CHAPTER II
FINITE FIELD

This chapter contains some properties of finite field which

are needed in the sequel. The materials of this chapter are drawn

from references [1],[4],[5],[6],[8],[?].

2+1 Definition, A finite field is a field with a finite number of

elementse.

242 Theorems. Let F be a finite field of characteristic p # O.

Then F has pm elements for some m > O,

Proof. Since F is a finite field of characteristic p # O, F contains
a subfield K isomorphic to Zp o Thus K has p elements, F is a
vector space over K and since F is finite it is certainly finite-
dimensional as a vector space over K., Suppose that [F:K] = m,

then F has a basis of m elements over K. Let such a basis be
Vyressy Voo Then every element in F has a unique representation in
the form AV teeet B Vo where A peeey @ are all in K. Thus the
number of elements in F is the number of A4V teset 2 V- aS the
341000y & range over Ke Since each coefficient can have p values,
F must clearly have pm elements,

2.3 Lemma. Let F be a finite field with p" elements. Then every

m
element a in F satisfies aPf = Ae



Proof, If a = O the assertion of the lemma is trivially true,
Cn the other hand, the non-zero elements of F form a group
& under multiplication of order pm-1 « Let a €EF N {0} « Then
o(a) | p™1 . Thus p™=1 = ke 0(a), where k is a positive integer.

PU-1_ Gke0(a) | (,0(a)yk

Consequently, a = = 1, Multiplying this

m
relation by a we obtain that 2’ = a., That is all eclements of F
m

are roots of the polynomial e X
2elt Theorem, Let F be a finite field with pm elements., Then F is

m
the splitting field of the polynomial R X

m
Proof. Consider the polynomial xP o x € 'ZFiX]. Then the
m
polynomial X - X has at most pm roots, By Lemma 2.3, we know

pm such roots, namely 2ll the elements of F, Let F = {aq,..., a m} pe

m P
m m
P . (TTT P i P
Now X% = X must be divisible by || (X-a.,)s Since both X* - x
pm i=1 *
and | (X-ai) are monic polynomials with the same degrees,
i=1
we have
m
Pm P
X¥ =X = T (Xeay) € F [x],
1=1
m
that is, ¥ = % splits into linear factors in F, However, it
cannot split into linear factors in any smaller field for that field
»

would have to have all the roots of this polynomial and so would

have to have at least p" elements. Thus F is the splitting field

Ly

m
of Xp - X over ?Zp.




g9

245 Theorem. Any two finite fields with the same numbers of elements

are isomorphic.

Proof, Let the number of elements in these fields be pm, where p

is a prime and m is a positive integer. Since these finite fields

have pm elements, they are both splitting fields of the polynomial
m

XP = X over ZZ‘p by Theorem 2,4, Hence by Theorem 1.9, they are

isomorphic.

2.6 Lemma. The polynomial £(X) € X [X] has a multiple root if

’
and only if f(X) and £ (X) have a nontrivial common factor.

Proof, Without loss of generality, we may assume that the roots
of f(X) all lie in K, TIf £(X) has a multiple root ¢ then
m / -1 m /
£(X) = (X=c)™ g(X) where. m > 1 and £ (X) = m(X=cf'" g(X)+(X=c)"g (X).
/
This says that f(X) and £ (X) have the common factor (X-c), thereby
proving the lemma in one direction, ‘
On the other handy if f(X) has no multiple root then

£f(X) = a(X—c1)...(X-cn) where the c!s are all distinct. But then
n
’ N
£(X) = 3 a(X-c1)...fX—ci)...(X—cn) where the <™~ denotes the
=1
/!
term that is omitteds Then no root of £(X) is a root of f (XY,
/!
for f (cj) # 0 for all j = 154eey n, since the roots are all
/
distinct. However, if f(X) and f (X) have a nontrivial common
-~
' chtor, they have a common root, namely, any root of this common

’
factor. Thus f(X) and f (X) have no nontrivial common factor,

and so the lemma has been proved in the other direction.
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2.7 Lemma. If K is a field of characteristic p # O, then the
m
polynomial x¥ - X € K [(X] 4 for m 3 1, has distinet roots.

m ; m_
4 Proofe Let f£(X) = Xx® = X € K [X]). Then £ (X) = p™P ~oq = -1,

'
since K is of characteristic p. Hence £f(X) and f (X) are relatively
m
prime and by Lemma 2.6, X’ =~ X has no multiple roots.

2.8 Lemma., Let F be a field with ch.F = p, where p is a prime.

Then
(i) ne = 0 (e is the identity of F) if and only if n € pZ.
(ii) For any nonw=zero element a € F, na = O if and only
@ if n € pZ .

Proof. (i) Assume ne = Os By the Division Algorithm, there exist
P qy r € Z such that n = pg+r where O & r < p, Hence ne = pge+re.
Since choF = p, pge = O, It follows now that re = O since ne = O
and pge = Os Since r < p, r = O. Consequently, n = pq, that is,
n €pf . Conversely, assume n € pf . Then n = pt for some t WA '
and so ne = pte. Since ch.F = p, pte = O, and thus ne = O,
(ii) Let a # 0 € Fo Then na = (ne)+a = O if and only if
ne = 0. But by part (i), ne = 0 if and only if n € pZ . Thus part

(ii) is proved.

» 2¢9 Theorem, Let F be a field with ch.F = Py where p is a prime,
For ay, b € F, we have
(i)  (a+b)?

(ii) (a=b)?

Py pP

a

P_ P

1}

a
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Proof, (i) By the binomial expansion,

p
(a+d)? = Z (p) a® pP~%
j=0 ‘\*

p=
bP4 Z (p) at bPTt . aP,
i=1 V't

For O ¢« i <« p, we have (E) = pi = pelp=1)eselel = pcMi,
i!(P-i)_! i!(P"i) (P"i-"l).aoa.'E

where M = (p=1)e.o(p-i+1) + By part (ii) of Lemma 2.8, (E) = 0 for
it

0 < i< p. Hence (a+b)? = zP4 oP,

(ii) We write

(a=b)? (a+(-b))P

aP+ (=1)P P

i

(2-1)

where the last equal sign follows from part (i). If p # 2, p is odd

and (a—b)p = ap- bP. If p=2, we have 1 + 1 = 0 or 1 = =1,

Thus from (2=1) we have (a—‘b)2 = a-y = az— 'c-2 as we want to prove.

2410 Theorem. For every prime number p and every positive integer m,

there exists a field with pm elements.,

m
Proof. Consider f(X) = xP - X € Zb [X] « Let F > Z , be the

m

splitting field of f(X). Let K={a ¢ F |aP = al

e« The elements

m
of K are the roots of X’ = X which, by Lemma 2.7, are distinct.

Thus K has pm elements,
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We will now show that K is a field. Let a, b € K, then
m m
aP = a, oY = b and so by Theorem 2,9 we get

m
(a=b)? = aP . pP

-—-'a."'b-
m m m
Thus a = b € K. Also if b # 0, then (a/b)? = aP / vP = a/b,
whence a/b € K, Consequently, K is a subfield of F and so is a

field.

Hence the theorem is proved,

2411 Remark., From now on the finite field with precisely pn elements

will be denoted by GF [pn].

2e12 Lemma. If G is a finite abelian group then there is an integer

m £ |G| y where IG| denotes the number of elements in G, such that

(i) a" = 1 for all a € G,
and (ii) there exists an element g € G whose order is m.
Proof. This theorem is easy if |G| 2 pk for a prime p, We simply

choose m as the maximal order of the elements in G and let g be any
element of order m. Since m ka, m = pS where s £ k. Then if

a € G has order ph. by the choice of s, it follows that h ¢ s sc that

s h s-h
a¥ = (a? )P z 1e
k1 kn
In general |G' = Pq eee P and G = S Xeas X S ’
n p T I
: 1 n
i r
where Sp = f.x l x € Gand x* =1 for some integer r} y (see

[4, Theorem 5.18, ppe 144=145] ). Let g4 be the element of maximal




5. s 5
order pil in Sp e Clearly m = P, ees pnn is the desired integer,
i

and g = Byeee B is the desired element of G.

213 Theorem. The multiplicative group of non~zero elements of a

finite field is cyclic.

Proof. Let F be a finite field with p" elements. Let F = F ~{0} .
Since F* is abelian we may apply Lemma 2.12. Let m be the positive
integer such that for O # a € F we have a" = 1, and let gEF
have order m, Since a' = 1 for all nonezero ay+1if follows that

x™ = 1 has pn- 1 distinct roots in F, hence m 2 pn-1 ; however,
since the order of g is m it must be that m ¢ pn-1 ~the order of

the group. Hence m = p =1 and so the group is cyclic, and g is its

generator.

2414 Theorem. Let F be a field with ch.F = p, where p is a prime.

Define
Then the assignment © : £ —»s ff is an isomorphism of F onto ¥,

Proofs © is clearly well=defined.

To show that © is a homonorphism. Let a, b € F, Then by Theorem 2.9,

8(a+b) (a+b)?

n

ap+ bp

8(a)+8(b).
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i
~
w
=2
~

e

o(ab)

= B(a)&(b).

To show that 6 is 1-1. Let a, b € F such that 6(a) = 8(b). Then
a® = b® and so 0 = aP= b? = (a-b)P, by Theorem 2.9. Since F is
an integral domain, a=b = O, We have therefore a = b, that is,
8(a) = 6(b) implies a = b,

To show that € is onto. TLet y € FP. Then there exists an element

x € F such that x® = Ve

Hence © is an isomorphism of F onto FP,

2415 Corollarys. Let F be a field with cheF = p, where p is a prime.

If F is finite, then FP = F,

Proof. Since F is isomorphic to FX by Theorem 2.4, the cmrdinal:
number of F is equal to the cardinal number of Fp. Moreover,

if F is finite, then we have F = FP,

2416 Lemma. Let K be a subfield of F = GF [pn] . Then there exists

an integer m such that K has pm elements, and m |n.

Proof, Since F has characteristic py; so does K, and hence K has pm
elements for some integer m > C, Next we consider F as a vector
space over K. Since F is finite, it has a finite basis over K,

ms

say { € reeey es} is a basis of F over K. Then F has (p™)° = P

elements, whence ms = n and m |n.
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2417 Theorem, F = GF I:pn] has a subfield K with pm elements if and

only if m ‘n. Moreover, K is unique.

Proofe If F has a subfield with p" clements, then m |n by Lemma 2.16.
¥ *

Conversely, let m In and n = ms, where s € Z o+ Then F = F ~ {0}

has

n - 5m

PPt = P = (Pt Hmpletin

teeat 1)

' *
elements. Since (p"=1) |(p”=1) and since F is cyclic, it has a

*
unigue cyclic subgroup K with pm-1 elements, and say with generator
kypT=1 k,p" .k
be Then for any integer k, (b )P “'=1 = 0, whence (b*)P = b = 0,
* m
Thus, each element in K satisfies X - x = 0y and so each of the
*
p™ elements in the field K = K U {0} satisfies the equation
m *
XP = X = 0. Since K 4is the unique subgroup of F with pm-‘l elements,
f
it follows that K is unique, for the existence of another field K
*

with pm elements would imply that there is a second subgroup of F

with p"=1 elements. ANe741

From now on, we shall have deduced some important properties

of the GF [p""] with respect to the included field, the GF [p" ).

2418 Lemma., Let f£(X) be an irreducible polynomial over Zip, where p
is a prime, and dege f = n. Then the field ?;p[x] / (£(X)) has

pn elements,

Proof, Let A = (f(X))e Any element in ?ZP[X]J/(I(X)) is a coset
of the form g(X)+ A where g(X) € zp[}{]. Now, given any

polynomial g(X) € Zp[}(] y by the Division Algorithm for polynomial

| 18634866 X
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g(X) = t(X)ef(X)+ r(X) ,
where r(X) = 0 or deg. r(X) < deg.f(X). If r(X) Z O, then

Yhesat o X0 ;
n

r(X) = a.+ a -

0 1

where the a's belong to Zp. Consequently, we have

g(X)+ A = agt a Xteeet a, Xn-1+t(x)'f(X)+ A

-1

= ag+ a1x+...+ an_1x + A,

since t(X)+f(X) is in A, By the addition and multiplication in

Zp[x]/ (£(X)) , we have
g(X)+ A = (a0+A)+a1(XfA)+...+an_1(X+A)n'1.

If we put X = X+A, then every element in Zp (x] /(f(X)) is of the
form

n-1
ay+ a12+...+ an_,lf

with the a's belong to Zip « There are only a finite number p of
choices for each coefficient asy hence IZP[K]/,(f(X)) has pn

elements.

2419 Theorems. Let F = GF [pn] « Let P be a root of an irreducible
polynomial f(X) € F [X] . Then F(B) = GF[pnm] y where m is a degree

of #{X) e

Proof. By Lemma 2.18, F [x]/ (£(X)) has (pM™ = ™  elements.
Since B is a root of f(X), F(B) is isomorphic to F[X]/(f(X)) by
Theorem 1.18. Therefore the number of elements in F(B) is p", that

iS' F(ﬁ) = GF [an] 5
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The materials from now on are due to L.E,Dickson [5,§§23-25,§§31].

nm

2420 Lemma. Let f£(X) be an irreducible polynomial in GFEpn][X] and
degef = me Then £(X) [XxP = x.

Proof. Let g(X) be any polynomial in GF[p"][X]. Dividing g(X) by

f(X), we obtain

g(X) = ant a,X+eeet am_1xm-1 (mod £(X)),

where the a's belong to GF[pn]. Since there are pn of choices for

each coefficient 2 the residue

s SYPAG -2 -
m

(2-2) a 1

O+a

1
B e o mm .. ..
has p distinct forms. Let we denote these p distinct residues of

the form (2-2) by

(2-3) Xi (i = 0| 1|o..' an"' "f)'

where Xo is the residue zero. Consider the products by a fixed residue
Xj # Xg s
(2=4) iji (i = O, Teveey an_ 1.

We claim that the products (2-k) are all distinct and different from

Xo 3 for if ijk

XjXq whenever k # q and keq € 50,1,..., pnm_1}’

then we have. X

I Xq s this is not possible since Ki,i = 0,1,...,pnm-1,
are all distinct, moreover, since Xj # Xy1 then ijigxogigo 1,'.‘1an_q.;
Therefore the residues obtained on dividing the products (2-k) by f(X)

must coincide apart from their order with the residues (2-3),
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Forming the products of the residues not zero in each series,

nm nm
p e p =1
X = 1T % (mod £(X)).
i=1 i=1
nm_,
Since 1_r Xi # 0y we obtain
i=1
nm_,
xP = 1 (mod £(X)).
J
Consequently,
nm_
X? -1 2/ 0 (mod £(X)).

Taking for Xj the particular residue X, the proof of the theorem

follows.

2421 Lemma, Let f(X) € GF [pn][X]. Then for every integer t,
we have the following identity in the field :

5 t
b 2 ) [£00)] Bas

Proof. Let

k

£(X) = agt a X+eset a, X"

0
n
where the a's belong to the GF[p ] s 50 that by Lemma 2.3

n

(2"‘5) ag = ai (i - O’ 1,..-’1{)0

Raising f£(X) to the power p and noting that the multinomial coefficients

of the product terms (that is, those not pth powers) are multiples of

Py we have the identity,
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. P
[f(X)] = ag+ a],;‘)){p+...+ afzxkp + p-q,‘(X).

By induction, we obtain the formula

s 5 _5 5 kps

s
P
[f(X):I = af + af XP 4004 ai X

Applying (2-5), we obtain in the GF[pn] [X] the identity :

n n
n n

P P
[f(xil = ayt aqxp +oset akxkp e $LX )a

Hence the lemma now follows by inductione
2.22 Lemma. Let £(X) € GF[p"][X] be an irreducible polynomial of
nt

degree ms If £(X) divides the polynomial XP =~ X, then the integer

t is a multiple of m,

Proof, Let t = sm + ry, where O g r < me By Lemma 2420 , we have

XP - X = TEPANECT . e XP e X (mod £(X)).

nt
Hence, if X¥ = X be divisible by f£(X) in the GF[p")[X], we have

nr
(2=6) xP = X (mod £(X)).

Let g(X) € GF[pn] [X]/ (£(X))s Then by Lemma 2,18, we have pnm

distinct of g(X). Denote g(X) by the expression
P
mMe=1
ay+ aqf+...+ a % 5

where the a's belong to GF[pn] and X = X+(£(X)). By Lemma 2.21,

we derive from (2-6)

nr nr -
[e()}? = g&xP ) = g (mod £(X)),
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or equivalently,

nr
(2=7) p.P = 1 (mod f(X))e

The congruence (2-7) is satisfied by the an expressions g(X),
which are distinct modulo f£(X), therefore it has pnm solutions in
GF[pnmﬂ. On the other hand, we have at most p =~ solutions of (2-7)
since the congruence (2-7) has degree p**, Since r < m, pnr{ pnm.
It follows that the congruence must be an identity, whence r = Q.

Consequently, t = sm and therefore we have proved the lemma,

2.23 Theorem. Let f(X) and g(X) belong to and are irreducible in the
GF[pn][X] and are of the respective degrees m and t, Let t be a

divisor of me Then the roots of congruence

(2-8) g(X) =100 (mod £(X))
are
n 2n n(t=1)
x1' X? [} X%) gevoy xg L

iP X1 is one root of (2-8) necessarily belonging to the GF[pnm].

Proof, By Lemma 2,21, we have in the GF[pnj[X} the identity

nr nr
gx® ) = [g0)]? .

nr
Hence, if X, is a root of (2=8), so is every Xg o Since g(X) is

an irreducible polynomial of degree t in GF[bn][X] y we have

nt

x,l; -X, = gX)enx)) = 0 (mod £(X)),

by virtue of Lemma 2,20, Using Lemma 2.22, we sec that since m
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nm
being a multiple of t, g(X) xP ~ X« Consequently, we have

nm '
xﬁ’ -%, = gx)en(x) = 0 (mod £(X)),

or equivalently,
P = x (mod £(X)).
We next prove that the above t powers of X1 are distinct modulo f(X).

Indeed, if

na nb
x2 =4/ (mod £(X))
" - n(m-a)
for a < b < ty we would havey upon raising it to the power p 4
nm n(m+b-a)
X7 /X, ® X3 (mod £(X)).

So that, by Lemma 2,22, m+b=a would be divisible by me Hence b = a.

2.24 Corollary. We have in the GF[pnm] the decomposition

‘n n(t=1)
g(X) = (x-xq)(x-xf)...(x-xf e

In particular, f(X) = O has in the GF{pné] the distinct roots

n n(m=1)
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