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ABSTRACT

Orthodox semigrouﬁs and quasi-inverse semigroups are regular
semigroups, and they are at the same time generalizations of inverse
semigroups.

A regular subsemigroup of an orthodox semigroup is orthodox,
but a regular subsemigroup of a quasi-inverse semigroup is not neces-
sarily quasi-inverse. Let I be an ideal of a semigroup S. It has
been proved by Hall that S is orthodox if and only if I and the Rees
quotient semigroup S/I are orthodox. The converse is not true for
being quasi-inverse. If I is completely prime, then S is quasi-
inverse if and only if I and S/I are quasi-inverse. In any semigroup
S with kernel, the intersection of all orthodox Rees congruences on
S, the intersection of all right-inverse Rees congruences on S and
the intersection of all generalized inverse Rees congruences on S
are the minimum orthodox Rees congruence, the minimum right-inverse

Rees congruence and the minimum generalized inverse Rees congruence
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on S; respectively. A maximal full quasi-inverse subsemigroup of
an orthodox semigroup always exists.

The full transformation semigroup on any set is quasi-inverse,
and a proof is given by Schein. It is shown that the partial trans-
formation on any set is also quasi-inverse. The characterizations
of an orthodox transformation semigroup, of a right-inverse transfor-
mation semigroup and of a generalized inverse transformation semi-
group on a set X are given in term of the cardinality of X as follow :
Let X be a set, Tx andfj% be the partial transformation semigroup on
X and the full transformation semigroup on X; respectively. Then

(1) TX is orthodox,

(2) the cardinality of X, |X| <L
and (3) TX is right-inverse
are equivalent; and

@) "Tx is orthodox,

2" |x| < 2,
and 3" gx is right-inverse
are equivalent. |

An explicit form of the minimum inverse congruence on an
orthodox semigroup has been given by Hall. In this thesis, an ex-
plicit form of the minimum right-inverse congruence on a generalized
inverse semigroup is given. It is observed that the restriction of
the minimum inverse congruence on an orthodox semigroup S to the set

of all idempotents of S, E(S), is the minimum semilattice congruence

on E(S). Moreover, the minimum inverse congruence on a regular
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'subsemigroup T of an orthodox semigroup S is the restriction of the
minimum inverse congruence on S to T.

Let S = JiYSa be a semilattice Y of semigroups Su. It has
been proved in [6] that S is orthodox if and only if S is orthodox
for each o € Y. From our observation, the following are also true :

1. S is right-inverse if and only if Sa is right-inverse
for all o € Y.

2. S is quasi-inverse if and only if SDL is quasi-inverse
for all o« € Y,

3. If S is generalized inverse, then Sa is generalized in-
verse for all a € Y.

The converse of 3. is not true in general.
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INTRODUCTION

For a semigroup S, E(S) will denote the set of all idempo-
tents of S, that is ;
E(S) = {ae€s| a? = a},
A semigroup S is a band if E(S) = S, and a semigroup S is a semilat-

tice if it is a commutative band.

A semigroup S is called a left [right] zero semigroup if

ab = a [ab = b] for all a, b € S. A semigroup S with zero 0 is called

a zero semigroug if ab = 0 for all a, b € S,

Let S be a semigroup, and let 1 be a symbol not representing
any element of S. The notation S$J 1 denotes the éemigroup obtained
by extending the binary operation on S to one by defining 11 = 1 and
la = al = a for all a € S. For a semigroup S, the notation Sl denotes
the following semigroup

{ S if S has an identity,
S =

SWU1l if S has no identity.

An element a of a semigroup S is regular if a = axa for some
x €S, and S is regular if every element of S is regular.

In any semigroup S, if a, x € § such that a = axa, then ax
and xa are idempotents of S. Hence, if S is a regular semigroup
then E(S) # ¢.

Let a and x be elements of a semigroup S such that a = axa.

Then



(i) aS = aSl and Sla- = Sa, and

(ii) aS = axS and Sxa L Sa.

Let ‘a be an element of a semigroup S. An element x of S is
called an inverse of a if a = axa and x = xax., If a is a regular
element of a semigroup S, then a = axa for some x € S, and hence xax
is an inverse of a. Therefore a semigroup S is regular if and only
if every element of S has an inverse; A semigroup S is called an

inverse semigroup if every element of S has a unique inverse, and the

unique inverse of the element a of S is denoted by a_l. A semigroup

S is an inverse semigroup if and only if S is regular and any two
idempotents of S commute [1, Theorem 1.17]. Hence, if S is an inverse
semigroup, then E(S) is a semilattice. For any elements a, b of an
inverse semigroup S and e € E(S), the following hold :

-1 -1 =1 -1 <1
a = a

e =e, (a7) a and (ab)-1 =b

[1, Lemma 1.18].

The relation < defined on an inverse semigroup S by

a<b if and only if aa-l = ab_l

is a partial order on S [2, Lemma 7.2], and this partial order is

called the natural partial order on the inverse semigroup S. We note
that the restriction of the natural partial order < on an inverse

- semigroup S to E(S) is as follows : For e, f € E(S),

e < f if and only if e = ef (= fe).

Then, if S is a semilattice, a < b in S if and only if a = ab (=ba).

Let X be a set. Let AC X, B& X and a : A ~> B be an onto

map. Then o is a partial transformation of X, and we denote A and B




by Ao and Vo; respectively. If da = Va = .¢, then o is called the

empty transformation of X and denoted by 0. Let TX be the set of

all partial transformations of X (including 0). For o, B €& TX,.de—
fine the product aB as follows : If Va N Ag = ¢, we define af = 0.
If Va N\ AR # ¢, let 0B = (Vo fl&B)a;l + (Vo N AB)B be the composition
map. Obviously, V(ap) = (Va N AB)B. Then TX is a semigroup with
zero 0 and it is called the partial transformation semigroup on the
set X. Note that for any set X, TX is a regular sggig?oup,

An element o € T is a full Ezgpsformation of Xif Aa = X,

X
Let‘]% be the set of all fuil tranéfprmations of X, Then under the

composition of maps, g&his a subsemigroup of TX and it is called the
. full transformation semigroup on X. For aﬁy'set X,frx is also a

regular semigroup.

Let S and T be semigroups and y : S > T be a map. The map ¥

is a homomo;phism from S into T if

(ab)y = (ap) (b¥)
for all a, b € S, and ¢ is called an isomorphism if ¥ is a homomor-
phism and one~to-ome. The semigroups S and T are isomorphic if there
is an isomorphism from S onto T and we write S = T.

A semigroup T is a homomorphic image of a semigroup S if there

éxists a homomorphism from S onto T.

Let a semigroup T be a homomorphic image of a semigroup S by
a homomorphism y. If S is an inverse semigroup, then T = Sy is an
inverse semigroup, for any a & S, (aw)-l = a_lwli 2 ,ITheorem 74361,

and moreover, for each f € E(T), there is e € E(S) such that ey = £



[ 2, Lemma 7.34], and hence

E(T) = {ey | e € E(S)}.

Let S be a semigroup. A relation p on S is called left
compatible if for a, b, c € S, apb implies capcb. Right compatible
is defined dually. An equivalence relation p on S is called a con-
gruence on S if it is both left compatible and right compatible.

If p is a coﬁgruence on a semigroup S, then the set

s/p = {ap | a é s}
with operation defined by
(ap) (bp) = (ab)p. (a, b€ 8)

is a semigroup, and is called the quotient semigroup relative to the

congruence .

Let b be a congruence on a semigroup S. Then the mapping

v : S > S/p defined by
ap = ap (a € S)

is an onto homomorphism and y will be denoted by ph, and call it the
natural homomorphism of S onto S/p.

Conversely, if ¢ : S > T is a homomorphism from a semigroup
S into a semigroup T, then the relatiﬁn p on S defined by

apb if and only if ay = by (a;, b €8)

is a congruence on S and S/p £ Sy, and p is called the congruence on
S induced by V. |

Let ChY and Py be congruences on a semigroup S such that
pl.g;pzn Then S/p2 is a homomorphic image of S/pl by a homomorphism

ot S/p1 - S/p2 defined by



(apl)w = ap, (a e'S),

Let p be a congruence on an inverse semigroup S. Then S/p
- -1
is an inverse semigroup and hence for a € S, (ap) 1. a “p and

E(S/p) = {ep | e € E(S)}.

Arbitrary intersection of congruences on a semigroup S is a
congruence on S,

Let p be a nonempty relation on a semigroup S. The congruence
~on S generated by p‘is the intersection of all congruence on S con-
taining p. Then the congruence on S generated by p is the smallest

congruence on S containing p.

A nonempty subset A of a semigroup S is called a left ideal
of S if SAS A. A right ideal of a semigroup S is defined dually.
An ideal of a semigroup S is both a left ideal and a right ideal of S.

Let S be a semigroup. Arbitrary intersection of left ideals
[right ideals] if nonempty is a left ideal [right ideal] of S. Arbi-
trary intersection of ideals of S if nonempty is an ideal of S.

Let A be a nonempty subset of a semigroup S. The left ideal
of S generated by A is the intersection of all left ideals of S con-
taining A. The right ideal of S generated by A is defined dually.

The ideal of S generated by A is the intersection of all ideals of

S containing A. A principal left ideal of S is a left ideal of S

:generated by a set of one element of S. A principal right ideal

and a principal ideal of S are defined similarly.

Let S be a semigroup. Then a left ideal [right ideal, ideal]



1
A of S is principal if and only if A = Sla [A = aSl, A= SlaS ] for

some a &€ S, and we call A the principal left ideal [principal right
ideal, principal ideal] of S generated by a. If a is a regular ele-
ment of S, then Sla = Sa, aS1 = aS and SlaS1 = SaS.

Let S be a semigroup and a, x be the elements of S such that
a = axa. Then Sa = Sxa, aS = axS and SaS = SaxS = SxaS. Hence,
every principal left [right] ideal and every principal ideal of a
regular semigroup have idempotent generators.

The intersection of all ideals of a semigroup S if nonempty

is called the kernel of S. Then, if a semigroup S has the kernel K,

then K is the smallest ideal of S.

Let S be a semigroup and A be an ideal of S. Then the rela-
tion p defined by
apb if and only if a, b&€ A or a=>b (a, b & 8)

is a congruence on S and it is called the Rees congruence on S in-

duced by A and S/p is the Rees guotient semigroup induced by A and
it is denoted by S/A. Hence
{a} if a 4 A
ap =
A if a € A,
and S/p is the semigroup with zero, and for any a € S, ap is the

zero of S/p if and only if a; € A,

Let C be a class of semigroups and p be a congruence on a

semigroup S. Then p is called a C congruence if S/p € C.

If p is a semilattice congruence on S then each p-class is



clearly a subsemigroup of S.

Let Y be a semilattice and a semigroup S = éiYSa be a dis-
joint union of subsemigroups Sa of S. S is called a semilattice Y
of semigroups Sa if SaSBQ S{le for all a, BE€Y; or equivalently, for

all o, BE Y, a € Sa, b € S, imply ab &€ Sa

B g7

1If § = égYsa is a semilattice Y of semigroups S , then the
relation p defined by

apb if and only if a, b € Su for some o € Y (a, b € S)
is a semilattice congruence on S, for each a € Y, Sa is a b—class,
and S/p = Y,

Let p be a semilattice congruence on a semigroup S. Then S

is a semilattice Y of semigroups Su where Y = S/p and for each

o €Y, Su is a p-class.

A regular semigroup S is orthodox if E(S) forms a subsemi-

group of S. A regular semigroup S is a right-inverse semigroup if

every principal left ideal of S has a unique idempétent generator,
A regular semigroup S is fight—inverse if and only if

efe = fe for all e, f € E(S) [3].

A regular semigroup S is generalized'inverse if for each

e, f, g, h € E(S), efgh = egfh.
Note that every right-inverse semigroup and every generalized
inverse semigroup are orthodox.

A semigroup S is edlled a quasi-inverse semigroup if for any

a' € S, there is an inverse subsemigroup of S containing a.



Orthodox semigroups and quasi-inverse semigroups are regular
semigroups, and they are both generalizationsqu inverse semigroups.

In the first chapter, various general properties of orthodox
semigroups and of quasi-inverse semigroups are introduced. - It is
shown that a regular subsemigroup of an orthodox semigroup is ortho-
dox but a regular subsemigroup of a quasi-inverse semigroup is not
necessarily quasi-inverse. Let I be an ideal of é semigroup S. It
has been proved in [4] that S is orthodox if and only if I and S/I
are orthodox. We show in this chapter that this is also true for
being right—inverse, but the converse is not true for being gene-
ralized inverse. If § is quasi-inverse, then I and S/I are quasi-
inverse, and a counter e%ample is given to show this converse need
not be true. Howie and Lallement has shown the existence of the mi-
nimum orthodox congruence on a regular semigroup in [5]. Including
in this chapter, it is shown that the minimum orthodox Rees congru-
ence, the miniﬁum right-inverse Rees congruence and the minimum gen-
eralized inverse Rees congruence oﬁ a semigroup S with kernel always
exist, and they are the intersection of all orthodox Rees congruences
on S, the intersection of all right-inverse Rees congruences on S
and the intersection of all generalized inverse Rees congruences on
S; respectively.

The full transformation semigroup on any set is quasi-inverse.
A proof is given by Schein in [8]. The partial transformation semi-
group and the full transformation semigroup on any set are studied

in the second chapter. It is shown that the partial transformatién.



semigroup on any set is also quasi-inverse. The characterizations

of an orthodox transformation semigroup, of a right-inverse trans-

formation semigroup and of a generalized inverse transformation se-
migroup on a set X are given in term of the cardinality of X.

An explicit form of the minimum inverse congruence on an
orthodox semigroup is given by Hall in [4]. In the third chapter,
we show that the restriction of the miﬁimum inverse congruence on
orthodox semigroup S to E(S) is the minimum semilattice congruence
on E(S). An explicit form of the minimum right-inverse congruence
on a generalized inverse semigroup-is given. It is also shown that
the restriction of the minimum inverse congruence on an orthodox se-
migroup S to any regular subsemigroup T of S is the minimum inverse
congruence on T.

Let S = égYSa be a semilattice Y of semigroups Sa' It has
been proved in [6] that S is orthodox if and only if S is orthodox
fo; each a (;Y. It is shown in the last chapter that S is quasi-
inverse if and only if Su is quasi-inverse for each a € Y, and S is
right-inverse if and only if Sa is right-inverse for each o € Y.

It is also shown that if S is generalized inverse, then Sa is gene-
ralized inverse for all o € Y. An example to indicate that a semi-
lattice of generalized inverse semigroups need not be generalized

inverse is provided.
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