then eé = V(e) which implies V(e) is a sub-
semigroup of S and so of E(S) because (ed)(ed) = eé. Then, if
e, f, g € E(S) such that e, £ & V(g), then V(e) = V(f) [Theorem 3.1],

so e = efe, Therefore, we get

3.4 Proposition. Let S be an orthodox semigroup. Then for any

e € E(S), V(e) is a rectangular band.

By Proposition 3,3 and Propositien 3.4, the follewing clearly

follows :

3.5 Proposition. Let S be an orthodox semigroup. Then §(E(S))
decompoeses E(S) to a semilattice of rectangular bands, that isj; E(S)

is a semilattice E(S) / S(E(S)) of rectangular bands.

Let S be a semigroup and p be a congruence on S. Then p is
a semilattice congruence on S if and only if azpa and abpba for all
a, b & S. Hence, arbitrary intersection cof semilattice congruences

en S is a semilattice congruence on S, so that the intersection of
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all semilattice congruences on S is the minimum semilattice congru-
ence on S,
For any semigroup S, let n or n(S) if emphasis is needed,

denote the minimum semilattice congruence on S.

Let S be an orthodox semigroup. Then by Proposition 3.3,
n(E(S)) € S§(E(S)). Because E(S) / n(E(S)) is a semilattice, it fol-
lows that E(S) / n(E(S)) is an inverse semigroup, so n(E(S)) is an
inverse congruence on E(S). Therefore §(E(S)) & n(E(S)).

Hence by Proposition 3.3 and the above proof, the following

theorem follows directly :

3,§ Theorem. Let S be an orthodox semigroup. Let 8(S), S(E(S))
and n(E(S)) be the minimum inverse congruence on S, the minimum in-
verse congruence on E(S) and the minimum semilattice congruence on
EtS); respectively. Then

§(E(S)) = 6&(S)N(E(S) x E(S)) = n(E(S)).

Let p be a semilattice congruence on a semigroup S. Let G
be a subgroup' of S having e as its identity. Let g € G. Then
g0 = (ge)p = (gg g)p = (80)°(e ™M) = (80)(g™'0) = (gg D)o = eo.
Hence G € ep. This prove.s that any subgroup G of S, G € ap for some

a € 5, that is; any two elements of G are p-related.

Let S be an orthodox semigroup. From Theorem 3.6, if
n(S) = 6(S), then n(S)N (E(S) x E(S)) = n(E(S)). The converse is

not generally true. An example is as follows :
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Example. Let G be a nontrivial group with identity 1. .Then G is
orthodox and E(G) = {1}. Because G is a group, G is a n(G)-class,
so n(G) = G x G, Because G is a group, G is an inverse semigroup,
so 6§(G) is the identity congruence on G. Hence n(G) N (E(G) x E(G)) =

{@, 1)} = n(E(G)) but n(G) # §(G).

We have mentioned that every regular semigroup has the mini--
mum right-inverse congruence. We give in the next theorem an explickt
form of the minimum right-inverse congruence on a generalized inverse

semigroup.

3,7 Theorem. Let S be a generalized inverse semigroup. Then
v = {(a,b) € SxS{V(a) = V(b) and a'a = b'b for some a'€ V(a), b' e V(b)}

is the minimum right-inverse congruénce on S.

Proof : It is clear that v is reflexive and symmetric. Next,
we show that v is transitive. Let (a, b), (b, c) € v. Then V(a) =
V(b) = V(c) and a'a = b'b, b"b = c'c forsome a'e V(a), b', b" e V(b)
and ¢'e V(c). Thus a'a = b'b = b'bb"b = b'be'c = (b'be')c. Because

(b'be')b(b'be')

b' (be'b)b'be!
= b'bb'be!
= b'be'

and b(b'be')b

(bb'b)c'b
= be'd
= b,
b'bc' € V(b) = V(c). Hence (a, c)ev. Therefore v is transitive,

Let a, b, ¢ € S such that (a, b) € v. Then V(a) = V(b) and
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a'a = b'b for sdme a'evV(a), b'eV(b). .Because S is orthodbx, by
Theorem 3. 3, V(aé) = V(bc) and V(ca) =Vich)¢ Let.c® V(E) Thenc'atac=
c'b'be. Now, we have V(aé) = V(bc) and c'a'ac = ¢'b'bc. By Theorem
1.}, c'a'e Vtac) and ¢'b'e V(bc) because S.is erxthodox. Therefore,
acvbc. Since a'a = b'b and S is'generélizea inverse, it follows

that

a'c'ca a'c'caa'a
= a'.c.'lcab "b
= a'aa'c'cab'bb'b
= ~a'(aa')(c'c)(ab') (bb')b
= a’(aa')(ap‘)(c'c)(bb‘)b
. (because aé', c'ec, ab', bb'E E(S))
= a'ab'c'ch.
wé will show a'ab'e V(b). Since
(a'ab')aéa'ab') = é'(abfa)a’#b' + a'aa'ab' = a'ab'
.and ' a(a'ab')a = (aafa)b'a =.ab'a = a.
It follows.tﬁat a'ab' e V(b), and hence a'ab'c'e V(cb) because S is
orthodox [Thé;rem 1,11. Therefore V(ca) = V(cb), (a'c')(ca) =
(a_'ab'c 'Y(cb), a'c'eV(ca) and a'ab'c' @V(ch). Hence cavcb.
Therefore v is a tongruencé on S. |

Because S is regular, S/v is regular. To show v is a right-

inverse congruence on S, let e, £ € E(S). Then ef, fe € E(S) and

efefefe efe

(efe) (fe) (efe)

(fe) (efe) (fe) fefefe fe .

Hence efe € V(efe) N'V(fe), so V(efe) = V(fe) C E(S) by Theorem 3.1 .



47

and Proposition 3.4. But (efe)(efe) = (efe)(fg),_ Then (efe, fe) e v.
Because S.is regular, E(S/v) = {ev | e € E(S)}. Therefore'v is a
right—ihverse éongruence on S.
To show v is the minimum' right-inverse congruence on S, let
p be a right-inverse congruence on S. Let (a} b) € v. Then V(a) =
V(b) and a'a = b'b forsome a' €V(a), b'€ V(b). .Therefore,
ap = (aa'a)p ‘
= (aa'ba'a)p
= (aa')p(ba')pap
= (ba')p(aa')p(ba')pap (because ba',
aa'€ E(S) and p is a right—inverée
congruence on S)
= (ba'a;'ba')pap
= (ba'ba')pap
= (ba')eap
= (bp)(a'a)p
= (bp)(b'b)p
. = bp ’
so (a, b) € p. Hence v C_p..

Therefore, the theorem is completely proved. #

The following notation will be used : If T is a subsemigroup
of a semigroup S, for each a € T, let VT(a) denote the set of all in-
verses of a in T. It is clear that if T is a subsemigroup of a semi-

group S, then VT(a) = Vs(a)f\T for any a € T.
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. For any orthodox semigroup, we have the following property *:

3.8 Piogosition. Let T be a regular subsemigroup of an orthodox
semigroup S. Then for any a, b € T, VT(é) = VT(b) if and only if

V(@) = Vg(b).

Proof : Let a, b € T such that Vp(a) = Vo (b). Then Vo(a)N'T
= Vs(b)f\T, hence Vs(a)fivs(b) # ¢. By Theorem 3.1, Vs(a) = Vs(b)
because S is orthodox. -

The converse is obvious. #

Let S be an orthodox semigroup. Then E(S) is a regular sub-
semigroup of S. We have shown in Proposition 3.3 that the minimum
inverse econgruence on E(8) is the restriction of the minimum inverse
congruence on S to E(S). We end this chapter by showing that the
minimum inverse congruence on a regular.subsemigroup T of an orthodox
semigroup S is the restriction of the minimum inverse congruence of

S to T.

3.9 Theorem. Let T be a regular subsemigroup of an orthodox semi-
-group S. Then
6(T) = 6(S) N (T x T).
Hence, if A is an ideal of an orthodox semigroup S, then

§(A) = 6(S) N (A x A).

Proof : Let a, b € S such that (a, b) € §(T). Then a, b e T.

Because T is orthodox [Proposition 1.2], VT(a) VT(b). By Proposi-

tion 3.8, Vs(a) = Vs(b), and hence (a, b) € §(S) because S is orthodox,
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Conversely, let (a, b) € §(S) N (T x T),
Vs(a) = Vs(b). By Proposition 3.8, VT(a) = VT(b).

orthodox, (a, b) € 8(T). #

Then a, b € T and

Because T is
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