CHAPTER 2

THEORY

2.1 Introduction of molecular dynamics simulations

Molecular dynamics (MD) simulations are important tools for
understanding the properties of assemblies of molecules in terms of their structure and
the microscopic interactions between them. This serves as a complement to
conventional experiments, enabling us to learn something new that cannot be found
out in the other ways. The idea is to calculate the forces acting on the atoms in a
molecular system and analyze their motion. When enough information on the motion
of the individual atoms has been gathered, it is possible to condense it all using the
methods of statistic mechanics to deduce the bulk properties of the material. These
properties include the structure (e. g. crystal structure, predicted x-ray and neutron
diffraction patterns), thermodynamics (e. g. enthalpy, temperature, pressure) and
transport properties (e. g. thermal conductivity, viscosity, and diffusion). In addition,
MD can be used to investigate the detailed atomistic mechanisms underlying these
properties and compare them with theory. It is a valuable bridge[58] between

experiment and theory as shown in Figure 2.1
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Figure 2.1 Simulations as a bridge between (a) microscopic and macroscopic; (b)

theory and experiment[59].

It has been 25 years since the first MD simulations of a macromolecule
of biological interest was published[60]. The simulation concerned the bovine
pancréatic trypsin inhibitor (BPTI), which has served as the ‘hydrogen molecule’ of
protein dynamics because of its small size, high stability and relatively accurate X-ray
structure available in 1975. Two years after the BPTI simulation, it was
recognized[61, 62] that thermal (B) factor calculated during X-ray crystallographic
refinement could be used to infer the internal motions of proteins. During the
following 10 years, a wide range of motional phenomena were investigated by MD
simulations of proteins and nucleic acids. Most of these studies[63] focused on the
physical aspect of the internal motions and the interpretation of experiments. They
include the analysis of fluorescence depolarization of tryptophan residues[64], the
role of dynamics in measured NMR parameters[65], the effect of solvent and
temperature on protein structure and dynamics[66, 67], and now widely used
simulated annealing methods for X-ray structure refinement[68] and NMR structure
determination[69]. Currently, the increase in the number of studies using MD to

simulate the properties of biological macromolecules has been fueled by the general
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availability of programs and the computing power required for meaningful studied.

Understanding of the molecular dynamics simulations step have been shown in Figure

2.2

Figure 2.2
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To calculate the dynamics of the system, that is the position of each

atom as a function of time, Newton’s classical equation is used in the molecular

dynamics formalism to simulate atomic motion:

Force = mass x acceleration ( F, =m,a,)
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The rate and direction of motion (velocity) are governed by the forces that the atoms
of the system exert on each other as described by Newton’s equation. In practice, the
atoms are assigned initial velocities that conform to the total kinetic energy of the
system, which in turn, is dictated by the desired simulation temperature. This is
carried out by siowly “heating” the system (initially at absolute zero) and then
allowing the energy to equilibrate among the constituent atoms. The basic ingradients
of molecular dynamics are the calculation of the force on each atom, and from that
information, the position of each atom throughout a specified of time.

The force ( F,) on an atom can be calculated from the change in energy
( E) between its current position and its position a small distance () away. This can

be recognized as the derivative of the energy with respect to the change in the atom’s

position as Equation 2.2.

A (2.2)

Knowledge of the atomic forces and masses can then be used to solve for the
positions of each atom along a series of extremely small time steps (dr). The
resulting series of snapshots of structural changes over time is called a trajectory. The
use of this method to compute trajectories can be more easily seen when Newton’s

equation is expressed in the following form (Equation 2.3).

_dE __d'r,

d—r = m‘ "dt—z (2.3)
i
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In practice, trajectories are not directly obtained from Newton’s equation due to lack

of an analytical solution. First, the atomic accelerations (4, ) are computed from the

forces and masses. The velocities are next calculated from the accelerations based on

the following relationship (Equation 2.4).

R (2.4)

The positions are calculated from the velocities (v, ) (Equation 2.5).

v L0 2.5)

The initial atomic positions at time “/™ are used to predict the atomic positions at time
“t+ At ™. The positions at “r+ Ar ™ are used to predict the positions at “4+2* A1, and so
on.

Therefore, to calculate a trajectory, the initial positions of the atoms, an
initial distribution of velocities and the acceleration are need for determined by the
gradient of the potential energy function. The initial distribution of velocities is
usually computed randomly from a Maxwell-Boltzman or Gaussian distribution at

given temperature, which gives the probability (p(vi)) that an atom i has velocity v,

in the x direction at a temperature T.

172
m, 1 my]
s i/ 1 2.6
p(v,) [27:1:,,1‘} eXP[ > k,,T] (2.6)
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The temperature can be related form the kinetic energy Equation 2.7:

il Jfﬂ Q.7

3Nk ' 2m,
where N is the number of atoms in the system.
To generate molecular dynamics trajectories with continuous potential models,

the algorithms for integrating (more details in 2.1.4) the equations of motion are used

in molecular dynamic simulations.

2.1.2 Potential energy functions

According to equation 2.3, the energy (E), a function of the atomic
position (R), is obtained from summation between internal or bonded terms, and
summation of external or non-bonded terms corresponding to equation 2.8.

ER) = Etonded + Enon-bonded (28)

2331 Bonded Terms

The bonded terms are an energy combination of bonds,

angles, and torsional angles following equation 2.9, 2.10, and 2.11, respectively.
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Epwi = Y, 2(r=1) 29)
bonds
k, :
Epge = Y, 2(6-6,) (2.10)
angles 2
V
lor.ﬂou | Z ey 1+COS(nﬂ) 7) (2.11)
<o 2

Where K and Kgare present the force constant for bond and angle while V,,, n, @, and
y are the barrier height, the number of wave, torsional angle, and the torsional angle at
minima, respectively, as Figure 2.4. Bond length, bond angle, and dihedral angle are

presented in r, and 6, respectively, while those subscripts are states as the ideal value.

Figure 2.3  Geometry of a simple chain molecule, illustrating the definition of

interatomic distance 7,3, bend angle 634, and torsion angle @234.
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Figure 2.4  Tosional potential varies as shown for different values of ¥, n, and y

2532 Non-bonded Terms

The non-bonded terms are calculated from summation

of van der Waals and electrostatic according to equations 2.12 and 2.13.

\12 6
o, o,
Lennard-Jones potential = Z Z 4, [— —{—"—J (2.12)

i=l j=i+l

N\

N N
Electrostatic interaction = Z Z [4 94, (2.13)
e, )

The electrostatic contribution is calculated using Coulomb’s law from partial charges
(g: or g;) associated with each atom and van der Waals contribution as a Lennard-

Jones potential with appropriate ¢, oy parameters.

2.1.4 Integrating the equation of motion

2.14.1 The Verlet algorithm

In molecular dynamics, the most commonly used time
integration algorithm is probably the so-called Verlet algorithm[70]. The basic idea is

to write two third-order Taylor expansions for the positions »(7), one forward and one
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backward in time. Calling v the velocities, a the accelerations, and b the third

derivatives of r with respect to 7, one has:

F(t+ At) = r(t) + v(H)At + G) a(t)Ar* + (%J b(O)AL + O(At") (2.14)
r(t — At) = r(f) = v(t)At + G)a(r)m’ - (%] B(H)AL +O(Ar") (2.15)
Adding the two expressions gives

r(t + Af) = 2r(t) — r(t = Af) + a(H AL + O(Ar) (2.16)

This is the basic form of the Verlet algorithm. Since we are integrating Newton's

equations, a(t) is just the force divided by the mass, and the force is in turn a function

of the positions r(f):

a(t) = -&JVV(r(:)) (2.17)

As one can immediately see, the truncation error of the algorithm when evolving the

system by At is of the order of Ar*, even if third derivatives do not appear explicitly.
This algorithm is at the same time simple to implement, accurate and stable,

explaining its large popularity among molecular dynamics simulators.

A problem with this version of the Verlet algorithm is that velocities are not directly
generated. While they are not needed for the time evolution, their knowledge is
sometimes necessary. Moreover, they are required to compute the kinetic energy X,

whose evaluation is necessary to test the conservation of the total encroy F=/+ 7
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This is one of the most important tests to verify that a MD simulation is proceeding

correctly. One could compute the velocities from the positions by using

r(t+ At)—r(t—Ar)
2At

W) = (2.18)

However, the error associated to this expression is of order A¢*rather than Ar*.

To overcome this difficulty, some variants of the Verlet algorithm have been
developed. They give rise to exactly the same trajectory, and differ in what variables
are stored in memory and at what times. The leap-frog algorithm, not reported here, is

one of such variants[71] where velocities are handled somewhat better.

An even better implementation of the same basic algorithm is the so-called velocity
Verlet scheme, where positions, velocities and accelerations at time /+Ar are

obtained from the same quantities at time ¢ in the following way:

F(t + At) = r() + V(1) At +G]a(:)¢:2 (2.19)
r(t+84)= v(l)+(%)a(l)m (2.20)
a(t+Ar)= -(%f)ww +AD)) (2.21)

v(t+AI)=v(t+%)+(%)a(:+N)At (2.22)
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The first method used is the leapfrog algorithm, which

is a modified version of the Verlet algorithm. The Verlet algorithm uses the positions

and accelerations at the time ¢ and the positions at the time f—Ar to predict the

positions at the time r+Ar , where Ar is the integration step. From a Taylor

expansion of the 3-rd order, we obtain

r(t+Af) =2r,(t)—r,(t - At +7, (DAL

The error in the atomic positions is of the order of Ar*. The velocities are obtained

from the basic definition of differentiation

r(t+Af) —r(t — Af)
2At {

(1) =

with an error of the order of Az”. To obtain more accurate velocities, the leapfrog

algorithm is used, using velocities at half time step

q[:+§]=¢(r—é‘—]+q(nm
2 2

The velocities at time t can be also computed from

( Ar] ( Ar)
rlte—|+r]t——
2 2

2

(2.23)

(2.24)

(2.25)

(2.26)
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This is useful when the kinetic energy is needed at time ¢, as for example in the case
where velocity rescaling must be carried out (see below). The atomic positions are

then obtained from
At
r;(t+At)=r,(t)+r;.(t+—2—]Ar 2.27)

The leapfrog algorithm is computationally less expensive than the Predictor-Corrector
approach for example, and requires less storage. This could be an important advantage
in the case of large scale calculations, Moreover, the conservation of energy is
respected, even at large time steps. Therefore, the computation time could be greatly
decreased when this algorithm is used. However, when more accurate velocities and
positions are needed, another algorithm should be implemented, like the Predictor-

Corrector algorithm.
2.1.5 Periodic Boundary Conditions

To eliminate surface effect from the computation, the periodic
boundary is applied for neglect all system sizes. The cubical simulation box is
replicated throughout space to form an infinite lattice for this condition. A molecule
moves in the central box and its periodic image in every one of the other boxes moves
with exactly the same orientation in exactly the same way for the simulation. Thus, as
a molecule leaves the central box, one of its images will enter through the opposite
face. There are no walls at the boundary of the central box, and the system has no
surface. The central box simply forms a convenient coordinate system for measuring

locations of the N molecules.
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A two dimensional version of such a periodic system is shown in
Figure 2.5. As a particle moves through a boundary, ail its corresponding images
move across their corresponding boundaries. The number of particles in the central

box in the entire system is conserved.
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Figure 2.5  Periodic boundary conditions. As a particle moves out of the

simulation box, an image particle moves in to replace it.

2.1.6 Treatment of non-bonded interactions

The most time-consuming part of molecular dynamics simulations is
the computation of the non-bonded energies or forces. The numbers of bond, angle,
and torsional angle terms are all proportion of the number of atoms while non-bonded
terms require to be estimated increases as the square of the number of atoms (V). To
deal with the problem of non-bonded interaction, using a non-bonded cuto!T applying
the minimum image convention is the most popular way. The energy is computed
with the closet atom or image, as shown in Figure 2.5 (dot circle). The all pair

interactions, further apart that the cut off are set to zero when the non-bonded cut off

is applied.
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The simplest of non-bonded interaction is van der Waals. The cut-off
distance is used to truncate the van der Waals interactions as shown in Figure 2.5.
While the electrostatic interactions is slightly more complicated due to the multiple
time-steping for full electrostatics interactions. The Ewald summation method is used
for truncating this long-range interaction. The summing interaction between an ion
and all its periodic image. The construction of the periodic systems in Ewald

summation method is illustrated in Figure 2.6.

Figure 2.6  Construction of a system of periodic cells in the Ewald method[72].

2.1.7 Energy minimization

In molecular modeling, the minimum points on the energy surface is
essentially interested. The arrangements of minimum energy for the atoms correspond
to the stable system. There are a large number of the minima on the encrpy surlace.
The minimum with the lowest energy is known as the global energy minimum. Most
of minimization algorithms can only go downhill on the energy surface and locate the

minimum that is the nearest to the starting point.
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The minimization problem can be formally found that we require the
values of variable, x;, x2, x3, ..., X;, for the function (f) where fhas a minimum value.
At the minimum point the first derivative of the function with respect to each of the

variables is zero and the second derivatives are all positive (Equation 2.28).

¥ _0.20 .0 (2.28)

The minimization algorithms can be divided into two groups, which are non-
derivative (i. e. the simplex, and sequential univariate method) and derivative
minimization (i. e. the steepest descents, line search in one dimension, conjugate
gradient, and Newton-Raphson method). The first derivative minimization algorithm,
teepest descents and conjugate gradient, frequently used in the molecular modeling.

2.1.7.1 Steepest descent method

The energy is calculated for the initial geometry and
then again after one of the atoms has been moved in a small increment in one of
directions of the coordinates system. This process is repeated for all atoms which
finally are moved to a new position downhill on the energy surface. The procedure
stops when a predetermined threshold condition is fulfilled. The optimization process
is slow near the minimum, and consequently, the steepest descent method is often
used for structures far from the minimum as a first, rough and introductory run
followed by subsequent minimization employing a more advanced algorithm like the

conjugate gradient.

2.1.7.2 Conjugate gradient method
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The conjugate gradient algorithm accumulates the
information about the function from the one iteration to the next. With this proceeding
the reverse of the progress made in an earlier iteration can be avoided. For each
minimization step the gradient is calculated and used as additional information for
computing the new direction vector of the minimization procedure. Thus, each
successive step refines the direction towards the minimum. The computational effort
and the storage requirements are greater than for steepest descent, but conjugate
gradients is the method of choice for larger systems. The greater total computational
expense and the longer time per iteration is more than compensated by the more
efficient convergence to minimum achieved by conjugate gradients. This method is

more efficient for the structure near the minimum.

2.2 Binding free energy of protein-ligand complexes

“Free energy is arguably the most important general concept in chemistry”[73]

The free energy for the formation of a protein-ligand complexes is equal to:

AG,,, =AH -TAS (2.29)
that, under equilibrium conditions, is equal to:

AG’ =AH" -TAS" =-RTIn(K,,) (2.30)
The binding free energy (AG,,,) contains both enthalpic (AH) and entropic (AS )
contributions under temperature (7), that in many reactions of biological systems
compensate each other[74]. Where K, represents equilibrium constant. The

thermodynamic rationale for enthalpy-entropy compensation is based on the fact that,

as the binding becomes stronger, enthalpy becomes more negative and eniropy
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concomitantly tends to decrease due to formation of a tight complex. On the contrary,
as the binding becomes weaker, enthalpy become less negative and entropy tends to
increase due to the formation of a loose complex”".

The recently reported molecular mechanics Poisson-Boltzman surface area
(MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA)
methods[75-77] for free energy calculation of protein-ligand complex (see next

section).

2.2.1 Molecular mechanics Poisson-Boltzman(Generalized

Born) surface area (MM-PB(GB)SA)

A hybrid method termed MM-PB(GB)SA combining molecular
mechanics and continuum solvent calculations has recently been developed to analyze
the free energies of binding and relative free energies of different conformations|78].
The MM-PB(GB)SA method extracts solute conformations or snapshots from a MD
trajectory carried out with explicit solvent, typically a periodic box with water and
éounter—ions. For each snapshot, solvent molecules are removed to obtain the
molecular mechanics potential as in the simulation, but in the absence of cut-offs in
order to evaluate the non-bonded interactions. The free energy of the complex is
calculated using the following thermodynamic cycle (Figure 2.7):

In gas

P + L AG,, C

lAG” J/AGL l AGE,

In water P + L &
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Figure 2.7  Thermodynamic cycle.

The free energy of each molecular species (AG," ) is approximated by

AG) =AG)™ +AEY, (2.31)

where AG,™ and AE., are the molecular mechanics free energy and the solvation free
energy of species X which are complex (C), protein (P), and ligand (L), respectively.
A further partitioning of these energy components is defined by the Equations (2.32

and 2.33):

AG™™ = AH —TAS =AEL + AE —TAS (2.32)

where enthalpic (AH) equal to the combination between AE; and AE'™ represented

nt
the electrostatic and the van der Waals interactions, respectively. The solvation free

energy is comprised of two components:

AEY = AE® + AEI™ (2.33)

where AE® is the polar contribution to solvation, and AE"™"™ is the

nonpolar solvation term. The former component was calculated using the P13 or GB

calculation, whereas the latter term is determined using Equation 2.34.:

AE™"™" = ySASA+b (2.34)
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where y represents surface tension is set to 0.0072 or 0.0542 and b was
set equal to 0.92 as in the work of Still and coworker[79].

Subsequently, the absolute binding free energy (AG, ) between protein

and ligand is calculated as
AG, = AGS - AG/ - AG; (2.35)

where AGS , AG/, and AG} are the free energy of the complex, protein and ligand,

respectively.
211 Poisson-Boltzmman (PB) model

Poisson-Boltzmann approach is performed as a low
dielectric cavity with embedded atomic partial charges for the macromolecule. The
dielectric constant of the cavity is typically set between 2 and 4 to take into account
electronic polarization and the limited flexibility of the macromolecuie[80]. The
effected motions of the solvent molecules are much faster than those of the molecule
and the ions, taken into account on average through a continuum of high diclectric
constant[81].

The average electrostatic potential (f}.) is obtained from

the charge density embedded in the molecule ( p’) and by the average charge density

due to the mobile ions p™, via the Poisson equation:

V-(eVU) =—4mp™ —4np” (2.36)
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The unit expression is centimeter gram second-electrostatic for the position-dependent
dielectric constant, &, and all terms. The charge density p™ can be computed in

terms of the bulk concentrations and a potential of mean force:
p= Zc}”z.q exp(_—w’J (2.37)
b kT

where ¢ is the concentration of ion i at an infinite distance from the molecule (or at
any reference position wherc the potential of mean force w, is set to zero), z, is its

charge number, ¢ is the proton charge, k is the Boltzmann constant and T is the

temperature.

The key assumptions to obtain the PBE are that he

potentials of mean force are given by w, =zqU and that U is equal to the average

electrostatic potential U :

- ors o _zqu f

V. (eVU)=-47) ¢ zqexp . —47p (2.38)
When the term (% ) << 1 the exponential can be expanded in Taylor series,
retaining only the first two terms. Due to electroneutrality, Zc,‘ zq =0, the LPBE is
obtained:

V-(eVU) = (Z 4rc; ?—]U—-%’p" (2.39)

i

2.2.1.2 Generalized Born model
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As it is known that Poisson calculation is a very time
demanding method, therefore, generalized Born model is developed to mimic Posion
energy. The original Born theory[82] describes the solvation energy of a spherical

charge g locating in the center of spherical cavity of radius R following equation 2.40

k'q’
Ey=—— (2.40)
k ‘= k (g.:ol!me - g.:ollvem )’

As k = -166.0 (A kcal)/[mol(atomic charge)’], the charge (g) is in the atomic units

while, the radius R has units of A. The €, ueand & are the dielectric censtants of

solvent
the solute and solvent, respectively. Generalized Born theory explains the electrostatic
energy of two or more atomic charges in a cavity of arbitrary shape. The most

successful of GB formulation is Still and co-workers[79]:

EGB =_k,z q;qj

. (2.41)
7 Jr;f +a,a, exp(-r, 14aa,)

The r, is the distance between atoms 7 and j, while @, is the atomic Born radius of the

i th atom.

2.2.1.3 Solvent accessible surface area (SASA)

Lee and Richards[83] introduced originally the concept
of the solvent accessible surface of a protein molecule that is a way of quantifying
hydrophobic burial. The solvent accessible area (ASA) explains the area over which

contact between protein and solvent as shown in Figure 2.8.



47

Accessible surface
=locus of probe centre

Figure 2.8  Accessible surface of a molecule, defined as the location of the center

of a solvent molecule as it rolls over the van der Waals surface of the protein.

van der Waals’
sutface

Probe sphere
Molecudar sutface

Figure2.9  Molecular surface of a molecule, defined as the locus of the inward-

facing probe sphere.

The definition of the solvent accessible surface is the
location of the center of a sphere (representing the solvent molecule) as it rolls over
the van der Waals surface of the protein (Figure 2.8). It is important to realize that this
is different to the molecular surface, which is defined as the locus of the inward-

facing probe sphere[83] (Figure 2.9)
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2.2.14 Entropic Term (7S)

Entropy contributions arising from changes in the
degree of freedom (translational, rotational, vibrational) of the solute molecules were
included applying classical statistical thermodynamics[84]. There are three terms

account for the entropy changes that are due to the transformation (S, ), rotation

rans

(S,,,), and vibration (S, ) calculating as Equation 2.61 to 2.63.

3 2xm 5 5
S =R[=In| = |+| = |In(kT)=lnp+= 2.61
frans [2 n( h2 ) (2] ( ) p 2] ( )
8z 3. (27kP\ 1 3
Sm,=R[1n(7]+§ln( P )+51n(14131(+5] (2.62)
hv ~hv, (kT

The entropy of translational and rotational depend on known quantities only, namely

the total mass m (o is the number density at 1 mol/L) and the principle moments of
inertia (/,/,1.) and o is 1 for this case. The entropy of vibrational S,, depends on

the normal mode frequencies, v,. Therefore, AS obtains from (Equation 2.64):

AS = (S, + S0 +805)" = (Syans + 8,0 +8,) = (S0 +85,,, +5,,) (2.64)

where superscript C, P, and L represent complex, protein, and ligand, respectively.
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