การศึกษาคุณสมบัติการเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาไทเทเนียม ซิลิกาไลด์-1 ที่ถูกปรับปรุง ในปฏิกิริยาไฮดรอกซิเลชันของอัลคิลเบนซีนโดยใช้ไฮโดรเจนเปอร์ออกไซด์

นางสาวพรนภา เกษมศิริ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2550 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CATALYTIC STUDY OF MODIFIED TITANIUM SILICALITES-1 IN THE HYDROXYLATION OF ALKYL BENZENE BY HYDROGEN PEROXIDE

Miss. Pornapa Kasemsiri

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Chemical Engineering

Department of Chemical Engineering

Faculty of Engineering

Chulalongkorn University

Academic year 2007

Copyright of Chulalongkorn University

Thesis Title

CATALYTIC STUDY OF MODIFIED TITANIUM

SILICALITES-1 IN THE HYDROXYLATION OF ALKYL

BENZENE BY HYDROGEN PEROXIDE

By

Miss. Pornnapa Kasemsiri

Field of Study

Chemical Engineering

Thesis Advisor

Associate Professor Tharathon Mongkhonsi, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

Montan Wooding Chairman (Assistant Professor Montree Wongsri, D.Sc.)

(Associate Professor Tharathon Mongkhonsi, Ph.D.)

Syphot Theranasu

(Suphot Phatanasri, D.Eng.)

Solpatta Solswam. External member

(Soipatta Soisuwan, D.Eng.)

พรนภา เกษมศิริ: การศึกษาคุณสมบัติการเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาไทเทเนียม ซิลิ กาไลต์-1 ที่ถูกปรับปรุง ในปฏิกิริยาไฮครอกซิเลชันของอัลคิลเบนซีนโคยใช้ไฮโครเจน เปอร์ออกไซค์ (CATALYTIC STUDY OF MODIFIED TITANIUM SILICALITES-1 IN THE HYDROXYLATION OF ALKYL BENZENE BY HYDROGEN PEROXIDE) อ. ที่ปรึกษา: รศ.คร.ธราธร มงคลศรี, 111 หน้า.

งานวิจัยนี้เป็นการศึกษาคุณสมบัติการเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาไทเทเนียม ซิลิกาไลต์-1 ที่ถูกปรับปรุงค้วยโลหะ เหล็ก อะลูมิเนียม โคบอลต์ และวาเนเดียม ในปฏิกิริยาไฮครอกซิเลชัน ของอัลคิลเบนซิน ซึ่งได้แก่ โทลูอื่นและเอธิลเบนซินร่วมกับไฮโครเจนเปอร์ออกไซค์ ผลการศึกษา ที่อุณหภูมิ 70 องศาของปฏิกิริยาไฮครอกซิเลชันโทลูอื่นเป็นเวลา 2 ชั่วโมงแสคงให้เห็นว่า ตัวเร่ง ปฏิกิริยาทุกตัวให้ พารา-ครีซอล และ ออโท-ครีซอลเป็นผลิตภัณฑ์ ในส่วนของตัวเร่งปฏิกิริยาที่ ได้รับการปรับปรุงด้วยโลหะ อะลูมิเนียมและเหล็กจะให้เบนซอลดีไฮด์เป็นผลิตภัณฑ์หลักร่วมด้วย ในส่วนของปฏิกิริยาที่อุณหภูมิ 90 องศา ตัวเร่งปฏิกิริยาทุกตัว (ยกเว้นที่ได้รับการปรับปรุงด้วย โลหะเหล็ก) ให้ผลิตภัณฑ์ได้แก่ พารา-ครีซอล, ออโท-ครีซอล และเบนซอลดีไฮด์ โดยมีเบนซอลดี ไฮค์เป็นผลิตภัณฑ์หลัก การเพิ่มขึ้นของอุณหภูมิส่งผลให้ค่าการเลือกเกิดของเบนซอลคีไฮค์และค่า การเปลี่ยนแปลงของสารตั้งค้นเพิ่มขึ้น เนื่องจากระดับพลังงานเฉลี่ยของโมเลกูลสารตั้งเพิ่งสงขึ้น ทำให้สามารถเอาชนะพลังงานระตุ้นและเกิดเป็นผลิตภัณฑ์ได้ สำหรับปฏิกิริยาไฮครอกซิเลชันของ เอธิลเบนซินที่อุณหภูมิ 70 และ 95 องศา พบว่าผลิตภัณฑ์หลักที่ได้คือ อะซีโตฟีโนนและ1-ฟีเนธิลอัลกอฮอล นอกจากนี้ผลิตภัณฑ์อื่นที่พบ เช่น เบนซอลดีไฮค์จากการใช้ตัวเร่งปฏิกิริยาที่ ได้รับการปรับปรุงด้วยโคบอลต์และเหล็ก ซึ่งการปรับปรุงตัวเร่งปฏิกิริยาด้วยเหล็กนี้จะให้ ฟีเนธิลอัลกอฮอล และ ฟีนิลอะซีตาลดีไฮค์เป็นผลิตภัณฑ์ร่วมด้วย โดยผลิตภัณฑ์ทั้งหมดพบใน ปริมาณน้อย ในส่วนของกลไกที่ใช้ในการอธิบายการเกิดปฏิกิริยามีดังนี้ การเกิดปฏิกิริยาที่ตำแหน่ง วงแหวนเบนซินจะอธิบายด้วยกลไกการแทนที่ของอิเลคโตรไฟล์ และในส่วนที่ปฏิกิริยาเกิดที่ ตำแหน่งหมู่อัลคิลจะอธิบายด้วยกลไกเคียวกับข้างต้นร่วมกับกลไกไฮโครเจนเปอร์ออกไซค์ฟรีเร**ดิ** คัก

ภาควิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต	11 11 3 1P	รักิหบกเ	
สาขาวิชา	.วิศวกรรมเคมี	ลายมือชื่ออาจา	รย์ที่ปรึกษา	m	mona
ปีการศึกษา	2550				

##4970454721: MAJOR CHEMICAL ENGINEERING

KEY WORD: MODIFIED TITANIUM SILICALITE-1/ ALKYL BENZENE/ HYDROXYLATION/HYDROGENPEROXIDE

PORNNAPA KASEMSIRI: CATALYTIC STUDY OF MODIFIED TITANIUM SILICALITES-1 IN THE HYDROXYLATION OF ALKYL BENZENE BY HYDROGEN PEROXIDE. THESIS ADVISOR: ASSOC.PROF. THARATHON MONGKHONSI, Ph.D. 111 pp.

This research studies catalytic properties of TS-1 modified with Al, Co, V and Fe in the hydroxylation of alkyl benzene, i.e. toluene and ethyl benzene, with hydrogen peroxide. The results of toluene hydroxylation at 70°C for 2 h show that all catalysts produce reaction products as p-cresol, o-cresol, particularly TS-1 modified with Al and Fe also have benzaldehyde as predominant product. At 95°C, TS-1 and M-TS-1 (except Fe-TS-1) have benzaldehyde as major product accompany with pcresol, o-cresol. The reaction temperature increase affects benzaldehyde selectivity as well as the total conversion of toluene to products because the raise in reaction temperature increase average energy of the reactant molecules untill can overcome the activation energy barrier and then convert to product. The predominant products obtained from ethyl benzene hydroxylation at 70°C and 95°C are acetophenone and 1phenethyl ethanol. Other products, benzaldehyde is also produced in case using Co-TS-1 and Fe-TS-1. In addition, Fe-TS-1 also has phenethyl alcohol and phenyl acetaldehyde. The products formation mechanisms of toluene and ethyl benzene hydroxylations have two mechanisms i.e. the electrophilic aromatic substitution mechanism (o-cresol and p-cresol) and side chain oxidation (benzaldehyde and all products of ethyl benzene).

Department.....Chemical Engineering... Student's signature... Formapa. Kasemairi...

Field of study...Chemical Engineering... Advisor's signature... Advisor's signature...

Academic year.....2007......

ACKNOWLEDGEMENTS

I am sincerely grateful to my advisor, Associate Professor Tharathon Mongkhonsi, for his invaluable guidance and value suggestions including constant encourage throughout this study. Furthermore, I deeply appreciate all the things, I have learnt from him and for the opportunity to work in his group, I really enjoyed our meetings and pleasure with my thesis. I am also grateful to Assistance Professor Montri Wongsri, as the chairman, Dr. Suphot Phatanasri and Dr. Soipatta Soisuwan, who have been members of thesis committee.

I am thankful to my lab mates, Miss Sujitraporn Sakullimcharoen and many friends in the petrochemical laboratory for useful help. I am also thankful to Miss Natthavadee Asavanapakas and Mr.Prapruet Wongsarivej, they are my little colleagues for their helpfuls and co-operate along the thesis study. I want to especially thankful to Miss Patcharaporn Prajaksurt for her constant supports and longer wonderful friendship, likewise Miss Arpaporn Chahnpirak and Mr. Napong Sornsa-ad for their encouragements and very nice time. My special thanks to my distance friends Ake, Yong, Aoh-aow and Jezz for their constant support and wonderful time I had still having from them.

I am grateful to Mecktec Company for helpful analytical experiment result by Gas Chromatography Masspectrometry and Mr. Jitkarun Phongpatthanapanich for his encouragement and valuable suggestions.

Finally, my deepest regard to my family and parents, who have always been the source of my support and encouragement.

CONTENTS

		Page
ABSTRAC	r (IN THAI)	iv
ABSTRAC	Γ (IN ENGLISH)	v
ACKNOWI	LEDGMENTS	vi
CONTENT	S	vii
LIST OF TA	ABLES	ix
LIST OF FI	GURES	X
CHAPTER		
1	INTRODUCTION	1
I	TITANIUM SILICALITE-1	6
	2.1 TS-1catalyzed reactions	9
	2.2 Application of TS-1	10
	2.3 Metal modified and pretreated TS-1	10
II	AROMATIC SUBSTITUTION	13
	3.1 Benzene substitution.	13
	3.2.1 Effect of substitutions	15
	3.2 Hydroxylation of aromatic hydrocarbon	18
	3.2.1 Hydroxylation of benzene	19
	3.2.2 Hydroxylation of ethyl benzene	20
4	3.2.3 Hydroxylation of toluene	21
IV	EXPERIMENT	23
	4.1 Catalyst preparation	23
	4.1.1 Chemicals	23
	4.1.2 Preparation procedures	24
	4.2 Catalyst characterization.	27
	4.2.1 Determination of composition content of catalysts	27
	4.2.2 BET surface area measurement	27
	4.2.3 X-ray diffraction (XRD)	28
	4.2.4 Fouried transform Infared (FT-IR)	28
	4.2.5 Ammonia Temperature Program Detector (NH3-TPD)	28
	4.3 Reaction study in hydroxylation of benzene	29
	4.4 The adsorption of reactants on catalysts	31

CHAPTER		Page
V	RESULTS AND DISCUSSION	32
	5.1 Catalysts Characterization	32
	5.1.1 XRD	34
	5.1.2 BET	35
	5.1.3 FT-IR	35
	5.1.4 NH ₃ -TPD	36
	5.1.5 XRF	37
	5.2 The catalytic reaction	38
	5.2.1 Hydroxylation of toluene	38
	5.2.2 Hydroxylation of ethyl benzene	43
VI	CONCLUSIONS AND RECOMMENDATIONS	60
	6.1 Conclusions	60
	6.2 Recommendations	61
REFERENCE	S	62
APPENDICES	S	66
APPEND	IX A: CALCULATION FOR CATALYSTS PREPARATION	65
APPEND	IX B: DATA AND CALCULATION OF ACID SITE	67
APPEND	IX C: CALCULATION OF METAL QUANTITY	73
APPEND	IX D: CALIBRATION CURVES	79
APPEND	IX E: CALCULATION OF TOTAL CONVERSION OF	
	REACTANTS	82
APPEND	IX F: CALCULATION OF PRODUCTIVITY AND	
	SECLECTIVITY	83
APPEND	IX G: CALCULATION OF ADSORPTION ONCATALYSTS	84
APPEND	IX H: DATA OF EXPERIMENTS	85
APPEND	IX I: DATA AND REFFERENCE OF GAS	
	CHROMATRO SCOMETRY	89
APPEND	IX J: MATERIAL SAFETY DATA SHEET	98
APPEND	IX K: LIST OF PUBLICATION	110
VITA		111

LIST OF TABLES

Table		Page	
4.1	The chemicals used in the catalyst preparation.	23	
4.2	Reagents used for the preparation of M-TS-1 : $Si/Ti = 50$, $Si/M = 150$	24	
4.3	Operating conditions for gas chromatograph	30	
4.4	Operating conditions for gas chromatograph mass spectrometry	30	
5.1	Composition and surface area	34	
5.2	NH ₃ -TPD results	37	
5.3	The chemical composition of TS-1 and M-TS-1	38	
5.4	The products from hydroxylation ethyl benzene at 70°C and 95°C	55	
В1	Reported total peak area from Micromeritrics Chemisorb 2750	69	
C1	Data from XRF technique.	77	
C2	Calculated weight%, mole of metal oxide	79	

LIST OF FIGURES

Figure	Page
1.1 The routes of cresol production from phenol and toluene	1
2.1 The characteristic of ZSM-5	6
2.2 General scope of reactions catalyzed by TS-1	9
3.1 An electrophile accepts an electron pair from the \P system to form	
carbonation	13
3.2 The resonance stabilization of benzene is converted to the cyclohexadineyl	
cation	14
3.3 The electrophlic aromatic substitution occurs in two steps	14
3.4 Diagram of the electron donating substituents (blue dipoles) and electron	
withdrawing substituents (red dipoles)	16
3.5 Effect of activation energy of substituent controls kinetic reaction	16
3.6 the site of electrophilic substitutes on benzene ring	17
3.7 an activating substituent three resonance structures can be drawn for attack	
at ortho, meta and para	18
3.8 Hydroxylation of benzene over TS-1 catalyst	19
3.9 Hydroxylation of ethyl benzene over TS-1 catalyst	20
3.10 Hydroxylation of toluene over (TS-1) catalyst	21
4.1 The preparation procedure of M-TS-1 by rapid crystallization method	25
4.2 The hydroxylation reactor.	29
4.3 The adsorption bottle	31
5.1 The XRD patterns of the modified TS-1	33
5.2 A 5-1 secondary building unit and the MFI structure	34
5.3 The wave number of TS-1 and the modified TS-1	35
5.4. The conversion of hydroxylation of toluene at 70 °C	39
5.5 The percentage of selectivity of hydroxylation of toluene at 70 °C	40
5.6. The hydroxylation of toluene at side chain and ring	41
5.7 The kinetic diameter of reactant and product molecules	43

Figure	Page
5.8. The hydroxylation in the medium pore zeolite	44
5.9 The characteristic toluene molecule attach on active site of catalysts	45
5.10 The mechanism of hydroxylation toluene	46
5.11. The hydroxilation at the side chain using strong acid site	47
5.12 The formation benzaldehyde from strong directly electrophile attachment	47
5.13 The conversion of hydroxylation of toluene at 95 °C	48
5.14 The percentage of selectivity hydroxylation of toluene at 95 °C	49
5.15 The percentage of product selectivity from hydroxylation toluene at	
temperature 70 and 95 °C	49
5.16 The activation energy barrier of reactant molecule at 70 °C and 95 °C	50
5.17 The total conversion of toluene to products per mole of cation at 70 °C	51
5.18. The percentage of productivity of hydroxylation of toluene at 70 °C	51
5.19 The total conversion of toluene to products per mole of cation at 95 °C	52
5.20 The productivity of hydroxylation of toluene at 95 °C	53
5.21 The adsorption of toluene on TS-1 and M-TS-1	54
5.22 The directions of ethyl benzene molecule enter pores catalyst	56
5.23. The mechanism of 1-phenyl-ethanol and acetophenone formation	57
5.24 The mechanism of phenyl alcohol and phenyl acetaldehyde formation	57
5.25 The adsorption of ethyl benzene on TS-1 and M-TS-1	58
B1 TCD signal and temperature versus time data of TS-1 from	
Micromeritrics Chemisorb 2750	71
B2 TCD signal and temperature versus time data of Co-TS-1 from	
Micromeritrics Chemisorb 2750	71
B3 TCD signal and temperature versus time data of Al-TS-1 from	
Micromeritrics Chemisorb 2750	72
B4 TCD signal and temperature versus time data of V-TS-1 from	
Micromeritrics Chemisorb 2750	72
B5 TCD signal and temperature versus time data of Fe-TS-1 from	
Micromeritrics Chemisorb 2750	73
B6 Data for calculating of acid site ratio of TS-1 from peak fitting	
program	73

Figure	Page
B7 Data for calculating of acid site ratio of Co-TS-1 from peak fitting	
program	74
B8 Data for calculating of acid site ratio of Al-TS-1 from peak fitting	
program	74
B9 Data for calculating of acid site ratio of V-TS-1 from peak fitting	
program	75
B10 Data for calculating of acid site ratio of Fe-TS-1 from peak fitting	
program	75
D1 The calibration curve of o-cresol	83
D2 The calibration curve of p-cresol	84
D3 The calibration curve of benzaldehyde	84
D4 The calibration curve of toluene	85
D5 The calibration curve of ethyl benzene	85
I1 Products from hydroxylation with using TS-1 at 70 °C	94
I2 Products from hydroxylation with using Al-TS-1 at 70 °C	95
I3 Products from hydroxylation with using V-TS-1 at 70 °C	96
I4 Products from hydroxylation with using Fe-TS-1 at 70 °C	97
I5 Products from hydroxylation with using Co-TS-1 at 70 °C	98
I6 Products from hydroxylation with using TS-1 at 95 °C	99
I7 Products from hydroxylation with using Al-TS-1 at 95 °C	100
18 Products from hydroxylation with using V-TS-1 at 95 °C	101
IQ Products from hydroxylation with using Co-TS-1 at 95 °C	102