CHAPTER II

TRANSFORMATION SEMIGROUPS

Schein has shown in [8] that the full transformation semigroup on any set X is quasi-inverse. In this chapter, we prove that the partial transformation semigroup on any set X is also quasi-inverse. It is shown that the full transformation semigroup on a set X is orthodox if and only if the cardinality of X, $|X| \leq 2$, and the partial transformation semigroup on a set X is orthodox if and only if the cardinality of X, $|X| \leq 1$. Right-inverse transformation semigroups and generalized inverse transformation semigroups are also studied.

Let X be a set. Let \mathcal{T}_X and \mathbf{T}_X denote the full transformation semigroup on the set X and the partial transformation semigroup on the set X; respectively. Note that for any set X, \mathbf{T}_X is a regular semigroup and $\mathbf{\mathcal{T}}_X$ is a regular subsemigroup of \mathbf{T}_X .

The following theorem has been proved by Schein in [8]:

2.1 Theorem [8]. For any set X, the full transformation semigroup on the set X, $\Upsilon_{\rm X}$, is quasi-inverse.

Using Theorem 2.1, it can be shown that for any set X, $\boldsymbol{T}_{\boldsymbol{X}}$ is also quasi-inverse.

2.2 <u>Proposition</u>. For any set X, the partial transformation semi-group on the set X, $T_{\rm X}$, is quasi-inverse.

 $\underline{\operatorname{Proof}}: \text{ Let } \alpha \in T_X. \text{ Then } \alpha \in \mathcal{T}_{\Delta\alpha}. \text{ Since } \mathcal{T}_{\Delta\alpha} \text{ is quasi-inverse and } \alpha \in \mathcal{T}_{\Delta\alpha}, \text{ there exists an inverse subsemigroup } T \text{ of } \mathcal{T}_{\Delta\alpha} \text{ such that } \alpha \in T. \text{ Because } \mathcal{T}_{\Delta\alpha} \text{ is a subsemigroup of } T_X \text{ and } T \text{ is an inverse subsemigroup of } \mathcal{T}_{\Delta\alpha} \text{ containing } \alpha, T \text{ is an inverse subsemigroup of } T_X \text{ containing } \alpha. \text{ This proves that } T_X \text{ is quasi-inverse as required.}$

For any set X, let |X| denote the cardinality of X. If X is a finite set and assume $X = \{1, 2, \ldots, n\}$, then for k_1, k_2, \ldots, k_n \in X, the notation $\alpha = (k_1, k_2, \ldots, k_n)$ denotes the map on X defined by $1\alpha = k_1, 2\alpha = k_2, \ldots, n\alpha = k_n$. For convenience, for any set X, 0 and 1 are denoted for the zero and the identity of T_X ; respectively.

In Chapter I, we show that if X = {1, 2, 3}, then \mathcal{T}_X is not orthodox. The two following theorems show that for any set X, \mathcal{T}_X is orthodox if and only if $|X| \le 2$ and T_X is orthodox if and only if $|X| \le 1$.

2.3 Theorem. For any set X, the full transformation semigroup on X, ${\bf J}_{\rm X}$, is orthodox if and only if $|{\bf X}|\leq 2$.

 $\frac{\text{Proof}}{\text{T}_X}: \text{ Assume } |X| \leq 2. \quad \text{If } |X| = 0 \text{ or } |X| = 1, \text{ then } \mathbb{E}(\overline{J}_X) = \overline{J}_X, \text{ so } \overline{J}_X \text{ is a band and hence } \overline{J}_X \text{ is orthodox.}$

Assume |X|=2, say $X=\{1,2\}$. Then $\mathcal{T}_X=\{1,\alpha_1,\alpha_2,\alpha_3\}$ where $\alpha_1=(2\ 1)$, $\alpha_2=(1\ 1)$ and $\alpha_3=(2\ 2)$. Therefore $\mathbb{E}(\mathcal{T}_X)=\{1,\alpha_1,\alpha_2,\alpha_3\}$

 $\{1, \alpha_2, \alpha_3\}$. Because $\alpha_2\alpha_3 = \alpha_3$ and $\alpha_3\alpha_2 = \alpha_2$, $E(T_X)$ is a subsemigroup of T_X , so T_X is orthodox.

Conversely, suppose |X|>2. Let a, b, c be three distinct elements in X. Define α and $\beta\in \mathcal{T}_X$ by

$$x\alpha = \begin{cases} c, & \text{if } x \neq b \\ b, & \text{if } x = b \end{cases}$$

for all x & X and

$$x\beta = \begin{cases} b, & \text{if } x \neq a \\ a, & \text{if } x = a \end{cases}$$

for all $x \in X$. Since $x\alpha^2 = (x\alpha)\alpha = c\alpha = c = x\alpha$ if $x \neq b$ and $b\alpha^2 = (b\alpha)\alpha = b\alpha$, $\alpha^2 = \alpha$ and so $\alpha \in E(\mathcal{T}_X)$. Because $x\beta^2 = (x\beta)\beta = b\beta = b = x\beta$ if $x \neq a$ and $a\beta^2 = (a\beta)\beta = a\beta$, $\beta^2 = \beta$, so $\beta \in E(\mathcal{T}_X)$. Since $a(\beta\alpha) = (a\beta)\alpha = a\alpha = c$ and $a(\beta\alpha)^2 = (a\beta\alpha)\beta\alpha = c(\beta\alpha) = (c\beta)\alpha = b\alpha = b$, $(\beta\alpha)^2 \neq \beta\alpha$, so $\beta\alpha \notin E(\mathcal{T}_X)$, hence \mathcal{T}_X is not orthodox. This proves that if \mathcal{T}_X is orthodox, then $|X| \leq 2$. #

2.4 Theorem. For any set X, the partial transformation semigroup, T_X , is orthodox if and only if $|X| \le 1$.

Conversely, suppose |X|>1. Let $X'=\{a,b\}$ where a,b are two distinct elements of X. Then $T_{X'}=\{0,1,\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\alpha_6,\alpha_7\}$ where

$$\Delta \alpha_1 = \{a\} = \nabla \alpha_1, \quad \Delta \alpha_2 = \{b\} = \nabla \alpha_2$$

$$\Delta\alpha_3 = \{a\}, \ \nabla\alpha_3 = \{b\}, \ \Delta\alpha_4 = \{b\}, \ \nabla\alpha_4 = \{a\}$$

$$\Delta\alpha_5 = X', \ \nabla\alpha_5 = \{a\}, \ \Delta\alpha_6 = X', \ \nabla\alpha_6 = \{b\}$$

$$\Delta\alpha_7 = X' = \nabla\alpha_7 \text{ and } \alpha\alpha_7 = b \text{ and. } b\alpha_7 = a.$$

Under the composition of maps, we have the following table :

	0	1.	α ₁	^α 2	α ₃	α ₄ .	α ₅	α. 6	α ₇
Ó	0	0	.0	0	0	0	0	0	0
1	Ò	1	^α 1	^α 2	α3	·α ₄ ·	α ₅	α ₆	· ^α · ₇
α ₁	-0	α ₁	α ₁	0	α3	.0	α ₁	α3	α3
α2	. 0	α ₂	0.	α2	0	α4	α ₄	α2	α4
α ₃	0	^α 3	0	. ^α 3	.0	α ₁	α1.	α ₃	.°1
α ₄	0	α ₄	α ₄	0	a ₂	0.	α ₄	α2	α _{.2}
α ₅	0	α ₅	α ₅	0	α ₆	0	α ₅	α ₆	α ₆
α ₆	0	α6	0	α ₆	0	α ₅	α ₅	α ₆	.α ₅
α ₇	0	α ₇	α4	α3	α2	α1	α ₅	α ₆	1

From the table, $E(T_{X'}) = \{0, 1, \alpha_1, \alpha_2, \alpha_5, \alpha_6\}$ but $\alpha_1\alpha_6 = \alpha_3 \notin E(T_{X'})$. Then $T_{X'}$ is not orthodox. Because $T_{X'}$ is a subsemigroup of $T_{X'}$ and $\alpha_1, \alpha_6 \in E(T_{X'}) \subseteq E(T_{X'})$ and $\alpha_1\alpha_6 = \alpha_3 \notin E(T_{X'})$, $\alpha_1, \alpha_6 \in E(T_{X'})$ and $\alpha_1\alpha_6 \notin E(T_{X'})$. Hence $T_{X'}$ is not orthodox. This shows that $T_{X'}$ is orthodox implies $|X| \leq 1$. #

The next two propositions give the necessary and sufficient conditions for a full transformation semigroup and a partial

transformation semigroup to be right-inverse or to be generalized inverse.

2.5 Proposition. For any set X,

- (i) T_x is right-inverse if and only if $|X| \le 2$,
- and (ii) T_X is right-inverse if and only if $|X| \le 1$.

 $\underline{\text{Proof}}$: (i) Assume \mathcal{T}_X is right-inverse. Then \mathcal{T}_X is orthodox, so $|X| \leq 2$ by Theorem 2.3.

Conversely, assume $|\mathbf{X}| \leq 2$. If $|\mathbf{X}| = 0$, then $\mathcal{T}_{\mathbf{X}} = \{0\}$. If $|\mathbf{X}| = 1$, then $\mathcal{T}_{\mathbf{X}} = \{1\}$. Hence if $|\mathbf{X}| \leq 1$, then $\mathcal{T}_{\mathbf{X}}$ is clearly a right-inverse semigroup. Assume $|\mathbf{X}| = 2$. Then $\mathcal{T}_{\mathbf{X}} = \{1, \alpha_1, \alpha_2, \alpha_3\}$ where α_1 , α_2 , α_3 are defined as in the proof of Theorem 2.3. Because $\mathbf{E}(\mathcal{T}_{\mathbf{X}}) = \{1, \alpha_2, \alpha_3\}$, $\alpha_2\alpha_3\alpha_2 = \alpha_2 = \alpha_3\alpha_2$ and $\alpha_3\alpha_2\alpha_3 = \alpha_3 = \alpha_2\alpha_3$, it then follows that $\mathcal{T}_{\mathbf{X}}$ is right-inverse.

(ii) Assume T_X is right-inverse. Then T_X is orthodox, so $|X| \leq 1 \text{ by Theorem 2.4.}$

Conversely, assume $|X| \le 1$. If |X| = 0, then $T_X = \{0\}$, so T_X is right-inverse. If |X| = 1, then $T_X = \{0, 1\}$, so T_X is clearly right-inverse: #

2.6 Proposition. For any set X,

- (i) T_X is generalized inverse if and only if $|X| \le 2$,
- and (ii) T_X is generalized inverse if and only if $|X| \le 1$.

 $\underline{\text{Proof}}$: (i) Assume \mathcal{T}_X is generalized inverse. Then \mathcal{T}_X is orthodox, so $|X| \le 2$ by Theorem 2.3.

Conversely, assume $|X| \leq 2$. If |X| = 0, then $\mathcal{T}_X = \{0\}$. If |X| = 1, then $\mathcal{T}_X = \{1\}$. Hence if $|X| \leq 1$, then \mathcal{T}_X is clearly a generalized inverse semigroup. Assume |X| = 2. Then $\mathcal{T}_X = \{1, \alpha_1, \alpha_2, \alpha_3\}$ where α_1 , α_2 , α_3 are defined as in the proof of Theorem 2.3. Because $E(\mathcal{T}_X) = \{1, \alpha_2, \alpha_3\}$ and $\alpha_2\alpha_3 = \alpha_3$ and $\alpha_3\alpha_2 = \alpha_2$, \mathcal{T}_X is a generalized inverse semigroup.

(ii) Assume T_X is generalized inverse. Then T_X is orthodox, so $|X| \le 1$ by Theorem 2.4.

Conversely, assume $|X| \le 1$. If |X| = 0, then $T_X = \{0\}$. If |X| = 1, then $T_X = \{0, 1\}$. Hence T_X is a generalized inverse semigroup. #

In Chapter I, it is shown that a regular subsemigroup of a quasi-inverse semigroup need not be quasi-inverse but its ideals are.

Let X be a set. For each cardinal c, let

$$D_{c} = \{\alpha \in T_{X} \mid |\Delta\alpha| \leq c\}.$$

Then $0 \in D_c$. It is clearly seen that D_c is a subsemigroup of T_X for each cardinal c. Let c be a given cardinal number. To show D_c is regular, let $\alpha \in D_c$. Because $T_{\Delta\alpha}$ is regular, there is $\beta \in T_{\Delta\alpha}$ such that $\alpha = \alpha \beta \alpha$. Then $\beta \in T_X$ and $|\Delta\beta| \leq |\Delta\alpha| \leq c$. Therefore $\beta \in D_c$ and hence α is a regular element of D_c . This proves that D_c is a regular subsemigroup of T_X . In general, D_c need not be an ideal of T_X . An example is given as follows:

Example. Let $X = \mathbb{R}$ where \mathbb{R} is the set of real numbers and let n be a positive integer. Then $D_n = \{\alpha \in T_{\mathbb{R}} \mid |\Delta\alpha| \le n\}$. Let α , $\beta \in T_{\mathbb{R}}$

be defined by $\Delta\alpha$ = $\{0\}$ = $\nabla\alpha$ and $\Delta\beta$ = \mathbb{R} and $\nabla\beta$ = $\{0\}$. Then $\alpha \in D_n$, but $\beta\alpha \notin D_n$ because $\Delta\beta\alpha = \mathbb{R}$ which is uncountable. Hence D_n is not an ideal of T_n .

The previous example shows that for any set X, D_c , defined as before, need not be an ideal of T_X . However, D_c is always a quasi-inverse subsemigroup of T_X for any set—X and for any cardinal c.

2.7 Proposition. Let X be a set. For any cardinal c,

$$D_{c} = \{\alpha \in T_{X} \mid |\Delta\alpha| \le c\}$$

is a quasi-inverse subsemigroup of T_{χ} .

<u>Proof</u>: Let c be any cardinal number. D_c is a subsemigroup of T_X as the previous mention. Let $\alpha \in D_c$. Then $\alpha \in T_{\Delta\alpha}$ which is a quasi-inverse semigroup [Proposition 2.2], there exists an inverse subsemigroup B of $T_{\Delta\alpha}$ such that $\alpha \in B$. Because $|\Delta\alpha| \le c$, $T_{\Delta\alpha}$ is a subsemigroup of D_c . Therefore B is an inverse subsemigroup of D_c containing α . Hence D_c is a quasi-inverse subsemigroup of T_X .

Let X be a set. For each cardinal c, let

$$R_{c} = \{\alpha \in T_{X} \mid |\nabla \alpha| \le c\},$$

$$F_{c} = \{\alpha \in T_{X} \mid |\nabla \alpha| \le c\} \text{ if } c > 0.$$

and

The following proposition shows that \mathbf{R}_c is an ideal of \mathbf{T}_X for any cardinal c and \mathbf{F}_c is an ideal of \mathbf{T}_X for each cardinal c such that c>0.

2.8 Proposition. Let X be a set. For any cardinal c,

$$R_c = \{\alpha \in T_X \mid |\nabla\alpha| \le c\}$$

is an ideal of T_X and for c > 0,

$$F_c = \{\alpha \in \mathcal{T}_X \mid |\nabla \alpha| \le c\}$$

is an ideal of \mathfrak{T}_{X° Hence R_c is a quasi-inverse subsemigroup of T_X for any cardinal c, and for each cardinal c such that c > 0, F_c is a quasi-inverse subsemigroup of \mathfrak{T}_{X° .

 $\begin{array}{c} \underline{Proof}: \text{ Let c be a given cardinal number. Since } 0 \in R_{_{\mathbf{C}}}, \\ R_{_{\mathbf{C}}} \neq \emptyset. \text{ Let } \alpha \in R_{_{\mathbf{C}}}, \beta \in T_{_{\mathbf{X}}}. \text{ Then } \left| \nabla \alpha \right| \leq c. \text{ Because } \nabla \beta \alpha \subseteq \nabla \alpha, \\ \left| \nabla \beta \alpha \right| \leq \left| \nabla \alpha \right| \leq c, \text{ so } \beta \alpha \in R_{_{\mathbf{C}}}. \text{ Because } \nabla \alpha \beta = (\nabla \alpha \bigcap \Delta \beta) \beta \text{ and } \beta \text{ is a} \\ \max_{\mathbf{C}} | | \nabla \alpha \beta | = \left| (\nabla \alpha \bigcap \Delta \beta) \beta \right| \leq \left| \nabla \alpha \bigcap \Delta \beta \right| \leq \left| \nabla \alpha \right| \leq c, \text{ so } \alpha \beta \in R_{_{\mathbf{C}}}. \text{ Hence } \\ R_{_{\mathbf{C}}} \text{ is an ideal of } T_{_{\mathbf{X}}}. \end{array}$

Next, let c be a cardinal such that c > 0. Then $F_c \neq \phi$. By the same argument as above, we have F_c is an ideal of \mathfrak{T}_{X° #

From the proof of Proposition 2.7 and the proof of Proposition 2.8, the following remark follows easily:

2.9 Remark. Let X be a set. For any cardinal c such that c > 0,

$$\overline{D}_{c} = \{\alpha \in T_{X} \mid |\Delta\alpha| < c\}$$

and

5

$$\bar{R}_{c} = \{ \alpha \in T_{X} \mid |\nabla \alpha| < c \}$$

are quasi-inverse subsemigroup of T_X , and if c > 1, then

$$\overline{F}_c = \{\alpha \in \mathcal{T}_X \mid |\nabla \alpha| < c\}$$

is a quasi-inverse subsemigroup of $\mathfrak{I}_{_{X}}$ and also an ideal of $\mathfrak{I}_{_{X^{\circ}}}$