CHAPTER 1

ORTHODOX SEMIGROUPS AND QUASI-INVERSE SEMIGROUPS

In this chapter, we study orthodox semigroups and quasi-
invarse semigroups in general. Many important properties satisfied
by boty or by one but not the other are introduced. Various exam-.

ples are also given.

»
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Let S be a semigroup, a € S, we denote V(a) the set of 1all.
inverses of a in S; that is,

V(a) = {g e S

a = axa and X =‘xax].

The first theorem gives equivalent definitions of a regular

semigroup to be orthodox.

1.1 Theorem [?, Lemma 1.3].. For any regular éemigroup's, the
following three conditions are equivalent :

(i) S is orthodox.

(ii) For any elements a, b ih.s, V(b)V(a) € V(ab).

(iii) Any inverse of an idempétent in S is an idempotent;

that is, V(e) € E(S) for all e e E(S).

The next proposition shows that any regular subsemigroup

of an orthodox semigroup is orthodox.

1.2 Proposition. A regular subsemigroup of an orthodox semigroup

is orthodox.



Proof : Let A be a regular subsemigroup of an orthodox
sémigroup S. Let e € E(A) and x be an inverse of e in A. Then
e € E(S) and x is an inverse of e in S. Since x is an inverse of
an idempotent e in S which is an orthodox semigroup, by Theorem 1.1,

X € E(S), so x € E(A). Hence A is orthodox. #

Every ideal of a regular semigroup is clearly regular.

Hence by Proposition 1.2, the following corollary follows
1.3 Corollary. An ideal of an orthodox semigroup is orthodox.

Let p be a congruence on a semigroup S. . It is cléar that
{ep | e € E(S)} © E(S/p). The two sets are equal if S is regular.
To prove this, let S be a regular semigroup and p be a congruence
on S. Let a € S such that ap € E(S/p). Let x be an inverse of

2 .
a” in S. Then
2
(axa) (axa) = axa xa = axa,
iy 2 2
(axa)p = apxpap = apxpap = ap = ap,
so axa € E(S) and axa € ap.

A homomorphic image of a, regular semigroup is clearl§ re-
gular., Because of the corresponding between congruences and homo-
morphisms, it follows that if a semigroup T is a homomorphic image
of a regular semigroup S by a homomorphism ¢y, then T is regular
and

E(T) = {ey | e € E(9)],
which implies that E(T) is a subsemigroup of T if E(S) is a subse-

migroup of S. Hence, the follo%ing proposition follows :
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1.4 Proposition. A homomorphic image of an orthodox semigroup

is orthodox.

Let I be an ideal of a semigroup S. If S is orthodox,
then, by Corollary 1.3 and Proposition 1.4, I and the Rees quotient
semigroup S/I are orthodox. It has been proved by Hall in [4] that

this converse is also true.

The next proposition is a characterization of ‘an orthodox
semigroup in terms.of its principal ideals. The following 1lemma

is required first :

1.5 Lemma. Let S be a semigroup. .Then S is regular if and only

if every principal ideal of S is regular.

Proof : Assume that every principal ideal of a semigroup

S is regular. Let a € S. Then SlaSl is regular. Since'a & Slasl,

1 such that a = axa and x = xax. If x =1,

there exists x € S;as
then a = 1 € S, so a is a regular element of S. If x # 1, then
x € S and hence a is regular in S. This provés S is regular.

The converse is obvious.

1.6 Proposition. Let S be a semigroup. Then S is orthodox if

and only if every principal ideal of S is orthodox.

Proof : If S is orthodox, then by Corollary 1.3, every
principal ideal of S is orthodox.

Conversely, assume every principal ideal of S is orthodox.
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By Lemma 1.5, S is regular. Let e € E(S) and x € V(e). Then
x = xex € SeS which is an orthodox semigroup by assumption. Thefg—
fore x € E(SeS) by Theorem 1.1, so x € E(S). This proves

V(e) ¢ E(S) for any e € E(S). Hence S is orthodox by Theorem 1.1. #

A regular semigroup S is called a right-inverse semigroup

if every principal left ideal of S, has a.unique idempotent gene-
rator. It has been shown in [3] that a regular semigroup S is
right-inverse iff efe = fe for alle, f € E(S).
If S is a right-inverse semigroup, then for any e,f € E(S),
(ef)2 = (efe)f = fef = ef, which implies E(S) is a subsemigroup
of S. Hence, every right-inverse semigroup ié an orthodox semigroup.
An orthodox semigroup need not be right-inverse. A nontri-
vial left zero semigroup is.an orthodox semigfpup but not a right-
inverse semigroup. (Recall that a semigroup S is'called a left

zerc gemigroup if for any a, b € S, ab = a.)

1.7 Proposition. (1) A regular subsemigrAup of a right-inverse
semigroup is right-inverse. Hence, an ideal of a right-inverse
semigroup is right-inverse.

(2) A homomorphic image of a right-inverse se-

migroup is right-inverse.

Proof : (1) Let A be a regular subsemigroup of a right-—
inverse semigroup S. Let e, f € E(A). Then e, f € E(S). Because
S'is right-inverse and e, f € E(S), efe = fe. - Hence A is right-

inverse.



14

(2) Let y be a homomorphism from a right-inverse
semigroup S onto a semigroup T. Then T is regular. Because S is
regular, E(T) = {ey | e € E(S)}. Lete, f¢ E(S). Then

(ep) (£Y) (ey) = (efe)y = (fe)y = £yey.
Therefore, for any e', f' € E(T), e'f'e' = f'e’.
Hence, T is right-inverse. #

If I is an ideal of a semigroup S, we denote o1s the Rees
congruence on S induced by the ideal I; that is,
apr if and only if either a, be I or a = b.

-

Let I be an ideal of a semigroup S. It follows from Propo-
sition 1.7 that if S is right-inverse, then I and the Rees quotient
semigroup S/I are also right-inverse. The next theorem shows that

this converse is true, too.

1.8 Theorem. Let I be an ideal of a semigroup S. Then S is right-
inverse if and only if I and the Rees quotient semigroup S/1 are

right-inverse.

Proof : Assume I and S/I are right-inverse. Then I and S/I
are orthodox. From [4, Theorem 4], S is orthodox and therefore S
is regular and E(S) is a subsemigroup of S. Let e, f € E(S). Be-

cause S/I is right-inverse, (efe)pI = (epI)(pr)(epI) = (pr)(epI) =

(fe)pI. It follows that either efe = fe or efe, fe € I. If efe,

(]

fe € I, then efe efefe (since fe € E(S))

fe(efe)fe (since efe, fe € E(I) and

I is right-inveérse)
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= fe.

In any case, we have that efe = fe. Therefore S is right-inverse. #

The next proposition is a characterization of a right-in-

verse semigroup in terms of its principal ideals.

1.9 Proposition. A semigroup S is right-inverse if and only if

every principal ideal of S is right-inverse.

Proof : If S is rigﬁt—inverse, then by Proposition 1:?(1),
every principal ideal of § is right-inverse. ‘

Conversely, assume every principal ideal of S is right-
inverse. Then every principal ideal of S is orthodox. By Proposi-
tion 1.6, S is orthodox, so S is regulér. Let e, f € E(S). Then
ef, fe € SfS. Since S is orthodox, ef, fe € E(S), and hence ef,

fe ¢ E(SfS) € E(S). Thus efe = effe = feeffe = fe because SfS is

right-inverse. This proves S is right-inverse. #

A regular semigroup S is called a generalized inverse semi-

ggggg-if efgh = egfh for all e, f, g, ﬁ e E(S). 1If S is a general-
ized inverse semigroup, then for any e, f € E(S), ‘- -
(ef)2 = efef = eeff = ef. (](]()1‘8 £
If S is a generalized inverse semigroup with identity 1, then for
any e, f € E(S), ef = 1(ef)l = 1(fe)l = fe. A regular semigroub

S is an inverse semigroup if and only if ef = fe for all e, f € E(S)

[1, Theorem 1.17]. Hence, we have

1 19101860 -



1.10 Proposition. (1) Every generalized inverse semigroup is

orthodox.

(2) Every generalized inverse semigroup with

identity is an inverse semigroup.

The following example shows that orthodox semigroups are

a generalization of generalized inverse semigroups :

pampre. tec s -{(3 %) (5 0)2 (19) (1-3)}-

Then S is a semigroup with matrix multiplication and

wo - {5922 (0

We can easily check that S is regular, E(S) is a subsemigroup of S.

WOYZL. 0y ~(10 10
Hence S_ is orthodox. Since (0 0)(1 0) = 5 0) " (1 0)
i g) ((1) g), S is not an inverse semigroup.- But S has é ?)

as its identity. Then by Proposition 1.10(2), S is not a general-

ized inverse semigroup.

A nontrivial left zero semigroup is generalized inverse

but not right-inverse. The following example shows that there is
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a right-inverse semigroup but not a generalized inverse semigroup :

s 10 10)(11 (11)}
Example. Let S {(0 1):(0 0 » 0 0)! 0-1: ‘
Under usual matrix multiplication, S is a regular semigroup having
(é_?) as its identity, and E(S) = {(é ?)J (é g > (é é)};
e s (10)(11 =_(11)_3(11)10)11)
‘ 00/A00 00/ 00/\00/\0O0
(_l 1) 1 0) (1 0 ) » l.())(l 1 ) 10 ).
00/\0O \oo/ \ooj\OooO (0 0/

Therefore S is a right-inverse semigroup. Because



10)11)_(11 4 10)_ 11)10)
oo/\oo/ ~ \00 0 0 = N0 0N 0.}

S is not a generalized inverse semigroup. #

It can be easily seen that a regular subsemigroup of a gen-
eralized inverse semigroup is generalized inverse and a homomorphic
image of a generalized inverse semigroup is generalized.inverse.

Then, we have

1.11 Proposition. Let I be an ideal of a semigroup 8. "LE & 48
generalized inverse, then I and the Rees quotient semigroup S/1 are

generalized inverse.

The converse of Proposition 1.11 is not true in general as

shown in the following example : : .

= - f1'0 _ 10
Example., Let S = { T El? E2, E3} where I = 0 1), El = (1 0),
E2 3 é g) and E3 & (i g)» Then under the usual matrix mulriplica-

tion; we have the following table :

S
=1

W
.th:,l?i
o)
o

Thus S is a regular semigroup and E(S) = {I, El’ Ez}. Because

IElEZI = E1 # E2 = IEzEli, S is not generalized inverse. Let

A= {El’ Ez}n From the table, A is an ideal of S, so S/A is'regular,
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e s B e g

E,E\E,Eys E\E)B\E) = E; = E\EE)E and EyE)E4E) = E; .= E,E,E,E,,

Because E(A) = A and EZEZ_ElEl = Ez = E.E:E.E., E.E,E.E, = E2 =

.it follows that A is geqeraiized inverse. Because S/A = {EIDA’
IpA, Esph}, from‘the-table, E(S/A) = ﬂElpA,.IpA}. It is clear

that S/A is generalized inverse. #

Arbitrary intersection of ideals of a semigroup S'if non-
empty. is an ideal of S. Arbitrary intersection of congruences on
a semigroup S is a congruence on S.

Let A and B be ideals qf_a semigroup S. 'It-is.easily_seen
that if A QLB, then bA C Py and hence S/B is a hogomorphic image

of S/A by the homomorphism y defired by (apA)w = apg.

Howie and Lallement has shown the existence of a minimum

orthodox congruence on a regutar semiérouﬁ in: [5],

The intersection of all ideals of a semigroup S if nonempty
is called the kermel of S. A nontrivial zero semigroup is a semi-
group with kernel but it is not regular. (Recall that a semigroup

S with zero 0 is called a zero semigroup if xy = 0 for all x, y &S.)

If we let S be the set of all negative integers and define an opera-
tion * on S by m*n = min {m, n}, then S is a regular semigroup with-

out kernel.
Let {pa}aen be a collection 6f congruences on a semigroup S.

Then [

uehpa is a congruence on S. For each a € S, a(ézﬂpa) = N

aeﬁapu

To show this, let x € a(afgﬂpa). Then (x, a) € agﬁpa’ so (x, a) €0,

f L] C
or each o € A Hence x € ap for all o € A, s0 X ¢ éznapa
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Then (y, a) € Py for each @ € A, so

Conversely, let y € (Qnapa'

(v, a) < Hence. vy e a(agﬁpu) -

EY oo
aeh” &
The next theorem shows that aI:Ly semigroup S with kernel has
" the minimum orthodox Rees congruenc_'é and it is the intersection of

all of its orthodox Rees congruences, and also, the intersection of
all right-inverse Rees congruences on S is the hminimum right-inverse
Rees. congruence on S. The three following lemmas are required to

prove the theorem :

1.12 Lemma. Let.S be a semigroup and {Aa}aeh be a collection of

ideals of S such that:. oQAﬁa # o, Then (QﬂpA = P , + Hence, for
0 o aeh o
each a € S, ap = (ap,- ).
agﬁAor. aeh Aa
. o ) N
Proof : Let A ae‘AAa" Let (a, b) € aehpAu' Then (a, b) €
p for all o & A.‘
Ag

Case a € A. Thenaeaafog:allaen, so b€ A for all a € A

since (a, b) e Pa for all o € A. Therefore (a, b) & Ppr
TR

Case a é A for some B & A. Then ap = {a}. - Since (a, b) & p
' =]

Ag Ag
b = a. Hence ap_A = pr.
Therefore aQﬁpAag Pyt
For each B € A, AC AB’ so pAg___ pAB., Hence pA(_'__ QﬁpAa.
Therefore {QﬂpA = ‘b A » as required. #
o €l o

1.13 Lemma. Let S be a semigroup and {Aa}ae.-\ be a collection of
ideals of S such that uQ;\Aa # ¢. If for each a € A, N is a regular
a

Rees congruence on S, then aQ is also a regular Rees congruence

APA
o

on S.
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H .-—-n i 4 N = = N
Proof : Let A aeAAa By Lemma 1.12, aehpéd EEEAa Pa

Let a € S. Then either a € A or a % AB for some B & A. If a € A,
then ap, is the zero element of S/A and hehce‘it is regular. Assume

a * AB for some B € A. Because ap, € S/AB which is regular, there

B
-is x € S such that

ap = ap, xp, ap, -+ = (axa)p, -

A A"TA TA A

: 8 B B B B ' - -
But a # AB. Then a = axa and hence ap, = apAgpAapAn This shows thaF

S/A is reguldr. Therefore JERDAI is a regular Rees congruence

on S, #

.

1.14 Lemma. Let S be a semigroup and {Au}aeh be a collection of

ideals of S such that_ggnaa # ¢. If N is an orthodox Rees congru--

ence on S for all a € A, then JQA”A is also an orthodox Rees con-

gruence on S. Moreover, if CIN is a right-inverse Rees congruence
o
on S for all o« € A, then JEAQA is also a right-inverse Rees con-

gruence on S,

Proof : Assume S/Aa'is orthodox for each a € A. Then S/AQ
is regular for each o € A. Let A = JlAAa' From Lemma 1.12 and

Lemma 1.13, S/pA is regular. Let aoA_e E(S/A) and X, € V(apA).

.

Then Xp, = Xp,ap,Xp, = (xax)pA.

If a € A, then xax € A and x € A which imply ap, = xp, and it is the

zero of S/A. Assume a * A. Then a 4 AB for some B € A. Because

ap, = (axa)pA, Xp, = (xax)pA and A.Q_AB, It follows that apAB =
(axa)pAB and prB = (xax)pAB which imply pr§€: V(apAB) in SfAﬁ_

; 2
Since a * A and apA.e E(S/A), a'p, = ap, = {a}, and so a2 = a,

A
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Hence ap, & E(S/A ). But S/A_ is orthodox. Then Xp, € E(S/A).
Aﬁ B g AB B
! 2
Because X f A, {x} =%, = xzp = {xz] and then x = x which
B AB AB

implies Xp o € E(S/A). This shows. that Pa is an orthodox Rees
congruence on S.

Next, assume that

SN is a right-inverse Rees congruence on
& A
S for all a € A. Let A = JgﬁAa' To. show $/A is right-iaverse, let

ap,, b, € E(S/A). T?en_by Lemma 1.12; ap, = é}AapAu.an bo, =

N
aeﬂprd

. Because (a2, a) €& DA,.(az, a) € Py for all o € A. Simi-
= ’ o
larly, (bz, b) e-pA for all a € A. Since for all o € A, S/{&OL is
o

right-inverse and ap, pr (3 EKSIAQ), (aba)pA = ap, pr ap, =
o o (+ A« T

Q

= : . = =N
pruapAa (ba)pﬂa for all a & A, so apAprapA (aba)pA aeﬂ(aba)pA¢
= N - r ; o
: ueA(ba)pA (ba)pA prapA. Because pAu is a right-inverse Rees

congruence on S for each a & A, Pa is a regular Rees congruence on S
a .
for all @ € A. Then, by Lemma 1,12 and Lemma 1.13, S/A is regular.

Hence S/A is right-inverse. This proves p, is a right-inverse Rees

A

congruence on S. #

Let S be' a semigroup with kernel. Let € be the collection
of all ideals A of S such-that the Rees cﬁngruences p, are orthodox
congruences on S, and let & be the collection of all ideals A of S
such that the Rees congruences p, are right-inverse congruenceson S.
Then S belongs to gand—\f?, 0 ?f% ¢ and 'g% ¢. Because AQ‘:A # ¢ and
M_a % ¢, by Lemma 1.12 and Lemma 1.14, the following theorem follows

Aee
directly :
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1.15 Theorem. Any semigroup with kernel has the minimum orthodox
Rees congruence and it is the intersection of all of its orthodox
Rees congruences.

Moreover, any semigroup with kernel has the minimum right-
inverse Rees congruence and it is the intersection of all of its

right-inverse Rees congruences.

Also, the minimum generalized inverse Rees congruence on a

semigroup with kernel always -exists.

1.16 Proposition. Let S be a semigroup with kernel. Then the inter-
section of all of its generalized inverse Rees congruences on S is the

minimum generalized inverse Rees congruence on S.

Proof : Let A be an index set such that {A | « € A} is the
set of all ideals of S which give generalized inverse Rees congruences on
S, Then S is an element of {A | o € A}. Let.A= M A . Then A is
o aeh o
an ideal of S because A #¢ . By Lemma 1.12 and Lemma 1.13, p, is a

regular congruence on S. Next, let ap s pr, CP s dpA € E(S/A). Then

by Lemma 1.12, ap , = égﬁaDA ; pr = Jgnpr » OP, = glﬂcpA and dp, =
N 2 5.2 B 2 R s o
aeﬂdpAa" Because ({ , a), (", b), (c"y, c) and (d’, d) € pye it fol-

lows that (az, a), (bz, b), (cz, c) and (dz, d) € pAd.for all o € A,

Since for each a € A, S/Aa is generalized inverse and a, pr -
o o
d d = = c

cp, and do, & E(S/Aa), (abcd)pA ap, pr cp dpA ap, cp, pr

o .o a a o (o )
; = (acbd)pAd for all a € A, so ap, pr Co, dpA = (abcd)pA =
n ol = n = = i
aen(ab d)pAOL aeA(ade)pAa (acbd)pA apAcpAprdpA. Then S/A is

dpA

generalized inverse. Therefore, Pa is a generalized inverse Rees
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. is the minimum generalized inverse Rees

congruence on S. Hence pA

congruence on S because pA = so the theorem is

r}.
aeh’A
a

completely proved. #
The kernel of any semigroup with zero always exists. Then

the following corollary follows directly from Theorem 1.15 and Pro-

position 1,16,

1.17 Corollary. Any semigroup with zero has the minimum orthodox
Rees congruence, the minimum right-inverse Rees congruence and the

minimum generalized inverse Rees congruence.

We note that in any semigroup S, if the minimum orthodox Rees
congruence, the minimum right-inverse Rees hongruénce and the minimum
gengralized inverse Rees congruence of § exist-, then the minimum or-
thodox Rees congruence on S is contained in the intersection of the
minimum right-inverse Rees congruence on S and the minimum generalized

inverse Rees congruence on S.

Let A and B be ideals of a semigroup S such that A € B. Then
S/B is a homomorphic image of S/A. Then, if Pa is an orthodox Rees

congruence on S, then p_ is also an orthodox Rees congruence on S

B

[Proposition 1.4], and if p, is a right-inverse Rees congruence on S,

A
then so is Py [proposition 1.7(2)]. Moreover, if N is a generalized

inverse Rees congruence on S, then p_, is also a generalized inverse

B

Rees congruence on S. Hence, the following proposition follows di-

rectly



1.18 Proposition. Let S be a semigroup with kernel K. Then the
following hold :

(1), . IE PR is an orthodox Rees congruence on S, then CIN is
an orthodox Rees congruence on S for each ideal A of S and Px js the
minimum orthodox Rees congruence on S.

(2) 1f Px is a right-inverse Rees congruénce on S, then for

each ideal A of S is a right-inverse Rees congruence on S and p

3 pA K

is the minimum right-inverse Rees congruence on S.

(3) 1f PR is a generalized inverse Rees congruence on S,
then pA is also a generalized inverse Rees congruence on S for all
ideal A of‘S and P is the minimum generalized inverse Rees congru-

ence on S.

A semigroup S is called quasi-inverse if for each a € S,

there exists an inverse subsemigroup of S containing a. Then a
semigroup S is quasi-inverse if and only if it is a union of inverse
subsemigroups of S. It clearly follows that every quasi-inverse se-

migroup is a regular semigroup.

An orthodox semigroup and a quasi-inverse semigroup are both
regular and they are at the same time a generalization of the inverse
semigroups and of the bands. However, they are not quite related,
The following example shows that there exists an orthodox semigroup

but not a quasi-inverse semigroup and vice versa :

Example. Let X = {1, 2, 3}. For a, b, c € X, the notation a =

(a, b, ¢c) € 9; means the map on X with la = a, 20 = b and 3a = c.



Schein has shown in [8] thattrg is quasi-inverse. Because
121, @33 €ET)and-121) A33)=0Q13 1) ¢ E(T), it

follows that E(ﬂ;) is not a subsemigroup of . and hence g;bis not

an orthodox semigroup.
Let A = {al, Oy Ogs Ops Ogy gy gy Ogy ag} where o =

122),a,=(133,0a,=(111),a, = (22 2), ag=%(3 3 3),.

3

a; = (322), a,=(121), ag=(323) andag = (131). Then,

9

under the composition’of maps, we lave the following table :

Ul &2 &3 &4 35 06 07 08 Gg
al al Gé 03 G4 35 36» Gl ﬂﬁ 02
%y oy %y &g Oy aS ac aé ai u3
&é a3 &3' 03 .;4 a5 GS Ga GS 03
&4 aa QS 03 ;4 a5 G& §4 04 QS
%5 ?A. % w4 55 “Tal %3 | % | %3
ag |2y, ag ag |y og 3 oy o u6 a,
a7 &7 Gg GS Ga Gs 08 G? 38 09
ag o, |5 (23 [% |% a, | |2g |29
&9 37 Gg GB 04 &5 08 a3 05 U3

Then from the table, A is a regular subsemigroup of g;, Let S =

{02, aa, Gus G5y Ogs Ggs ag}. By checking directly from the

table, we have that S is a regular subsemigroup of g;.and E(S) =

25

{az, Gy %y as, a8] forms a subsemigroup of S. Then S is orthodox.
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Suppose S is quasi-inverse. Because dg € S, there exists an inverse
subsemigroup T of S such that e € T. From the table, ae is the

only inverse of a, in S; so uﬁ,E T. Using the property of being

9

subsemigroup of T in S5, we have T = S, so S is an inverse semigroup

which is a contradiction because aqs g € E(S) but a3u& = ag # ag =
a g0t 3¢ Therefore S is an orthodox semigroup which is not quasi-
inverse., #

The previous example also shows that a regular subsemigroup
of a quasi-inverse ‘semigroup need not be quasi-inverse. In that
example, A is g-regular subsemigroup of g;f Suppose A is quasi~
inverse. Be;ause ag € h, tﬁere'is an inverse subsemigroup T of ﬂ;
and a

such that o 'qre the only inverses of ag in

)

A, either A or o

6
%
must belong to T. oL B a6_e T then{'ag, Ggs %gs

1

| & T. Because g
1
Oos Ogy Oyg usl.Q.T because T is a subsemigroup OfETX’ so T is not
an inverse subsemigroup offrg because o g5 ds € E(T) but @y ag f Gg
# d3 = ag og If o) €T, then[ Ugs Qg5 Ags Ug uz}.g_T, so T is

not an inverse subsemigroup onIX because a5 al.E E(T) but ag o =

o # 0y = 0y 0o Hence A is not a quasi-inverse subsemigroup ofErX.

A regular subsemigroup of an inverse semigroup S is clearly

inverse,

We show in the next proposition that an ideal of a quasi-

inverse semigroup is quasi-inverse.
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1.19 Lemma. Let A be an ideal of a semigroup S. If T is an inverse
subsemigroup of S such that TN A # ¢, then TN A is an inverse sub-

semigroup of A,

Proof : Let x € TN A. Then there is x' € T such that x =
xx'x and x' = x'xx'. Since A is an ideal of S and x € A, x' € A.
Hence x'€ TN A, This shows that TN A is a regular subsemigroup of
T, so it is an inverse subsemigroup of T because T is inverse. Since

TNACA, TN A is an inverse subsemigroup of A. #

1.20 Proposition. Every ideal of a quasi-inverse semigroup is qugsi-

inverse.

Proof : Let A be an ideal of a quasi-inverse semigroup S
Let a € A, fhen, there exists an inverse subsemigroup T of S such
that a € T since S is quasi-inverse and a € S. By Lemma 1.19, TN A
is an inverse subsemigroup of A containing a. Hence, A is quasi-

inverse.

A homomorphic image of an inverse semigroup is an inverse
semigroup. Because a quasi-inverse semigroup is a union of inverse

semigroups, it then follows that

1.21 Proposition. A homomorphic image of a quasi-inverse semigroup

is quasi-inverse,

The following theorem follows directly from Proposition 1.20

and Proposition 1.21 :
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1.22 Theorem. LEet S be a semigroup and I.be an ideal of S. If S .
is quési-inverée,'then'I and the Rees quﬁtignt semigroup S/I'are

quasi-invérse.

The converse of Theorem 1.22 is not true in-generél. A

counter example is given as fallows :

Example. Let X = {1, 2, 3}. Let A be the subsemigroup offrx as in
the example, page 25..-It has been shown that' A is not quasi-inverse.
Let I = {0.;3, % as'}. From the table, I is an ideal of A, and I is

quasi-inverse because a3,'u4'and o are idempotents of A. Moreover,

A/; = {dBOIf A1Ps BpP1s GgPrs AP aSQI’_a9pI}' We can directly
check from the table that {aépl,:azpl, APy Oghrs ugpl} is an in-

verse subsemigroup of A/1 containing o and containing %ePrs and.

9°1
a407s a¥p1, @ Pps ®oPps Ggp are idempotents of A/I. Then it follows

that A/I is quasi-inverse.

An ideal I of a semigroup S is said to be completely prime

if for a, b€ S, ab€ I implies a «I or b € I,
The converse of Theorem 1,22'is true if I is completely prime.

1.23 Theorem. Let I be a completely prime ideal of a semigroup S.
Then S is quasi-inverse if and only if I and the Rees quotient semi-

group S/I are quasi-inverse.

Proof : The "only if" part follows from Theorem 1.22.

Next, assume I. and S/I are quasi-inverse. To show S is
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quasi-inverse, let a € S.

‘Case a € I. Then there gxists an inverse subsemigroup T, of I such
that a € T, so T is an inverse subsemigroup of é containing a.

Case a $'I. Then apl = {a}. Since $/I is quasi-inverse, there
exists an inverse. subsemigroup T% qf S/I such thgt apI.G T*, Let
L={xesS|x €T¥. Then a€ L\ TI. Claim that L'\ I is an
inverse subsemigroup of S. Let x, vy € L X I. Then X0 3 éqd'ypl & T*,
so (_xy)pI = Xp,yP; € T*, Therefore xy& L. If xy € 1; then either
x&€Iloryel beéause Iis a compietely prime ideal of S. Then

.xy % I. Hence xy € L\\ I. . Sifce xp . € T# which is regular, there
‘exists ;'pl €. T* such that XQq = (xx‘x)pl. But x.% I, so x'fl 1L
-and xx'% ¢ I which imply ¥ = xx'x and x' € L\I. Heneg LN'I is a
regular subsemigroup of S. ﬁext,'let e, -f € E(LXI). Because I is:
a completely prime ideal of S,Ief and fe f I, so -ef, fe € L\I.
'Since'T*';s an inverse subsemigroup of.S/I‘and e s prG: E(T*),

('ai)cI = ep fp, = nteQI (fe_)p'I-

Because ef and fe * I, ef = fe. Therefore L\1I is an inverse sub-
semigroup of S containing a.

angé S is quasi-inverse, as 'desired. #

The next proposition gives a characterization of a quasi- -

inverse semigroup in terms of.its prinéipal ideals.

1.24 Proppsition. A semigroup, S is quasi-inverse if and only if

evgry principal ideal of S is quasi-inverse.
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Proof : If S is quasi-inyerse, then by Proposiéion.l.ZO,
every principal ideal of S is.quasi-inverse.

Conversely, assume every principal ideal of § is quasi-inverse.
Let a¢ S. Then a € SlaSl which is quasi-inverse, there"e;iété:én
inverse sybsemigroup T of SlaS1 such that a €.T. Beoause T:is an in-
verse subsemigroup of SlaSl which is a_subsemigroﬁp qf:S, T is. an in<.

verse ‘subsemigroup of S contairing a. Hence S is quasi-inverse. #

 Every principal ideal of.a regular seﬁigroup has'an'idempo-
tent. generator [Introduction, page 6]. 1In ény regular semigroup S,
I , ’
S aS1 = SaS. Hence, a regular semigroup S is .quasi-inverse if and

only if SeS is quasi-inverse ‘for each e € E(S).

Orthodox semigroups and-®quasi-inverse semigroups are both a
génsraiization of inverse semigroﬁps. Any noncommutative band is both
orthédox and quasi-inverse but not inverse. However, some rélation-
ships of orthodox semigroups and quasi-inverse semigroups can be given

as follows

1.24 Proposition. Every quasi-inverse semigroup has a maximal or-

thodox subsemigroup.

Proof : Let S be a quasi-inverse semigroup. Let,pre the
collection of all orthodox subsemigroups of S. Since S is regular,
then E(S) # ¢. If e € E(S), then {e}e\?. Then 8# ¢. Partially

T is clear-

orderf by inclusion. Let & be a chain of €. Then M = —T%,;P

ly a regular subsemigroup of S. Let e, £f € E(M). Then e e‘Tl, f e T2
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for some Tl’ T2 G.fm Because J is a chain, either Tlc._ 'I'2 or T2 G Tl,

say T, € T,. Then e, f & Tz.. Since T, is orthodox, ef & E(Tz) G

i § 2 2
E(M). Therefore M is orthodox, so M € and it is an upper bound of
. By Zorn's lemma, \ghas a maximal element. Hence S has a maximal

orthodox subsemigroup. . #

A subsemigroup T of a semigroup S is said ‘to be full if

E(T) = E(S).

1.25 Proposition. Every orthodox semigroup has a maximal quasi-
inverse subsemigroup. Moreover, every orthodox semigroup has a max-

imal full quasi-inverse subsemigroup.

Proof : Let S be an orthodox semigroup and let € be the col-
lection of all quasi-inverse subsemigroupsof S. Then & # ¢ because
E(S) € ? Partially ordér gby inc-lusion. Let J be a chain of ¥.
Let M = HJ,T. Be:c..:a.t.tse.)‘J is a chain, M is a subsemigroup of S. Let
a& M. Then a €T for someTéf. Because T is quasi-inverse, there
is an inverse subsemigroup Tl of T such that a € '1‘1e Then Tl is an
inverse subsemigroup of M containing a. Therefore M € ‘eand it is
an upper bound of:f, By Zorn's lemma, ¥ has a maximal element.
Therefore, iS has a maximal quasi-inverse subsemigroup.

If we let ¥* be the collection of all full quasi-inverse
subsemigroupsof S. Then E(S)€ ¥*. The same proof as above, ¥€* has

a maximal element, and hence S has a maximal full quasi-inverse sub-

semigroup. #
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