CHAPTER III

CONGRUENCES ON ORTHODOX SEMIGROUPS

Hall has given an explicit form of the minimum inverse congruence on any orthodox semigroup in [4]. We show in this chapter that the restriction of the minimum inverse congruence on orthodox semigroup S to E(S) is the minimum semilattice congruence on E(S). An explicit form of the minimum right-inverse congruence on a generalized inverse semigroup is given. It is shown that the restriction of the minimum inverse congruence on an orthodox semigroup S to any regular subsemigroup T of S is the minimum inverse congruence on T.

Let S be a regular semigroup. Let δ be the congruence on S generated by the relation $\{(ef, fe) \mid e, f \in E(S)\}$. Then δ is the minimum inverse congruence on S. Because a homomorphic image of a regular semigroup is regular, S/δ is regular, so δ is a regular congruence on S. Since S is regular, $E(S/\delta) = \{e\delta \mid e \in E(S)\}$. Let $e, f \in E(S)$. Then $(ef, fe) \in \delta$, so $(e\delta)(f\delta) = (ef)\delta = (fe)\delta = (f\delta)(e\delta)$. Hence, any two idempotents of S/δ commute. Therefore S/δ is inverse, and so δ is an inverse congruence on S. Next, let ρ be an inverse congruence on S. Let $e, f \in E(S)$. Then $e\rho$, $f\rho \in E(S/\rho)$. But S/ρ is inverse. Then $(ef)\rho = (e\rho)(f\rho) = (f\rho)(e\rho) = (fe)\rho$, that is; $(ef, fe) \in \rho$. This shows that $\{(ef, fe) \mid e, f \in E(S)\} \subseteq \rho$. But δ is the smallest congruence on S containing $\{(ef, fe) \mid e, f \in E(S)\}$.

Therefore $\delta \subseteq \rho$. Hence, δ is the minimum inverse congruence on S.

Recall the following: A regular semigroup S is a right-inverse semigroup if efe = fe for all e, f \in E(S). A regular semigroup S is a generalized inverse semigroup if for any e, f, g, h \in E(S), efgh = egfh. Right-inverse semigroups and generalized inverse semigroups are generalizations of inverse semigroups.

Let S be a regular semigroup. The similar proof as above, if ν is the congruence on S generated by $\{(efe, fe) \mid e, f \in E(S)\}$, then ν is the minimum right-inverse congruence on S, and if τ is the congruence on S generated by $\{(efgh, egfh) \mid e, f, g, h \in E(S)\}$, then τ is the minimum generalized inverse congruence on S.

For the remaining of this thesis, in any regular semigroup, the following notation will be used:

 δ = the minimum inverse congruence.

v = the minimum right-inverse congruence,

 τ = the minimum generalized inverse congruence on S.

If the emphasis of the semigroup S is needed, we used $\delta(S)$, $\nu(S)$ and $\tau(S)$ for δ , ν and τ ; respectively.

Because every inverse semigroup is right-inverse and generalized inverse, the following relationships follow: In any regular semigroup, $\nu \subseteq \delta$ and $\tau \subseteq \delta$.

In a semigroup S, for a ϵ S, recall that the notation V(a) denotes the set of all inverses of a in S, that is;

 $V(a) = \{x \in S \mid a = axa \text{ and } x = xax\}.$

and a second of the second of the second

The following theorem characterizes an orthodox semigroup in terms of the sets of inverses of its elements:

3.1 Theorem [4, Theorem 2]. A regular semigroup S is orthodox if and only if, for any elements a, b in S, $V(a) \cap V(b) \neq \phi$ implies V(a) = V(b). In fact, a regular semigroup S is orthodox if for any idempotents e, f in S, $V(e) \cap V(f) \neq \phi$ implies V(e) = V(f).

Hall has given an explicit form of the minimum inverse congruence on an orthodox semigroup in [4] as follows:

3.2 <u>Theorem</u> [4, Theorem 3]. If S is an orthodox semigroup, then the relation $\delta = \{(x, y) \in S \times S \mid V(x) = V(y)\}$ is the minimum inverse congruence on S.

Moreover, if S is a regular semigroup and the relation $\delta = \{(x, y) \in S \mid V(x) = V(y)\} \text{ is an inverse congruence on S, then S is an orthodox semigroup.}$

Let S be an orthodox semigroup. Then E(S) is a band, so it is also orthodox. By Theorem 1.1, for each $e \in E(S)$, $V(e) \subseteq E(S)$. Let δ and $\delta(E(S))$ denote the minimum inverse congruences on S and on E(S); respectively. Hence, we can easily see that $\delta(E(S)) = \delta \cap (E(S) \times E(S))$. Since E(S) is a band, $E(S) / \delta(E(S))$ is also a band. Because $E(S) / \delta(E(S))$ is also an inverse semigroup, it follows that $E(S) / \delta(E(S))$ is a semilattice, and hence $\delta(E(S))$ is a semilattice congruence. Hence, we can conclude the following:

3.3 Proposition. Let S be an orthodox semigroup. Then $\delta(E(S)) \ = \ \delta \Omega \ (E(S) \times E(S))$

and it is a semilattice congruence on S.

A semigroup S is called a <u>rectangular band</u> if x = xyx for each $x, y \in S$.

Let S be an orthodox semigroup and δ be the minimum inverse congruence on S. Then for a $\boldsymbol{\epsilon}$ S, a δ = V(a') for any inverse a' of a. Hence, if e $\boldsymbol{\epsilon}$ E(S), then e δ = V(e) which implies V(e) is a subsemigroup of S and so of E(S) because $(e\delta)(e\delta)$ = e δ . Then, if e, f, g $\boldsymbol{\epsilon}$ E(S) such that e, f $\boldsymbol{\epsilon}$ V(g), then V(e) = V(f) [Theorem 3.1], so e = efe. Therefore, we get

3.4 <u>Proposition</u>. Let S be an orthodox semigroup. Then for any e \in E(S), V(e) is a rectangular band.

By Proposition 3.3 and Proposition 3.4, the following clearly follows:

3.5 <u>Proposition.</u> Let S be an orthodox semigroup. Then $\delta(E(S))$ decomposes E(S) to a semilattice of rectangular bands, that is; E(S) is a semilattice E(S) / $\delta(E(S))$ of rectangular bands.

Let S be a semigroup and ρ be a congruence on S. Then ρ is a semilattice congruence on S if and only if $a^2\rho a$ and abpba for all a, b ϵ S. Hence, arbitrary intersection of semilattice congruences on S is a semilattice congruence on S, so that the intersection of

all semilattice congruences on S is the minimum semilattice congruence on S.

For any semigroup S, let η or $\eta(S)$ if emphasis is needed, denote the minimum semilattice congruence on S.

Let S be an orthodox semigroup. Then by Proposition 3.3, $\eta(E(S)) \subseteq \delta(E(S))$. Because $E(S) / \eta(E(S))$ is a semilattice, it follows that $E(S) / \eta(E(S))$ is an inverse semigroup, so $\eta(E(S))$ is an inverse congruence on E(S). Therefore $\delta(E(S)) \subseteq \eta(E(S))$.

Hence by Proposition 3.3 and the above proof, the following theorem follows directly:

3.6 <u>Theorem</u>. Let S be an orthodox semigroup. Let $\delta(S)$, $\delta(E(S))$ and $\eta(E(S))$ be the minimum inverse congruence on S, the minimum inverse congruence on E(S) and the minimum semilattice congruence on E(S); respectively. Then

$$\delta(E(S)) = \delta(S) \cap (E(S) \times E(S)) = \eta(E(S)).$$

Let ρ be a semilattice congruence on a semigroup S. Let G be a subgroup of S having e as its identity. Let $g \in G$. Then $g\rho = (ge)\rho = (gg^{-1}g)\rho = (g\rho)^2(g^{-1}\rho) = (g\rho)(g^{-1}\rho) = (gg^{-1})\rho = e\rho$. Hence $G \subseteq e\rho$. This proves that any subgroup G of S, $G \subseteq a\rho$ for some $a \in S$, that is; any two elements of G are ρ -related.

Let S be an orthodox semigroup. From Theorem 3.6,—if $\eta(S) = \delta(S), \text{ then } \eta(S) \bigcap (E(S) \times E(S)) = \eta(E(S)). \text{ The converse is not generally true. An example is as follows:}$

Example. Let G be a nontrivial group with identity 1. Then G is orthodox and E(G) = {1}. Because G is a group, G is a $\eta(G)$ -class, so $\eta(G) = G \times G$. Because G is a group, G is an inverse semigroup, so $\delta(G)$ is the identity congruence on G. Hence $\eta(G) \cap (E(G) \times E(G)) = \{(1, 1)\} = \eta(E(G))$ but $\eta(G) \neq \delta(G)$.

We have mentioned that every regular semigroup has the minimum right-inverse congruence. We give in the next theorem an explicit form of the minimum right-inverse congruence on a generalized inverse semigroup.

3.7 <u>Theorem</u>. Let S be a generalized inverse semigroup. Then $v = \{(a,b) \in S \times S | V(a) = V(b) \text{ and a'} a = b'b \text{ for some a'} \in V(a), b' \in V(b)\}$ is the minimum right-inverse congruence on S.

<u>Proof</u>: It is clear that v is reflexive and symmetric. Next, we show that v is transitive. Let (a, b), $(b, c) \in v$. Then V(a) = V(b) = V(c) and a'a = b'b, b''b = c'c for some $a' \in V(a)$, b', $b'' \in V(b)$ and $c' \in V(c)$. Thus a'a = b'b = b'bb''b = b'bc'c = (b'bc')c. Because

(b'bc')b(b'bc') = b'(bc'b)b'bc'

= b'bb'bc'

= b'bc'

and b(b'bc')b = (bb'b)c'b

= bc'b

= b,

b'bc' \in V(b) = V(c). Hence (a, c) \in v. Therefore v is transitive. Let a, b, c \in S such that (a, b) \in v. Then V(a) = V(b) and a'a = b'b for some a' \in V(a), b' \in V(b). Because S is orthodox, by Theorem 3.3, V(ac) = V(bc) and V(ca) = V(cb). Let c' \in V(c). Then c'a'ac = c'b'bc. Now, we have V(ac) = V(bc) and c'a'ac = c'b'bc. By Theorem 1.1, c'a' \in V(ac) and c'b' \in V(bc) because S is orthodox. Therefore. acvbc. Since a'a = b'b and S is generalized inverse, it follows that

We will show a'ab' ∈ V(b). Since

.and

$$(a'ab')a(a'ab') = a'(ab'a)a'ab' = a'aa'ab' = a'ab'$$

 $a(a'ab')a = (aa'a)b'a = ab'a = a.$

It follows that $a'ab' \in V(b)$, and hence $a'ab'c' \in V(cb)$ because S is orthodox [Theorem 1.1]. Therefore V(ca) = V(cb), (a'c')(ca) = (a'ab'c')(cb), $a'c' \in V(ca)$ and $a'ab'c' \in V(cb)$. Hence cavcb.

Therefore v is a congruence on S.

Because S is regular, S/v is regular. To show v is a right-inverse congruence on S, let e, $f \in E(S)$. Then ef, $f \in E(S)$ and

Hence efe $\in V(efe) \cap V(fe)$, so $V(efe) = V(fe) \subseteq E(S)$ by Theorem 3.1.

and Proposition 3.4. But (efe)(efe) = (efe)(fe). Then (efe, fe) $\in v$. Because S is regular, $E(S/v) = \{ev \mid e \in E(S)\}$. Therefore v is a right-inverse congruence on S.

To show ν is the minimum right-inverse congruence on S, let ρ be a right-inverse congruence on S. Let $(a, b) \in \nu$. Then V(a) = V(b) and a'a = b'b for some $a' \in V(a)$, $b' \in V(b)$. Therefore,

 $a\rho = (aa'a)\rho$

= (aa'ba'a)ρ

= (aa')ρ(ba')ρaρ

= (ba')ρ(aa')ρ(ba')ραρ (because ba',
aa'∈ E(S) and ρ is a right-inverse
congruence on S)

= (ba'aa'ba')pap

= (ba'ba')ρaρ

= (ba')pap

= $(b\rho)(a'a)\rho$

 $= (b\rho)(b'b)\rho$

= bρ

so $(a, b) \in \rho$. Hence $v \subseteq \rho$.

Therefore, the theorem is completely proved. #

The following notation will be used: If T is a subsemigroup of a semigroup S, for each a \in T, let $V_T(a)$ denote the set of all inverses of a in T. It is clear that if T is a subsemigroup of a semigroup S, then $V_T(a) = V_S(a) \cap T$ for any $a \in T$.

. For any orthodox semigroup, we have the following property :

3.8 <u>Proposition</u>. Let T be a regular subsemigroup of an orthodox semigroup S. Then for any a, b \in T, $V_T(a) = V_T(b)$ if and only if $V_S(a) = V_S(b)$.

<u>Proof</u>: Let a, b \in T such that $V_T(a) = V_T(b)$. Then $V_S(a) \cap T = V_S(b) \cap T$, hence $V_S(a) \cap V_S(b) \neq \phi$. By Theorem 3.1, $V_S(a) = V_S(b)$ because S is orthodox.

The converse is obvious. #

Let S be an orthodox semigroup. Then E(S) is a regular subsemigroup of S. We have shown in Proposition 3.3 that the minimum inverse congruence on E(S) is the restriction of the minimum inverse congruence on S to E(S). We end this chapter by showing that the minimum inverse congruence on a regular subsemigroup T of an orthodox semigroup S is the restriction of the minimum inverse congruence of S to T.

3.9 <u>Theorem</u>. Let T be a regular subsemigroup of an orthodox semi-group S. Then

$$\delta(T) = \delta(S) \cap (T \times T).$$

Hence, if A is an ideal of an orthodox semigroup S, then $\delta(A) = \delta(S) \cap (A \times A).$

<u>Proof</u>: Let a, b \in S such that (a, b) \in δ (T). Then a, b \in T. Because T is orthodox [Proposition 1.2], $V_T(a) = V_T(b)$. By Proposition 3.8, $V_S(a) = V_S(b)$, and hence (a, b) \in δ (S) because S is orthodox.

Conversely, let $(a, b) \in \delta(S) \cap (T \times T)$. Then $a, b \in T$ and $V_S(a) = V_S(b)$. By Proposition 3.8, $V_T(a) = V_T(b)$. Because T is orthodox, $(a, b) \in \delta(T)$. #