การเกลื่อนตัวของคินเนื่องการจากขุดเจาะอุโมงก์ด้วยหัวเจาะแรงดันคินสมดุลในคินกรุงเทพฯ

นายซกไต ลิม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรคุษฎีบัณฑิต ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	GROUND MOVEMENT RESPONSE DUE TO EARTH
	PRESSURE BALANCE SHIELD TUNNELING IN
	BANGKOK SUBSOIL
Ву	Soktay Lim
Field of Study	Civil Engineering
Thesis Advisor	Associate Professor Wanchai Teparaksa, D. Eng.
Thesis Co-advisor	Professor Satoru Shibuya, Ph.D.
	oted by the Faculty of Engineering, Chulalongkorn University in
	f the Requirements for the Doctoral Degree
	Dean of the Faculty of Engineering
	(Professor Direk Lavansiri, Ph.D.)
THESIS COMMITT	EE
	Chairman
	(Associate Professor Boonsom Lerdirunwong, D. Ing.)
	Wanchai Tepal Thesis Advisor
	(Associate Professor Wanchai Teparaksa, D. Eng.)
	Sh.G. Thesis Co-advisor
	(Professor Satoru Shibuya, Ph.D.)
	Member
	(Assistant Professor Tirawat Boonyatee, D. Eng.)
	T. Silverjan
	(Tanate Srisirirojanakorn, Ph.D.)
	Allemt S Member
	(Attasit Sawatparnich, Ph.D.)

นายซกไต ถิม: การเคลื่อนตัวของคินเนื่องการจากขุดเจาะอุโมงค์ด้วยหัวเจาะแรงดันดินสมคุล ในดินกรุงเทพฯ (GROUND MOVEMENT RESPONSE DUE TO EARTH PRESSURE BALANCE SHIELD TUNNELING IN BANGKOK SUBSOIL) อ. ที่ปรึกษา: รศ. คร. วันชัย เทพรักษ์, อ.ที่ปรึกษาร่วม: PROF. SATORU SHIBUYA, Ph.D. 176 หน้า.

พฤติกรรมการทรุดตัวของดินยังคงเป็นคำถามโดยเฉพาะอย่างยิ่งสำหรับการขุดเจาะอุโมงค์ใน พื้นที่เขตเมืองที่มีประชากรอาศัยหนาแน่นและมีอุปสรรคสิ่งกีดขวางมากมายตลอดแนวการขุดเจาะ อุโมงค์ งานวิจัยนี้ทำการศึกษาพฤติกรรมการทรุดตัวของดินเนื่องจากการขุดเจาะอุโมงค์และทำการ วิเคราะห์กลับด้วยวิธีไฟในท์อิลิเมนท์ สองมิติเพื่อการประมาณค่าการทรุดตัวอย่างเหมาะสมในการขุด เจาะอุโมงค์ในกรุงเทพ

อุโมงค์ระบายน้ำขนาดเส้นผ่านศูนย์กลางภายนอก 5.55 ม.ในโครงการคลองระบายน้ำแสน แสบ-คลองลาดพร้าว-สถานีสูบน้ำพระโขนง ได้ทำการขุดเจาะด้วยหัวเจาะแรงคันดินสมคุลทั้งการขุดเจาะ อุโมงค์ในชั้นทรายแน่นและดินเหนียวแข็งดินดานที่ความลึกศูนย์กลางอุโมงค์ประมาณ 27.50 ม.ต่ำจาก ผิวดิน ผลการตรวจวัดการเคลื่อนตัวของดินจากการขุดเจาะอุโมงค์สามารถแบ่งได้เป็น 3 ส่วนคือ การทรุด ตัวก่อนถึงหัวเจาะ การทรุดตัวในหัวเจาะ และการทรุดตัวของช่องว่างระหว่างอุโมงค์กับดินภายหลังการ เจาะผ่านของหัวเจาะ (Tail Void) การทรุดตัวที่ผิวดินหลักๆ เกิดขึ้นจากช่องว่างระหว่างอุโมงค์กับดิน ภายหลังการเจาะผ่านของหัวเจาะประมาณ 63-67 % ของการทรุดตัวทั้งหมด สำหรับการขุดเจาะอุโมงค์ ระบายน้ำทั้งในชั้นทรายแน่นและชั้นดินเหนียวแข็งดินดาน

การวิเคราะห์การทรุคตัวของดินใค้ทำการวิเคราะห์ด้วยวิธีไฟในท์อิลิเมนท์โดยอ้างอิงพฤติกรรม การพังทลายของดินชนิค Mohr-Coulomb เพื่อยืนยันผลการตรวจวัดการทรุคตัวที่ผิวดินทั้งกรณีการขุด เจาะอุโมงค์ปกติ การขุดเจาะอุโมงค์ผ่านใต้ฐานรากเสาเข็มสะพานคลองตัน และขุดเจาะอุโมงค์ผ่าน ด้านข้างฐานรากเสาเข็มตอม่อรถไฟฟ้า BTS อัตราส่วนระหว่าง Young Modulus กับกำลังรับแรง เฉือนของดิน (E_u/S_u) จากการวิเคราะห์กลับด้วยวิธีไฟในท์อิลิเมนท์ พบว่ามีค่าประมาณ 240, 360 และ 480 สำหรับดินเหนียวอ่อน ดินเหนียวแข็งปานกลาง และดินเหนียวแข็งมากตามลำดับ ในขณะที่ ค่า Drain Modulus (E', kN/m²) ในชั้นทรายแน่นมีค่าประมาณ 2000 N_{60} ผลการประเมินการทรุคตัวที่ ผิวดินด้วยวิธี Empirical พบว่าค่าขอบเขตความกว้างของการทรุคตัว (i) มีค่าประมาณ $0.24z_0 - 0.35z_0$ สำหรับการขุดเจาะอุโมงค์ในชั้นทรายแน่น และเพิ่มกว้างขึ้นเป็นประมาณ $0.46z_0$ สำหรับการขุด เจาะอุโมงค์ในชั้นดวน

ขาะอุ เมงค เนชนคนเหนยวแขงคนคาน	, A
กาควิชาวิศวกรรมโยธา	ลายมือชื่อนิสิต
สาขาวิชาวิศวกรรมโยธา	ลายมือชื่ออาจารย์ที่ปรึกษา อัณ 🛝
ปีการศึกษา 2549	

4671844721: MAJOR CIVIL ENGINEERING

KEY WORD: EPB SHIELD TUNNELING/ GROUND LOSS/ GROUND MOVEMENTS/ OBSTRUCTIONS/ FE BACK SIMULATION

SOKTAY LIM: GROUND MOVEMENT RESPONSE DUE TO EARTH PRESSURE BALANCE SHIELD TUNNELING IN BANGKOK SUBSOIL. THESIS ADVISOR: ASSOC. PROF. WANCHAI TEPARAKSA, D. Eng., THESIS CO-ADVISOR: PROF. SATORU SHIBUYA, Ph.D., 176 pp.

Ground surface and subsurface movement behaviors remained the questions, especially for the tunnels bored in the densely populated urban area where the several obstructions are usually found along the tunneling route. This research aims to study the behavior of ground surface and subsurface deformations due to tunneling and to do the back analysis based on the 2D FE analysis for an appropriate settlement prediction of tunnel in Bangkok.

An OD 5.55 m flood diversion tunnel of Saensaep-Latphroa Phrakhanong project was bored by means of EPB shield machine in both dense silty sand and hard silty clay layers with centerline at about 27.50 m below ground surface. Half route of the tunnel was bored underneath two bridges and busy roads. The recorded ground surface and subsurface response can be classified into 3 phases as deformation in front of the shield face, deformation within the shield body and deformation due to tail void behind the shield. The major ground surface settlement induced by tail void is about 63-67% of total ground surface settlement for tunneling in both dense silty sand and hard silty clay layers. The 2D FE analysis was carried out based on Elasto-Plastic (Mohr-Coulomb) failure criteria to confirm with ground settlements monitored at different cases of tunneling: tunnel bored without obstructions, under the Klongtan bridge pile foundation and adjacent to the BTS sky train pile foundation. The ratio E_u/S_u for FE analysis has been confirmed as 240, 360 and 480 for soft clay, medium stiff clay and stiff silty clay layers, respectively. In addition, $E'(kN/m^2) = 2000.N_{60}$ can be used for dense silty sand layers. The surface settlement trough width, i, based on empirical method is found between $0.24z_0$ and $0.35z_0$ for tunnel excavated in dense silty layer and it is increased to $0.46z_0$, which is wider, for tunnel in hard silty clay. 1 in St

Department	Civil Engineering	Student's signature
Field of study	Civil Engineering	Advisor's signature. Wanchen Tep-
Academic yea	r. 2006	Co-advisor's signature

ACKNOWLEDGEMENT

Many people have supported me in different ways during my doctoral program at both Chulalongkorn University and Kobe University. Without their helps and supports, this work is not possible.

I would like to thank JICA and AUN/Seed-Net for their financial support without their funding the starting point cannot happen.

I deeply appreciate the enormous academic support from three professors: Associate Professor Dr. Wanchai TEPARAKSA, major advisor, for his advice on this work and for provision on necessary documents; Professor Dr. Satoru SHIBUYA, coadvisor, for his encouragement and invaluable advice not only during my research in geotechnical laboratory at Kobe University, but also during my works at Chulalongkorn University; Assistant professor Dr. Tirawat BOONYATEE, committee member, for his encouragement and revision of some parts related to the review of Finite Element Method.

This field data collection won't be possible without cooperation and involvement of the following personnel of a joint venture of Italian-Thai Development PCL and Nishimatsu Construction Co., Ltd. in Bangkok: Mr. Kobchai PORNPRASIT and Mr. Sumate SANGMANEE, site engineers.

I am grateful to Assistant Professor Dr. Sangrawee CHAOPRICHA, Technical writing professor for being my editor.

In addition, the author likes to express his cordial thanks to all the thesis committee members for their invaluable comments during the thesis proposal defense.

A further word of thanks is devoted to all the former master students of Geotechnical Engineering Division, Chulalongkorn University, and the PhD students under supervision of Associate Professor Dr. Wanchai TEPARAKSA for their support on FEM analysis and the research activities.

Finally, very special gratitude goes to my family in Cambodia, my parents, brother and sisters, and especially my wife, Sodany TANN and my daughter Seavmey LIM for their mental support, continuous encouragement, and patience.

CONTENTS

Page
Abstract in Thaiiv
Abstract in Englishv
Acknowledgementvi
Contentsvii
List of Tablesxi
List of Figuresxii
List of Symbolsxviii
Chapter I1
Introduction1
1.1 Motivation and Background1
1.2 Statement of the Problem
1.3 Research Objectives
1.4 Research Scope4
1.5 Strength of the Study4
1.6 Layout of the Thesis5
Chapter II6
TBM and Tunneling Method6
2.1 History of Shield Tunneling Methods6
2.2 Different Kinds of TBMs8
2.2.1 Rock TBMs8
2.2.2 Soft Ground TBMs
2.2.3 Slurry Shield Machine
2.2.4. EPB Shield Machine
2.3 Criteria for Selection of Soft Ground TBMs
2.4 EPB Tunneling Method17
2.4.1 History of EPB Shield Machine: its development and implementation17
2.4.2 Tunnel Excavation
2.4.3 Erection of Segmental Lining

2.4.4 Grouting of Tail Void	24
Chapter III	26
Geology and Subsoil Conditions	26
3.1 Geology of Bangkok Soil	26
3.2 Underground Water of Bangkok	28
3.3 Subsoil Conditions along the Tunneling Route of the Project	29
Chapter IV	32
Tunnel Induced Ground Movements	32
4.1 Causes of Soil Displacements around Tunnels in Soft Soil	32
4.1.1 Displacement Victors in Soft Soils	32
4.1.2 Causes of Soil Displacements	33
4.2 Predicting Methods of Ground Displacements	38
4.2.1 Empirical Methods	40
4.2.2 Analytical Methods	48
4.2.3 Laboratory Testing	53
4.2.4 Numerical Analysis Methods	55
4.3 Appropriate Methods for Analyses of the Research Project	58
Chapter V	59
Project Description and Monitoring System	59
5.1 General Description	59
5.2 Soil Profiles of Selected Analysis Sections	63
5.3 TBM Used in the Project	65
5.4 Tunnel Properties	
5.5 Monitoring System	68
5.5.1 Inclinometers	69
5.5.2 Extensometers	71
5.5.3 Total Earth Pressure Cells	74
5.5.4 Convergence Bolts	75
5.6 Layouts of Instrumentation at the Sites of the Study	76
Chapter VI	78
Numerical Method and Analyses	78
6.1 Sign Conventions and Units	79
6.1.1 Sign Conventions	79
6.1.2 Units	79

	6.2 Geometric Input	80
	6.3 Mesh Generation	80
	6.4 Elements and Accuracy of Calculation	81
	6.5 Structural Elements	82
	6.6 Interfaces	83
	6.7 Soil Models	83
	6.8 Automatic Load Stepping	85
	6.9 Staged Construction	85
	6.10 Upgraded Lagrangian Analysis	86
	6.11 Mohr Coulomb Model and Analysis Options	86
	6.11.1 Mohr Coulomb Model	86
	6.11.2 Undrained Analysis with Effective Parameters	89
	6.11.3 Undrained Analysis with Undrained Parameters	91
	6.11.4 Relationship between Undrained Shear Strength and Soil Stiffness	91
	6.11.5 Determination of Coefficient of Lateral Earth Pressure	96
	6.12 PLAXIS Used in Previous Research Studies	98
	6.13 Analysis Method of this Study	99
	6.13.1 Selection of Field Monitored Data	100
	6.13.2 Classification of Ground and Structural Movements	100
	6.13.3 Empirical Method of Analysis	100
	6.13.4 FE Analysis	101
	6.13.4.1 Model Configuration	101
	6.13.4.1 Simulation of Tunnel Excavation	102
Ch	napter VII	103
Oł	oserved and Computed Ground and Structural Movements	103
	7.1. Ground Movements	103
	7.1.1. Behaviors of Ground Surface and Subsurface Deformation	107
	7.1.2. Ground Surface Settlements	108
	7.1.3. Subsurface Settlements	111
	7.1.4. Lateral Displacements	112
	7.2. Structural Responses	114
	7.3 Internal Forces of Segmental Lining	119
	7.4. Discussion	128
	7.4.1. Surface and Subsurface Deformation	128

7.4.2. Effects of Existing Structures on FE Analysis	129
Chapter VIII	130
Conclusions and Recommendations	130
8.1 Conclusions	130
8.2 Recommendations	131
References	133
Appendices	142
Appendix A	143
Summary of Soil Testing Results	143
Appendix B	
Monitored Data	150
Appendix C	163
EPB Shield Machine	163
Appendix D	167
Model Geometries for FE Analyses and Output Graphics	
Vita	

LIST OF TABLES

Page
Table 2.1 Conventional Machines (Monsees, 1996)15
Table 2.2 Special Machines (Monsees, 1996)16
Table 2.3 Tunnels constructed with EPB tunneling method
Table 5.1 Types of Instrumentation and Measurements69
Table 6.1 Structural properties for FEM analyses at Klongtan Bridge and BTS-
Sukhumvit areas95
Table 6.2 Soil parameters for FEM analyses at Klongtan Bridge area95
Table 6.3 Soil parameters for FEM analyses at BTS-Sukhumvit area96
Table 7.1 Magnitude of structural settlements at Klongtan Bridge area119
Table A.1 Summary of test results from borehole No.8
Table A.2 Summary of test results from borehole No.9
Table A.3 Summary of test results from borehole No.18148
Table B.1 Data of ground surface settlement, array number GS16151
Table B.2 Data of ground surface settlement, array number GS17152
Table B.3 Data of ground surface settlement, array number GS18153
Table B.4 Data of ground surface settlement, array number GS-BTS154
Table B.5 Data of ground surface settlement, array number G35154
Table B.6 Data of extensometer number ME-1 (Klongtan Bridge area)155
Table B.7 Data of extensometer number ME-2 (BTS-Sukumvit area)155
Table B.8 Lateral movements obtained from IC (BTS-Sukumvit area)156
Table B.9 Lateral movements obtained from IC (cont.)
Table B.10 Lateral movements obtained from IC (cont.)
Table B.11 Lateral movements obtained from IC (cont.)
Table B.12 Data of Klongtan bridge's settlement
Table B.13 Data of 3-storey chophouses' settlement
Table B.14 Data of 4-storey chophouses' settlement

LIST OF FIGURES

Page
Figure 2.1 Marc Isambard Brunel's rectangular tunneling shield (Gardner, 1996)7
Figure 2.2 Open TBM or gripper TBM (Wirth Company)9
Figure 2.3 Shielded TMB (LOVAT Company)
Figure 2.4 Principle of slurry shield machine (EFNARC, 2005)
Figure 2.5 Principle of EPB shield machine (Herrenknecht Company)13
Figure 2.6 Applicability of soft ground machines versus grain size (Monsees, 1996)14
Figure 2.7 Typical EPB shield introduced by Sato Kogyo Company, 1963
(cited by Suwansawat, 2002)
Figure 2.8 Reversing belt conveyor transporting excavated soil
(BMA flood diversion project, Saensaep-Latphrao Phrakhanong)21
Figure 2.9 Train cars transporting excavated soil
(BMA flood diversion project, Saensaep-Latphrao Phrakhanong)21
Figure 2.10 Hydraulic jacks pushing on the segmental lining behind the shield
(BMA flood diversion project, Saensaep-Latphrao Phrakhanong)22
Figure 2.11 Reinforced segmental linings of BMA flood diversion project
(Saensaep-Latphrao Phrakhanong)
Figure 2.12 Erector arm installing a segmental lining at the crown of the tunnel
(BMA flood diversion project, Saensaep-Latphrao Phrakhanong)23
Figure 2.13 Tunnel lining after erection (BMA flood diversion project,
Saensaep-Latphrao Phrakhanong)
Figure 2.14 Grouting pipe attaching to grout hole
(BMA flood diversion project, Saensaep-Latphrao Phrakhanong)25
Figure 3.1 Map of Thailand (Shibuya and Tamrakar, 2003)27
Figure 3.2 General subsoil profile (Teparaksa, 1999)
Figure 3.3 Piezometric level of Bangkok subsoils (Teparaksa, 1999)29
Figure 3.4 Boreholes and soil profile along the route of the BMA flood
diversion tunnel (Saensaep-Ladphrao Phrakhanong)

Figure 4.1 Victors of soil displacements around model tunnel (a) in clay
(Mair, 1979) and (b) in sand (Potts, 1976) (cited by O'Reilly and New, 1982)33
Figure 4.2 Causes of ground loss during shield tunneling
Figure 4.3 Ground movements due to shield advancement (JSCE, 1996)37
Figure 4.4: Behaviors of ground displacements caused by EPB tunneling
(Teparaksa, 2005a)
Figure 4.5 Settlement trough above an advancing tunnel (Attewell et al., 1986)40
Figure 4.6 Transverse settlement trough (Peck, 1969)
Figure 4.7 Relation between settlement trough width parameter and depth of
tunnel for different soil conditions (Peck, 1969)
Figure 4.8 Variation of trough width parameter, i, with tunnel depth
(O'Reilly and New, 1982)43
Figure 4.9 Shape of surface and subsurface settlement profiles (Mair et al., 1993)45
Figure 4.10 Variation of subsurface settlement trough width parameter, i, with
depth for tunnel in clays (Mair et al., 1993)
Figure 4.11 Variation of K for subsurface settlement profile with depth above
tunnel in clays (Mair et al., 1993)46
Figure 4.12 Subsurface settlements above the tunnel axis in London Clay
(Mair et al., 1993)
Figure 4.13 Correlation of maximum subsurface settlement
(Luangpitakchumpol et al., 2005)
Figure 4.14 Point sink (ground loss) and virtual image technique (Sagaseta, 1987)49
Figure 4.15 Ground loss and ovalization of a tunnel (Verruijt and Booker, 1996)51
Figure 4.16 Definition G _{AP} (Lee et al., 1992)53
Figure 5.1 Location of BMA flood diversion tunnel
(Saensaep-Latphrao Phrakhanong project)
Figure 5.2 Klongtan bridge area (BMA flood diversion tunnel project)61
Figure 5.3 Klongtan bridge and old shophouses
Figure 5.4 BTS-Sukumvit area (BMA flood diversion tunnel project)62
Figure 5.5 BTS sky train and shophouses above the curvature alignment63
Figure 5.6 Subsoil profile at Klongtan Bridge area and cross section (section AA)64
Figure 5.7 Subsoil profile at BTS-Sukumvit area and cross section (section BB)64
Figure 5.8 General feature of articulated shield (Sramoon et al., 2006)65

Figure 5.9 Schematic of articulated EPB shield for MBA flood diversion
tunnel (Saensaep-Latphrao Phrakhanong project)
Figure 5.10 Sectional view of tunnel lining
Figure 5.11 Water sealing material (Hydrotite, RS type)
Figure 5.12 Inclinometer system (Slope Indicator Company, 2004)70
Figure 5.13 Incremental and cumulative deviation
(Slope Indicator Company, 1994)71
Figure 5.14 Extensometers above and at the side of the tunnel
(BMA flood diversion tunnel project)
Figure 5.15 Components of magnetic extensometer and their positions
after installation (Slope Indicator Company, 2004)73
Figure 5.16 Total earth pressure cell and its position after embedding in
the tunnel segmental lining (BMA flood diversion tunnel project)74
Figure 5.17 Typical installation of convergence bolts and monitoring patterns75
Figure 5.18 Tape extensometer (BMA flood diversion tunnel project)76
Figure 6.1 Coordinate system and sign conventions for stress components
(Brinkgreve, 2002)79
Figure 6.2 Nodes and stress points in soil elements (Brinkgreve, 2002)82
Figure 6.3 Position of nodes and stress points in a 3-node and a 5-node beam
element (Brinkgreve, 2002)82
Figure 6.4 Results from standard drained triaxial tests (a) and
Mohr Coulomb model (b) (Brinkgreve, 2002)87
Figure 6.5 Mohr Coulomb yield surface in principal stress space for cohesionless
soil (Brinkgreve, 2002)
Figure 6.6 Typical shear modulus and shear strains for different geotechnical
works (Mair, 1993)
Figure 6.7 Variations of $G_{\text{sec(in-situ)}}/S_u$ with shear strains; (a) S_u from MTX, (b) S_u
from field vane shear tests (Shibuya et al., 2001)92
Figure 6.8 Shear modulus of Bangkok clays (a) soft clay and (b) stiff clay
(Teparaksa, 2005a and b)93
Figure 7.1 Input geometries of different analysis sections at Klongtan Bridge area;
(a) GS16, (b) GS17 and (c) GS18
Figure 7.2 Input geometries of different analysis sections at BTS-Sukhumvit area;
(a) GS-BTS and (b) GS35

Figure 7. 3 Finite element mesh generated at section AA (Klongtan Bridge area)106
Figure 7.4 Finite element mesh generated at section BB (BTS-Sukhumvit area) 106
Figure 7.5 Behaviors of surface and subsurface deformation at extensometer
ME-1 (Klongtan Bridge area)
Figure 7.6 Behaviors of surface and subsurface deformation at extensometer
ME-2 (BTS-Sukhumvit area)
Figure 7.7 Surface settlements monitored and computed at Klongtan Bridge area;
(a) GS16, (b) GS17 and (c) GS18
Figure 7.8 Surface settlements monitored and computed at BTS-Sukhumvit area
(a) GS-BTS and (b) GS35110
Figure 7.9 Subsurface settlements along Extensometer ME-1
at Klongtan Bridge area
Figure 7.10 Subsurface settlements along Extensometer ME-2
at BTS-Sukhumvit area
Figure 7.11 Lateral displacements caused by tunnel in hard silty clay
at BTS-Sukhumvit area (Inclinometer, IC)
Figure 7.12 Location of structural settlement points monitored on Klongtan bridge 115
Figure 7.13 Location of point H monitored on Klongtan bridge116
Figure 7.14 Behaviors of bridge foundation settlements caused by EPB
tunneling in dense silty layer
Figure 7.15 Location of point C ₁ and C ₂ monitored on 3-storey shophouse117
Figure 7.16 Behaviors of 3-storey old shophouse settlements in response to
EPB tunneling in dense silty layer
Figure 7.17 Behaviors of 4-storey old shophouse settlements in response to
EPB tunneling in dense silty layer
Figure 7.18 Bending moments in the tunnel lining at the final phase of simulation
for section GS16, the extreme bending moment is 151.78 kNm/m120
Figure 7.19 Axial forces in the tunnel lining at the final phase of simulation
for section GS16, the extreme axial force is -510.18 kNm/m120
Figure 7.20 Shear forces in the tunnel lining at the final phase of simulation
for section GS16, the extreme shear force is 115.31 kNm/m
Figure 7.21 Axial forces in the tunnel lining at the final phase of simulation
for section GS17, the extreme axial force is -505.34 kNm/m122

Figure 7.22 Shear forces in the tunnel lining at the final phase of simulation
for section GS17, the extreme shear force is 113.49 kNm/m
Figure 7.23 Bending moments in the tunnel lining at the final phase of simulation
for section GS17, the extreme bending moment is 155.27 kNm/m123
Figure 7.24 Axial forces in the tunnel lining at the final phase of simulation
for section GS18, the extreme axial force is -485.61 kNm/m123
Figure 7.25 Shear forces in the tunnel lining at the final phase of simulation
for section GS18, the extreme shear force is 109.52 kNm/m
Figure 7.26 Bending moments in the tunnel lining at the final phase of simulation
for section GS18, the extreme bending moment is 150.42 kNm/m124
Figure 7.27 Axial forces in the tunnel lining at the final phase of simulation
for section GS-BTS, the extreme axial force is -439.08 kNm/m125
Figure 7.28 Shear forces in the tunnel lining at the final phase of simulation
for section GS-BTS, the extreme shear force is 129.82 kNm/m
Figure 7.29 Bending moments in the tunnel lining at the final phase of simulation
for the section GS-BTS, the extreme bending moment is -132.43 kNm/m126
Figure 7.30 Axial forces in the tunnel lining at the final phase of simulation
for section GS35, the extreme axial force is -370.15 kNm/m127
Figure 7.31 Shear forces in the tunnel lining at the final phase of simulation
for section GS35, the extreme shear force is -142.78 kNm/m127
Figure 7.32 Bending moments in the tunnel lining at the final phase of simulation
for section GS35, the extreme bending moment is -147.08 kNm/m128
Figure A.1 Typical soil profile of borehole No.8
Figure A.2 Engineering properties of borehole No.8 for FE analysis145
Figure A.3 Typical soil profile of borehole No.9
Figure A.4 Engineering properties of borehole No.9 for FE analysis
Figure A.5 Typical soil profile of borehole No.18
Figure A.6 Engineering properties of borehole No.18 for FE analysis149
Figure C.1 Articulated EPB shield for MBA flood diversion tunnel
(Saensaep-Latphrao Phrakhanong project)
Figure C.2 Front view of EPB
Figure C.3 Back view of EPB
Figure C.4 Backup unit of EPB
Figure D.1 Input geometry of section GS16.

Figure D.2 Deformation mesh generated at section GS16	168
Figure D.3 Total displacement arrows at section GS16	168
Figure D.4 Total displacement shadings at section GS16	169
Figure D.5 Input geometry of section GS17	169
Figure D.6 Deformation mesh generated at section GS17	169
Figure D.7 Total displacement arrows at section GS17	170
Figure D.8 Total displacement shadings at section GS17	170
Figure D.9 Input geometry of section GS18	170
Figure D.10 Deformation mesh generated at section GS18	171
Figure D.11 Total displacement arrows at section GS18	171
Figure D.12 Total displacement shadings at section GS18	171
Figure D.13 Input geometry of section GS-BTS	172
Figure D.14 Deformation mesh generated at section GS-BTS	172
Figure D.15 Total displacement arrows at section GS-BTS	
Figure D.16 Total displacement shadings at section GS-BTS	173
Figure D.17 Input geometry of section GS35	173
Figure D. 18 Deformation mesh generated at section GS35	173
Figure D.19 Total displacement arrows at section GS35	174
Figure D.20 Total displacement shadings at section GS35	174
Figure D.21 Input geometry of section ME-2	174
Figure D.22 Deformation mesh generated at section ME-2	
Figure D.23 Total displacement arrows at section ME-2	175
Figure D.24 Total displacement shadings at section ME-2	175

LIST OF SYMBOLS

2D two dimensions or two dimensional

3D three dimensions or three dimensional

A sectional area, total area of settlement trough

BKK Bangkok

BMA Bangkok Metropolitan Administration

BTS Bangkok Mass Transit System

c cohesion

c_u undrained cohesion

CH inorganic clays of high plasticity

CL inorganic clays of low to medium plasticity

Co company

D tunnel diameter

DEM distinct element method

 d_{eq} equivalent thickness of a beam or plate

E elastic stiffness or Young's modulus

E' drained Young's modulus

 E_{50} average secant modulus

 $E_{\rm c}$ elastic stiffness of concrete

 E_{oed} oedometer modulus

 E_{sec} secant Young's modulus

E_u undrained Young's modulus

 $E_{\rm ur}$ unloading Young's modulus

FDM finite difference method

FE finite element

FEM finite element method

FVS Field vane shear test

EPB earth pressure balance

g acceleration of earth gravity

G shear modulus

 G_{AP} gap parameter

G_p physical gap

 G_{sec} secant shear modulus

i surface settlement trough width

I moment inertia

IC inclinometer

JSCE Japan Society of Civil Engineers

JSST Japanese standard for shield tunneling

Ltd limited

K empirical constant of proportionality or surface settlement trough

width parameter, coefficient of total lateral earth pressure

K' bulk modulus of soil skeleton

 $K_{\rm o}$ coefficient of lateral earth pressure at rest

 $K_{\rm w}$ bulk modulus of water

km kilometer

m meter

m auxiliary elastic constant

ME extensometer or magnetic extensometer

mm millimeter

MRTA Mass Rapid Transit Authority of Thailand

MTX monotonic triaxial test

n porosity

N₆₀ SPT N-value at 60% energy ratio

NATM new Austrian tunneling method

OCR overconsolidation ratio

OD outer diameter

PCL public company limited

R radius of the tunnel

 r_1, r_2 distances from the singular point and its image

 R_{inter} strength reduction factor of soil-structure interface

s settlement

s_{max} maximum settlement

 $S_{\rm u}$ undrained shear strength

SM-SP poorly graded silty sand

TBM	tunnel boring machine
и	pore water pressure
u^*_{3D}	three-dimensional elastic deformation
$\mathbf{u}_{\mathbf{x}}$	displacement in x direction
$\mathbf{u}_{\mathbf{y}}$	displacement in y direction
$V_{\rm s}$	volume of the surface settlement trough per unit length
$V_{\rm L}$	volume loss or ground loss
x	transverse distance from the tunnel axis
Z	depth from ground surface to any subsoil level
z_0	depth from ground surface to tunnel axis
α	scale factor in centrifuge model testing
δ	relative displacement caused by the ovalization of the tunnel, clearance
	between tunnel lining and tail skin of a TBM
Δ	thickness of tailpiece or tail skin of a TBM
ε	relative uniform radial displacement of the tunnel surface or uniform
	radial ground loss
\mathcal{E}_{s}	shear train
γc	unit weight of concrete
½	total unit weight
φ	friction angle
φ '	drained or effective friction angle
$arphi_{ m u}$	undrained friction angle
κ	Cam-clay swelling index
κ*	modified swelling index
λ	proportional parameter, Cam-clay compression index
<i>x</i> *	modified compression index
ν	Poisson's ratio
v	drained Poisson's ratio
$\nu_{\rm c}$	Poisson's ratio of concrete
$\nu_{ m u}$	undrained Poisson's ratio
ρ	bulk density
$ ho_{\scriptscriptstyle m W}$	water density

σ	total tress
σ	effective stress
σ_0	initial tress or initial overburden
$\sigma_{ m h}$	total horizontal stress
$\sigma_{\rm h}$	effective horizontal stress
$\sigma_{\!\scriptscriptstyle m V}$	total vertical stress
σ_{v}	effective vertical stress
ω	workmanship factor
Ψ	dilatancy angle