ทฤษฎีบทของกลุ่มย่อยนูนของกึ่งสนาม และปริภูมิเวกเตอร์บนกึ่งสนาม

THEOREMS OF CONVEX SUBGROUPS OF SEMIFIELDS AND VECTOR SPACES OVER SEMIFIELDS

Thesis Title : Theorems of Convex Subgroups of Semifields and Vector Spaces over Semifields

By : Miss Sirichan Pahupongsab
Field of Study : Mathematics
Thesis Advisor : Assistant Professor Amorn Wasanawichit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITTEE

(Associate Professor Yupaporn Kemprasit, Ph.D.)

(Assistant Professor Surachai Sombatboriboon, M.Sc.)

ศิริจันทร์ พหุพงศ์ทรัพย์ : ทฤษฎีบทของกลุ่มย่อยนูนของกึ่งสนามและปริภูมิเวกเตอร์บนกึ่งสนาม (THEOREMS OF CONVEX SUBGROUPS OF SEMFIELDS AND VECTOR SPACES OVER SEMIFIELDS) อ. ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ ดร. อมร วาสนาวิจิตร์, 45 หน้า ISBN 974-13-0923-6

เราจะเรียกสิ่งทั้งสามที่เป็นอันดับ $(K,+, \cdot)$ ว่า กึ่งสนาม ก็ต่อเมื่อ (1) (K, \cdot) เป็นกลุ่มสลับที่ที่มี 0 , (2) $(K,+)$ เป็นกึ่งกลุ่มสลับที่ที่มี 0 เป็นเอกลักษณ์ และ (3) $x(y+z)=x y+x z$ สำหรับทุกๆ $x, y, z \in K$ เราจะเรียกสับเซต $C \neq\{0\}$ ของ K ซึ่งเป็นเซตไม่ว่างว่า กลุ่มย่อยนูนของ K ก็ต่อเมื่อ (1) สำหรับทุกๆ $x, y \in C$ ซึ่ง $y \neq 0$ จะได้ $\frac{x}{y} \in C$ และ (2) สำหรับทุกๆ $x, y \in C, \alpha, \beta \in K$ ซึ่ง $\alpha+\beta=1$ จะได้ $\alpha x+\beta y \in C$ เราจะเรียกโซ่ ของกึ่งสนามย่อยของ $K, K=K_{0} \triangleright K_{1} \triangleright \ldots \triangleright K_{n}$, ว่า อนุกรมกลุ่มย่อยนูนจำกัดโดยแท้ใน K ก็ต่อเมื่อ K_{i+1} เป็น กลุ่มย่อยนูนของ K_{i} และ $K_{l} \neq K_{j}$ สำหรับ $l \neq j$ ให้ C และ C^{\prime} เป็นอนุกรมกลุ่มย่อยนูนจำกัดโดยแท้ใน K เราจะกล่าวว่า C^{\prime} ละเอียดกว่า C ถ้าทุกๆพจน์ของ C ปรากฎอยู่ใน C^{\prime} และถ้า $C \neq C^{\prime}$ แล้วเราจะกล่าวว่า C^{\prime} ละเอียดกว่า C โดยแท้ เราจะเรียกอนุกรมกลุ่มย่อยนูนจำกัดโดยแท้ใน $K, K=K_{0} \triangleright K_{1} \triangleright \ldots \triangleright K_{n} \triangleright\{1\}$, ว่า อนุกรมผลประกอบ ก็ต่อเมื่ออนุกรมนั้นไม่มีอนุกรมที่ละเอียดกว่าโดยแท้ เราจะเรียกกลุ่มสลับที่ M ซึ่งมี 0 เป็น เอกลักษณ์ว่า ปริภูมิเวกเตอร์บนกึ่งสนาม K ถ้ามีฟังก์ชัน $(k, m) \mapsto k m$ จาก $K \times M$ ไปยัง M ซึ่งสำหรับทุกๆ $k_{1}, k_{2} \in K$ และ $m_{1}, m_{2} \in M$ ได้ว่า (1) $\left(k_{1} k_{2}\right) m_{1}=k_{1}\left(k_{2} m_{1}\right)$ (2) $k_{1}\left(m_{1}+m_{2}\right)=k_{1} m_{1}+k_{1} m_{2}$ (3) $\left(k_{1}+k_{2}\right) m_{1}=k_{1} m_{1}+k_{2} m_{1}$ และ (4) $1_{M} m_{1}=m_{1}$ ให้ B เป็นสับเซตของปริภูมิเวกเตอร์ M บน K และ $\langle B\rangle$ เป็นกลุ่มย่อยของ M ที่ถูกก่อกำเนิดโดยเซต $K B=\{k b \mid k \in K$ and $b \in B\}$ เราจะกล่าวว่า B แผ่ทั่ว M ถ้า $\langle B\rangle=M$ เราจะเรียกสัแเซต B ว่า อิสระเชิงเส้น ถ้า B สอดคล้องข้อใดข้อหนึ่งของเงื่อนไข ต่อไปนี้ (1) $B=\phi$ หรือ (2) $|B|=1$ และ $B \neq\{0\}$ หรือ (3) $|B|>1$ และ $b \notin<B \backslash\{b\}>$ สำหรับทุกๆ $b \in B$ เราจะเรียกเซต B ว่าเป็นฐานหลักของปริภูมิเวกเตอร์ M บน K ถ้า B เป็นเซตอิสระเชิงเส้นที่แผ่ทั่ว M และเราจะกล่าวว่า M เป็นปริภูมิวกเตอร์ที่มีมิติติำกัด ถ้า M มีฐานหลักเป็นเซตจำกัด ผลสำคัญของงานวิจัยมีดังนี้
ทฤษฎีบท ให้ K เป็นกึ่งสนามที่มี่อนุกริมผลประกอบ ดังนั้นทุกๆสองอนุกรมผลประกอบจะสมมูลกัน ทถษฎีบท ให้ A และ B เป็นสับเซตจำกั่ดของปริภูมิเวกตอร์ M บนกึ่งสนาม K ซึ่งสอดคล้องสมบัติ (*) ถ้าทั้ง A และ B เป็นฐานของ M แล้ว $|A|=|B|$ โดยที่สมบัติ (*) คือ สำหรับทุกๆ $\alpha, \beta \in K_{0}$ จะมี $\gamma \in K$ ซึ่ง
 (*) ซึ่งขยายมาจากทฤษฎีบทต่างๆในปริภูมิเวกเตอร์บนสนาม

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2543

ลายมือชื่อนิสิต.
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม -

SIRICHAN PAHUPONGSAB : THEOREMS OF CONVEX SUBGROUPS OF SEMIFIELDS AND VECTOR SPACES OVER SEMIFIELDS. THESIS ADVISOR : ASSISTANT PROFESSOR AMORN WASANAWICHIT, Ph.D. 45 pp. ISBN 974-13-0923-6

A triple $(K,+, \cdot)$ is called a semifield if (1) (K, \cdot) is an abelian group with zero 0 , (2) $(K,+)$ is a commutative semigroup with identity 0 , and (3) for all $x, y, z \in K, x(y+z)=x y+x z$. A nonempty subset $C \neq\{0\}$ is a convex subgroup of K if (1) for all $x, y \in C, y \neq 0$ implies $\frac{x}{y} \in C$, and (2) for all $x, y \in C, \alpha, \beta \in K$, with $\alpha+\beta=1$, $\alpha x+\beta y \in C$. A strictly finite subconvex series in K is a chain of subsemifields of K, $K=K_{0} \triangleright K_{1} \triangleright \ldots \triangleright K_{n}$, such that K_{i+1} is a convex subgroup of K_{i} and $K_{l} \neq K_{j}$ for $l \neq j$. Let C and C^{\prime} be two strictly finite subconvex series in $K . C^{\prime}$ is a refinement of C if every term of C appears in C^{\prime}. Moreover, if $C \neq C^{\prime}$, then C^{\prime} is a proper refinement of C. A strictly finite subconvex series in $K, K=K_{0} \triangleright K_{1} \triangleright \ldots \triangleright K_{n} \triangleright\{1\}$, is a composition series if it has no proper refinement. A vector space over a semifield K is an abelian additive group M with identity 0 , for which there is a function $(k, m) \mapsto k m$ from $K \times M$ into M such that for all $k_{1}, k_{2} \in K$ and $m_{1}, m_{2} \in M$, (1) $\left(k_{1} k_{2}\right) m_{1}=k_{1}\left(k_{2} m_{1}\right)$, (2) $k_{1}\left(m_{1}+m_{2}\right)=k_{1} m_{1}+k_{1} m_{2}$, (3) $\left(k_{1}+k_{2}\right) m_{1}=k_{1} m_{1}+k_{2} m_{1}$ and (4) $1_{M} m_{1}=m_{1}$. Let B be a subset of a vector space M over K and $\langle B\rangle$ is the subgroup of M generated by $K B=\{k b \mid k \in K$ and $b \in B\}$. We call that B spans M if $\langle B\rangle=M$. A set B is said to be a linearly independent set if it satisfies one of the following conditions: (1) $B=\phi$, or (2) $|B|=1$ and $B \neq\{0\}$, or (3) $|B|>1$ and $b \notin<B \backslash\{b\}>$ for all $b \in B$. A set B is said to be a basis of a vector space M over K if B is a linearly independent set which spans M and we say that M is finite-dimensional if M has a finite basis.

The main results of this research are follows:
Theorem Let K be a semifield which has a composition series. Then any two composition series are equivalent.
Theorem Let A and B be finite subsets of a vector space M over a semifield K which satisfies the property $(*)$, i.e., for all $\alpha, \beta \in K$ there exists a $\gamma \in K$ such that $\alpha+\gamma=\beta$ or $\beta+\gamma=\alpha$. If they are bases of M, then $|A|=|B|$.

Zassenhaus Lemma, Schreier's Theorem and standard theorems in vector spaces over a field can be extended in vector spaces over a semifield which satisfies the property $(*)$.

Department Mathematics Field of Study Mathematics Academic year 2000

Student's signature
Advisor's signature
Co-advisor's signature -

ACKNOWLEDGEMENTS

I am greatly indebted to Assistant Professor Dr.Amorn Wasanawichit, thesis advisor, for his untired offering me helpful advice during preparation and writing this thesis. I am also grateful to Dr.Sidney S. Mitchell, the former advisor, who commenced and induced me to study in this research. Although none of us will ever see him again but he will stay in my memory forever. I would like to thank Associate Professor Dr.Yupaporn Kemprasit, and Assistant Professor Surachai Sombatboriboon, the chairman and member of this thesis committee, respectively. Moreover, I would like to thank Dr.Sajee Pianskool, for reading my thesis. Besides, I would like to thank all of my teachers, who have taught me, for my knowledge and skills.

Last but not least, I would like to express my gratitude to all of my friends and my beloved family for their encouragement throughout my graduate study.

CONTENTS

Page
Abstract in Thai iv
Abstract in English v
Acknowledgements vi
Chapter
1 Introduction 1
2 Preliminaries 2
3 Convex Subgroups of a Semifield 5
4 Vector Spaces over a Semifield and Linear Transformations 12
4.1 Vector Spaces over a Semifield 12
4.2 Linear Transformations 32
References 44
Vita45

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

In [5] Pornthip Sinutoke studied and generalized theorems from field theory to semifields. Also, in [2] Chaiwat Namnak generalized some fundamental theorems of partially ordered semigroups, partially orderings, partially ordered fields and partially ordered ratio semirings to positive ordered 0 -semifields.

In this research we are interested in only semifields which are not fields. We study convex subgroups of semifields and obtain similar theorems in group theory. Moreover, we consider vector spaces over a semifield and obtain some theorems that similar to theorems in vector spaces over a field.

In Chapter II, we introduce some notations and definitions that will be used throughout this thesis.

In Chapter III, we study convex subgroups of a semifield and strictly finite subconvex series in a semifield.

In Chapter IV, we study vector spaces over a semifield which satisfies some property and linear transformations of vector spaces over a semifield.

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

PRELIMINARIES

In this chapter, we give some notation, definitions and examples. In this thesis, the following notation we will use:
\mathbb{Z} is the set of all integers.
\mathbb{Z}^{+}is the set of all positive integers.
\mathbb{Q} is the set of all rational numbers.
\mathbb{Q}^{+}is the set of all positive rational numbers.
$\mathbb{Q}_{0}^{+}=\mathbb{Q}^{+} \cup\{0\}$.
\mathbb{R}^{+}is the set of all positive real numbers.
$\mathbb{R}_{0}^{+}=\mathbb{R}^{+} \cup\{0\}$.

Definition 2.1. A nonempty set K is said to be a semifield if there are two binary operators, $+($ addition $)$ and • (multiplication) on K such that
(1) $(K,+)$ is a commutative semigroup with identity 0 ,
(2) $(K \backslash\{0\}, \stackrel{)}{ }$ is an abelian group and $k \cdot 0=0 \cdot k=0$ for all $k \in K$, and
(3) $x(y+z)=x y+x z$ for all $x, y, z \in K$.

We always denote the identity of the group ($K \backslash\{0\}, \cdot$) by 1 .

Definition 2.2. Let K be a semifield. A nonempty subset L of K is said to be a subsemifield of K if
(1) $0 \in L$ and $L \neq\{0\}$,
(2) for all $x, y \in L$, with $y \neq 0$, implies $x y^{-1} \in L$, and
(3) for all $x, y \in L, x+y \in L$.

Remark 2.3. The intersection of a family of subsemifields of a semifield is a subsemifield.

Example 2.4. (1) $\left(\mathbb{Q}_{0}^{+},+, \cdot\right),\left(\mathbb{R}_{0}^{+},+, \cdot\right)$ are semifields.
(2) If we define a binary operation $*$ on \mathbb{Q}_{0}^{+}by $x * y=\max \{x, y\}$ for all $x, y \in \mathbb{Q}_{0}^{+}$. Then $\left(\mathbb{Q}_{0}^{+}, *, \cdot\right)$ is a semifield but not a subsemifield of all fields.
(3) If we define two binary operations on $\mathbb{Z} \cup\{\varepsilon\}$ by $x \odot y=x+y, x \odot \varepsilon=\varepsilon \odot x=\varepsilon$, $\varepsilon \odot \varepsilon=\varepsilon$ and $x \oplus y=\max \{x, y\}, x \oplus \varepsilon=\varepsilon \oplus x=x$ and $\varepsilon \oplus \varepsilon=\varepsilon$ for all $x, y \in \mathbb{Z}$. Then $(\mathbb{Z} \cup\{\varepsilon\}, \oplus, \odot)$ is a semifield but not a subsemifield of all fields.
(4) $\left(\mathbb{Q}^{+} \times \mathbb{Q}^{+} \cup\{(0,0)\},+, \cdot\right)$ is a semifield.

In the remain of this thesis, we consider a semifield which is not a field. By [5], we have for every nonzero element in a semifield has no additive inverse.

Definition 2.5. Let K be a semifield. Then K is additively cancellative if and only if $x+z=y+z$ implies that $x=y$ for all $x, y, z \in K$.

Remark 2.6. Let K be a semifield such that $1+x=1+y$ implies $x=y$ for all $x, y \in K$. Then K is additively cancellative.

Definition 2.7. Let K and L be semifields. A function $f: K \rightarrow L$ is a homomorphism of K into L if $6 \leqslant 9 / 9$? 9 ?
(1) $f(x)=0$ if and only if $x=0$,
(2) for all $x, y \in K, f(x+y)=f(x)+f(y)$, and
(3) for all $x, y \in K, f(x y)=f(x) f(y)$.

The multiplicative kernel of f is the set $\{x \in K \mid f(x)=1\}$, denoted by $\operatorname{ker} f$.

Note that if $f: K \rightarrow L$ is a homomorphism of semifields, then $\operatorname{ker} f$ is a subgroup of $(K \backslash\{0\}, \cdot)$.

Definition 2.8. A homomorphism $f: K \rightarrow L$ of semifields K and L is called a monomorphism if f is injective, an epimorphism if f is surjective and an isomorphism if f is bijective. Moreover, semifields K and L are isomorphic, denoted by $K \cong L$, if there exists an isomorphism of K onto L.

Definition 2.9. Let K be a semifield and $C \subseteq K$. Then C is said to be a convex subset of K if for all $x, y \in C$ and $\alpha, \beta \in K$ such that $\alpha+\beta=1, \alpha x+\beta y \in C$.

Proposition 2.10. If C_{1} and C_{2} are convex subsets of a semifield K, then $C_{1}+C_{2}$, $C_{1} \cap C_{2}$ and $C_{1} C_{2}=\left\{c_{1} c_{2} \mid c_{1} \in C_{1}\right.$ and $\left.c_{2} \in C_{2}\right\}$ are convex subsets of K.

Proof. Obviously, $C_{1}+C_{2}$ and $C_{1} \cap C_{2}$ are convex subsets of K.
Let $x, y \in C_{1} C_{2}$. Then $x=a_{1} b_{1}$ and $y=a_{2} b_{2}$ for some $a_{1}, a_{2} \in C_{1}$ and $b_{1}, b_{2} \in C_{2}$. Let $\alpha, \beta \in K$ be such that $\alpha+\beta=1$. If $a_{1}=0$, then $\beta a_{2}=\alpha a_{1}+\beta a_{2} \in C_{1}$, so $\alpha x+\beta y=\beta a_{2} b_{2} \in C_{1} C_{2}$. If $a_{2}=0$, then $\alpha a_{1}=\alpha a_{1}+\beta a_{2} \in C_{1}$, so $\alpha x+\beta y=\alpha a_{1} b_{1} \in C_{1} C_{2}$.

Assume that $a_{1} \neq 0$ and $a_{2} \neq 0$. Since C_{1} is a convex subset of K, we have $\alpha a_{1}+\beta a_{2} \in C_{1}$. Since C_{2} is a convex subset of $K_{,} \frac{\alpha a_{1} b_{1}}{\alpha a a_{1}+\beta a_{2}} \mp \frac{\beta a_{2} b_{2}}{\alpha a_{1}+\beta a_{2}} \in C_{2}$. Hence $\alpha x+\beta y=\alpha a_{1} b_{1}+\beta a_{2} b_{2}=\left(\alpha a_{1}+\beta a_{2}\right)\left(\frac{\alpha a_{1} b_{1}}{\alpha a_{1}+\beta a_{2}}+\frac{\beta a_{2} b_{2}}{\alpha a_{1}+\beta a_{2}}\right) \in C_{1} C_{2}$. Therefore $C_{1} C_{2}$ is a convex subset of K ? 6 bod

CHAPTER III

CONVEX SUBGROUPS

OF A SEMIFIELD

In this chapter, we study convex subgroups of a semifield, strictly finite subconvex series and composition series in a semifield.

Definition 3.1. Let K be a semifield. A nonempty subset $C \neq\{0\}$ of K is a convex subgroup of K if
(1) for all $x, y \in C, y \neq 0$ implies $\frac{x}{y} \in C$, and
(2) for all $x, y \in C, \alpha, \beta \in K$ with $\alpha+\beta=1, \alpha x+\beta y \in C$.

We write $C \triangleleft K$ or $K \triangleright C$ for saying that C is a convex subgroup of K.

Example 3.2. Let K be a semifield.
(1) $\{1\}, K \backslash\{0\}$ and K are convex subgroups of K.
(2) Let S be a multiplicative subsemigroup of $K \backslash\{0\}$. Then
$C=\left\{\left(\sum_{i=1}^{m} a_{i} x_{i}\right)\left(\sum_{j=10}^{n} b_{j} y_{j}\right)^{-1} \mid m, n \in \mathbb{Z}^{+}, a_{i,}, b_{j} \in K, x_{i}, y_{j} \in S\right.$ and $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$
$=1$ for all $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}\}$ is a convex subgroup of K.
Proof. (2) Let $\left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} b_{i} y_{i}\right)^{-1},\left(\sum_{j=1}^{m} c_{j} z_{j}\right)\left(\sum_{j=1}^{m}\left(d_{j} w_{j}\right)^{-1} \in C\right.$. Then

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} b_{i} y_{i}\right)^{-1}\left[\left(\sum_{j=1}^{m} c_{j} z_{j}\right)\left(\sum_{j=1}^{m} d_{j} w_{j}\right)^{-1}\right]^{-1} \\
& \quad=\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} d_{j} x_{i} w_{j}\right)\left(\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} c_{j} y_{i} z_{j}\right)^{-1} \\
& \in C
\end{aligned}
$$

Let $a, b \in K$ be such that $a+b=1$. Then

$$
\begin{aligned}
& a\left[\left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} b_{i} y_{i}\right)^{-1}\right]+b\left[\left(\sum_{j=1}^{m} c_{j} z_{j}\right)\left(\sum_{j=1}^{m} d_{j} w_{j}\right)^{-1}\right] \\
& \quad=\left[a\left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{j=1}^{m} d_{j} w_{j}\right)+b\left(\sum_{j=1}^{m} c_{j} z_{j}\right)\left(\sum_{i=1}^{n} b_{i} y_{i}\right)\right]\left(\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} d_{j} y_{i} w_{j}\right)^{-1} \\
& \quad=\left[\sum_{i=1}^{n} \sum_{j=1}^{m} a a_{i} d_{j} x_{i} w_{j}+\sum_{i=1}^{n} \sum_{j=1}^{m} b b_{i} c_{j} y_{i} z_{j}\right]\left(\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} d_{j} y_{i} w_{j}\right)^{-1} \\
& \quad \in C .
\end{aligned}
$$

Hence C is a convex subgroup of K.

Remark 3.3. Let K be a semifield. Then the following statements hold.
If C_{1} and C_{2} are convex subgroups of K, then $C_{1} C_{2}=\left\{c_{1} c_{2} \mid c_{1} \in C_{1}\right.$ and $\left.c_{2} \in C_{2}\right\}$ and $C_{1} \cap C_{2}$ are convex subgroups of K.

Proof. Let $x, y \in C_{1} C_{2}$ be such that $y \neq 0$. Then $x=c_{1} c_{2}$ and $y=\bar{c}_{1} \bar{c}_{2}$ where $c_{1}, \bar{c}_{1} \in C_{1}$ and $c_{2}, \bar{c}_{2} \in C_{2} \backslash\{0\}$. Since C_{1} and C_{2} are convex subgroups of K, we have $\frac{c_{1}}{\bar{c}_{1}} \in C_{1}$ and $\frac{c_{2}}{\bar{c}_{2}} \in C_{2}$. So $\frac{x}{y}=\frac{c_{1} c_{2}}{\bar{c}_{1} \bar{c}_{2}}=\frac{c_{1}}{\bar{c}_{1}} \frac{c_{2}}{c_{2}} \in C_{1} C_{2}$. By Proposition 2.10, $C_{1} C_{2}$ is a convex subgroup of K.

Clearly, $1 \in C_{1} \cap C_{2}$, so $C_{1} \cap C_{2} \neq\{0\}$. Let $u, v \in C_{1} \cap C_{2}$ be such that $v \neq 0$. Since C_{1} and C_{2} are convex subgroups of $K, \frac{u}{v} \in C_{1} \cap C_{2}$. By Proposition 2.10, we have $C_{1} \cap C_{2}$ is a convex subgroup of K.

Definition 3.4. Let K be a semifield and C a convex subgroup of K and let K / C is the set $\{x C \mid x \in K\}$. Define two operations + and \cdot on K / C as follow: for all $x, y \in K, \quad x C+y C=(x+y) C$ and $x C \cdot y C=x y C$.

To show that + and \cdot are well-defined. Since $(x+y) C=\{(x+y) c \mid c \in C\}$ $=\{x c+y c \mid c \in C\}$, we have $(x+y) C \subseteq x C+y C$. Let $c_{1}, c_{2} \in C$ be such that $x c_{1}+y c_{2} \in x C+y C$. If $x=0$ or $y=0$, then we have $x C+y C=(x+y) C$. Assume
that $x \neq 0$ and $y \neq 0$. Then $x c_{1}+y c_{2}=(x+y)\left(\frac{x c_{1}}{x+y}+\frac{y c_{2}}{x+y}\right)$. Since $\frac{x}{x+y}+\frac{y}{x+y}=1$, $\frac{x c_{1}}{x+y}+\frac{y c_{2}}{x+y} \in C$. Hence $x C+y C \subseteq(x+y) C$. Therefore $x C+y C=(x+y) C$.

Clearly, $x y C \subseteq x C y C$. Let $c_{1}, c_{2} \in C$ be such that $x c_{1} y c_{2} \in x C y C$. Then $x c_{1} y c_{2}=x y c_{1} c_{2} \in x y C$. Thus $x C y C \subseteq x y C$. Hence $x C y C=x y C$. Therefore + and \cdot are well-defined.

We have K / C is a semifield and K / C is called the quotient semifield of K by C.

Theorem 3.5. Let K be a semifield and $C \subseteq K \backslash\{0\}$. Then C is a convex subgroup of K if and only if $C=\operatorname{ker} f$ for some homomorphism f with domain K.

Proof. Assume that C is a convex subgroup of K. Define $f: K \rightarrow K / C$ by $f(x)=x C$ for all $x \in K$. Then f is a homomorphism of K into K / C and $C=\operatorname{ker} f$.

Conversely, let $x, y \in C$ and $\alpha, \beta \in K$ be such that $\alpha+\beta=1$. Since $C=\operatorname{ker} f$, we obtain that $f(x)=f(y)=1$. Thus $f(\alpha x+\beta y)=f(\alpha) f(x)+f(\beta) f(y)=$ $f(\alpha)+f(\beta)=f(\alpha+\beta)=f(1)=1$. This implies that $\frac{x}{y}, \alpha x+\beta y \in C$. Therefore C is a convex subgroup of K.

Theorem 3.6. ([2]) Let K and L be semifields. If $f: K \rightarrow L$ an epimorphism, then $K / \operatorname{ker} f \cong L$.

$$
I \text { be a subsemifield of a semifield } K \text { and } C \text { a convex }
$$

Lemma 3.7. (2]) Let H be a subsemifield of a semifield K and C a convex subgroup of K. Then $H C=\{h c \mid h \in H$ and $c \in C\}$ is a subsemifield of K and $H \cap C$ is a convex subgroup of H. $9 / 9$? 9 ?

Theorem 3.8. ([2]) Let H be a subsemifield of a semifield K and C a convex subgroup of K. Then $H /(H \cap C) \cong(H C) / C$.

Lemma 3.9. ([2]) Let N and H be convex subgroups of a semifield K and $H \subseteq N$. Then N / H is a convex subgroup of K / H.

Theorem 3.10. ([2]) Let N and H be convex subgroups of a semifield K and $H \subseteq N$. Then $(K / H) /(N / H) \cong K / N$.

Lemma 3.11. ([2]) Let M and N be semifields and L a convex subgroup of N. If $f: M \rightarrow N$ is an epimorphism, then $f^{-1}(L)$ is a convex subgroup of M.

Theorem 3.12. ([2]) Let M and N be semifields and L a convex subgroup of N. If $f: M \rightarrow N$ is an epimorphism, then $M / f^{-1}(L) \cong N / L$.

Lemma 3.13. Let M and L be subsemifields of a semifield K. If N is a convex subgroup of M and H is a convex subgroup of L, then $(N \cap L)(H \cap M)$ is a convex subgroup of $M \cap L$.

Proof. By Remark 2.3, $M \cap L$ is a subsemifield of K. By Lemma 3.7, $N \cap L=$ $(M \cap N) \cap L=(M \cap L) \cap N$ and $H \cap M=(L \cap H) \cap M=(M \cap L) \cap H$ are convex subgroups of $M \cap L$. By Remark 3.3, $(N \cap L)(H \cap M)$ is a convex subgroup of $M \cap L$.

Theorem 3.14. Let A and B be subsemifields of a semifield $K, A^{*} \subseteq A \backslash\{0\}$ a convex subgroup of A and $B^{*} \subseteq B \backslash\{0\}$ a convex subgroup of B. Then
(1) $A^{*}\left(A \cap B^{*}\right)$ is a convex subgroup of $A^{*}(A \cap B)$,

(2) $B^{*}\left(A^{*} \cap B\right)$ is a convex subgroup of $B^{*}(A \cap B)$, and

$$
\begin{equation*}
\left(A_{9}^{*}(A \cap B)\right) /\left(A^{*}\left(A \cap B^{*}\right)\right)^{6} \cong\left(B^{*}(A \cap B)\right) /\left(B^{*}\left(A^{*} \cap B\right)\right) . \tag{3}
\end{equation*}
$$

Proof. First, we show that $A^{*}\left(A \cap B^{*}\right)$ is a convex subgroup of $A^{*}(A \cap B)$. Since B^{*} is a convex subgroup of B, we have B^{*} is a convex subgroup of $A \cap B$, by Lemma 3.7 $A \cap B^{*}=(A \cap B) \cap B^{*}$ is a convex subgroup of $A \cap B$. Since A^{*} is a convex subgroup of A, A^{*} is a convex subgroup of $A \cap B$, by Remark 3.3 we have $A^{*}\left(A \cap B^{*}\right)$ is a convex subgroup of $A \cap B$. Hence $A^{*}\left(A \cap B^{*}\right)$ is a convex subgroup
of $A^{*}(A \cap B)$. Similarly, we have $B^{*}\left(A^{*} \cap B\right)$ is a convex subgroup of $B^{*}(A \cap B)$.
Next, we show that $\left(A^{*}(A \cap B)\right) /\left(A^{*}\left(A \cap B^{*}\right)\right) \cong\left(B^{*}(A \cap B)\right) /\left(B^{*}\left(A^{*} \cap B\right)\right)$. By Lemma 3.13, $\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$ is a convex subgroup of $A \cap B$. To show that $\left(A^{*}(A \cap B)\right) /\left(A^{*}\left(A \cap B^{*}\right)\right) \cong(A \cap B) /\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)$, let $D=(A \cap B) /\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)$ and define $f: A^{*}(A \cap B) \rightarrow D$ by

$$
f(a c)=c\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right) \quad \text { for all } a \in A^{*} \text { and } c \in A \cap B
$$

Let $a_{1}, a_{2} \in A^{*}$ and $c_{1}, c_{2} \in(A \cap B)$ be such that $a_{1} c_{1}=a_{2} c_{2}$.
If $c_{1}=0$, then we are done. Assume that $c_{1} \neq 0$. Then $\frac{a_{1}}{a_{2}}=\frac{1}{a_{2}}\left(a_{1} c_{1}\right) \frac{1}{c_{1}}=$ $\frac{1}{a_{2}}\left(a_{2} c_{2}\right) \frac{1}{c_{1}}=\frac{c_{2}}{c_{1}} \in A^{*} \cap(A \cap B)=A^{*} \cap B \subseteq\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$, so $\frac{c_{2}}{c_{1}} \in\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. Hence $c_{1}\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)=c_{2}\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)$. Therefore f is well-defined. Clearly, f is an epimorphism.

Next, we show that $\operatorname{ker} f=A^{*}\left(A \cap B^{*}\right)$. Let $x \in \operatorname{ker} f$. Then $x \in A^{*}(A \cap B)$ and $f(x)=\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. Thus $x=a b$ for some $a \in A^{*}$ and $b \in A \cap B$, so $b\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)=\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. Hence $b \in\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. Thus $b=b_{1} b_{2}$ for some $b_{1} \in A^{*} \cap B$ and $b_{2} \in A \cap B^{*}$. So we have $x=a b=a\left(b_{1} b_{2}\right)=\left(a b_{1}\right) b_{2}$ $\in A^{*}\left(A \cap B^{*}\right)$. Hence $\operatorname{ker} f \subseteq A^{*}\left(A \cap B^{*}\right)$. Let $y \in A^{*}\left(A \cap B^{*}\right)$. Then $y=y_{1} y_{2}$ for some $y \in A^{*}$ and $y_{2} \in A \cap B^{*}$. Since $A \cap B^{*} \subseteq\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$, it follows that $y_{2} \in\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. Then $y_{2}\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)=\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. Since $A \cap B^{*} \subseteq A \cap B$, we have $y_{2} \in A \cap B$. Hence $f(y)=f\left(y_{1} y_{2}\right)=y_{2}\left(\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)\right)$ $=\left(A^{*} \cap B\right)\left(A \cap B^{*}\right)$. So $y \in \operatorname{ker} f$. Thus $A^{*}\left(A \cap B^{*}\right) \subseteq \operatorname{ker} f$. Therefore, we have $\operatorname{ker} f=A^{*}\left(A \cap B^{*}\right)$. By Theorem 3.6, $\left(A^{*}(A \cap B)\right) /\left(A^{*}\left(A \cap B^{*}\right)\right) \cong D$. Similarly, we have $\left(B^{*}(A \cap B)\right) /\left(B^{*}\left(A^{*} \cap B\right)\right) \cong D$. Hence

$$
\left(A^{*}(A \cap B)\right) /\left(A^{*}\left(A \cap B^{*}\right)\right) \cong\left(B^{*}(A \cap B)\right) /\left(B^{*}\left(A^{*} \cap B\right)\right)
$$

Definition 3.15. Let K be a semifield. A strictly finite subconvex series in K is a chain of subsemifields of K, i.e., $K=K_{0} \triangleright K_{1} \triangleright \cdots \triangleright K_{n}$ such that K_{i+1} is a convex subgroup of K_{i} for all $0 \leq i<n$ and $K_{l} \neq K_{j}$ for all $l \neq j$ and $l, j \in\{0,1, \ldots, n\}$.

The factors of the series are the quotient semifields K_{i} / K_{i+1}. Moreover, the length of the series is the number of nonidentity factors.

Definition 3.16. Let $C: K=K_{0} \triangleright K_{1} \triangleright \cdots \triangleright K_{n}$ and $C^{\prime}: K=K_{0}^{\prime} \triangleright K_{1}^{\prime} \triangleright \cdots \triangleright K_{m}^{\prime}$ be two strictly finite subconvex series in a semifield K. Then C^{\prime} is said to be a refinement of C if every term of C appears in C^{\prime}. Moreover, if $C \neq C^{\prime}$, then C^{\prime} is a proper refinement of C.

Definition 3.17. A strictly finite subconvex series in a semifield K such that $K: K=K_{0} \triangleright K_{1} \triangleright \cdots \triangleright K_{n}=\{1\}$ is called a composition series if it has no proper refinement.

Two strictly finite subconvex series C and C^{\prime} in a semifield K are equivalent if there is a 1-1 correspondence between the nontrivial factors of C and the nontrivial factors of C^{\prime} such that corresponding factors are isomorphic semifields.

Remark 3.18. If C is a composition series of a semifield K, then any refinements of C are equivalent to C.

Theorem 3.19. Any two strictly finite subconvex series in a semifield have refinements that are all equivalent.
Proof. Let K be a semifield, $K=K_{0} \triangleright K_{1} \triangleright \ldots \triangleright K_{n} \triangleright K_{n} \overbrace{1}=\{1\}$ and $K=L_{0} \triangleright L_{1} \triangleright \cdot \square L_{m} \triangleright L_{m+1}=\{1\}$ betwostrictly finite subconvex series in K. For $0 \leq i \leq n$, we have $K_{i}=K_{i+1}\left(K_{i} \cap L_{0}\right) \triangleright K_{i+1}\left(K_{i} \cap L_{1}\right) \triangleright \cdots \triangleright K_{i+1}\left(K_{i} \cap L_{m}\right) \triangleright$ $K_{i+1}\left(K_{i} \cap L_{m+1}\right)=K_{i+1}$. Let $K_{(i, j)}=K_{i+1}\left(K_{i} \cap L_{j}\right) \quad$ for all $0 \leq i \leq n$ and $0 \leq j \leq m$. Then we obtain a refinement $M: K=K_{0} \triangleright K_{(0,1)} \triangleright K_{(0,2)} \triangleright \cdots \triangleright$ $K_{(0, m)} \triangleright K_{1} \triangleright K_{(1,1)} \triangleright \cdots \triangleright K_{(1, m)} \triangleright K_{2} \triangleright \cdots \triangleright K_{n} \triangleright K_{(n, 1)} \triangleright \cdots \triangleright K_{(n, m)} \triangleright\{1\}$. Similarly, let $L_{(i, j)}=L_{j+1}\left(L_{j} \cap K_{i}\right)$ for all $0 \leq i \leq n$ and $0 \leq j \leq m$. Then we have $N: K=L_{0} \triangleright L_{(1,0)} \triangleright L_{(2,0)} \triangleright \cdots \triangleright L_{(n, 0)} \triangleright L_{1} \triangleright L_{(1,1)} \triangleright \cdots \triangleright L_{(n, 1)} \triangleright L_{2} \triangleright \cdots \triangleright$
$L_{m} \triangleright L_{(1, m)} \triangleright \cdots \triangleright L_{(n, m)} \triangleright\{1\}$. By Theorem 3.14, for $0 \leq i<n$ and $0 \leq j<m$,

$$
\begin{aligned}
K_{(i, j)} / K_{(i, j+1)} & =K_{i+1}\left(K_{i} \cap L_{j}\right) / K_{i+1}\left(K_{i} \cap L j+1\right) \\
& \cong L_{j+1}\left(L_{j} \cap K_{i}\right) / L_{j+1}\left(L_{j} \cap K_{i+1}\right) \\
& =L_{(i, j)} / L_{(i+1, j)}
\end{aligned}
$$

This implies that $K_{(i, j)}=K_{(i, j+1)}$ if and only if $L_{(i, j)}=L_{(i+1, j)}$. Let M_{1} and N_{1} be strictly finite subconvex series in K. Assume further that M_{1} and N_{1} are obtained from M and N, respectively, by dropping every term which is equal to its predecessor. Then M_{1} and N_{1} are equivalent.

Theorem 3.20. Let K be a semifield which has a composition series. Then any two composition series are equivalent.

Proof. Let C and C^{\prime} be two composition series in K. By Theorem 3.19, C and C^{\prime} have refinements, say C_{1} and C_{1}^{\prime}, respectively, and $C_{1} \cong C_{1}^{\prime}$. By Remark 3.18, C_{1} is equivalent to C and C_{1}^{\prime} is equivalent to C^{\prime}. Hence C and C^{\prime} are equivalent.

CHAPTER IV

VECTOR SPACES OVER A SEMIFIELD

AND LINEAR TRANSFORMATIONS

In this chapter, we divide the chapter into two parts. First part, we consider semifields satisfying some property and study vector spaces over a semifield. In the second part, we are interested in linear transformations of vector spaces over a semifield.

4.1 Vector Spaces over a Semifield

Definition 4.1.1. Let K be a semifield. A vector space M over K is an abelian additive group with identity 0 , for which there is a function $(k, m) \mapsto k m$ from $K \times M$ into M such that for all $k_{1}, k_{2} \in K$ and $m_{1}, m_{2} \in M$,
(1) $\left(k_{1} k_{2}\right) m_{1}=k_{1}\left(k_{2} m_{1}\right)$,
(2) $k_{1}\left(m_{1}+m_{2}\right)=k_{1} m_{1}+k_{1} m_{2}$,
(4)

Remark 4.1.2. If M is a vector space over a semifield K, then clearly the following statements hold:
(1) $0 m=0$ for all $m \in M$.
(2) $k 0=0$ for all $k \in K$.
(3) $-(k m)=k(-m)$ for all $k \in K$ and $m \in M$.

Definition 4.1.3. Let M be a vector space over a semifield K. A subspace of M is a subset of M which is, itself, a vector space over K with the operations of addition and scalar multiplication of M.

Example 4.1.4. (1) \mathbb{Q}^{n} is a vector space over \mathbb{Q}_{0}^{+}for all $n \in \mathbb{N}$.
(2) \mathbb{R}^{n} is a vector space over \mathbb{R}_{0}^{+}for all $n \in \mathbb{N}$.
(3) $\mathbb{Q} \times \mathbb{Q}$ is a vector space over \mathbb{Q}_{0}^{+}.
(4) $\mathbb{Q} \times \mathbb{R}$ is a vector space over \mathbb{Q}_{0}^{+}.

Theorem 4.1.5. Let N be a nonempty subset of a vector space M over a semifield K. Then the following statements are equivalent.
(1) N is a subspace of M.
(2) If $n_{1}, n_{2} \in N$ and $k \in K$, then $n_{1}+n_{2}, k n_{1} \in N$.
(3) If $n_{1}, n_{2} \in N$ and $k_{1}, k_{2} \in K$, then $k_{1} n_{1}+k_{2} n_{2} \in N$.
(4) If $n_{1}, n_{2} \in N$ and $k \in K$, then $k n_{1}+n_{2} \in N$.

Theorem 4.1.6. The intersection of any collection of subspaces of a vector space M over a semifield K is also a subspace of M.

Definition 4.1.7. Let M be avector space over a semifield K. An element $m \in M$ is a linear combination of $m_{1}, m_{2}, \ldots, m_{n} \in M$ if $m=\alpha_{1} m_{1}+\cdots+\alpha_{n} m_{n}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in K$. We denote $\alpha_{1} m_{1}+\cdots+\alpha_{n} m_{n}$ by $\sum_{i=1}^{n} \alpha_{i} m_{i}$ and we simply write $\sum_{u \in\left\{m_{1}, \ldots, m_{n}\right\}} \alpha_{u} u$.

Next, we simply denote a linear combination of finite elements in a set B, $\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}$ where $\alpha_{1}, \ldots, \alpha_{n} \in K, b_{1}, \ldots, b_{n} \in B$, by $\sum_{b \in B} \alpha_{b} b$.

Definition 4.1.8. Let M be a vector space over a semifield K and S a subset of M. Moreover, let $\left\{N_{i} \mid i \in I\right\}$ be the family of all subspaces of M which contain S. Then $\bigcap_{i \in I} N_{i}$ is the subspace of M generated by S and $\langle S\rangle$ is the subgroup of M generated by $K S=\{k s \mid k \in K$ and $s \in S\}$.

If $\langle S\rangle=M$, then we say that S spans M.
For $s_{1}, \ldots, s_{n} \in S$, let $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ denote $\left\langle\left\{s_{1}, \ldots, s_{n}\right\}\right\rangle$ and we simply call it the subspace of M generated by s_{1}, \ldots, s_{n}

We denote the number of elements of S by $|S|$.

Definition 4.1.9. A subset S of M is linearly independent if it satisfies one of the following conditions:
(1) $S=\emptyset$,
(2) $|S|=1$ and $S \neq\{0\}$,
(3) $|S|>1$ and $s \notin\langle S \backslash\{s\}\rangle$ for all $s \in S$.

Moreover, S is said to be a linearly dependent set if S is not linearly independent.

Remark 4.1.10. If S is a subset of M and $0 \in S$, then S is linearly dependent.
Definition 4.1.11. Let S be a subset of a vector space $^{2} \sim$ ger a semifield. Then S is a basis of M if S is a linearly independent set which spans M. If $M=\{0\}$, then we have \emptyset is a basis of M. 6 loon / ollc ble

Next, we consider a semifield K which satisfies the following property :
$(*):$ for all $\alpha, \beta \in K$ there exists a $\gamma \in K$ such that $\alpha=\beta+\gamma$ or $\beta=\alpha+\gamma$.

Remark 4.1.12. Let M be a vector space over a semifield K which is not a field and satisfies the property $(*)$. Then the following statements hold:
(1) For all $\alpha, \beta \in K$ and $u \in M$ there exists a $\gamma \in K$ such that $\alpha u-\beta u=\gamma u$ or $\alpha u-\beta u=-\gamma u$.
(2) If B is a subset of M which spans M, then, for all $m \in M, m=\sum_{b \in B} \alpha_{b} \varepsilon_{b} b$ where $\alpha_{b} \in K$ and $\varepsilon_{b} b \in\{b,-b\}$ for all $n \in B$.
(3) for all $\alpha, \beta \in K$ and $u \in M$ there exists a $\gamma \in K$ such that $\gamma \varepsilon u=\alpha \varepsilon_{1} u+\alpha \varepsilon_{2} u$ where $\varepsilon u, \varepsilon_{i} u \in\{u,-u\}$ for all $i \in\{1,2\}$. Moreover, if $\alpha \neq \beta$ and $u \neq 0$, then $\gamma \neq 0$.
(4) If B is a basis of $M \neq\{0\}$, then every element m of M can be written uniquely as $m=\sum_{b \in B} \alpha_{b} \varepsilon_{b} b$, that is, if $m=\sum_{b \in B} \alpha_{b} \varepsilon_{b} b=\sum_{b \in B} \beta_{b} \bar{\varepsilon}_{b} b$, then $\alpha_{b}=\beta_{b}$ and $\varepsilon_{b} b=\bar{\varepsilon}_{b} b$ for all $b \in B$.

Proof. (1) Let $\alpha, \beta \in K$ and $u \in M$. Since K satisfies the property ($*$), we obtain that $\alpha=\beta+\gamma$ or $\beta=\alpha+\gamma$ for some $\gamma \in K$. If $\alpha=\beta+\gamma$, then $\alpha u-\beta u=$ $(\beta+\gamma) u-\beta u=\gamma u$. Otherwise, $\beta=\alpha+\gamma$. Then $\alpha u-\beta u=\alpha u-(\alpha+\gamma) u=-\gamma u$.
(2) Let $m \in M$. Since B spans M, we have $m=\sum_{b \in B} \alpha_{b} b+\sum_{b \in B} \beta_{b}(-b)$ where $\alpha_{b}, \beta_{b} \in K$ for all $b \bar{\in} B$. Then $m=\sum_{b \in B}\left(\alpha_{b} b-\beta_{b} b\right)$. By (1), for all $b \in B$ there exists $\gamma_{b} \in K$ such that $\alpha_{b} b-\beta_{b} b=\gamma_{b} b$ or $\alpha_{b} b-\beta_{b} b=-\gamma_{b} b$, so $\alpha_{b} b-\beta_{b} b=\gamma_{b} b$ or $\gamma_{b}(-b)$. Hence $\sigma_{b}=\sum_{b \in B} \gamma_{b} \varepsilon_{b} b$ where $\varepsilon_{b} b \in\{b,-b\}$ for all $b \in B$.
(3) Let $\alpha, \beta \in K$ and $u \in M$.

If $\varepsilon_{1} u=u$ and $\varepsilon_{2} u=-u$, then done by (1).
If $\varepsilon_{1}=-u$ and $\varepsilon_{2} u=u$, then also done by (1).
If $\varepsilon_{1} u=-u=\varepsilon_{2} u$, then $\alpha \varepsilon_{1} u+\beta \varepsilon_{2} u=\alpha(-u)+\beta(-u)=(\alpha+\beta)(-u)$, choose $\gamma=\alpha+\beta$.

Hence there exists a $\gamma \in K$ such that $\gamma \varepsilon u=\alpha \varepsilon_{1} u+\beta \varepsilon_{2} u$ where $\varepsilon u \in\{u,-u\}$.

Next, assume that $\alpha \neq \beta$ and $u \neq 0$. Suppose that $\gamma=0$.
$\underline{\text { Case } 1}$ Let $\varepsilon_{1} u=u=\varepsilon_{2} u$. Then $0=\alpha u+\beta u=(\alpha+\beta) u$, so $\alpha+\beta=0$, this is contradiction.

Case 2 Let $\varepsilon_{1} u=u$ and $\varepsilon_{2} u=-u$. Then $0=\alpha u+\beta(-u)$. Since K satisfies the property $(*)$, there exists a $\eta \in K$ such that $\alpha=\beta+\eta$ or $\beta=\alpha+\eta$.

Case 2.1 Assume that $\alpha=\beta+\eta$, then $0=\beta u+\eta u+\beta(-u)=\eta u$, so $\eta=0$, this implies that $\alpha=\beta$, contradiction.

Case 2.2 Assume that $\beta=\alpha+\eta$. Then $0=\alpha u+\alpha(-u)+\eta(-u)=\eta(-u)$, so $\eta=0$. This implies that $\alpha=\beta$, contradiction.

$\underline{\text { Case } 3}$ Let $\varepsilon_{1} u=-u$ and $\varepsilon_{2} u=u$. Similar Case 2.

$\underline{\text { Case } 4}$ Let $\varepsilon_{1} u=-u=\varepsilon_{2} u$. Then $0=\alpha(-u)+\beta(-u)=(\alpha+\beta)(-u)$. This implies that $\alpha+\beta=0$, contradiction.
(4) Let $m \in M$ and $\sum_{b \in B} \alpha_{b} \varepsilon_{b} b=m=\sum_{b \in B} \beta_{b} \bar{\varepsilon}_{b} b$ where $\alpha_{b}, \beta_{b} \in K, \varepsilon_{b} b \in\{b,-b\}$ and $\bar{\varepsilon}_{b} b \in\{b,-b\}$ for all $b \in B$. To show that for all $b \in B, \alpha_{b}=\beta_{b}$ and $\varepsilon_{b} b=\bar{\varepsilon}_{b} b$ if $\alpha_{b} \neq 0$. First, suppose that there exists $b_{0} \in B$ such that $\alpha_{b_{0}} \neq \beta_{b_{0}}$. Then $\sum_{b \in B} \alpha_{b} \varepsilon_{b} b-\sum_{b \in B} \beta_{b} \bar{\varepsilon}_{b} b=0$. So $\sum_{b \in B} \alpha_{b} \varepsilon_{b} b+\sum_{b \in B} \beta_{b} \varepsilon_{b}^{\prime} b=0$ where $\varepsilon_{b}^{\prime} b=-\bar{\varepsilon}_{b} b$. By (3), we have $\sum_{b \in B} \eta_{b} \overline{\bar{\varepsilon}}_{b} b=0$ where $\eta_{b} \in K$ and $\overline{\bar{\varepsilon}}_{b} b_{b} \in\{b,-b\}$. Since $\alpha_{b_{0}} \neq \beta_{b_{0}}$, we have $\eta_{b_{0}} \neq 0$.
If $\bar{\varepsilon}_{b_{0}} b_{0}=b_{0}$, then we have $b_{0}=-\left(\sum_{\substack{b \in B \\ b \neq b_{0}}} \frac{\eta_{b}}{\eta_{b_{0}}} \bar{\varepsilon}_{b} b\right) \in\left\langle B \backslash\left\{b_{0}\right\}\right\rangle$, a contradiction. If $\overline{\bar{\varepsilon}}_{b_{0}} b_{0}=-b_{0}$, then $b_{0} \xlongequal[\substack{b \neq B \\ b \neq b_{0}}]{ } \frac{\eta_{b}}{\eta_{b}} \bar{\varepsilon}_{b} b \in\left\langle B \backslash\left\{b_{0}\right\}\right\rangle$, a contradiction. $\underbrace{b \neq b_{0}}\}$
Hence $\alpha_{b}=\beta_{b}$ for all $b \in B$. Next, suppose that there exist a $b_{k} \in B$ such that $\varepsilon_{b_{k}} b_{k} \neq \bar{\varepsilon}_{b_{k}} b_{k}$. Without loss of generality, assume that $\varepsilon_{b_{k}} b_{k}=b_{k}$ and $\bar{\varepsilon}_{b_{k}} b_{k}=-b_{k}$. Then $\sum_{\substack{b \in B \\ b \neq b_{k}}} \alpha_{b} \varepsilon_{b} b+\alpha_{b_{k}} b_{k}=\sum_{\substack{b \in B \\ b \neq b_{k}}} \beta_{b} \bar{\varepsilon}_{b_{k}} b_{k}-\beta_{b_{k}} b_{k}$, so $\left(\alpha_{b_{k}}+\beta_{b_{k}}\right) b_{k}=\sum_{\substack{b \neq B \\ b \neq b_{k}}} \beta_{b} \bar{\varepsilon}_{b} b-\sum_{\substack{b \in B \\ b \neq b_{k}}} \alpha_{b} \varepsilon_{b} b$. Thus $b_{k}=\sum_{\substack{b \in B \\ b \neq b_{k}}} \frac{\beta_{b}}{\alpha_{b_{k}}+\beta_{b_{k}}} \bar{\varepsilon}_{b} b-\sum_{\substack{b \in B \\ b \neq b_{k}}} \frac{\alpha_{b}}{\alpha_{b_{k}}+\beta_{b_{k}}} \varepsilon_{b} b \in\left\langle B \backslash\left\{b_{k}\right\}\right\rangle$, a contradiction. Hence $\varepsilon_{b} b=\bar{\varepsilon}_{b} b$ for all $b \in B$.

Example 4.1.13. (1) \mathbb{Q}_{0}^{+}and \mathbb{R}_{0}^{+}are semifields satisfying the property $(*)$.
(2) $\left(\mathbb{Q}_{0}^{+}, *, \cdot\right)$ and $(\mathbb{Z} \cup\{\varepsilon\}, \oplus, \odot)$ in Example 2.4 are semifields satisfying the property $(*)$.
(3) $\left(\mathbb{Q}^{+} \times \mathbb{Q}^{+}\right) \cup\{(0,0)\}$ is a semifield but not satisfies the property $(*)$, since $(1,2) \neq(2,1)+(x, y)$ and $(2,1) \neq(1,2)+(x, y)$ for all $x, y \in \mathbb{Q}_{0}^{+}$.

From now on, we let $K^{(*)}$ denote a semifield K which satisfies the property $(*)$.

Theorem 4.1.14. Let M be a vector space over a semifield $K^{(*)}$. If A is a finite basis of M, then B is a linearly dependent set for all subsets B of M such that $|B|>|A|$.

Proof. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$. Since $|B|>|A|$, we let $b_{1}, \ldots, b_{n}, b_{n+1}$ be elements of B which are all distinct. Since $|B|>|A|$, there exists $b_{i_{1}} \in B$ such that $b_{i_{1}} \notin A$. Since A spans M, we have $b_{i_{1}}=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k} a_{k}$ where $\alpha_{k} \in K^{(*)}$ and $\varepsilon_{k} a_{k} \in\left\{a_{k},-a_{k}\right\}$ for all $k \in\{1, \ldots, n\}$. If $\alpha_{k}=0$ for all k, then $b_{i_{1}}=0$, so B is linearly dependent.

Assume that $\alpha_{j} \neq 0$ for some $j \in\{1, \ldots, n\}$.
If $\varepsilon_{j} a_{j}=a_{j}$, then $a_{j}=\frac{1}{\alpha_{j}} b_{i_{1}}-\frac{\alpha_{1}}{\alpha_{j}} a_{1}-\cdots-\frac{\alpha_{j-1}}{\alpha_{j}} a_{j-1}-\frac{\alpha_{j+1}}{\alpha_{j}} a_{j+1}-\cdots-\frac{\alpha_{n}}{\alpha_{j}} a_{n}$ $\in\left\langle\left(A \cup\left\{b_{i_{1}}\right\}\right) \backslash\left\{a_{j}\right\}\right\rangle$.

If $\varepsilon_{j} a_{j}=-a_{j}$, then $a_{j}=-\frac{1}{\alpha_{g}} b_{i_{1}}+\frac{\alpha_{1}}{\alpha_{j}} a_{1}+\cdots+\frac{\alpha_{j-1}}{\alpha_{j}} a_{j-1}+\frac{\alpha_{j+1}}{\alpha_{j}} a_{j+1}+\cdots+\frac{\alpha_{n}}{\alpha_{j}} a_{n}$ $\in\left\langle\left(A \cup\left\{b_{i_{1}}\right\}\right) P\left\{a_{j}\right\}\right\rangle$. Hence we have
จุหาลงกจณนมมมาลิทยาลัย

Case 1 For all $b_{i} \in B \backslash\left\{b_{i_{1}}\right\}, b_{i} \in A$, i.e., $|B|=|A|+1$. By (4.1) implies that $M=\langle A\rangle=\left\langle\left(A \cup\left\{b_{i_{1}}\right\}\right) \backslash\left\{a_{j}\right\}\right\rangle$. But $a_{j} \in B$ and we have $a_{j} \in\left\langle B \backslash\left\{a_{j}\right\}\right\rangle$, so B is linearly dependent.

Case 2 There exists $b_{i_{2}} \in B \backslash\left\{b_{i_{1}}\right\}$ such that $b_{i_{2}} \notin A$. Since A spans M, we have $b_{i_{2}}=\sum_{k=1}^{n} \beta_{k} \varepsilon_{k} a_{k}$ where $\beta_{k} \in K^{(*)}$ and $\varepsilon_{k} a_{k} \in\left\{a_{k},-a_{k}\right\}$ for all $k \in\{1, \ldots, n\}$. If
$\beta_{k}=0$ for all k, then $b_{i_{2}}=0$, so B is linearly dependent.
Assume that $\beta_{r} \neq 0$ for some $r \in\{1, \ldots, n\}$. By (4.1), $a_{j}=\sum_{\substack{s=1 \\ s \neq j}}^{n} \gamma_{s} \varepsilon_{s} a_{s}+\gamma \varepsilon b_{i_{1}}$ where $\gamma, \gamma_{s} \in K^{(*)}$ and $\varepsilon_{s} a_{s} \in\left\{a_{s},-a_{s}\right\}, \varepsilon b_{i_{1}} \in\left\{b_{i_{1}},-b_{i_{1}}\right\}$ for all $s \in\{1, \ldots, n\} \backslash\{j\}$. Since A is linearly independent, $\gamma \neq 0$.

Case 2.1 Let $r=j$. Then

$$
\begin{aligned}
b_{i_{2}} & =\beta_{1} \varepsilon_{1} a_{1}+\cdots+\beta_{r} \varepsilon_{r} a_{r}+\cdots+\beta_{n} \varepsilon_{n} a_{n} \\
& =\beta_{1} \varepsilon_{1} a_{1}+\cdots+\beta_{j} \varepsilon_{j}\left(\sum_{\substack{s=1 \\
s \neq j}}^{n} \gamma_{s} \varepsilon_{s} a_{s}+\gamma \varepsilon b_{i_{1}}\right)+\cdots+\beta_{n} \varepsilon_{n} a_{n} \\
& =\sum_{\substack{s=1 \\
s \neq j}}^{n} \eta_{s} \bar{\varepsilon}_{s} a_{s}+\eta \bar{\varepsilon} b_{i_{1}} \xlongequal{\square}
\end{aligned}
$$

where $\eta_{s}, \eta \in K^{(*)}, \bar{\varepsilon}_{s} a_{s} \in\left\{a_{s},-\bar{a}_{s}\right\}$, and $\bar{\varepsilon} b_{i_{1}} \in\left\{b_{i_{1}},-b_{i_{1}}\right\}$ for all $i \in\{1, \ldots, n\} \backslash\{j\}$. Since $\beta_{r} \neq 0$ and $\gamma \neq 0$, we have $\eta \neq 0$. If $\eta_{s}=0$ for all $s \neq j$, then $b_{i_{2}} \equiv \eta \bar{\varepsilon} b_{i_{1}} \in\left\langle B \backslash\left\{b_{i_{2}}\right\}\right\rangle$, so B is linearly dependent. Now, we assume that there exists $l \neq r$ such that $\eta_{l} \neq 0$.

If $\bar{\varepsilon}_{l} a_{l}=a_{l}$, then

$$
a_{l}=\frac{1}{\eta_{l}} b_{i_{2}}-\frac{\eta}{\eta_{l}} \bar{\varepsilon} b_{i_{1}}-\sum_{\substack{s=1 \\ \text { sit }}}^{n} \frac{\eta_{s}}{\eta_{l}} \bar{\varepsilon}_{s} a_{s} \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j}, a_{l}\right\}\right\rangle .
$$

If $\bar{\varepsilon}_{l} a_{l}=-a_{l}$, then $6 \rightarrow 9$ S\&

$$
{\underset{q}{l}}^{a_{l}}=\frac{1}{\eta_{l}}\left(-b_{i_{2}}\right)+\frac{\eta}{\eta_{l}} \bar{\varepsilon} b_{i_{1}} \underset{\substack{ \\\hline \\ s \notin\{j, l\}}}{n \sigma} \frac{\eta_{s}}{\eta_{l}} \bar{\varepsilon}_{s} a_{s} \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \mid\left\{a_{j}, a_{l}\right\}\right\rangle .
$$

Hence $\quad a_{l} \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j}, a_{l}\right\}\right\rangle$.
Case 2.2 Let $r \neq j$. Without loss of generality, we assume that $r<j$. Then $b_{i_{2}}=\beta_{1} \varepsilon_{1} a_{1}+\cdots+\beta_{r} \varepsilon_{r} a_{r}+\cdots+\beta_{j} \varepsilon_{j}\left(\sum_{\substack{s=1 \\ s \neq j}}^{n} \gamma_{s} \varepsilon_{s} a_{s}+\gamma \varepsilon b_{i_{1}}\right)+\cdots+\beta_{n} \varepsilon_{n} a_{n}$. Since K satisfies the property $(*)$, we have $b_{i_{2}}=\eta_{1} \overline{\bar{\varepsilon}}_{1} a_{1}+\cdots+\eta_{r} \overline{\bar{\varepsilon}}_{r} a_{r}+\cdots+\eta_{j-1} \overline{\bar{\varepsilon}}_{j-1} a_{j-1}+$ $\eta_{j+1} \overline{\bar{\varepsilon}}_{j+1} a_{j+1}+\cdots+\eta_{n} \overline{\bar{\varepsilon}}_{n} a_{n}+\eta \overline{\bar{\varepsilon}} b_{i_{1}} \quad$ where $\eta_{i} \in K^{(*)}, \eta=\beta_{j} \gamma, \overline{\bar{\varepsilon}}_{s} a_{s} \in\left\{a_{s},-a_{s}\right\}$ and
$\overline{\bar{\varepsilon}} b_{i_{1}} \in\left\{b_{i_{1}},-b_{i_{1}}\right\}$ for all $s \neq j$. So $b_{i_{2}}=\sum_{\substack{s=1 \\ s \neq j}}^{n} \eta_{s} \overline{\bar{\varepsilon}}_{s} a_{s}+\eta \overline{\bar{\varepsilon}} b_{i_{1}}$. If $\eta_{s}=0$ for all $s \neq j$, then $\eta \neq 0$ and $b_{i_{2}}=\eta \overline{\bar{\varepsilon}} b_{i_{1}} \in\left\langle B \backslash\left\{b_{i_{2}}\right\}\right\rangle$, so B is linearly dependent. Assume that there exists $v \neq r$ such that $\eta_{v} \neq 0$.

If $\overline{\bar{\varepsilon}}_{v} a_{v}=a_{v}$, then

$$
a_{v}=\frac{1}{\eta_{v}} b_{i_{2}}-\left(\sum_{\substack{s=1 \\ s \neq r}}^{n} \frac{\eta_{s}}{\eta_{v}} \bar{\varepsilon}_{s} a_{s}\right)-\frac{\eta}{\eta_{v}} \overline{\bar{\varepsilon}} b_{i_{1}} \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j}, a_{v}\right\}\right\rangle .
$$

If $\overline{\bar{\varepsilon}}_{v} a_{v}=-a_{v}$, then

$$
a_{v}=\frac{1}{\eta_{v}}\left(-b_{i_{2}}\right)+\left(\sum_{\substack{s=1 \\ s \neq r}}^{n} \frac{\eta_{s}}{\eta_{v}} \bar{\varepsilon}_{s} a_{s}\right)+\frac{\eta}{\eta_{v}} \bar{\varepsilon} b_{i_{1}} \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j}, a_{v}\right\}\right\rangle .
$$

Hence $\quad a_{v} \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j}, \overline{a_{v}}\right\}\right\rangle$.
By Case 2.1 and Case 2.2, we obtain $\left.a_{k} \in\left\langle A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j}, a_{k}\right\}\right\rangle$ for some $k \neq j$. Apply this method Case 2 to other element of B.
If $|B \backslash A|=m<n$, there exists an element x of $A \cap B$ such that $x \in\langle A\rangle=$ $\left\langle\left(A \cup\left\{b_{i_{1}}, \ldots, b_{i_{m}}\right\}\right) \backslash\left\{a_{j_{1}}, \ldots, a_{j_{m}}, x\right\}\right\rangle=\langle B \backslash\{x\}\rangle$, so B is linearly dependent. If $|B \backslash A| \geq n$, then we obtain

$$
\begin{aligned}
a_{j_{1}} & \in\left\langle\left(A \cup\left\{b_{i_{1}}\right\}\right) \backslash\left\{a_{j_{1}}\right\}\right\rangle, \\
a_{j_{2}} & \left.\in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}\right\}\right) \backslash\left\{a_{j_{1}}\right\} a_{j_{2}}\right\}\right\rangle, j_{1} \neq j_{2}, \\
a_{j_{3}} & \in\left\langle\left(A \cup\left\{b_{i_{1}}, b_{i_{2}}, b_{i_{3}}\right\}\right) \backslash\left\{a_{j_{1}}, a_{j_{2}}, a_{j_{3}}\right\}\right\rangle, j_{1}, j_{2} \text { and } j_{3} \text { are distinct, } \\
& \vdots \\
a_{j_{n}} & \in\left\langle\left(A \cup\left\{b_{i_{1}}, \ldots, b_{i_{n}}\right\}\right) \backslash\left\{a_{j_{1}}, \ldots, a_{j_{n}}\right\}\right\rangle=\left\langle b_{i_{1}}, \ldots, b_{i_{n}}\right\rangle, j_{1}, \ldots, j_{n} \text { are distinct. }
\end{aligned}
$$

This implies that $M=\left\langle b_{i_{1}}, \ldots, b_{i_{n}}\right\rangle$. Since $b_{i_{n+1}} \in B$ and $b_{i_{n+1}} \in\left\langle B \backslash\left\{b_{i_{n+1}}\right\}\right\rangle$, we have B is linearly dependent.

Theorem 4.1.15. Let A and B be finite subsets of a vector space M over a semifield $K^{(*)}$. If they are bases of M, then $|A|=|B|$.

Proof. This follows from Theorem 4.1.14.

Theorem 4.1.16. Let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a maximal linearly independent subset of a vector space M over a semifield $K^{(*)}$. Then B is a basis of M.

Proof. Since B is linearly independent, $b_{i} \notin\left\langle B \backslash\left\{b_{i}\right\}\right\rangle$ for all $i \in\{1, \ldots, n\}$.
Suppose that $\langle B\rangle \subsetneq M$. Then there exists an $m \in M \backslash\langle B\rangle$. Claim that $B \cup\{m\}$ is a linearly independent set. Suppose not. Then there exists a $b \in\langle B \cup\{m\} \backslash\{b\}\rangle$. If $b=m$, then $m \in\langle B\rangle$, this contradicts that $m \in M \backslash\langle B\rangle$. Assume that $b=b_{j}$ for some $j \in\{1, \ldots, n\}$. Since $b_{j} \in\left\langle B \cup\{m\} \backslash\left\{b_{j}\right\}\right\rangle$, we have $b_{j}=\sum_{\substack{i=1 \\ i \neq j}}^{n} \alpha_{i} \varepsilon_{i} b_{i}+\alpha \varepsilon m$ where $\alpha_{i}, \alpha \in K^{(*)}, \varepsilon_{i} b_{i} \in\left\{b_{i},-b_{i}\right\}$ and $\varepsilon m \in\{m,-m\}$. Since $m \in M \backslash\langle B\rangle$, we have $\alpha \neq 0$. If $\varepsilon m=m$, then $m=-\frac{1}{\alpha} \sum_{\substack{i=1 \\ i \neq j}}^{n}\left(\alpha_{i} \varepsilon_{i} b_{i}+\frac{1}{\alpha} b_{j} \in\langle B\rangle\right.$ which is a contradiction. Otherwise, if $\varepsilon m=-m$, then $m=\frac{1}{\alpha} \sum_{\substack{i=1 \\ i \neq j}}^{n} \alpha_{i} \varepsilon_{i} b_{i}-\frac{1}{\alpha} b_{j} \in\langle B\rangle$ which is, again, contradiction. Hence $B \cup\{m\}$ is a linearly independent set. But $|B \cup\{m\}|>|B|$, this contradicts the maximality of B. Hence B spans M. Therefore, B is a basis of M.

Remark 4.1.17. Let M be a vector space over a semifield $K^{(*)}$ and B a linearly independent subset of M. If $m \in M \backslash\langle B\rangle$, then $B \bigoplus\{m\}$ is also linearly independent. Definition 4.1.18. Let $M \neq\{0\}$ be a vector space over a semifield $K^{(*)}$. Then M is said to be finite-dimensional if M has a finite basis./

The dimension of M, denoted $\operatorname{dim} M$, is the number of elements in a basis of M.

Example 4.1.19. (1) $\{1\}$ is a basis of \mathbb{Q} over \mathbb{Q}_{0}^{+}. Then $\operatorname{dim} \mathbb{Q}=1$.
(2) Let $e_{1}, \ldots, e_{n} \in \mathbb{Q}^{n}$ be defined by

$$
\begin{aligned}
e_{1} & =(1,0, \ldots, 0,0) \\
e_{2} & =(0,1, \ldots, 0,0) \\
& \vdots \\
e_{n} & =(0,0, \ldots, 0,1) .
\end{aligned}
$$

Then $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of the vector spaces \mathbb{Q}^{n} over the field \mathbb{Q}. In fact, by the definition of a vector space over a semifield, we also have that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of the vector space \mathbb{Q}^{n} over the semifield \mathbb{Q}_{0}^{+}, hence $\operatorname{dim} \mathbb{Q}^{n}=n$. Also, this fact is true if we replace \mathbb{Q} by \mathbb{R} and \mathbb{Q}_{0}^{+}by \mathbb{R}_{0}^{+}.

Theorem 4.1.20. Let M be a vector space over a semifield $K^{(*)}$ and S a linearly independent nonempty subset of M. Then there exists a subset B of M such that $S \subseteq B$ and B is a basis of M.

Proof. Let $\mathfrak{J}=\{C \subseteq M \mid C$ is linearly independent and $S \subseteq C\}$. Then $S \in \mathfrak{J}$. Recall that \subseteq is a partial order on \mathfrak{J}. Let \mathfrak{C} be a nonempty chain in \mathfrak{J} and $D=\bigcup_{C \in \mathbb{C}} C$. Since $S \subseteq C$ for all $C \in \mathfrak{C}$, we obtain that $S \subseteq D$. We claim that D is linearly independent. Suppose not. Then $D \neq \emptyset$ and let $x \in\langle D \backslash\{x\}\rangle$ where $x \in D$. Thus $x=\sum_{a \in D \backslash\{x\}} \alpha_{a} \varepsilon_{a} a$ where $\alpha_{a} \in K^{(*)}$ and $\varepsilon_{a} a \in\{a,-a\}$ for all $a \in D \backslash\{x\}$. Since \mathfrak{C} is a chain, there exists a $C_{0} \in \mathbb{C}$ such that $x, a \in C_{0}$ for all $a \in D \backslash\{x\}$. Thus $x \in\left\langle C_{0} \backslash\{x\}\right\rangle$, so C_{0} is linearly dependent. This is a contradiction. Hence D is linearly independent. Thus $D \in \mathfrak{J}$, so D is an upper bound of \mathfrak{C} in \mathfrak{J}. By Zorn's Lemma, \mathfrak{J} has a maximal element, say N. Then N is linearly independent and $S \subseteq N$.

Next, we show that N spans M. Suppose that $\langle N\rangle \subsetneq M$. Then there exists $u \in M \backslash\langle N\rangle$. By Remark 4.1.17, we have $N \cup\{u\}$ is linearly independent. But
$N \subsetneq N \cup\{u\}$ which contradicts the maximality of N. Hence N spans M. Therefore N is a basis of M and $S \subseteq N$.

Corollary 4.1.21. Every vector space M over a semifield $K^{(*)}$ has a basis.

Proof. If $M=\{0\}$, then \emptyset is a basis of M.
Assume that $M \neq\{0\}$. By Theorem 4.1.20, let S be a singleton set of nonzero element in M.

Theorem 4.1.22. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$. If N is a proper subspace of M, then N is finite-dimensional and $\operatorname{dim} N<\operatorname{dim} M$.

Proof. Let B be a basis of N. By Theorem 4.1.20, there exists a subset C of M such that $B \subseteq C$ and C is a basis of M. Since M is finite-dimensional, C is finite, so B is finite. If $|B|=|C|$, then $C=B$ and $M=\langle C\rangle=\langle B\rangle=N$ which is a contradiction.

Theorem 4.1.23. Let M be a vector space over a semifield $K^{(*)}$ and S a subset of M such that S spans M. Then there exists a subset B of S such that B is a basis of M.

Proof. Let $\mathfrak{J}=\{A \not A \subseteq S$ and A is linearly independent $\}$. Then $\emptyset \in \mathfrak{J}$. Let \subseteq be a partially order on \mathfrak{J}. Let \mathfrak{C} be a nonempty chain in \mathfrak{J} and $C=\bigcup_{A \in \mathcal{C}} A$. Since $A \subseteq S$ for all $A \in C$, we have $C \subseteq S$. We claim that C is dinearly independent. Supposenot. Then $C \neq \emptyset$ and let $x \in\langle C \backslash\{x\}\rangle$ where $x \in C$. Then $x=\sum_{a \in C \backslash\{x\}} \alpha_{a} \varepsilon_{a} a$ where $\alpha_{a} \in K^{(*)}$ and $\varepsilon_{a} a \in\{a,-a\}$ for all $a \in C \backslash\{x\}$. Since \mathfrak{C} is a chain, there exists an $A_{0} \in \mathfrak{C}$ such that $x, a \in A_{0}$ for all $a \in C \backslash\{x\}$. Thus $x \in\left\langle A_{0} \backslash\{x\}\right\rangle$ which implies that A_{0} is linearly dependent. This is a contradiction. Hence C is linearly independent. So C is an upper bound of \mathfrak{C} in \mathfrak{J}. By Zorn's Lemma, \mathfrak{J} has a maximal element, say N. Thus $N \subseteq S$ and N is linearly independent.

Next, suppose that $\langle N\rangle \subsetneq M$. If $N=S$, then $\langle N\rangle=\langle S\rangle=M$, this is a contradiction, so $N \subsetneq S$. If $S \subseteq\langle N\rangle$, then $M=\langle S\rangle \subseteq\langle\langle N\rangle\rangle=\langle N\rangle$ which is a contradiction, so $\langle N\rangle \subsetneq S$. Thus there is a $u \in S$ such that $u \in S \backslash\langle N\rangle$. By Remark 4.1.17, we have $N \cup\{u\}$ is linearly independent and $N \cup\{u\} \subseteq S$. But $N \subsetneq N \cup\{u\}$ which contradicts the maximality of N. Hence N spans M. Therefore N is a basis of M.

Theorem 4.1.24. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$, $\operatorname{dim} M=n$, and S a subset of M. Then
(1) S is linearly independent implies that $|S| \leq n$,
(2) $|S|<n$ implies that $\langle S\rangle \neq M$, and
(3) $|S|=n$ and S spans M implies that S is a basis of M.

Proof. The results (1) and (2) follow from Theorem 4.1.14 and Theorem 4.1.23, respectively.
(3) Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and S spans M. Suppose that S is linearly dependent. Then $s_{i} \in\left\langle S \backslash\left\{s_{i}\right\}\right\rangle$ for some $i \in\{1, \ldots, n\}$. This implies that $S \backslash\left\{s_{i}\right\}$ spans M. But $\left|S \backslash\left\{s_{i}\right\}\right|<n$, by (2), wee have $\left\langle S \backslash\left\{s_{i}\right\}\right\rangle \neq M$ which is a contradiction. Hence S is linearly independent. Thus S is a basis of M ? ?

Definition 4.1.25. Let M_{1} and M_{2} be subspaces of a vector space over a semifield. Then $M_{1}+M_{2}$ is defined to be the set of all elements of the form $m_{1}+m_{2}$ where $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$, i.e.,

$$
M_{1}+M_{2}=\left\{m_{1}+m_{2} \mid m_{1} \in M_{1} \text { and } m_{2} \in M_{2}\right\}
$$

Lemma 4.1.26. Let M_{1} and M_{2} be subspaces of a vector space M over a semifield $K^{(*)}$. Then $M_{1}+M_{2}$ is also a subspace of M.

Theorem 4.1.27. Let M be a vector space over a semifield $K^{(*)}$ and M_{1}, M_{2} subspaces of M. Then $M_{1}+M_{2}$ is the smallest subspace of M containing both M_{1} and M_{2}, that is $M_{1}+M_{2}=\left\langle M_{1} \cup M_{2}\right\rangle$. Moreover, if B_{1} spans M_{1} and B_{2} spans M_{2}, then $B_{1} \cup B_{2}$ spans $M_{1}+M_{2}$.

Proof. First, we prove that $M_{1} \cup M_{2}$ spans $M_{1}+M_{2}$. Since $0 \in M_{2}$, we have $M_{1} \subseteq M_{1}+M_{2}$. Similarly, $M_{2} \subseteq M_{1}+M_{2}$ since $0 \in M_{1}$. Clearly, $M_{1}+M_{2}$ is a subspace of M containing $K\left(M_{1} \cup M_{2}\right)$, so $\left\langle M_{1} \cup M_{2}\right\rangle \subseteq M_{1}+M_{2}$.

Let $m \in M_{1}+M_{2}$. Then $m=m_{1}+m_{2}$ for some $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Since $m_{1}, m_{2} \in\left\langle M_{1} \cup M_{2}\right\rangle$ and $\left\langle M_{1} \cup M_{2}\right\rangle$ is a subspace of M, we obtain that $m=m_{1}+m_{2} \in\left\langle M_{1} \cup M_{2}\right\rangle$. Hence $M_{1}+M_{2} \subseteq\left\langle M_{1} \cup M_{2}\right\rangle$. Therefore $M_{1} \cup M_{2}$ spans $M_{1}+M_{2}$. Clearly, $M_{1}+M_{2}$ is the smallest subspace containing M_{1} and M_{2}.

For the next part, we have $M_{1}=\left\langle B_{1}\right\rangle \subseteq\left\langle B_{1} \cup B_{2}\right\rangle$ and $M_{2}=\left\langle B_{2}\right\rangle \subseteq\left\langle B_{1} \cup B_{2}\right\rangle$. Then $M_{1} \cup M_{2} \subseteq\left\langle B_{1} \cup B_{2}\right\rangle \subseteq\left\langle M_{1} \cup M_{2}\right\rangle$. So $\left\langle M_{1} \cup M_{2}\right\rangle \subseteq\left\langle\left\langle B_{1} \cup B_{2}\right\rangle\right\rangle=\left\langle B_{1} \cup B_{2}\right\rangle$. Hence $\left\langle M_{1} \cup M_{2}\right\rangle=\left\langle B_{1} \cup B_{2}\right\rangle$. Therefore $M_{1}+M_{2}=\left\langle B_{1} \cup B_{2}\right\rangle$, this implies that $B_{1} \cup B_{2}$ spans $M_{1}+M_{2}$.

Theorem 4.1.28. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$. If M_{1} and M_{2} are two subspace of M, then

$$
\operatorname{dim}\left(M_{1}+M_{2}\right)=\operatorname{dim} M_{1}+\operatorname{dim} M_{2} \sigma \operatorname{dim}\left(M_{1} \cap M_{2}\right) .
$$

Proof. Let B be a basis of $M_{1} \cap M_{2}$. By Theorem 4.1.20, there exists a subset B_{1} of M_{1} such that $B \subseteq B_{1}$ and B_{1} is a basis of M_{1} and there exists a subset B_{2} of M_{2} such that $B \subseteq B_{2}$ and B_{2} is a basis of M_{2}. By Theorem 4.1.27, we have $B_{1} \cup B_{2}$ spans $M_{1}+M_{2}$. We claim that $B_{1} \cup B_{2}$ is linearly independent.

First, we consider $M_{1} \cap M_{2}=\{0\}$. Then $B=\emptyset$ and $B_{1} \cap B_{2} \subseteq M_{1} \cap M_{2}=\{0\}$, so $B_{1} \cap B_{2}=\emptyset$. Suppose that $B_{1} \cup B_{2}$ is linearly dependent. Then there exists a $b \in B_{1} \cup B_{2}$ such that $b \in\left\langle B_{1} \cup B_{2} \backslash\{b\}\right\rangle$.

Case 1 Let $b \in B_{1}$. Then $b=\sum_{x \in B_{1} \backslash\{b\}} \alpha_{x} \varepsilon_{x} x+\sum_{y \in B_{2}} \beta_{y} \varepsilon_{y} y$ where $\alpha_{x}, \beta_{y} \in K^{(*)}$, $\varepsilon_{x} x \in\{x,-x\}$ and $\varepsilon_{y} y \in\{y,-y\}$ for all $x \in B_{1} \backslash\{b\}$ and $y \in B_{2}$. If $\beta_{y}=0$ for all $y \in B_{2}$, then $b \in\left\langle B_{1} \backslash\{b\}\right\rangle$, this implies that B_{1} is linearly dependent which is a contradiction. Hence $\beta_{y_{0}} \neq 0$ for some $y_{0} \in B_{2}$ and we have

$$
-\left(\sum_{y \in B_{2}} \beta_{y} \varepsilon_{y} y\right)=\sum_{x \in B_{1} \backslash\{b\}} \alpha_{x} \varepsilon_{x} x-b
$$

The left-handed side is an element of M_{2} while the right-handed side is an element of M_{1}. Thus the both sides belong to $M_{1} \cap M_{2}=\{0\}$. This implies that $\beta_{y_{0}}=0$ which leads to a contradiction. Hence $B_{1} \cup B_{2}$ is linearly independent.

Case 2 Let $b \in B_{2}$. The proof is similar to the Case 1 . We have $B_{1} \cup B_{2}$ is also linearly independent. Hence $B_{1} \cup B_{2}$ is a basis of $M_{1}+M_{2}$ and $\operatorname{dim}\left(M_{1}+M_{2}\right)=$ $\left|B_{1} \cup B_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|=\left|B_{1} \cap B_{2}\right|=\operatorname{dim} M_{1}+\operatorname{dim} M_{2}=\operatorname{dim}\left(M_{1} \cap M_{2}\right)$.

Next, we assume that $M_{1} \cap M_{2} \neq\{0\}$. If $B_{1}=B$ or $B_{2}=B$, then we are done. Assume that $B \subsetneq B_{1}$ and $B \subsetneq B_{2}$. Suppose that $B_{1} \cup B_{2}$ is linearly dependent. Then there exists a $b \in B_{1} \cup B_{2}$ such that $b \in\left\langle B_{1} \cup B_{2} \backslash\{b\}\right\rangle$.

Let $B=\left\{b_{1}, \ldots, b_{r}\right\}, B_{1}=\left\{b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}\right\}$ and $B_{2}=\left\{b_{1}, \ldots, b_{r}, d_{1}, \ldots, d_{t}\right\}$. Then $B_{1} \cup B_{2}=\left\{b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{t}\right\}$.

Since $b \in B_{1} \cup B_{2}$, we obtain that $b \in B$ or $b \in B_{1} \backslash B$ or $b \in B_{2} \backslash B$.
Case 1 Let $b \oplus B$. OThen there exists $j \in\{1, \ldots, r\}$ such that $b=b_{j}$. Since

where $\alpha_{i}, \beta_{k}, \gamma_{l} \in K^{(*)}, \varepsilon_{i} b_{i} \in\left\{b_{i},-b_{i}\right\}, \varepsilon_{k} c_{k} \in\left\{c_{k},-c_{k}\right\}$ and $\varepsilon_{l} d_{l} \in\left\{d_{l},-d_{l}\right\}$. Thus

$$
-\left(\sum_{l=1}^{t} \gamma_{l} \varepsilon_{l} d_{l}\right)=\sum_{\substack{i=1 \\ i \neq j}}^{r} \alpha_{i} \varepsilon_{i} b_{i}-b_{j}+\sum_{k=1}^{s} \beta_{k} \varepsilon_{k} c_{k}
$$

The left-handed side is an element of M_{2} and the right-handed side is an element of M_{1}. So each side belongs to $M_{1} \cap M_{2}=\langle B\rangle$. Hence

$$
\begin{align*}
-\left(\sum_{l=1}^{t} \gamma_{l} \varepsilon_{l} d_{l}\right) & =\sum_{m=1}^{r} u_{m} \varepsilon_{m} b_{m} \tag{4.3}\\
\sum_{\substack{i=1 \\
i \neq j}}^{r} \alpha_{i} \varepsilon_{i} b_{i}-b_{j}+\sum_{k=1}^{s} \beta_{k} \varepsilon_{k} c_{k} & =\sum_{n=1}^{r} v_{n} \varepsilon_{n} b_{n} \tag{4.4}
\end{align*}
$$

where $u_{m}, v_{n} \in K^{(*)}, \varepsilon_{m} b_{m} \in\left\{b_{m},-b_{m}\right\}$ and $\varepsilon_{n} b_{n} \in\left\{b_{n},-b_{n}\right\}$ for all m, n.
If $\gamma_{l}=0$ for all l or $\beta_{k}=0$ for all k, by (4.2) we have $b_{j} \in\left\langle B_{1} \backslash\left\{b_{j}\right\}\right\rangle$ or $b_{j} \in\left\langle B_{2} \backslash\left\{b_{j}\right\}\right\rangle$ which is a contradiction. Hence there exist $l_{0} \in\{1, \ldots, t\}$ and $k_{0} \in\{1, \ldots, s\}$ such that $\beta_{k_{0}} \neq 0$ and $\gamma_{l_{0}} \neq 0$. By (4.3) and (4.4) we have $d_{l_{0}} \in\left\langle B_{2} \backslash\left\{d_{l_{0}}\right\}\right\rangle$ and $c_{k_{0}} \in\left\langle B_{1} \backslash\left\{c_{k_{0}}\right\}\right\rangle$ which is, again, a contradiction. Hence $B_{1} \cup B_{2}$ is linearly independent,

Case 2 Let $b \in B_{1} \backslash B$. Then $b=c_{i}$ for some $i \in\{1, \ldots, s\}$. Since $b \in\left\langle B_{1} \cup B_{2} \backslash\{b\}\right\rangle$, we have

$$
\begin{equation*}
c_{i}=\sum_{j=1}^{r} \alpha_{j} \varepsilon_{j} b_{j}+\sum_{\substack{k=1 \\ k \neq i}}^{s} \beta_{k} \varepsilon_{k} c_{k}+\sum_{l=1}^{t} \gamma_{l} \varepsilon_{l} d_{l} \tag{4.5}
\end{equation*}
$$

where $\alpha_{j}, \beta_{k}, \gamma_{l} \in K^{(*)}, \varepsilon_{j} b_{j} \in\left\{b_{j},-b_{j}\right\}, \varepsilon_{k} c_{k} \in\left\{c_{k},-c_{k}\right\}$ and $\varepsilon_{l} d_{l} \in\left\{d_{l},-d_{l}\right\}$. Thus

$$
-\left(\sum_{l=1}^{t} \gamma_{l} \varepsilon_{l} d_{l}\right)=\sum_{j=1}^{r} \alpha_{j} \varepsilon_{j} \sigma_{j}+\sum_{\substack{k=1 \\ k \neq i}}^{s} \beta_{k} \varepsilon_{k} c_{k} \frac{c_{i}}{}
$$

The left-handed side is an element of M_{2} and the right-handed side is an element of M_{1}, so each side belongs to $M_{1} \cap M_{2}=\langle B\rangle$. Hence $\left./\right\}$ G

$$
\begin{align*}
-\left(\sum_{l=1}^{t} \gamma_{l} \varepsilon_{l} d_{l}\right) & =\sum_{m=1}^{r} u_{m} \varepsilon_{m} b_{m} \tag{4.6}\\
\sum_{j=1}^{r} \alpha_{j} \varepsilon_{j} b_{j}+\sum_{\substack{k=1 \\
k \neq i}}^{s} \beta_{k} \varepsilon_{k} c_{k}-c_{i} & =\sum_{n=1}^{r} v_{n} \varepsilon_{n} b_{n} \tag{4.7}
\end{align*}
$$

where $u_{m}, v_{n} \in K^{(*)}, \varepsilon_{m} b_{m} \in\left\{b_{m},-b_{m}\right\}$ and $\varepsilon_{n} b_{n} \in\left\{b_{n},-b_{n}\right\}$.
If $\gamma_{l}=0$ for all l, from (4.5) we obtain $c_{i} \in\left\langle B_{1} \backslash\left\{c_{i}\right\}\right\rangle$ which is a contradiction.

Hence $\gamma_{l_{0}} \neq 0$ for some $l_{0} \in\{1, \ldots, t\}$. By (4.6) implies that $d_{l_{0}} \in\left\langle B_{2} \backslash\left\{d_{l_{0}}\right\}\right\rangle$ and by (4.7) we have $c_{i} \in\left\langle B_{1} \backslash\left\{c_{i}\right\}\right\rangle$ which is also a contradiction. Hence $B_{1} \cup B_{2}$ is linearly independent.

Case 3 Let $b \in B_{2} \backslash B$. The proof is similar to Case 2. We have $B_{1} \cup B_{2}$ is linearly independent. Thus $B_{1} \cup B_{2}$ is a basis of $M_{1}+M_{2}$ and $\operatorname{dim}\left(M_{1}+M_{2}\right)=\left|B_{1} \cup B_{2}\right|=$ $r+s+t=(r+s)+(r+t)-r=\operatorname{dim} M_{1}+\operatorname{dim} M_{2}-\operatorname{dim}\left(M_{1} \cap M_{2}\right)$.

Definition 4.1.29. Let M be a vector space over a semifield K and M_{1}, \ldots, M_{n} subspaces of M. We say that M is the direct sum of M_{1}, \ldots, M_{n} if
(1) $M=M_{1}+\cdots+M_{n}$ and
(2) $M_{i} \cap\left(\sum_{j \neq i} M_{j}\right)=\{0\}$ for all $i \in\{1, \ldots, n\}$.

Moreover, we write $M=M_{1} \oplus \cdots \oplus M_{n}$, the direct sum of M_{1}, \ldots, M_{n}.

Theorem 4.1.30. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$ and M_{1} a subspace of M. Then there exists a subspace M_{2} such that $M=M_{1} \oplus M_{2}$.

Proof. Let B be a basis of M_{1}. By Theorem 4.1.20, there exists a subset B^{\prime} of M such that $B \subseteq B^{\prime}$ and B^{\prime} is a basis of $M \in$ Let $\overparen{M_{2}}=\left\langle B^{\prime} \mid B\right\rangle$. If $M_{1}=\{0\}$, then $M_{2}=\left\langle B^{\prime}\right\rangle$ and, clearly, $M_{1} \cap M_{2}=\{0\}$, so $M=M_{1} \oplus M_{2}$. Assume that $M_{1} \neq\{0\}$. Let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ and $B^{\prime}=\left\{b_{1}, \ldots, b_{n}, b_{n+1}, \ldots, b_{m}\right\}$. Then $M_{2}=\left\{b_{n+1}, \ldots, b_{n}\right\rangle$. Let $x \in M_{1} \cap M_{2}$. Then $\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} b_{i}=x=\sum_{j=n+1}^{m} \beta_{j} \varepsilon_{j} b_{j}$ where $\alpha_{i}, \beta_{j} \in K^{(*)}$, $\varepsilon_{i} b i \in\left\{b_{i},-b_{i}\right\}$ and $\varepsilon_{j} b_{j} \in\left\{b_{j},-b_{j}\right\}$ for all $i \in\{1, \ldots, n\}$ and $j \in\{n+1, \ldots, m\}$. If $x \neq 0$, then there exists $i_{0} \in\{1, \ldots, n\}$ such that $\alpha_{i_{0}} \neq 0$, thus we have $b_{i_{0}} \in\left\langle B^{\prime} \backslash\left\{b_{i_{0}}\right\}\right\rangle$ which leads to a contradiction. Hence $x=0$ so that $M_{1} \cap M_{2}=\{0\}$. Therefore M is the direct sum of M_{1} and M_{2}.

Lemma 4.1.31. Let M be a vector space over a semifield. Then the following statements are equivalent.
(1) $M=M_{1} \oplus \cdots \oplus M_{n}$.
(2) (2.1) $M=M_{1}+\cdots+M_{n}$ and
(2.2) for $m_{1} \in M_{1}, \ldots, m_{n} \in M_{n}, m_{1}+\cdots+m_{n}=0$ implies that $m_{1}=0, \ldots, m_{n}=0$.
(3) For all $m \in M$ there exist unique $m_{1} \in M_{1}, \ldots, m_{n} \in M_{n}$ such that

$$
m=m_{1}+\cdots+m_{n} .
$$

Lemma 4.1.32. For a sum of several subspace of a finite-dimensional vector space over a semifield $K^{(*)}$, to be direct it is necessary and sufficient that $\operatorname{dim}\left(M_{1}+\cdots+M_{n}\right)=\operatorname{dim} M_{1}+\cdots+\operatorname{dim} M_{n}$.

Lemma 4.1.33. Let A and B be linearly independent subsets of a vector space over a semifield $K^{(*)}$ and $A \cap B=\emptyset$. Then $A \cup B$ is linearly independent if and only if $\langle A\rangle \cap\langle B\rangle=\{0\}$.

Proof. Let $x \in\langle A\rangle \cap\langle B\rangle \backslash\{0\}$. Then $\sum_{a \in A} \alpha_{a} \varepsilon_{a} a=x=\sum_{b \in B} \beta_{b} \varepsilon_{b} b$ where $\alpha_{a}, \beta_{b} \in K^{(*)}, \varepsilon_{a} a \in\{a,-a\}$ and $\varepsilon_{b} b \in\{b,-b\}$. Since $x \neq 0$, there exist an $a_{0} \in A$ and a $b_{0} \in B$ such that $\alpha_{a_{0}} \neq 0$ and $\beta_{b_{0}} \neq 0$. This implies that $a_{0} \in\left\langle A \cup B \backslash\left\{a_{0}\right\}\right\rangle$, so $A \cup B$ is linearly dependent.

Conversely, assume that $\langle A\rangle \cap\langle B\rangle=\{0\}$. Suppose that $A \cup B$ is linearly dependent. Then there exists an $x \in A \cup B$ such that $x \in\langle A \cup B \backslash\{x\}\rangle$. So $x=\sum_{u \in A \cup B \backslash\{x\}} \alpha_{u} \varepsilon_{u} u$ where $\alpha_{u} \in K^{(*)}$ and $\varepsilon_{u} u \in\{u,-u\}$. Without loss of generality, assume that $x \in A$. Then $x=\sum_{v \in A \backslash\{x\}} \alpha_{v} \varepsilon_{v} v+\sum_{w \in B} \alpha_{w} \varepsilon_{w} w$. Thus

$$
x-\sum_{v \in A \backslash\{x\}} \alpha_{v} \varepsilon_{v}=\sum_{w \in B} \alpha_{w} \varepsilon_{w} w \in\langle A\rangle \cap\langle B\rangle=\{0\} .
$$

So $x-\sum_{v \in A \backslash\{x\}} \alpha_{v} \varepsilon_{v}=0$. Hence $x=\sum_{v \in A \backslash\{x\}} \alpha_{v} \varepsilon_{v} \in\langle A \backslash\{x\}\rangle$ which is a contradiction. Therefore $A \cup B$ is linearly independent.

Remark 4.1.34. Let M be a vector space over a semifield and C_{1}, \ldots, C_{n} subsets of M. Then $\left\langle C_{1} \cup \cdots \cup C_{n}\right\rangle=\left\langle C_{1}\right\rangle+\cdots+\left\langle C_{n}\right\rangle$.

Theorem 4.1.35. Let M be a vector space over a semifield $K^{(*)}$ and M_{1}, \ldots, M_{n} subspaces of M. For each $i \in\{1, \ldots, n\}$, let B_{i} be a basis of M_{i}. Then $M=$ $M_{1} \oplus \cdots \oplus M_{n}$ if and only if (1) $B_{i} \cap B_{j}=\phi$ for $i \neq j$ and (2) $\bigcup_{i=1}^{n} B_{i}$ is a basis of M.

Proof. Assume that $M=M_{1} \oplus \cdots \oplus M_{n}$.
(1) Let $i, j \in\{1, \ldots, n\}$ be such that $i \neq j$. Then $M_{i} \cap M_{j} \subseteq M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)=\{0\}$. Since $B_{i} \cap B_{j} \subseteq M_{i} \cap M_{j}=\{0\}$, we obtain that $B_{j} \cap B_{j}=\emptyset$.
(2) By Remark 4.1.34, $\left\langle\bigcup_{i=1}^{n} B_{i}\right\rangle=\left\langle B_{1}\right\rangle+\cdots+\left\langle B_{n}\right\rangle=M_{1}+\cdots+M_{n}=M$, so $\bigcup_{i=1}^{n} B_{i}$ spans M. To show that $\bigcup_{i=1}^{n} B_{i}$ is linearly independent. We prove by induction. Assume that $B_{1} \cup \cup B_{k}$ is linearly independent for $k<n$. We claim that $B_{1} \cup \cdots \cup B_{k+1}$ is linearly independent. Since $\left\langle\bigcup_{i=1}^{k} B_{i}\right\rangle \cap\left\langle B_{k+1}\right\rangle=$ $\left(M_{1}+\cdots+M_{k}\right) \cap \bar{M}_{k+1}=\{0\}$ and by Lemma 4.1.33, we have $\bigcup_{i=1}^{k+1} B_{i}$ is linearly independent. Hence $\bigcup_{i=1}^{n} B_{i}$ is linearly independent. Therefore $\bigcup_{i=1}^{n} B_{i}$ is a basis of M.

Conversely, we show that $M_{1}=M_{1} \oplus \cdots \oplus M_{n}$ Clearly, $M=\left\langle\bigcup_{i=1}^{n} B_{i}\right\rangle=$ $\left\langle B_{1}\right\rangle+\ldots+\left\langle B_{n}\right\rangle=M_{1}+\cdots+M_{n} \cdot \operatorname{Let}_{6}^{\sigma} k \in\{1, \ldots \cdot n\}$. Since $B_{k} \cup\left(\bigcup_{\substack{i=1 \\ i \neq k}}^{n} B_{i}\right)=\bigcup_{i=1}^{n} B_{i}$ is linearly independent and by Lemma 4.1.33, we have $\left\langle B_{k}\right\rangle \cap\left\langle\bigcup_{\substack{i=1 \\ i \neq k}}^{n} B_{i}\right\rangle=\{0\}$, so $M_{k} \cap\left(\sum_{\substack{i=1 \\ i \neq k}}^{n} M_{n}\right)=\{0\}$. Hence $M=M_{1} \oplus \cdots \oplus M_{n}$.

Theorem 4.1.36. Let M be a vector space over a semifield $K^{(*)}$ and $M_{i} \neq\{0\}$ a subspace of M for all $i \in\{1, \ldots, n\}$. If $M=M_{1} \oplus \cdots \oplus M_{n}$ and $B \subseteq \bigcup_{i=1}^{n} M_{i}$ is a basis of M, then $B \cap M_{i}$ is a basis of M_{i} for all $i \in\{1, \ldots, n\}$.

Proof. Clearly, $M=\langle B\rangle=\left\langle B \cap\left(\bigcup_{i=1}^{n} M_{i}\right)\right\rangle=\left\langle\bigcup_{i=1}^{n}\left(B \cap M_{i}\right)\right\rangle=\left\langle B \cap M_{1}\right\rangle+\cdots+$ $\left\langle B \cap M_{n}\right\rangle$. Obviously, $\left\langle B \cap M_{i}\right\rangle \subseteq M_{i}$ for all $i \in\{1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$ and $m \in M_{i}$. Then $m=m_{1}+\cdots+m_{n}$ for some $m_{1} \in\left\langle B \cap M_{1}\right\rangle, \ldots, m_{n} \in\left\langle B \cap M_{n}\right\rangle$. So $\quad m-m_{i}=m_{1}+\cdots+m_{i-1}+m_{i+1}+\cdots+m_{n} \in M_{i} \cap\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} M_{j}\right)=\{0\}$. This implies that $m=m_{i} \in\left\langle B \cap M_{i}\right\rangle$, so $M_{i} \subseteq\left\langle B \cap M_{i}\right\rangle$. Hence $M_{i}=\left\langle B \cap M_{i}\right\rangle$. Obviously, $B \cap M_{i}$ is linearly independent. Hence $B \cap M_{i}$ is a basis of M_{i} for all $i \in\{1, \ldots, n\}$.

Definition 4.1.37. Let M be a vector space over a semifield K and N a subspace of M. For $m \in M$, let $m+N$ be the set $\{m+n \mid n \in N\}$ and we call $m+N$ as a coset of N.

Lemma 4.1.38. Let M be a vector space over a semifield and N a subspace of M. Then
(1) for all $m_{1}, m_{2} \in M, m_{1}+N=m_{2}+N$ if and only if $m_{1}-m_{2} \in N$, in particular, for $m \in M, m+N=N$ if and only if $m \in M$,

(2) for all $m_{1}, m_{2} \in M,\left(m_{1}+N\right) \cap\left(m_{2}+N\right)=\emptyset$ or $m_{1}+N=m_{2}+N$, and
(3) for all $m_{1}, m_{2} \in M,\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{1}+m_{2}\right)+N$.

Definition 4.1.39. Let M be a vector space over a semifield K and N a subspace of M. For $\alpha \in K$ and $m \in M$, let $\alpha(m+N)=\alpha m+N$.

To show that the above operation is well-defined, let $m_{1}, m_{2} \in M$ be such that $m_{1}+N=m_{2}+N$ and $\alpha \in K$. By Lemma 4.1.38, $m_{1}-m_{2} \in N$. Then $\alpha m_{1}-\left(\alpha m_{2}\right)=\alpha m_{1}+\alpha\left(-m_{2}\right)=\alpha\left(m_{1}-m_{1}\right) \in N$, so $\alpha m_{1}+N=\alpha m_{2}+N$.

Definition 4.1.40. Let M be a vector space over a semifield K and N a subspace of M. Let $M / N=\{m+N \mid m \in M\}$. Then M / N is a vector space over K with respect to the operations: for all $m_{1}, m_{2} \in M$ and $\alpha \in K$,

$$
\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{1}+m_{2}\right)+N \text { and } \alpha\left(m_{1}+N\right)=\alpha m_{1}+N
$$

We have $0+N$ is the zero element of M / N and $-(m+N)=-m+N$ for all $m \in M$. We call M / N as the quotient space of M by N.

Theorem 4.1.41. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$ and N a subspace of M. Then M / N is finite-dimensional and $\operatorname{dim} M / N=$ $\operatorname{dim} M-\operatorname{dim} N$.

Proof. Let B be a basis of N. By Theorem 4.1.20, there exists a subset B^{\prime} of M such that $B \subseteq B^{\prime}$ and B^{\prime} is a basis of M. Since M is finite-dimensional, B^{\prime} is finite. If $N=M$, then $M / N=\{m \not N \mid m \in M\}=\{N\}=\langle\emptyset\rangle$, so $\operatorname{dim} M / N=0=$ $\operatorname{dim} M-\operatorname{dim} N$.

Next, assume that $N \subsetneq M$. We show that $\left\{v+N \mid v \in B^{\prime} \backslash B\right\}$ is a basis of M / N. Let $m \in M$. Since B^{\prime} spans M, we have $m=\sum_{u \in B^{\prime}} \alpha_{u} \varepsilon_{u} u \quad$ for some $\alpha_{u} \in K^{(*)}$ and $\varepsilon_{u} u \in\{u,-u\}$. Then $m+N=\left(\sum_{u \in B^{\prime}} \alpha_{u} \varepsilon_{u} u\right)+N=$
$\left(\sum_{v \in B^{\prime} \backslash B} \alpha_{v} \varepsilon_{v} v+\sum_{w \in B} \alpha_{w} \varepsilon_{w} w\right)+N$ Since B spans N we obtainthat $\sum_{w \in B} \alpha_{w} \varepsilon_{w} w \in N$. By Lemma 4.1.38, we have $\sum_{w \in B} \alpha_{w} \varepsilon_{w} w+N=N$. So $m+N=\sum_{v \in B^{\prime} \mid B} \alpha_{v} \varepsilon_{v} v+N$
$=\sum_{v \in B^{\prime} \backslash B} \alpha_{v} \varepsilon_{v}(v+N) \in\left\langle\left\{v+N \mid v \in B^{\prime} \backslash B\right\}\right\rangle$ where $\varepsilon_{v}(v+N) \in\{v+N,-v+N\}$. Hence $\left\{v+N \mid v \in B^{\prime} \backslash B\right\}$ spans M / N. We claim that $\left\{v+N \mid v \in B^{\prime} \backslash B\right\}$ is a linearly independent set. Suppose not. Then there exists a $v_{0} \in B^{\prime} \backslash B$ such that $v_{0}+N \in\left\langle\left\{v+N \mid v \in B^{\prime} \backslash B\right\} \backslash\left\{v_{0}+N\right\}\right\rangle$. Thus $v_{0}+N=\sum_{\substack{v \in B^{\prime} \backslash B \\ v \neq v_{0}}} \beta_{v} \varepsilon_{v}(v+N)$ $=\left(\sum_{\substack{v \in B^{\prime} \backslash B \\ v \neq v_{0}}} \beta_{v} \varepsilon_{v} v\right)+N$ where $\beta_{v} \in K^{(*)}, \varepsilon_{v}(v+N) \in\{v+N,-v+N\}$ and
$\varepsilon_{v} v \in\{v,-v\}$ for all $v \in B^{\prime} \backslash B$. By Lemma 4.1.38, $v_{0}-\left(\sum_{\substack{v \in B^{\prime} \backslash B \\ v \neq v_{0}}} \beta_{v} \varepsilon_{v} v\right) \in N=\langle B\rangle$, so $\quad v_{0}-\left(\sum_{\substack{v \in B^{\prime} \backslash B \\ v \neq v_{0}}} \beta_{v} \varepsilon_{v} v\right)=\sum_{b \in B} \gamma_{b} \varepsilon_{b} b$ where $\gamma_{b} \in K^{(*)}$ and $\varepsilon_{b} b \in\{b,-b\}$. Thus $v_{0}=\left(\sum_{\substack{v \in B^{\prime} \backslash B \\ v \neq v_{0}}} \beta_{v} \varepsilon_{v} v\right)+\sum_{b \in B} \gamma_{b} \varepsilon_{b} b \in\left\langle B^{\prime} \backslash\left\{v_{0}\right\}\right\rangle$, this implies B^{\prime} is linearly dependent which is a contradiction. Hence $\left\{v+N \mid v \in B^{\prime} \backslash B\right\}$ is linearly independent. Thus $\left\{v+N \mid v \in B^{\prime} \backslash B\right\}$ is a basis of M / N and we have $u_{1}+N \neq u_{2}+N$ if $u_{1} \neq u_{2}$ in $B^{\prime} \backslash B$. Hence $\operatorname{dim} M / N=\left|\left\{v+N \mid v \in B^{\prime} \backslash B\right\}\right|=\left|B^{\prime}\right|-|B|=\operatorname{dim} M-\operatorname{dim} N$.

4.2 Linear Transformations

Definition 4.2.1. Let M and N be vector spaces over a semifield K and T a mapping from M into N. Then T is said to be a linear transformation if for all $m_{1}, m_{2} \in M$ and $\alpha, \beta \in K, T\left(\overline{\alpha m_{1}+\beta m_{2}}\right)=\alpha T\left(m_{1}\right)+\beta T\left(m_{2}\right)$.

Example 4.2.2. Let n and m be positive integers, with $m<n$ and let $M=\mathbb{R}^{n}$, $N=\mathbb{R}^{m}$ be vector spaces over \mathbb{R}_{0}^{+}. Then we have the mapping $T: M \rightarrow N$ defined by $T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{m}\right)$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is a linear transformation.

Remark 4.2.3. Let T be à linear transformation of a vector space M into a vector space N over the same semifield. Then $T(0)=0$ and $T(-m)=-T(m)$ for all

Lemma 4.2.4. Let M and N be vector spaces over a semifield K and $T: M \rightarrow N$. Then the following statements are equivalent.
(1) T is a linear transformation.
(2) For all $m_{1}, m_{2} \in M$ and $\alpha \in K, T\left(m_{1}+m_{2}\right)=T\left(m_{1}\right)+T\left(m_{2}\right)$ and $T\left(\alpha m_{1}\right)=\alpha T\left(m_{1}\right)$.
(3) For all $m_{1}, m_{2} \in M$ and $\alpha \in K, T\left(\alpha m_{1}+m_{2}\right)=\alpha T\left(m_{1}\right)+T\left(m_{2}\right)$.

Notation. For any function $T: M \rightarrow N$, we denote the range of T by $\operatorname{Im} T$.

Lemma 4.2.5. Let M and N be vector space over a semifield K and $T: M \rightarrow N$ a linear transformation. Then the following statements hold.
(1) T is injective if and only if $T(m)=0$ implies that $m=0$ for all $m \in M$.
(2) If M_{1} is a subspace of M, then $T\left(M_{1}\right)$ is a subspace of N. Hence $\operatorname{Im} T$ is a subspace of N.
(3) If B is a subset of M which spans M, then $T(B)$ spans $\operatorname{Im} T$.
(4) If M is finite-dimensional and K satisfies the property $(*)$, then $\operatorname{Im} T$ is finite-dimensional.
(5) If N_{1} is a subspace of N, then $T^{-1}\left[N_{1}\right]$ is a subspace of M. Hence $T^{-1}[0]$ is a subspace of M.

Proof. The proofs of (1), (2) and (5) are clear.
To proof (3), let $y \in \operatorname{Im} T$. Then $y=T(x)$ for some $x \in M$. Since B spans M, it follows that $x=\sum_{b \in B} \alpha_{b} b+\sum_{b \in B} \beta_{b}(-b)$ where $\alpha_{b}, \beta_{b} \in K$. Then
$y=T(x)=T\left(\sum_{b \in B} \alpha_{b} b+\sum_{b \in B} \beta_{b}(-b)\right)=\sum_{b \in B} \alpha_{b} T(b)-\sum_{b \in B} \beta_{b} T(b) \in\langle T(B)\rangle$.
Hence $T(B)$ spans $\operatorname{Im} T$.
(4) As a result of $(3), T(B)$ spans $\operatorname{Im} T$. By Theorem 4.1.23, there exists a subset B^{\prime} of $T(B)$ such that B^{\prime} is a basis of $\operatorname{Im} T$. Since $T(B)$ is finite, B^{\prime} is finite. Hence $\operatorname{Im} T$ is finite-dimensional.

Theorem 4.2.6. Let M and N be vector spaces over a semifield $K^{(*)}$ and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of M where $b_{i} \neq b_{j}$ for $i \neq j$. If $\left\{c_{1}, \ldots, c_{n}\right\}$ is a
subset of N, then there exists a unique linear transformation $T: M \rightarrow N$ such that $T\left(b_{i}\right)=c_{i}$ for all $i \in\{1, \ldots, n\}$.

Proof. Since B is a basis of M, by Remark 4.1.12, every $m \in M$ can be written uniquely as $m=\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} b_{i}$ where $\alpha_{i} \in K^{(*)}$ and $\varepsilon_{i} b_{i} \in\left\{b_{i},-b_{i}\right\}$ for all i. Define $T: M \rightarrow N$ by

$$
T(m)=\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} c_{i} \quad \text { for all } m \in M
$$

Clearly, $T\left(b_{i}\right)=c_{i}$ for all $i \in\{1, \ldots, n\}$. Let $T^{\prime}: M \rightarrow N$ be a linear transformation such that $T^{\prime}\left(b_{i}\right)=c_{i}$ for all $i \in\{1, \ldots, n\}$. Then $T\left(\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} b_{i}\right)=\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} T\left(b_{i}\right)=$ $\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} c_{i}=\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} T^{\prime}\left(b_{i}\right)=T^{\prime}\left(\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} b_{i}\right)$. Thus $T=T^{\prime}$. Hence T is the unique linear transformation from M into N such that $T\left(b_{i}\right)=c_{i}$ for all $i \in\{1, \ldots, n\}$.

Definition 4.2.7. Let M_{1} and M_{2} be vector spaces over the same semifield and T a linear transformation of M_{1} into M_{2}. The kernel of T, denote by $\operatorname{Ker} T$, is the set $\left\{m \in M_{1} \mid T(m)=0\right\}$.

Remark 4.2.8. Let M, N and L be vector spaces over a semifield $K^{(*)}$. Then the following statements hold.
(1) If $T_{1}: M \rightarrow N$ and $T_{2}: M \rightarrow L$ are linear transformations, then $T_{2} \circ T_{1}: M \rightarrow L$ is also a linear transformation. \int
(2) If T is a 1-1 linear ransformation of M onto N, then T^{-1} is a linear
transformation of N onto M.
(3) $T_{1}: M \rightarrow N$ and $T_{2}: N \rightarrow L$ are 1-1 and onto linear transformations, then $T_{2} \circ T_{1}: M \rightarrow L$ is also a 1-1 and onto linear transformation.
(4) If T is a 1-1 linear transformation of M onto N and B is a basis of M, then $T(B)$ is a basis of N.

Proof. The proofs of (1), (2) and (3) are obvious.
(4) Clearly, $T(B)$ spans N. Next, we show $T(B)$ is linearly independent. If $B=\emptyset$, then $T(B)=\emptyset$ is linearly independent. Assume that $B \neq \emptyset$.

Suppose that $T(B)$ is linearly dependent. Then there exists a $b_{0} \in B$ such that $T\left(b_{0}\right)=\sum_{b \in B \backslash\left\{b_{0}\right\}} \alpha_{b} \varepsilon_{b} T(b)$ where $\alpha_{b} \in K^{(*)}$ and $\varepsilon_{b} T(b) \in\{T(b),-T(b)\}$. Thus $T\left(b_{0}-\sum_{b \in B \backslash\left\{b_{0}\right\}} \alpha_{b} \varepsilon_{b} b\right)=0$. Since T is 1-1, we have $b_{0}-\sum_{b \in B \backslash\left\{b_{0}\right\}} \alpha_{b} \varepsilon_{b} b=0$, so $b_{0}=\sum_{b \in B \backslash\left\{b_{0}\right\}} \alpha_{b} \varepsilon_{b} b \in\left\langle B \backslash\left\{b_{0}\right\}\right\rangle$ which is a contradiction. Hence $T(B)$ is linearly independent. Therefore $T(B)$ is a basis of N.

Theorem 4.2.9. Let M and L be vector spaces over a semifield $K^{(*)}$ and $T: M \rightarrow L$ a linear transformation. If B is a basis of the kernel of T and B^{\prime} is a basis of M such that $B \subseteq B^{\prime}$, then
(1) for all $b_{1}, b_{2} \in B^{\prime} \backslash B, b_{1} \neq b_{2}$ implies that $T\left(b_{1}\right) \neq T\left(b_{2}\right)$ and
(2) $T\left(B^{\prime} \backslash B\right)$ is a basis of $\operatorname{Im} T$.

Proof. By Lemma 4.2.5, $T\left(B^{\prime}\right)$ spans $\operatorname{Im} T$. Since $T(b)=0$ for all $b \in B$, we obtain that $T\left(B^{\prime} \backslash B\right)$ spans $\operatorname{Im} T$. Next, we prove that $T\left(B^{\prime} \backslash B\right)$ is linearly independent. Suppose not. Then there exists a $b_{0} \in B^{\prime} \backslash B$ such that $T\left(b_{0}\right) \in\left\langle T\left(B^{\prime} \backslash B\right) \backslash\left\{T\left(b_{0}\right)\right\}\right\rangle$. Thus $T\left(b_{0}\right)=\sum_{\substack{u \in B^{\prime}|B| \\ u \neq b_{0}}} \alpha_{u} \varepsilon_{u} T(u)$ where $\alpha_{u} \in K^{(*)}$ and $\varepsilon_{u} T(u) \in\{T(u),-T(u)\}$. So $T\left(b_{0}\right)=T\left(\underset{\substack{u \in B^{\prime} \backslash B \\ u \neq b_{0}}}{ } \alpha_{u} \varepsilon_{u} u\right)$, we have $\stackrel{\rightharpoonup}{T}\left(b_{0}-\underset{\substack{u \in B^{\prime} \backslash B \\ u \neq b_{0}}}{ } \alpha_{u} \varepsilon_{\bar{u}} u\right)=0$. Hence p $b_{0}-\sum_{\substack{u \in B^{\prime} \backslash B \\ u \neq b_{0}}}^{Q} \alpha_{u} \varepsilon_{u} u=\sum_{w \in B} \beta_{w} \varepsilon_{w} w$ where $\beta_{w} \in K^{u *)}$ and $\varepsilon_{w} w \in\{w,-w\}$. So we have $b_{0} \in\left\langle B^{\prime} \backslash\left\{b_{0}\right\}\right\rangle$ which is a contradiction. Thus $T\left(B^{\prime} \backslash B\right)$ is linearly independent, so $T\left(B^{\prime} \backslash B\right)$ is a basis of $\operatorname{Im} T$.

Theorem 4.2.10. Let M and L be vector spaces over a semifield $K^{(*)}$ and $T: M \rightarrow L$ a linear transformation. If M is finite-dimensional, then

$$
\operatorname{dim}(\operatorname{Im} T)+\operatorname{dim}(\operatorname{Ker} T)=\operatorname{dim} M
$$

Proof. Let B be a basis of $\operatorname{Ker} T$. By Theorem 4.1.20, there exists a subset B^{\prime} of M such that B^{\prime} is a basis of M and $B \subseteq B^{\prime}$. By Theorem 4.2.9, $T\left(B^{\prime} \backslash B\right)$ is a basis of $\operatorname{Im} T$ and $\operatorname{dim}(\operatorname{Im} T)+\operatorname{dim}(\operatorname{Ker} T)=\left|T\left(B^{\prime} \backslash B\right)\right|+|B|=\left|B^{\prime} \backslash B\right|+|B|=\left|B^{\prime}\right|=$ $\operatorname{dim} M$.

Definition 4.2.11. Let M and N be vector spaces over a semifield $K^{(*)}$ and let $L(M, N)=\{T: M \rightarrow N \mid T$ is a linear transformation $\}$. Then $L(M, N)$ is a vector space over $K^{(*)}$ with the operations defined as follows, for $T, U \in L(M, N), m \in M$ and $\alpha \in K^{(*)}$,

$$
(T+U)(m)=T(m)+U(m) \quad \text { and } \quad(\alpha T)(m)=\alpha T(m)
$$

Remark 4.2.12. Let M_{1}, M_{2} and M_{3} be vector spaces over a semifield $K^{(*)}$. For $\alpha \in K^{(*)}, T_{1}, T_{2} \in L\left(M_{1}, M_{2}\right)$ and $U_{1}, U_{2} \in L\left(M_{2}, M_{3}\right)$,

$$
\begin{gathered}
U_{1} \circ T_{1} \in L\left(M_{1}, M_{3}\right), \\
U_{1} \circ\left(T_{1}+T_{2}\right)=U_{1} \circ T_{1}+U_{1} \circ T_{2}, \\
\left(U_{1}+U_{2}\right) \circ T_{1}=U_{1} \circ T_{1}+U_{2} \circ T_{1}, \text { and } \\
0
\end{gathered}
$$

Theorem 4.2.13. Let M and N be finite-dimensional vector spaces over a semifield $K^{(*)}, \operatorname{dim} M=m$ and $\operatorname{dim} N=n$. Then $\operatorname{dim} L(M, N)=n m$.

Proof. Let $B=\left\{u_{1}, \ldots, u_{m}\right\}$ and $B^{\prime}=\left\{b_{1}, \ldots, b_{n}\right\}$ be bases of M and N, respectively. By Theorem 4.2.6, for $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$, there exists a $T_{i j} \in L(M, N)$ such that $T_{i j}\left(u_{k}\right)= \begin{cases}b_{i}, & \text { if } k=j, \\ 0, & \text { if } k \neq j .\end{cases}$

So $T_{i j}\left(u_{k}\right)=\delta_{j k} b_{i}$ where $\delta_{j k}= \begin{cases}1, & \text { if } k=j, \\ 0, & \text { if } k \neq j .\end{cases}$
We show that $C=\left\{T_{i j} \mid i \in\{1, \ldots, n\}\right.$ and $\left.j \in\{1, \ldots, m\}\right\}$ is a basis of $L(M, N)$. Since $T\left(u_{j}\right) \in N=\left\langle B^{\prime}\right\rangle$ for $j \in\{1, \ldots, m\}$, we have
$T\left(u_{j}\right)=\sum_{i=1}^{n} \alpha_{i j} \varepsilon_{i j} b_{i} \quad$ where $\alpha_{i j} \in K^{(*)}$ and $\varepsilon_{i j} b_{i} \in\left\{b_{i},-b_{i}\right\}$ for all $j \in\{1, \ldots, m\}$. Thus for $j \in\{1, \ldots, m\}$,

$$
\begin{aligned}
T\left(u_{j}\right) & =\sum_{i=1}^{n} \alpha_{i j} \varepsilon_{i j} b_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{k=1}^{m} \alpha_{i k} \delta_{k j}\right) \varepsilon_{i j} b_{i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{m} \alpha_{i k} \varepsilon_{i j} T_{i k}\left(u_{j}\right) \\
& =\left(\sum_{i=1}^{n} \sum_{k=1}^{m} \alpha_{i k} \varepsilon_{i j} T_{i k}\right)\left(u_{j}\right)
\end{aligned}
$$

Hence $T=\sum_{i=1}^{n} \sum_{k=1}^{m} \alpha_{i k} \varepsilon_{i j} T_{i k} \in\langle C\rangle$. Therefore, C spans $L(M, N)$.
Next, we show that C is linearly independent. Suppose not. Then there exist $k \in\{1, \ldots, n\}$ and $l \in\{1, \ldots, m\}$ such that $T_{k l}=\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{i j} \varepsilon_{i j} T_{i j}\left(u_{r}\right)$ where $\beta_{i j} \in K^{(*)}, \varepsilon_{i j} T_{i j} \in\left\{T_{i j},-T_{i j}\right\}$ and $\beta_{k l}=0$. But

So we have $b_{k}=T_{k l}\left(u_{l}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{i j} \varepsilon_{i j} T_{i j}\left(u_{l}\right)=0 \sum_{i=1}^{n} \beta_{i l} \varepsilon_{i l} b_{i}$. Since $\beta_{k l}=0$, we have $b_{k}=\sum_{\substack{i=1 \\ i \neq k}}^{n} \beta_{i l} \varepsilon_{i l} b_{i} \in\left\langle B^{\prime} \backslash\left\{b_{k}\right\}\right\rangle$. This is a contradiction. Hence C is linearly independent. Therefore C is a basis of $L(M, N)$ and $\operatorname{dim} L(M, N)=|C|=n m$.

Theorem 4.2.14. Let M and L be finite-dimensional vector spaces over a semifield $K^{(*)}$ and $T: M \rightarrow L$ a linear transformation. If $\operatorname{dim} M=\operatorname{dim} L$, then T is 1-1 if and only if T is onto.

Proof. By Theorem 4.2.10, $\operatorname{dim}(\operatorname{Ker} T)+\operatorname{dim}(\operatorname{Im} T)=\operatorname{dim} L$. Assume that T is 1-1. By Lemma 4.2.5, $\operatorname{Ker} T=\{0\}$, so $\operatorname{dim}(\operatorname{Ker} T)=0$. Then $\operatorname{dim} L=\operatorname{dim}(\operatorname{Im} T)$. By Theorem 4.1.22, $L=\operatorname{Im} T$. Hence T is onto.

Conversely, assume that T is onto. Then $L=\operatorname{Im} T$, so $\operatorname{dim}(\operatorname{Ker} T)=0$. Thus $\operatorname{Ker} T=\{0\}$. Hence T is 1-1.

Definition 4.2.15. Let M and N be vector spaces over the same semifield. We say that M is isomorphic to N, denoted by $M \cong N$, if there exists a 1-1 linear transformation from M onto N.

Theorem 4.2.16. Let M be a finite-dimensional vector space over $K^{(*)}$ and $\operatorname{dim} M=m$, then $M \cong K^{m}$.

Proof. Let $B=\left\{b_{1}, \ldots, b_{m}\right\}$ be a basis of M. Then, for $x \in M$, we have $x=\sum_{i=1}^{m} \alpha_{i} \varepsilon_{i} b_{i}$ where $\alpha_{i} \in K^{(*)}$ and $\varepsilon_{i} b_{i} \in\left\{b_{i},-b_{i}\right\}$. Define $T: M \rightarrow K^{m}$ by $T(x)=T\left(\sum_{i=1}^{m} \alpha_{i} \varepsilon_{i} b_{i}\right)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \quad$ for all $x \in M$.

Since Remark 4.1.12, T is a well-defined. Clearly, T is and onto linear transformation.

Corollary 4.2.17. Let \bar{M} and L befinite-dimensional vector spaces over a semifield $K^{(*)}$. Then $\operatorname{dim} M=\operatorname{dim} L$ if and only if $M \cong L$.

Now, we consider a semifield K which satisfies the property ($*$) and there exists a field F_{K} such that K is a subsemifield of F_{K}.

Definition 4.2.18. Let K be a semifield which satisfies the property $(*)$ and F_{K} a field containing a subsemifield K. A linear transformation from a vector space M over K into F_{K} is called a linear functional. Moreover, let $M^{*}=L\left(M, F_{K}\right)$ and $M^{* *}=\left(M^{*}\right)^{*}$. Then M^{*} is the dual space of M and $M^{* *}$ the double dual of M.

Remark 4.2.19. If M is a finite-dimensional vector space over a semifield $K^{(*)}$, then $\operatorname{dim} M=\operatorname{dim} M^{*}=\operatorname{dim} M^{* *}$.

Theorem 4.2.20. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$, $\operatorname{dim} M=n$, and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ a basis of M. For each $i \in\{1, \ldots, n\}$, let $f_{i} \in M^{*}$ be such that

$$
f_{i}\left(b_{j}\right)= \begin{cases}1, & \text { if } j=i \\ 0, & \text { if } j \neq i\end{cases}
$$

Then the following statements hold.
(1) $\left\{f_{1}, \ldots, f_{n}\right\}$ is a basis of M^{*} which is called the dual basis of B.
(2) For all $f \in M^{*}, f=\sum_{i=1}^{n} f\left(b_{i}\right) f_{i}$.
(3) For all $m \in M, m=\sum_{i=1}^{n} f_{i}(m) b_{i}$.

Proof. (1) This follows from the proof of Theorem 4.2.13.
(2) Let $f \in M^{*}$. Then $\left(\sum_{i=1}^{n} f\left(b_{i}\right) f_{i}\right)\left(b_{j}\right)=\sum_{i=1}^{n} f\left(b_{i}\right) f_{i}\left(b_{j}\right)=f\left(b_{j}\right)$ for all $j \in\{1, \ldots, n\}$. Hence $f=\sum_{i=1}^{n} f\left(b_{i}\right) f_{i}$.
(3) Let $m \in M$. Then $m=\sum_{j=1}^{n} \alpha_{j} \varepsilon_{j} b_{j}$ where $\alpha_{j} \in K^{(*)}$ and $\varepsilon_{j} b_{j} \in\left\{b_{j},-b_{j}\right\}$.

Thus

$$
\begin{aligned}
\sum_{i=1}^{n} f_{i}(m) b_{i} & =\sum_{i=1}^{\sigma} f_{i}\left(\left(\sum_{j=1}^{n} \widehat{\alpha_{j}} \varepsilon_{j} b_{j}\right) b_{i}\right. \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \varepsilon_{j} f_{i}\left(b_{j}\right) b_{i} \\
& =\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} b_{i} \\
& =m
\end{aligned}
$$

Hence $m=\sum_{i=1}^{n} f_{i}(m) b_{i}$.

Theorem 4.2.21. Let M be a vector space over a semifield $K^{(*)}$. For $m \in M$, if $f(m)=0$ for all $f \in M^{*}$, then $m=0$.

Proof. Let $m \in M \backslash\{0\}$. Then $\{m\}$ is linearly independent. By Theorem 4.1.20, there exists a subset B of M such that B is linearly independent and $\{m\} \subseteq B$. By Theorem 4.2.6, there exists a unique linear transformation $f: M \rightarrow F_{K}$ such that $f(b)=1$ for all $b \in B$ where F_{K} is a field containing a subsemifield K. Since $\{m\} \subseteq B$, we have $m \in B$. Thus $f(m) \neq 0$.

Let F_{K} be a field containing a semifield K and M a vector space over K. For $m \in M$, define $L_{m}: M^{*} \rightarrow F_{K}$ by

$$
L_{m}(f)=f(m) \quad \text { for all } f \in M^{*}
$$

Then $L_{m} \in M^{* *}$ for all $m \in M$ and hence $\left\{L_{m} \mid m \in M\right\}$ is a subset of $M^{* *}$.
Theorem 4.2.22. Let M be a vector space over a semifield $K^{(*)}$. Then
(1) the mapping $m \mapsto L_{m}$ is a 1-1 linear transformation of M into $M^{* *}$ and
(2) if M is finite-dimensional, then
(2.1) the mapping $m_{\mapsto} L_{m}$ is a 1-1 linear transformation of M onto $M^{* *}$ and
(2.2) for all $L_{0} \in M^{* *}$ there exists a unique $m_{\in} \in M$ such that $L=L_{m}$.

(1) Lẹt $m_{1}, m_{2} \in M$ and $\alpha, \beta \in K^{(*)}$. Then, for all $f \in M^{*}$,

$$
\begin{aligned}
L_{\alpha m_{1}+\beta m_{2}}(f) & =f\left(\alpha m_{1}+\beta m_{2}\right) \\
& =\alpha f\left(m_{1}\right)+\beta f\left(m_{2}\right) \\
& =\alpha L_{m_{1}}(f)+\beta L_{m_{2}}(f) \\
& =\left(\alpha L_{m_{1}}+\beta L_{m_{2}}\right)(f) .
\end{aligned}
$$

Hence $\varphi\left(\alpha m_{1}+\beta m_{2}\right)=L_{\alpha m_{1}+\beta m_{2}}=\alpha L_{m_{1}}+\beta L_{m_{2}}=\alpha \varphi\left(m_{1}\right)+\beta \varphi\left(m_{2}\right)$. So φ is a linear transformation. Let $m \in M$ be such that $L_{m}=\varphi(m)=0$. Then for all $f \in M^{*}$, we obtain that $0=L_{m}(f)=f(m)$. By Theorem 4.2.21, $m=0$. Hence φ is $1-1$.
(2.1) Since M is finite-dimensional, $\operatorname{dim} M=\operatorname{dim} M^{* *}$. By (1) and

Theorem 4.2.14, φ is onto.

(2.2) This follows from (2.1).

Theorem 4.2.23. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$.
Then each basis of M^{*} is the dual basis of some basis of M.

Proof. Let $\operatorname{dim} M=n$ and $\bar{B}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of M^{*}. Moreover, let $\left\{L_{1}, \ldots, L_{n}\right\}$ be the dual basis of \bar{B} where, for $i, j \in\{1, \ldots, n\}$,

$$
L_{i}\left(f_{j}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

By Theorem 4.2.22, for $i \in\{1, \ldots, n\}$ there exists an $m_{i} \in M$ such that $L_{i}=L_{m_{i}}$. Since the mapping $\overline{m_{i}} \mapsto L_{m_{i}}$ is a 1-1 linear transformation of M onto $M^{* *}$ and $\left\{L_{m_{1}}, \ldots, L_{m_{n}}\right\}$ is a basis of $M^{* *}$, we have $\left\{m_{1}, \ldots, m_{n}\right\}$ is a basis of M. By Theorem 4.2.20, $\left\{f_{1}, \ldots, f_{n}\right\}$ is the dual basis of $\left\{m_{1}, \ldots, m_{n}\right\}$.

Definition 4.2.24. Let M be a vector space over a semifield. For $S \subseteq M$, let S° be the set $\left\{f \in M^{*} \mid f(m)=0\right.$ for all $\left.m \in S\right\}$ and $S^{\circ \circ}=\left(S^{\circ}\right)^{\circ}$. Then S° is called the annihilator of S.

Remark 4.2.25. Let M be a vector space over a semifield. Then
(1) S° is a subspace of M^{*} for all subset S of M,
(2) $\{0\}^{\circ}=M^{*}$,
(3) $M^{\circ}=\{0\}$,
(4) for all subsets S_{1}, S_{2} of $M, S_{1} \subseteq S_{2}$ implies that $S_{2}^{\circ} \subseteq S_{1}^{\circ}$,
(5) for all subsets S_{1}, S_{2} of $M, S_{1}^{\circ}+S_{2}^{\circ} \subseteq\left(S_{1} \cap S_{2}\right)^{\circ}$, and
(6) for all subsets S_{1}, S_{2} of $M, S_{1}^{\circ} \cap S_{2}^{\circ} \subseteq\left(S_{1}+S_{2}\right)^{\circ}$ and they are equal if $0 \in S_{1} \cap S_{2}$.

Theorem 4.2.26. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$ and N a subspace of M. Then $\operatorname{dim} N+\operatorname{dim} N^{\circ}=\operatorname{dim} M$.

Proof. Let B be a basis of N. By Theorem 4.1.20, there exists a subset B^{\prime} of M such that $B \subseteq B^{\prime}$ and B^{\prime} is a basis of M. For $b \in B^{\prime}$, let $f^{b} \in M^{*}$ be such that

$$
f^{b}(u)= \begin{cases}1, & \text { if } u=b \\ 0, & \text { if } u \neq b\end{cases}
$$

By Theorem 4.2.20, $\left\{f^{b} \mid b \in B^{\prime}\right\}$ is a basis of M^{*}. If $B=B^{\prime}$, then $N^{\circ}=M^{\circ}=\{0\}$, so $\operatorname{dim} M=\operatorname{dim} N+0=\operatorname{dim} N+\operatorname{dim} N^{\circ}$. Assume that $B \subsetneq B^{\prime}$. Let $f \in N^{\circ}$. By Theorem 4.2.20, $f=\sum_{b \in B^{\prime}} f(b) f^{b}$. Since $f \in N^{\circ}$, we have $f(u)=0$ for all $u \in B$. Thus $f=\sum_{b \in B^{\prime} \backslash B} f(b) f^{b} \in\left\langle\left\{f^{b} \mid b \in B^{\prime} \backslash B\right\}\right\rangle$. Hence $\left\{f^{b} \mid b \in B^{\prime} \backslash B\right\}$ spans N°. Clearly, $\left\{f^{b} \mid b \in B^{\prime} \backslash B\right\}$ is linearly independent. Hence $\left\{f^{b} d b \in B^{\prime} \backslash B\right\}$ is a basis of N° and $\operatorname{dim} M=\left|B^{\prime}\right|=|B|+\left|B^{\prime} \nmid B\right|=\operatorname{dim} N+\operatorname{dim} N^{\circ}$.

Theorem 4.2.27. Let M be a finite-dimensional vector space over a semifield $K^{(*)}$. Then
(1) N is a subspace of M implies that $\operatorname{dim} M=\operatorname{dim} N^{\circ \circ}$ and
(2) for any subset S of $M, \operatorname{dim} S^{\circ}+\operatorname{dim} S^{\circ \circ}=\operatorname{dim} M$.

Proof. This is clear by applying Theorem 4.2.26.

Theorem 4.2.28. Let M be a vector space over a semifield $K^{(*)}$ and N a subspace of M. Then the following statements hold.
(1) For all $n \in N, L_{n} \in N^{\circ \circ}$.
(2) The mapping $n \mapsto L_{n}$ is a 1-1 linear transformation of N into $N^{\circ \circ}$.
(3) If M is finite-dimensional, then the mapping in (2) is 1-1 and onto.

Proof. (1) Let $n \in N$ and $f \in N^{\circ}$. Then $f(u)=0$ for all $u \in N$, so $f(n)=0$. Hence $L_{n}(f)=f(n)=0$. Therefore $L_{n} \in N^{\circ}$.
(2) This follows from (1) and Theorem 4.2.22.
(3) Let ψ be the mapping $n \mapsto L_{n}$. By $(2), \operatorname{dim}(\operatorname{Im} \psi)=\operatorname{dim} N=\operatorname{dim} N^{\circ \circ}$. By Theorem 4.1.22, $\operatorname{Im} \psi=N^{\circ \circ}$. Thus ψ is onto. Hence ψ is $1-1$ and onto.

REFERENCES

[1] Hungerford, T.W. Algebra. New York : Springer-Verlag, 1974.
[2] Namnak, C., Positive Ordered 0-Semifields, Master's thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1996.
[3] Nering, E.D. Linear Algebra and Matrix Theory. New York: John Wiley \& Sons, 1963.
[4] Ribenboim, P. Rings and Modules. New York: John Wiley \& Sons, 1969.
[5] Sinutoke, P., On the Theory of Semifields, Master's thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1980.

VITA

Name: Miss Sirichan Pahupongsab.
Degree : Bachelor of science(2 ${ }^{\text {nd }}$ Class Degree Honors), 1998, Mahidol University, Bangkok, Thailand.

Scholarship : The Development and Promotion of Science and Technology Talents

