CHAPTER IV

THE NUMBER OF SOLUTIONS OF A SYSTEM OF LINEAR AND QUADRATIC EQUATIONS

OVER A FINITE FIELD

Let F denote a finite field of order q and characteristic p,
and let a, b, a;s by (1 € i ¢ t) denote elements of F such that
Bgese By # 0 and such that exactly s of the elements Bi are £ 0
where 1 £ s €t, In this chapter, we determine the number Ns,t(a,b)

of solutions in F of the system of equations,

L% <@ 2
a = a1x1+..‘+ atxt
(4=1)

qteest btxt i

b = bﬁx
The method of evaluating Ns‘t(a,b) is based upon an elementary
application of exponential sums,
We introduce some notations and list some known results that
are needed in the sequels For an element a of F, let t(a) denote

the trace of a, that is,

r=1
t(a) = a + aPii, .+ aP : q = Py

and define

e(a) exp (2nit(a)/p).

L]

It follows at once that

(h=2) e(a+b) = e(a)e(b) for some a, b € F,



In particular e(0) = 1, For arbitrary a, b, in F put

(4=3) S(a,b) = 3 e(ax"+ 2bx) ,
y XEF
and let G(a) = S5(a,y0).

Le1 Lemma. For a, b € F,

e(=b>/a)G(a) ifaf£0#hb,
(h=lt) S(a,b) = q if a = 0 = b,
O if a = 0 i‘ bo

Proofse For a = O = by the second of (4=b4) is obvious., Assume

a £ 04# be We have

S(a,b) = 3 &lax"+ 2bx)
x€ F
= Z e(a(x2+ 2bx + _1?_2- _112))
XL-F a &2 a¢
2

= 3 elalx + b)) e(~ b3
xX€E€F a a

= e(m __132) Z e(a(x +_§)2)

a xegF a

sls ve/a) alal,

i

Finally, we assume that a = O £ bs Then there exists an element
d in F such that t(2bd) # 0 ; for example we may take d = 1/2b,
so that t(2bd) = £(1) = r. Hence for such d it is evident that

e(2bd) # 1. Now by (4=2) we have

e(2bd) 37 e(2bx) e(2b(x+d)) = e(2bx),
XET XETF xEF

or (e(2bd)-1) e(2bx) Oe
X;F

36
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Since e(2bd) # 1, T e(2bx) = O, Hence by the definition (4«3),

X €EF
the third of (4=4) is proved,

ko2 Lemmas Let a be a non-zero element in F. Then

(4=5) c(a) = Y(a) a(1),
where my(a) denotes the Legendre symbol in F, that is , qij(a) = +14 =1

or O according as a is a square, a non~square or zero in F,

Proofs From (4=3), we get

Gla) = olax®).
é%;v

i,

The sum

P = ' W(x)e(2ax) = e(2ax, )=~ e(2ax.,)
a xjg%? ;;E 1 ;;; - g

where X, runs through the squares £ O of F and X, runs through the

non~squares, On the other hand, for a # O, the third of (4-4) implies

1+, e(2ax,)+ 37 e(2ax,) = 0,
x X

1 2
so that
T,= 1+ 2'%’ e(?_ax,T) = G(a) 3
1

hence T, and G(a) are identical for a £ 0,

In the next place if a = dz, d # 0y then we have

r o= 5o r"I"(x)e(Zc:‘uZ}c) = :E: e(2d2x1)-:§: e(2d2x2)g

a
XxXEF X, 5
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and

T, = 3D Y@el(ax) =37 e(2x,)= 33 el2x,).
X€F X, X,

Thus we get Ta = T If a is a non-square, then

1.

T = 2. Y(x)e(2ax) =2 e(Zax,I)-Ze(Zaxz).

a
x€F X, X,

where ax, is a non=square in F and ax, is a square in F. Hence we

have T = -T,. Now we have proved that T, = q?(aJT1. Since T_ = G(a)

and T, = G(1), the lemma is now proved.

4¢3 Theorem. Let N, t(.a.,b) be the number of solutions in F of the
3

system (4=1), Then for all t > 1,

(4=6) N (a,b) = RES K(uyv)e(=au)e(=2bv),
- UEF vEF
where
K(u,v) = 5 e(u(a x2+...+ a xa))e(zv(b % 4egit DX NS
’ X?FF 1% %t gXqteast Dox,
i=1‘.tl|t

Proof. Consider the sum

2 2. I e(u(a1x§+...+ atxi))e(av(b,lx,l-a-..ﬁ b,x,.))e(-au)e(~2bv).
UueEl vé€F x €F
}

i=1,o¢-t

For fixed point (x1,..., xt) €t vhere Fis FXFXeooxF (t times), we have

g 2 2
3. 33 e(u(a1x1+...+ atxt))e(av(qu1+...+ b

xt))e(-au)e(-va)
UEF veF

t

a >, >, elula x2+...+ a8, xw a))e(2v(b1x

+eosat b JC_- b))
WEF VEF 171 tt

1 tt

v
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= 2. e(u(aqxf+...+ a x§~ a)) >, e(2v(b1x1+...+ b X, - b))

WEF t vEeF

2 2
Let C = »_ e(u(a x +eaet a;xi= a)) and D = v e(2v(b, x +eest+ b x

nueErF veEF ¥

Then by Lemma 4.1, we have

. 2 2
q if (ayX +eeet a,x= 2) = 0,
C =
3 2 2
0 if (a1x1+...+ atxt“ a) # 0 H
q 1f (b1}C1+...+ btxt"' b) = O,
D =
0 if (b1x1+..a+ b, X, - b) # O.

t

- 1)),

We see that the product of C and D is q2 if (x11..o. xt) is a solution

of the system (4-1). Otherwise it is zero. So we have

EE‘ cD & anS £(a,b).
x.EF ,
i
i=1,t.n|t

Hence N_ t(a,b) = q_2 K(u,v)e(=~au)e(=2bv),

! u€ErF ver
where

2 2
K(uyv) = 3 elula,xS+ecet a,%5))e(2v(b, X, +east b.x,))e
xiGF 171 i - 11 | e
i=1....’t

hel Theoreme If 14 s £ t, then for all t 3 1,

=) N Cayo) = a7 o c* Y () I Mwe(-aw)s(-3,-v)),
o uer u

where

(4=8) A = a a, € F*. ad B = b b2
% 1°%°* t an = 1+...+ £ ®



Lo

Proof. There is no loss of generality in supposing b'l""' 'bs to be

*
in F  and bi =0 (s <igt)e By Theorem 4,3, we have

N t(a,b) = q_z 2 K(u,v)e(=au)e(=2bv),

" WéF veF
where

2 2 -y
K(u,v) = > e(u(a1x1+...+ a,x;))e(2v(b, X +eee+ b,x,.))a
. S 4= Tt %
xieF
i=14eenpt
We write
(4-9) N t(a,b) HER4 3
o4 1 2

where 37 consists of those terms in the expansion (4=6) for which

u =0 and z those for which u # 0. We have
2

K(Oy v e(2v(b, X +eee+ b,x.))
8, Y
i
i=1,...,t
£
sncXoRN TR e(va.xi)
X, EF i=1 ¢
i
i=1,...,t

t
;EL 2 e(2vb,x.)

x.EF
i

i=1‘.-||_t

['TT S(0,b, v)J- g

Consequently, by Lemma 4.1, K(O,v) = 0 if v £ 0 and qt if v = 0; hence




L1

(4=10) ¥ = "%,
il
Now we want to find the value of Z but we must first prove
s t 2
that K(u,v) = '|T S(aiu,biv} il ) G(aiu). By using the formula
1i=1 i=s+1

(4=2), we can rewrite K(u,v) to be

t
K(uyv) = D 7 e(ua, x>+ 2vbix.)
X.€F  i=1 o =
i
i=1,.tc't
t
3 TI_ b e(a,ux+ 2b,vx,)
i=1 %€F - A | B«

i=1’!..'t

]

t
Tr S(a.u,b.v)
124 )

s t
= M stajuppv) T sayu,0
i=1 = i=s+1
s t
=" _ 1] S(aiu,biv) 2 G(aiu).
i=1 i=5+1
It follows that
s t
Z = q-2 Z ge(=(au+2bv)) TI_ S(a.uysb,v) Tl- G(a,u).
2 ue€EFr i=1 R &

veF

By using (4=4) and (4-5), we have

=
L= a7 T el=Canszon)) (@50 Y YA De(-v'B/w))
uer

VEF tes t-s
(¢ Y wYay),



ot

2
Yy A = a 1... at and B - b1+'Q‘+ b

where A1= a.,‘q.u a > B4

s

1

?|

ct

Then we have, since “f(ﬁq) QV(AZ) = ﬂ’(A1A2) =Y (),
t
(4=11) = "GNV 3T LY (wel-au) S(«By=b) ,
2 u€lF u

and the theorem follows on combining (4-9),(4-10) and (4-11),

ko5 Corrollary. The value of Ns,t(a,b) is independent of the value
of sy subject to the condition, 1 € s £ t ; more precisely, the value
of Ns’t(a,b) is not changed if the b, in (4=1) are replaced by any
set of t elements of F, not all zero, such that the value of B is left

invariante.

In addition to Corollary 4,5, we shall need the following
well=known result for the number of representations Nt(a) of an

element a of F in the form,

(4=12) a1x§+...+ atxi =0U8]% A = B eee By # 0,

for fixed elements B yeeey By of F.

We combine the results in Theorem 3.6 and 3.7 to obtain the

following theoreme.

4e6 Theorems Let t = 2k or 2k+1 according as t is even or odd.

(i) For a ¥ 0,

]

e *WennED if t = 2K,
(4=13) N (a) =
T

0" W ((~1)%an) 2 4 =gl




o

(1) 42 a = O,

gV = YaadVet-%)

i

(4=14) N (a)

=1
q

We are now ready to prove our main result,

2k+1.

4,7 Theorem. (E.Cohen [3, Theorem 2] ). Let N_ ,(asb),s,A and B be
L}

defined as in Theorem 4.4 and let D = ba— aB, Then we have :

(1) In case B # 04 D = 0,

7 A ) W (=1)¥aB)
(4-15) N, (a,b) = { b

(ii) in case B ¥ 0, D # O,

o= PP CTA) AB)
(4-16) NS t(a'b) ‘-':{
w15 1 PN a1 8aD)

(iii) in cese B=0, D =0, a = O,

gt % V=) Wl-12"0)
(4=17) Ns't(a,b) =

t-2
a

(iv) in case B= 0, D=0, a # 0,

0¥ "% =N ((-1)%8)

(4=18) N (ab) =

a®"% W ((=1)kak)

if t

if t

it

- &

5 th sl

if t

|

2k+1,

2k '3

2k+1,

2k,

2k+1

-

2k,

2k+1



A

(v) in case B = 0, D # 0O, N_ t(a’b) = qt—a.

Proof. We divide the proof into four parts, corresponding to special

cases arising from the application of the Corollary 4,5.

Part 1. Suppose B # 0O and that at least one a; is such that
Bai is a square ; without loss of generality suppose that Ba1 is a
non~zero square of F, By Corollary 4.5, Ns’t(a,b) is in this case
equal to the number of solutions of
2
t !

a = a1xf+...+ atx
(4=19) {

b

i

B X4

where B1 is determined so that B = Bi/ 240 Ve eliminate x

between the equations of (4=19), then we have

1

a = b2 + a x2+ + a x2
= = Pt "¢t ?
B1
or equivalently,
a - b2 = a x2+ + a x2

3 - o 7t *
That is
(1}-20) - D = a x2+ sat A xz (t } 2)

B 22" £t »

The number of solutions of (4-19) is the same as that of (4-20),

Applying Theorem 4,6 with t replaced by t-1, a by =D/B, and A by
/

a,4ee 2, (let we place A = a,... a,;)y and using the fact that

’W(a,‘B) = 1, we have for D = 0,
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qt-2+ qk-1(q-1)ﬂy((-1)3£ ) if t=1 = 2k
(4-21) Ny 4(~D/B) = {
- t-2 )
if t=1 = 2k+1a
r
Since A = A/a1 and q’(a1B) = 1, we have
V-0 = YD W B) = ¥ ((-1)¥ap).
81
Then equation (4=21) becomes
qt"'2+ qk-1(q-1)w(l(—‘1)kAB) if t = 2ks1,y
Nt_1(—D/B) = { —
q if t = 2k.
For D ¥ 0O,
4R qk"“i"((-*i)khf) if t-1 = 2k,
(4=22) N, _,(=D/B) = ’
Wisig qk"f’((-‘l)k‘”g A) if t=1 = 2k+1.
B

Since “V(_I.J_ A’) = "1’)(2 k,) ¥ (a1B) = ¥ (DA), the equation (4-22) becomes

B B

qt-e— qk—1qf((—1)kAB) if t = 2k+1,
N, _,(~D/B) = {

1]

qt'2+ c}f"q‘f’((—‘z}km) if t = 2k.

Hence the formulas (4-15) and (4=16) result in this case provided

t # 1« In the special case t = 1y, we have equations a = a1x§ and

= i 5 5 o ne
b= Bx,e Since A =a, and B = B1/a1, AB

1 =B which is

]
o)
.

a square in F. Therefore the formulas (4-15) and (4=16) with s = t = 1

k = 0, agree with the obvious result,
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N'a,‘i(a'b) = {
0 if B# 0, D £ O

Part 2. Suppose B # 0 and a;B is a non-square in F for every
i € te These conditions imply that t > 1 and that a,a, is a square

in F; for if t = 1, we have s = 1 and so a1B is a square which is

not possible; moreover if a,a, is a non-square, then a1BoaaB = a1a2B2

is 2 nen-square which contradicts the fact that an and aaB are both

non-square, thus a,a, must be a square in F. By Theorem 3,5, there
exists a pair of elements Bjs B, of T such that B = Bi/a1+ B;/a2
and B, £ 0 #£ BZ' Choosing a fixed pair of such elements Bq, BE’

it resultsfrom Corollary 4.5 that NS t(a,b) is in the present case
7

equal to the number of solutions of

2 2
( I""as)

b

B1x1+ Bzx2 -

Let 4 be an element of F such that d2 = a,a,. We eliminate x

between the equations of (4-23) by substituting X, = b=B,x, from the

B

second equation of (4~23) into the first one, then we have

1

" S 2 2 2
a = a, b-Bzxa] + A Xoteeet AL XY
4 B

1

s

2L
.-I

r 2 2 2y.2 2 2
a1b -2ba182x2+(a152+ aZBq)x2]+a3x3+...+ atxt

=

2 2 2 2
15 [aqb -2ba1B2x2+ a1a2Bx2]+ a3x3+...+ atxt
B1



7

2 2. 2.2 2 pd 2
= EE [a1a2x2- 2ba132 X+ b a132 - 3.a152 + aqb ]
B B 2 2 B
1 B a1a2 B a2
2 2
+ AzXptesat ALXY
2 2 2 2
= B_a_ [(.faTaaxz- ba,B, ) + ad= ab (B-]il)jl
B4 B\ﬁ,laz B B¢ 3
+ a x2+ +.a x2
3 3 saw t*¢
2 2.2 2 2
= EE [(Jaqaaxz- ba1Bg ) + b 31] + a3x3+...+ a, Xy 9
i B1 BJ&1a2 B2
.or equivalently,
2 2 2 b4
a = % = §§_ (Ja1a2x2- ba182 ) + a3x3+...+ atxt.
B
1 13,\/5-1,15,2
Thus by involving completing a square, the equations (4-23) lead to
€

— Sthe single equation,

N 2 2 2
(h=2k) -g = BZ%+ 8gXsteeet B X,

where 7 = 1_(dx2- ba,B,)e Therefore, the number of solutions of
= R
(4=2l4) is given by N t(a,b). Application of Theorem 4.6 with t
'
replaced by t-1, a by -D/B and A by Ba3... ay (by B if t = 2),
in connection with the observation, “P(aqaa) = 1, leads to the

formulas (4-15) and (4~16)., Notice that the equation (4-24) and

equation (4-20) have the same type, so the number of solutions of
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(4-24) is the same as that of solutions of (4-20), that is, the formulas

(4-15) and (4-16).

Cases(i) and (ii) of the theorem are now completely established;
that is, the theorem is now proved in the case B # O. In the remainder

of the proof, B has the value O and t > 1.

Part 3. Let us suppose now that B = O and that integers i,j
existy, i # j, 1 £ i, j € t, such that -2 is a square of F.
Without loss of generality suppose that -a,a, is a square. It follows
that we can pick non=-zero elements B1, B2 of F such that ‘

2 2 3 3o o ;
0 = Bq/a1+ B2/a2 s+ for any such pair B1, B2, Ns,t(a’b) is in this case

equal to the number of solutions of (4-23). Eliminate of x, from

2

1
(4=23) yields the equation,
2 2 2 2
(4=25) Bja - a,b = =2ba B, X + A Xoteeet 3.Xe
2 2

51 B1

the number of whose solutions is N_ t(a,b). If b £ 0, x, in (4=25)
| )

is determined on assigning arbitrary values to XE,.-., Xy o3 hence in

case D # O (because D = bos aBy, and b # 0, B = 0), N t(a,b) o qt-2
1

(Case (v)), If b = 0, x, can be chosen arbitrarily in (4-25)

2

provided t > 2, 8o that N_ t(a,O) = q L(a), where L(a) is the number
1

of solutions of a = a3 §+...+ atxi . Applying Theorem 4,6 with t
'
replaced by t-2 and the fact that N’(—aqaa) = 19 A =a

X

se el = A/&

3 t 1221

we have L(a) as follows :



a¥3s =Yg Wi (=154 )
if a = 0, L(a) = {
t-3

457 Wiy
if a # 0, L(a)

I
——
o
ct
1
N
+

KW ((=1)Kan )

’ ’
0 2 Y ¥ e -1)50)
if a = 0, L(a) =
t=3

f

a2 M (1))
if a # 0, L(a) {

/ ’
a 34 W 21y kan)

Therefore if a = 0,

if t-2

if t-2

if t-2

if te2

if t

if t

if %

if t

L /
2 M- Y-nka) ar

q
Ns‘t(a,o) = qL(a) ={ .
q if
if a # 0,
/ ¥
"%~ M ((1)¥n) if
N_ ,(a,0) = qL(a) ={
51t ’ / /
a* 2+ Y (=1 an) ir
Hence we get (4~17) and (4~18) provided t # 2. In case

(Lw25) reduces to a = O+x,y so that

n

=

il

2k

2k

2k

2k,
2k+1
2k,

2k+1,.

/
+1 3

Ek’+1.

I

I
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Ns'a(a,o)
0 lf&#Ol
This agrees with (4=17) and (4=18), in case t = 2, k = 1. Cases(iii)
and (iv), for which D = 0, are therefore completed from this part of

the proof,

Part 4, There remains to consider the case in which B = O
and -d8 is a non-square of T for all 4 # j; 1 & iy Jj § t. These
conditions imply that t % 3. For if t = 2, then there exists a pair

of elements Bﬂ, B2 of F such that

2 2
i 11V -
¥ g
Then
2 2 2
B,1 = -‘il 82 == a,a, Eg .
a 2
2 a,
Therefore
: 2
- a,a, (B1a2) .
BE
This is impossible since =a,8, is a non-square of F by the assumption,

if t = 1, then i = 1 = jo Thus it is not in the case. Let us choose

2 - Wl
non-zero elements B,, B, B, of F such that B1/a1+ bz/a2+ B3/a3 =0

£,
this is possible by an argument used in Part 2. It follows then as

before that N8 t(a,b) is in the present case the same as the number of
: |

solutions of
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I

a a-,.ly-,llll.l a!x!

B,x_ + B.x.+ B_x

b 171 2, & 33 °

1

If we eliminate x, and simplify the resulting equation by completion

of squares, (4-26) is replaced by the single eguation,

5 _ @ 2 2
(4=27) a - a,ab” = Pz (2ba132B:)x3+ apX)+eset AX
P P

= = - B = -
where P = Bja +Bsa, 2,858, B3 # 0 and 2 (x2+a1B2B3P X banaP )/B1.

r /
If b = 0, that is, in case D = 0, N_ t(a,o) = gL (a), where L (a) is the
9

; / 2 2 2
number of solutions of a = P21+ ApXpFeeet BN,

~-1

where z, = (x2+ a1B2B3P x3)/B1. By Theorem 4,6 on replacing A by
/!

Pahuon at (let A = Pah..‘ at) and t by t=2 and noting that

W) o Y tanas ), then we have

1%2%3
; — qk-1(q—1) Y (=¥ ) if t-2 = 2k,
if.a = O, L (a) =
£e3 .
9 if £-2 = 2k+1 ;
A, -~ /!
, "= T (-nFn ) if t=2 = 2k,
if a # 0, L (a) =
- 4
0"+ g Y ((=1¥ad ) if t=2 = 2k+1 o
- / - /
since & = Payeeecay, V(D) = Y (-1)¥payens ay)

k
Y e a) W) = Vienbayee ) Ve agn,)

kel
qP ((-1) H a1a2a3ah-.. at) = nf ((-1)k+1A). Put k+1 = k"

1}

then we have




ifa=0, L (a)

{ qt-3+ qk'e(q-’i) Y ((=1)%n) it & = 2K,

qt? if t = 2k+1 j
’ ¥ 4 )
4% = N a) {f ¢ = 2% ,
it a £ 0, L’(a)={ , ,
qt“5+ qk"1 W ((=1)¥an) if t = 2K+1,

/
Using the fact that N_ t(a,O) =q L (a), cases (iii) and (iv) are
1
therefore completede If b # O (or equivalently, D ¥ 0), Z, Xjreney Xy
in (4=27) can be assigned arbitrarily from which case (v) results.

This completes the proof of the theorem.

Examination of Theorem 4.7 leads almost immediately to the

following.

I -—
4.8 Corollary. hs't(a,b) > 0 for all t » 4, and NS'B(a,b) =0
if and only if a # Oy b= B = O and Y (-aA) = =1 3 moreover,
N, t(0,0) > 1 for all t 3 4, while Ng 3,(0,0) = 1 if and only if B £ 0
' '

and W (-AB) = =1.

t=-2
449 Corollary. The formula, Ns’t(a,b) = q

s holds if and only if
one of the following sets of conditions is satisfied :
(1) B#0,D=0, t is even,

(ii) B =D=a = 0, t is odd,

(iii) B = 0y D # 0.
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