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ABSTRACT

4771008063: Petrochemical Technology Program
Kanjana Piriyasurawong: Ethanol Production: Applicability of
Reactive Separation
Thesis Advisors: Assoc. Prof. Pramoch Rungsunvigit, Dr. Santi
Kulprathipanja, and Dr. Teerapatr Srinorakutara 90 pp. ISBN 974-
9937-63-5

Keywords: Ethanol adsorption/ Adsorbent / Reactive separation

Ethanol production can be accomplished by biomass fermentation to
produce a mixture of ethanol and water. However, higher productivity of ethanol
cannot be achieved by the process since cell metabolism of the employed yeast
would be inhibited and subsequently destroyed at much higher concentration of
ethanol. Commercially, anhydrous ethanol can be produced by simple distillation to
distill 12 wt% ethanol to 94.6 wt% ethanol. In this case, ethanol forms an azeotropic
mixture of 94.6 wt% ethanol and 5.4 wt% water. With a high demand of ethanol for
fuel uses — gasohol, enhancing ethanol production with reduction cost of anhydrous
ethanol separation is in high demand. The objective of this work was to develop a
novel method of ethanol production, combining ethanol fermentation and separation
into a single process — “reactive separation”. The intention was to serve two
purposes: overcoming the limitation of the 12 wt% ethanol production and reducing
the separation cost. There are many investigations underway to find alternative, less
energy-intensive techniques for ethanol-water separation. Therefore, the adsorption
method was studied in this work and involved the use of solid materials to
preferentially remove ethanol from ethanol-water mixtures. The adsorption
characteristics were described, and several adsorbents were investigated. Equilibrium
adsorption isotherms of the adsorbents were obtained at room temperature (25°C) for
ethanol-water mixtures containing up to 12 wt% ethanol. Column breakthrough
curves indicated favorable ethanol adsorption. From the experiments, silicalite and
activated carbon showed good possibility for incorporation into the fermentation-

separation process.
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