CHAPTER I

COMPLETE THEORIES

According to a well-known theorem of A. Lindenbaum, every consistent theory can be extended to form a consistent and complete theory. The question arises how many such extensions are there?

We state a general theorem from the meta-sentential calculus (due to Tarski) by which under certain assumptions only a single extension exists in the domain of a sentential logic.

We begin by saying what the symbols of a sentential logic are. These fall into three categories:

(i) A denumerable set of sentence variables :

- (ii) Logical connectives : \rightarrow and a subset of $\{ \sim, \vee, \wedge, \leftrightarrow \}$.
- (iii) Parentheses: (,).
- 1.1 <u>Definition</u>. For a sentential logic, the intersection of all those sets which contain all sentence variables and are closed under every connectives of this sentential logic is called the <u>set of all sentences</u> of this sentential logic, and denote this set by S. Call the elements of S sentences.
- 1.2 Rules of Inference. Let φ, ψεS.
 - (i) Modus Ponen (or MP.) : From ϕ and $\phi \rightarrow \psi$ infer ψ .

- (ii) Substitution (or Subs.) : From ϕ , b is a sentence variable in ϕ , infer the sentence $S_{\psi}^{b}\phi|$ where $S_{\psi}^{b}\phi|$ is the sentence resulted by substitution for each occurrence of b throughout ϕ by ψ .
- 1.3 <u>Definition</u>. Let X and Y be sets of sentences. $\operatorname{Sb}_Y(X)$ is the set of all sentences which are obtained by replacing all sentence variables in the sentences of the set X by sentences of the set Y in such a way that variables of the same shape which occur in a given sentence are replaced by sentences of the same shape. Denote the sentence obtained from a sentence φ in the set X by substituting all distinct sentence variables a_1, \ldots, a_n in φ by sentences $\varphi_1, \ldots, \varphi_n$ in the set Y by $\operatorname{Sp}_{\varphi_1, \ldots, \varphi_n}^{a_1, \ldots, a_n} \varphi$.

If Y = S, we write Sb(X) instead of $Sb_S(X)$.

- 1.4 <u>Definition</u>. A proof from a set X of sentences is a finite sequence of sentences ψ_1 , ..., ψ_n such that each ψ_i , $1 \le i \le n$, is
 - (i) a sentence in X, or
 - (ii) a conclusion from ψ_{j} (j < i) by Subs., or
 - (iii) a conclusion from ψ_j , ψ_k (j,k < i) by MP..
- 1.5 <u>Definition</u>. A sentence ϕ is a <u>theorem of a set</u> X <u>of sentences</u> in notation $\frac{1}{X} \phi$, if and only if ϕ is the last sentence of a proof from X.

- 1.6 Remark. Let X be a set of sentences. Then the set of all theorems of X is the intersection of all sets of sentences which include the set Sb(X) and are closed under MP. Denote this set by Cn(X).
- 1.7 <u>Definition</u>. A set X of sentences is said to be a (deductive) theory if and only if Cn(X) = X.
- 1.8 <u>Definition</u>. A set X of sentences is said to be <u>inconsistent</u> if and only if Cn(X) = S. Otherwise X is consistent.
- 1.9 <u>Definition</u>. X and Y are sets of sentences. X is said to be <u>complete with respect to Y</u> if and only if for every sentence ϕ in Y either $\phi \in Cn(X)$ or the set $X \cup \{\phi\}$ is inconsistent.

If Y = S, we say that X is <u>complete</u>.

1.10 Theorem. (Lindenbaum's Theorem.) Every consistent theory Σ can be extended to a complete and consistent theory.

Define a sequence of theories E_0 , E_1 , as follows:

(i) $E_0 = \Sigma$ (ii) $E_{n+1} = \begin{cases} Cn(E_n U \{ \phi_n \}, \text{ if } E_n U \{ \phi_n \}) & \text{is consistent} \\ E_n, & \text{otherwise.} \end{cases}$

Let $E = Cn(\bigcup_{n \ge 0} E_n)$. Clearly E is an extension of Σ and E_n is a consistent theory for all n.

Claim that E is consistent. Suppose not. Then $p \in Cn(E)$, and so there is a finite sequence of sentences in E which is a proof of p, say ψ_1 , ..., ψ_n . Therefore there exists an m such that ψ_1 , ..., $\psi_n \in E_m$, and hence $p \in Cn(E_m)$. Consequently E_m is inconsistent which is a contradiction. Therefore E is consistent.

Next, we claim that E is a complete theory. Let φ be any sentence. Then $\varphi=\varphi_n$ for some n. Suppose $\varphi \notin Cn(E)$. If $E \cup \{\varphi_n\}$ is consistent, $E_n \cup \{\varphi_n\}$ which is contained in $E \cup \{\varphi_n\}$ is also consistent, so $E_{n+1} = Cn(E_n \cup \{\varphi_n\})$, hence $\varphi=\varphi_n \in Cn(E_{n+1}) \subseteq Cn(E)$ which is a contradiction. Therefore $E \cup \{\varphi_n\}$ is inconsistent. This proves that E is complete.

1.11 Theorem. For every set X of sentences, $Sb_{\chi}(S)$ is the smallest set of sentences which includes X and is closed under every connective.

Proof. (In [3] p. 395.)

1.12 Theorem. (Tarski's Theorem) Let X be a consistent theory which satisfies the following condition: there is a set Z of sentences such that X is complete with respect to the set $\mathrm{Sb}_Z(S)$ and the set $\mathrm{XUSb}_Z(S)$ is inconsistent. Then there exists exactly one consistent and complete theory Y, which includes the set X.

Proof. (In [3] pp. 395-397.)