CHAPTER IV

KERNELS OF COMPLETE. THEORIES

In chapter I we stated Tarski's theorem that under certain
assumptions, a consistent set can be extended to only one complete
and consistent extension. The following example shows that there
is a consistent set of sentences which can be extended to more than

one complete and consistent extensions.

4.1 Example. Let X, =Ap—(q—p), (s—(—a))—((s—p)—

(s—q)), ~-p—q}. By the following truth-tables

+ 0 1 2 "
0 0 1 2 -I;____igﬂ
1 0 0 0 1 2
2 0 0 0 2 2

where 0 is the only designated value, we have ..p is not a theorem

0° Therefore XO is consistent. By LindenbaumsTheorem (Theorem

of X
1.10) XD can be extended to a complete and consistent theory, say E.
Hence E is also a complete and consistent extension of X0~{up-+q}.
Since every sentence in XO—{Vp-—+q} is a tautology (as in Definition
2.9), SC is a complete and consistent extension of X0~{~p——+q}.
Since ..p—q is not a tautology, ..p—q is not a theorem of SC. But

~p—q is in E, Thus E and SC are distinct complete and consistent

extensions of XO—{”p——rq}.
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In this chapter we study the structure of the set of sub-
theories of a theory which has this theory as their only one complete
and consistent extension. We partially order this set by set-inclu-
sion and show that it is an upper semilattice but is not necessarily
a totally ordered set. We also discuss questions of maximality and

degrees of completeness.

4.1 Definition. A theory B is a kernel of a complete and consis-

tent theory T if and only if

(1) BET,

(ii) T is the only complete and consistent extension of B.

4.2 Definition. A theory B is a core of a complete and consistent

theory T if and only if

(1) B is a kernel of T,

(ii) for any kernel C of T, B €C.

4.3 Examples of kernels.

(1) From Theorem 2.14, we have that Cn(xo) where
X, = (p—=~p, ¢ > (p—q), p (>, p~(-q—~lp—a),
p—pPvd, q—pva, ~p—~>(~q—>~(pva)), p—(a—>padg),
~p—>~(parq), ~q—>~(parq)} is a kernel of the complete and con-

sistent theory SC.



(11) From Theorem 3.11, we have Cn(XU) where
Xy = {(p—~ (@—p), P— ((P—q)—q); (@—x)— (—)— (p— 1))}
is a kernel of the complete and consistent theory I.

4,4 Definition. Let T be a complete and consistent theory.

= er el b mtrnts

Define Ker(T) = {B| B is a kernel of T}.
Then Ker(T) is not empty, because T e Ker(T).

4.5 Proposition. Let BeKer(T), C be a consistent theory such

that BEC. Then Ce Ker(T).

Proof. From Lindenbaum Theorem, C has a complete and consis-
tent extension. Let T  be any complete and consistent extension of
C. Since BEC, T' is also a complete and consistent extension of B,
and since further Be Ker(T), we have T' = T, Therefore T is the on-

ly complete and consistent extension of C and hence C e Ker(T).

It is clear that Ker(T) is partially ordered by set inclusion.,

Thue < Ker(T),S > 1is a partially ordered set.

4,6 Theorem., < Ker(T),< > is an upper semilattice.
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Proof. Let B, CeKer(T). Since BUCET and T is a consistent

theory, BUC is also consistent, and so is Cn(BUC). By Proposition
4.5, Cn(BUC) € Ker(T), since it is clear that BECn(BUC) and
C&Cn(BUC). Let DEKer(T) such that BED and CED. Thus Cn(BUC)
€ScCn(D)= D, Therefore Cn(BUC) is the least upper bound of B and C.

Thus < Ker(T), € > is an upper semilattice.
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4,7 Theorem. Let T be a complete and consistent theory. If T has

a core, then < Ker(T), €& > is a lattice.

Proof. Assume T has a core, say C. From Theorem 4.6 we have
< Ker(T),& > is an upper semilattice. We need only to show it is a
lower-semilattice as well. Let B, De Ker(T). Then CEB and CSD
and so C = Cn(C)ECn(BND). By Proposition 4.5, Cn(BND)E Ker(T)
and we have Cn(BND)EB and Cn(BND)SD. Next, let Ke Ker(T) such
that KSB and K&ED. Hence KEBND and so K = Cn(K)SCn(BND). There-
fore < Ker(T), & > is a lower semilattice. Consequently < Ker(T), € >

is a lattice.
4.8 Theorem. < Ker(T),< > is not necessarily a totally ordered set.

Proof. Let XO be as in example 4.3 (1). We see that Cn(xo)
€ Ker(SC). Let X = XU {pv~pl and Y = XOU {(s— (p—q))— ((s—p)
—s(s—q))}. Since Cn(X)ESC and Cn(Y)ESC and SC is consistent,
Cn(X), Cn(Y) are also consistent. Then by Theorem 4.5, we have Cn(X),

Cn(Y) are in Ker(T). Claim that Cn(X)$Cn(Y) and Cn(Y)¢Cn(X).

We have pv~p¢ Cn(Y) by the following truth-tables of connec-

tives in SC :
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—|lo 1 2 3 4 slio, 1. 2 & 4
0.l 8 3 2t 4. 4 o 1 1 & @y
o 1 2 4 .4 1l 1 4. d 4
2|9 1 o o0 ® R [ T SR Y )
310 1 0 0 o Zuled . 4 &4 4
410 10 0 44 4 4 4 4

vijie 1 2 3 4 ~
011 1 i 1 1 -?;—-:;_
1 1 1 1 1 1 ]2
2 1 1 4 74/ /4 2 1
3 1 1 4 4/ /4 S |3
] |93 1 4 4 4 410

where 0, 1 are designated values.

We have (s— (p—q))— ((s—p)— (s—q)) ¢Cn(X) by the

following truth-tables of connectives of SC :

Sl e, 0S4 W] @ 1 on 3
6log 1 2 4 4 o l1 71 4 & 4
3o 1 2. 4 4 i [ T R
A 1 G s e Yo (O S S L e |
sule <1 2 X1 B 314 4 s mae
4l 2 00 o 1 AN4. 4 Taw4g 4




vlo 1 2 3 4 | -
01 % = 9 1 @ ol 4
il 2 3 & 1 112
2|1 1 4 4 a4 31 1
st 9 1 a.4 3| 2
411 1 4 4 4 410

where 0, 1 are designated values.

Then Cn(X)ECn(Y) and Cn(Y)ECn(X), i.e. < Ker(SC), S > is

not a totally ordered set.

4.9 Definition. A theory X is axiomatizable if and only if there

exist sentences ¥ , ..., wn in X such that Cn({wl, i wn}) = X,

4.10 Definition. Let T be a complete and consistent theory. A

kernel K of T is a maximal kernel if and only if KCT and for any

kernel I(’ of T such that KQK’, we have K'= K or K = T.

4.11 Theorem. Let T be a complete and consistent theory such that
every subtheory of T is axiomatizable, and let Kl be a kernel of T.
If there is a kernel KO properly contained in Kl’ then there is a

kernel K properly contained in Ky such that KOSZK and for all

r
K'e Ker(T), KEKCK, implies K = K or K’ = K,.

Proof. Assume that there is a kernel K0 properly contained
] - c
in K, . Let.@ {Kae Ker(T)iKO_KQ and K Kl}.

%# ¢, since Koe.ﬂ. Partially 0rder~q3 by set inclusion. To show
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that % has a maximal element, let {K.}. , be a chain in .@ Since

1741€

U.x &= i iste 4. i i J
Cn(iEAKi]__T and T is consistent, Cn(laAKi) is consistent. Then by

Proposition 4.5 Cn(JLE_JA!’.l] £ Ker(T) Since for each 1ea, KOGKi,

{ ol
KoSon(Yhky).

Next claim that Cn(.U K'JCKI‘ Suppose Cn(U

ieA'i ieAKi) e

1°

Since by assumption, K, is axiomatizable, there exist sentences wl’

1
e Ibn in K, such that Cn({wl, ppA IiJn}) = K;. Thus for each
ie{1,2,.....,n}, there is a finite sequence of sentences in ilélxi

which is a proof of wie Consequently there are n finite sequences

SO L ’ . y
of sentences in iE)nKi which are proofs of tpl, iy wn. Since {Ki}le)\
is a chain, there is a jeA such that tbl, Bk lbn can be proved
from Kj, and so Kl = Kj which i1s a contradiction. Therefore

U
Cn(iEAKi)CKl’

Therefore Cn(llgkl(i) E% and is an upper bound of the chain

{Ki}iek . By Zorn's Lemma,gg has a maximal element, say K. Then
/!

KCKl. Next let K € Ker(T) such that KSK’E Kl' If K # Kl, then

K’E% and so by maximality of K we have K,= K.

4.12 Corrollary. Every proper kernel of a consistent, complete and

axiomatizable theory T is contained.in a maximal kernel of T.

Proof. Directly from Theorem 4.11 by setting T to be K-

4.13 Definition. Let < A,< > be a partially ordered set. A chain

{Ka}ae,\ of < A,< > is a maximal chain if and only if for any K €A,
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Such that for each aeX K # Ka’ there exists Bel such that K:iKB and
KBiK.

4.14 Definition. Let {K 3} ., be a chain of a partially ordered set

<A, <> It is a discrete chain if and only if for all Ka’ KB such

that K, < K there exists Ky such that Ky<Ky<Kg and if Ky_gl(eil(ﬁ,

then K, = K orKe=K

B O B*

4.15 Theorem. Let T be a complete and consistent theory such that
every subtheory of T is axiomatizable. Then < Ker(T), C > contains

a discrete maximal chain.
Proof. We will define Ka for each ordinal number a.

(i) KO = T

(ii) if o is a limit ordinal, let
{Cn(é’}aKB), if Cn(f) Kg) € Ker(T)
1 otherwise,
(iii) suppose Ka is defined, now we define Ka+1 as follows
- there is no kernel I(1 such that K1C Ky, let Kou»l = Ka
- there is a kernel K; such that K,C Ka
= if Ka = I(B for some B<a, let BO be the smallest
such B, let Ka+1 = KBO+1
- 1if not, get l(0£+1 from Theorem 4.11 such that
Ka+1C Ka and for any kernel K* if leC_: K*.QKU, then K* = le or
K* = Ka’
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Then {KG}GEOrd is a discrete chain in Ker(T). We claim that
it is a maximal chain. Let K* € Ker(T) such that K* ¢ Ka for all
0eOrd. Suppose for all BeOrd K*EEKB or KB§:K*. Since the number of
elements of Ker(T) is less than or equal ZXU, there exists an ordinal
which is a cardinal y greater than 2 = such that I(Y = KY+1' Then it
is impossible that K*CIKB for all BeOrd. Hence there exists a BeOrd
such that KBEEK*. Let o be the smallest such B. If o is not a limit
ordinal, then K C-K*'-K , and so K* = K, or K* = K _; which is a
contradiction. For another case, o is a limit ordinal. Then KGEEK*.
Since for B<a K?E:KB, we have K*EZCn(égaKB} and this implies
K*s;Cn(ézaKg) = K . Hence K* = K which is a contradiction. Then
there is a B eOrd such that K*E Kg and KBS?;K*' Hence {Ka}awrd is

a maximal chain.

4,16 Definition. Let X be a set of sentences. The'degzee of com-

pleteness of X, deg(X), is the largest number n > 0 with the follow-

ing property :
there exists a sequence of sets Xi satisfying the

formulas : XO = X, XiEZKjg;S and Cn(X;) ¥ Cn(Xj) for j<i<n

If there is no such natural number we say that deg(X) = .,

4.17 Theorem. Let T be a complete and consistent theory such that
every subtheory of T is axiomatizable. Then < Ker(T), & > has a
finite maximal chain (and then has a minimal element) or for any

YEw, there exists a kernel K of T such that deg(K) Y.

Proof. From the proof of Theorem 4.15 we have {Ka}aEOrd



is a maximal chain. There are two cases to consider

(1) There is an aq; such that Ko; = Ka+1’ let 0.0 be the
smallest such oo. Then {K } 0 is a finite maximal chain (K_ 1is
o a=0 OLO
a minimal element).
(ii) There is no a<w such that Ka = Kor.+1° Then for any

YEw , we have deg(KY)iy.
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APPENDIX A

BOOLEAN ALGEBRA

The material in this appendix is from [1].

Al. Definition. Let X be a non-empty set, and < be a binary re-

lation on X

1. For any x1€x, X, <X

1 ks

2. For any X1» ngx, if xlixz, and xzf_xl, then Xy =X,

3. For any X1 X5, xsgx, if X, <X, and Xy < Xg, then X; < Xge

If <X, <> satisfies 1-3, then it is a partially ordered set.

4, For any x X.reX, there exists x_eX such that x,< x, and

1% =2 3 1
Xz< X, and for any X, € X, if X, <%y and x4ix2, then X, < Xge We
call Xz the greatest lower bound of Xy and X, and denote it by
X A Xy
5. For any X5 xzsx, there exists xst-:x such that xlix3 and xzixS
and for any x4ex, 1f xlix4 and x2_<_ Xy then x3_<_x4. We call Xz5
the least upper bound of Xy and'x2 and denote it by XV Xy

If <X, <> satisfies 1-4, then it is a lower semi-lattice.

If <X, <> satisfies 1-3, 5, then it is an upper semi-lattice.

If <X, <> satisfies 1-5, then it is a lattice.

6. There exist X{5 X, € X such that for any x.eX, x,<x, and x <Xz,

2 3 31 2—

and there exists x4ex such that xsnx4 = x2 and xsvx4 = xl. We

denote X4 by 1, X, by 0 and X, by xgc
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If <X,<> satisfies 1-6, then it is a complemented lattice.

7. For any X{s X5, xsex, xIA{xixxs = (xrnxz) v(xIAxs).
8. For any X15 Xy, x3EX, xla(xzﬂxs) = (xlvxz) A(xlvxs).

If <X,< > satisfies 1-5, 7, 8, then it is a distributive

lattice.

A2. Definition. <B,< > 1is a Boolean Algebra if and only if it

is a distributive complemented lattice.

A3. Remark. <{0,1}, {(0,0), (0,1), (1,1)}> is a Boolean Algebra,

denote this Boolean Algebra byJ .

A4. Definition. Let L be a lattice and F be a non-empty subset of
L. F is a filter if and only if

(1) if x, yeF, then xAyeF

(ii) if xeF, yel and x<y, then yeF.

If FCL, then F is a proper filter.

AS. Definition. Let <X,< > be a partially ordered set and A &X.
beX is called the infimum of A if and only if for all xeA, b<Xx,

and if Hc eX such that for all xeA, c<x, then c<b.

A6. Definition. A filter F of a Boolean Algebra <B,< > is an
ultrafilter if and only if no proper extension of F is a proper

filter.

A7. Theorem. Each non-zero element of a Boolean Algebra is con-

tained in some ultrafilter.



Proof. See [1] p. 16.

A8. Definition. Let B 32 be Boolean Algebras. A map f : B—B

1? 1 2

is a homomorphism 1if and only if for any x, ye Bl’

(1) f(xay) = £(x) Af(y)
(i1) f(xvy) = £(x) vEi(y)
(iii) £(x*) = £(X)*.

If £ is 1-1, onto, we say that f is an isomorphism between BI

and 82 and write Bl= B2°

Let F be a filter in a Boolean Algebra B. We define a relation
g On B as follows : for any x, yeB
X gy if and only if for some feF, xaf = y af,

Then Vg is an equivalence relation.

Let |x| = {yeB | y vx} and B/F = {|x| | xeB}.

Define relation <y on B/F as follows : for any |x|, |y|eB/F
|x| <, |ly| if and only if x<y.
Then < B/F,< > is a Boolean Algebra in which

|x ay| = |x| Aly| and |xvy| = |x| v]y| and |x*| = |x|*.

We call this Boolean Algebra the quotient algebra of B modulo F.

The map h : B—B/F which send x onto |x| is clearly a homo-

morphism. It is called the canonical homomorphism of B onto B/F.

A9. Lemma. |x| =1 in B/F if and only if xeF.




A10. Proposition. Ify is an ultrafilter of a Boolean Algebra

<B,§ > , then B/Uz_‘Bz.

Proof. See [1] p. 20,

41



APPENDIX B

INDEPENDENCE PROOES

Let X be a set of sentences. A sentence y is said to be

independent of X if and only if Y is not a theorem of X.

In the sentential logic a standard device for establishing
the independence of a sentence Y from a set X of sentences in the

same sentential logic is given as follows

Bt 0y Ty cormimce o , V be a system of truth-values and the first
i ‘of these, 0, 1, sy ,u  (where 1<u<v) being called designated

truth-values.

To each connective is assigned a generalized truth-table in
these truth-values. The value of a sentence is defined by the given
values of its variables, the possible values of the variables being
values 0, 1, ...., V.

If every rule of inference has the property of preserving
designated truth-values (i.e. the conclusion must be a designated
value when the premisses are designated values) and every sentence
in the set X has a designated value for any assignment of truth-
values of its sentence variables, then if for some assignment of
truth-values { is undesignated, it follows that y is independent

of X.



Example. Let X = {p— (q—p)}. Consider the following diagram

—_— 0 1 2
0 0 2 2
1 0 2 0
2 0 0 0

where 0 is the only designated value.

We see that MP. preserves designated value (i.e. if A and
A_,B have value 0, then B is 0) and p— (q—> p) has the value 0
for all assignments of truth-values of its variables, but p—p
has an assignment of its variable such that p—p is not 0 by
giving the value 1 to p.

Then p—p is not a theorem of X.
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