ETHANOL PRODUCTION: APPLICABILITY OF REACTIVE SEPARATION

Kanjana Piriyasurawong

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University and Institut Français du Pétrole
2006
ISBN 974-9937-63-5

Thesis Title:

Ethanol Production: Applicability of Reactive Separation

By:

Kanjana Piriyasurawong

Program:

Petrochemical Technology

Thesis Advisors:

Assoc. Prof. Pramoch Rangsunvigit

Dr. Santi Kulprathipanja

Dr. Teerapatr Srinorakutara

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Fanumet. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Ramoch & Santi Fufralling (Assoc. Prof. Pramoch Rangsunvigit)

(Dr. Santi Kulprathipanja)

(Dr. Teerapatr Srinorakutara)

(Assoc. Prof. Sumaeth Chavadei)

(Assoc. Prof. Thirasak Rirksomboon)

ABSTRACT

4771008063: Petrochemical Technology Program

Kanjana Piriyasurawong: Ethanol Production: Applicability of

Reactive Separation

Thesis Advisors: Assoc. Prof. Pramoch Rungsunvigit, Dr. Santi

Kulprathipanja, and Dr. Teerapatr Srinorakutara 90 pp. ISBN 974-

9937-63-5

Keywords: Ethanol adsorption/ Adsorbent / Reactive separation

Ethanol production can be accomplished by biomass fermentation to produce a mixture of ethanol and water. However, higher productivity of ethanol cannot be achieved by the process since cell metabolism of the employed yeast would be inhibited and subsequently destroyed at much higher concentration of ethanol. Commercially, anhydrous ethanol can be produced by simple distillation to distill 12 wt% ethanol to 94.6 wt% ethanol. In this case, ethanol forms an azeotropic mixture of 94.6 wt% ethanol and 5.4 wt% water. With a high demand of ethanol for fuel uses – gasohol, enhancing ethanol production with reduction cost of anhydrous ethanol separation is in high demand. The objective of this work was to develop a novel method of ethanol production, combining ethanol fermentation and separation into a single process - "reactive separation". The intention was to serve two purposes: overcoming the limitation of the 12 wt% ethanol production and reducing the separation cost. There are many investigations underway to find alternative, less energy-intensive techniques for ethanol-water separation. Therefore, the adsorption method was studied in this work and involved the use of solid materials to preferentially remove ethanol from ethanol-water mixtures. The adsorption characteristics were described, and several adsorbents were investigated. Equilibrium adsorption isotherms of the adsorbents were obtained at room temperature (25°C) for ethanol-water mixtures containing up to 12 wt% ethanol. Column breakthrough curves indicated favorable ethanol adsorption. From the experiments, silicalite and activated carbon showed good possibility for incorporation into the fermentationseparation process.

บทคัดย่อ

กาญจนา พิริยะสุรวงศ์: การศึกษาการใช้ประโยชน์จากกระบวนการแยกเอทานอลใน ระหว่างการเกิดปฏิกิริยาสำหรับกระบวนการผลิตเอทานอล (Ethanol Production: Applicability of Reactive Separation) อ. ที่ปรึกษา: รศ. คร.ปราโมช รังสรรค์วิจิตร คร.สันติ กุลประที ปัญญา และ คร.ธีรภัทร ศรีนรคุตร 90 หน้า ISBN 974-9937-63-5

การผลิตเอทานอลสามารถทำได้โดยใช้กระบวนการหมักมวลชีวภาพ แต่อย่างไรก็ตามเอ ทานอลัจากกระบวนการผลิตจะถูกจำกัดที่ความเข้มข้น 12% โดยน้ำหนัก เนื่องจากการสันคาป เซลล์ของยีสต์จะถูกยับยั้งและทำลายเมื่อเอทานอลมีค่าความเข้มข้นสูง ในเชิงพาณิชย์มีการใช้ กระบวนการกลั่นเพื่อผลิตเอทานอลที่มีความเข้มข้นสูงขึ้นจากกระบวนการหมัก ที่ได้เอทานอลมี ความเข้มข้น 12% โดยน้ำหนัก เป็น 94.6% โดยน้ำหนัก แต่การกลั่นแบบนี้ก่อให้เกิดสารผสมอะซี โอโทรปิกของเอทานอล 94.6% โดยน้ำหนัก และ น้ำ 5.4% โดยน้ำหนัก ดังนั้นวัตถุประสงค์ของ งานวิจัยนี้จึงมุ่งไปที่การพัฒนากระบวนการผลิตเอทานอลด้วยแนวคิดใหม่ โดยการรวมกระบวน การหมักและการแยกให้เป็นหนึ่งกระบวนการ ซึ่งเรียกว่า "กระบวนการแขกระหว่างการ เกิดปฏิกิริยา" เป้าหมายของงานวิจัยที่รวมสองกระบวนการนี้ เพื่อกำจัดข้อจำกัดของกระบวนการ ผลิตเอทานอลที่ความเข้มข้น 12% โดยน้ำหนัก และเป็นการลดค่าใช้จ่ายในส่วนของกระบวนการ มีการค้นคว้าเทคนิคมากมาย และพบว่ากระบวนการดูดซับเป็นหนึ่งในกระบวนการที่ เหมาะสมในการแยก อันเนื่องมาจากการใช้พลังงานน้อยและค่าการปฏิบัติงานต่ำสำหรับการแยก งานวิจัยชิ้นนี้จึงเลือกวิธีการคูคซับ โคยใช้ตัวคูคซับในรูปของแข็ง ความสามารถในการดูคซับเอทานอลจากสารผสมระหว่างเอทานอลและน้ำ ปริมาณการดูคซับของตัวดูคซับหลายชนิคโดยใช้วิธีการทคลองแบบกะ ณ อุณหภูมิคงที่ที่ 25 องศา เซลเซียส เพื่อศึกษาใอโซเทอมการดูคซับบนตัวดูคซับ โดยใช้สารผสมระหว่างเอทานอลและน้ำ ตั้งแต่เอทานอลที่มีความเข้มข้น 1-12% โดยน้ำหนัก เป็นสารละลาย ผลจากการทดลองแสดงให้ เห็นถึงปริมาณการดูคซับที่จุดอิ่มตัวของเอทานอลบนตัวดูคซับ นอกจากนี้ผลจากการทคลองแบบ แสดงกราฟเบรกธรุของตัวดูคซับที่บ่งบอกถึงความชอบในการดูคซับเอทานอ ลบนตัวคูดซับ และคูลักษณะการคูดซับของสารบ นตัวคูดซับ จากการทคลองทั้งหมดแสดงว่า ซิลิ มีความเป็นไปได้ในการใช้เป็นตัวคูคซับที่คีสำหรับการรวม กาไลท์และแอกติเวทเต็ดคาร์บอน กระบวนการของการแยกและการหมัก

ACKNOWLEDGEMENTS

This thesis has been a very invaluable experience. This work would not have been achieved without assistance of many persons and organizations.

First of all, I would like to express the deepest gratitude to Dr. Santi Kulprathipanja, my US advisor from UOP LLC, for precious advice, invaluable knowledge, encouragement, and accommodation while I did some parts of thesis experiments at UOP LLC for 2 months. I would like to forward my appreciation to Ms. Apinya Kulprathipanja for her abundant kindness throughout my stay and work there.

I would like to give my deepest thankfulness to Assoc. Prof. Pramoch Rangsunvigit, who gave intensive suggestions, useful guidance, laboratory skills, constant encouragement, and vital helps throughout this research work. Moreover, I greatly appreciate my co-advisor, Dr. Teerapatr Srinorakutara for providing useful recommendations and creative comments throughout this research.

A great thankfulness is forward to Assoc. Prof Sumaeth Chavadej and Assoc. Prof. Thirasak Rirksomboon for his kindness being as my thesis committee and giving me the valuable comments and suggestions.

I am grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, the sincerest appreciation goes to my parents and family for their love, encouragement, and measureless support. Moreover, I would like to take this opportunity to thank all PPC friends and staff for their friendly assistance, cheerfulness, creative suggestions, and encouragement. Furthermore, special thanks are expressed to The UOP LLC Research Center at USA for providing all facilities needed for this research and a great support during I worked there and all UOP staff for their help and warm welcome.

TABLE OF CONTENTS

		PAGE
Ti	tle Page	i
Al	bstract (in English)	iii
Al	bstract (in Thai)	iv
A	cknowledgements	v
Ta	able of Contents	vi
Li	st of Tables	ix
Li	st of Figures	x
СНАРТ	TER	
I	INTRODUCTION	1
п	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Background	3
	2.1.1 Basics of Fermentation	3
	2.1.1.1 Alcoholic Fermentation	4
	2.1.1.2 Acetic Fermentation	4
	2.1.1.3 Viscous Fermentation	4
	2.1.2 Reactive Separations	5
	2.1.3 Selectivity	6
	2.1.4 Adsorption	7
	2.1.5 Liquid Phase Adsorption Mechanisms	7
	2.1.5.1 Equilibrium-Selective Adsorption	8
	2.1.5.2 Rate-Selective Adsorption	8
	2.1.5.3 Shape-Selective Adsorption	8
	2.1.5.4 Ion Exchange	9
	2.1.5.5 Reactive Adsorption	9
	2.1.6 Adsorbents	9

CHAPTE	CHAPTER	
	2.1.6.1 Zeolites	12
	2.1.6.2 Activated Carbon	15
	2.1.6.3 Silica Gels	15
	2.1.6.4 Polymeric Resins	16
	2.1.7 Dynamic Operation Testing	17
	2.1.7.1 Breakthrough Curves	17
	2.1.7.2 Mass Transfer Zone	19
	2.2 Literature Review	20
ш	EXPERIMENTAL	25
	3.1 Materials	25
	3.1.1 Chemicals	25
	3.1.2 Adsorbents	25
	3.2 Experiments	26
	3.2.1 Single Component Adsorption Experiment	26
	3.2.1.1 Moisture Adsorption Experiment	26
	3.2.1.2 Ethanol Adsorption Experiment	26
	3.2.2 Competitive Component Adsorption Experiment	26
	3.2.3 Dynamic Adsorption: Breakthrough Curves	27
IV	RESULTS AND DISCUSSION	29
	4.1 Single Component Adsorption	29
	4.1.1 Moisture Adsorption	29
	4.1.2 Ethanol Adsorption	31
	4.1.3 Ethanol Selectivity	32
	4.1.4 Ethanol Selectivity Ratio	33
	4.2 Competitive Component Adsorption	35
	4.3 Dynamic Adsorption: Breakthrough Curves	47
	4.3.1 Breakthrough Curves	47

CHAPTER		PAGE
	4.3.2 Ethanol Removal	57
	4.3.3 Adsorbent Properties	60
v	CONCLUSIONS AND RECOMMENDATIONS	62
	REFERENCES	64
	APPENDICES	67
	Appendix A Physical Properties of Ethanol and Water	67
	Appendix B Calculated Method	68
	Appendix C Summary of Experimental Data	71
	Appendix D Liquid Chromatograph Calibration	
	and Operating Conditions	88
	CURRICULUM VITAE	90

LIST OF TABLES

TABL	E	PAGE
3.1	Chemicals used in this work	25
4.1	Ethanol adsorption capacities (gram ethanol per gram	
	adsorbent) from the batch experiments	45
4.2	Ethanol concentration in wt% desorp at various temperatures	58
4.3	Physical properties of adsorbents	61

LIST OF FIGURES

FIGUE	FIGURE	
2.1	Pore Size Distributions	11
2.2	Three Zeolites with the Same Structural Polyhedron	11
2.3	Secondary building units and commonly occurring polyhedral	
	units in zeolites framework structure	13
2.4	Characteristic layer of silicalite	14
2.5	3-Dimention of the pore structure of silicalite	14
2.6	Structure of polystyrene-divinylbenzene resins, such as	
	Amberlite XAD-2 and XAD-4	17
2.7	Comparison of idealized vapor and liquid breakthrough curves	18
2.8	Graphical method for determining adsorption capacity	18
2.9	Adsorption column mass transfer zone and idealized break-	
	through zone	19
3.1	Experimental set-up of the dynamic unit	28
4.1	Water adsorption capacities at equilibrium for each adsorbent at	
	25°C and 40°C	30
4.2	Ethanol adsorption capacities at equilibrium for each adsorbent	
	at 25°C and 40°C	31
4.3	Ethanol selectivities at equilibrium for each adsorbent at 25°C	
	and 40°C	32
4.4	Ethanol selectivity ratio at equilibrium for each adsorbent at	
	25°C	33
4.5	Ethanol selectivity ratio at equilibrium for each adsorbent at	
	40°C	34
4.6	Ethanol adsorption isotherm of silicalite at 25°C	35
4.7	Ethanol adsorption isotherm of LZ-210 at 25°C	36
4.8	Ethanol adsorption isotherm of activated carbon at 25°C	37

FIGUR	E	PAGE
4.9	Ethanol adsorption isotherm of XAD-2 at 25°C	38
4.10	Ethanol adsorption isotherm of silica gel at 25°C	38
4.11	Ethanol adsorption isotherm of silica gel treated with 3-	
	aminopropyl trimethoxysilane at 25°C	39
4.12	Ethanol adsorption isotherm of silica gel treated with methanol	
	at 25°C	40
4.13	Ethanol adsorption isotherm of silica gel treated with ethanol at	
	25°C	40
4.14	Ethanol adsorption isotherm of silica gel treated with propanol	
	at 25°C	41
4.15	Ethanol adsorption isotherm of silica gel treated with butanol at	
	25°C	41
4.16	Ethanol adsorption isotherm of silica Hi-Sil®255 at 25°C	42
4.17	Ethanol adsorption isotherm of silica Hi-Sil®255 modified with	
	admicellar polymerization at 25°C	43
4.18	Equilibrium ethanol adsorption capacities of the adsorbents at	
	25°C	46
4.19	Breakthrough curves demonstrating adsorption characteristics	
	for silicalite at 30°C	48
4.20	Breakthrough curves demonstrating adsorption characteristics	
	for activated carbon at 30°C	48
4.21	Breakthrough curves demonstrating adsorption characteristics	
	for XAD-2 at 30°C	49
4.22	Breakthrough curves demonstrating adsorption characteristics	
	for LZ-210 at 30°C	50
4.23	Breakthrough curves demonstrating adsorption characteristics	
	for silica gel at 30°C	50

FIGUR	RE .	PAGE
4.24	Breakthrough curves demonstrating adsorption characteristics	
	for silica gel treated with 3-aminopropyltrimethoxysilane at	
	30°C	51
4.25	Breakthrough curves demonstrating adsorption characteristics	
	for silica gel treated with methanol at 30°C	51
4.26	Breakthrough curves demonstrating adsorption characteristics	
	for silica gel treated with ethanol at 30°C	52
4.27	Breakthrough curves demonstrating adsorption characteristics	
	for silica gel treated with propanol at 30°C	52
4.28	Breakthrough curves demonstrating adsorption characteristics	
	for silica gel treated with butanol at 30°C	53
4.29	Breakthrough curves demonstrating adsorption characteristics	
	for silicalite at 30°C	54
4.30	Breakthrough curves demonstrating adsorption characteristics	
	for activated carbon at 30°C	55
4.31	Breakthrough curves demonstrating adsorption characteristics	
	for XAD-2 at 30°C	56
4.32	Ethanol adsorption capacities of silicalite in several cycles of	
	regeneration	59