MERCURY REMOVAL FROM HEAVY NAPHTHA BY VARIOUS ADSORBENTS

7

Mr. Rattakit Kitsanguan

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University and Institut Français du Pétrole
2007

Thesis Title:

Mercury Removal from Heavy Naphtha by Various

Adsorbents

By:

Rattakit Kitsanguan

Program:

Petroleum Technology

Thesis Advisors:

Dr. Siriporn Jongpatiwut

Assoc. Prof. Chintana Saiwan

Dr. Sophie Jullian

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Fanumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Dr. Siriporn Jongpatiwut)

J. Kr Choten Saine

(Assoc. Prof. Chintana Saiwan)

(Dr. Sophie Jullian) (Assoc. Prof. Kunchana Bunyakiat)

Xnon Words -

(Mr. Morakot Pongboriboon)

ABSTRACT

4873010063: Petroleum Technology Program

Rattakit Kitsanguan: Mercury Removal from Heavy Naphtha by

Various Adsorbents

Thesis Advisors: Dr. Siriporn Jongpatiwut, Assoc. Prof. Chintana

Saiwan and Dr. Sophie Jullian 68 pp.

Keywords: Adsorption/ Metallic mercury/ Heavy naphtha/ Imprenation/

Alumina/ Activated carbon/ Zeolite

Previous research has shown the feasibility of using Beta zeolite for mercury removal from n-heptane (90% and 15% adsorption were achieved for diphenyl mercury and metallic mercury, respectively). In this work, the adsorption capacity for metallic mercury (Hg°) on Beta zeolite impregnated with copper sulfide was studied in an attempt to increase the adsorption efficiency for a removal of metallic mercury. For comparison, various adsorbents – alumina (Al₂O₃), Beta zeolite (BEA), activated carbon (AC), CuS on alumina, CuS on Beta zeolite, and CMG273 - were tested. Heavy naphtha spiked with metallic mercury was used for kinetics of adsorption and adsorption isotherm studies in a batch system at 50°C. The results from kinetics studies showed that for unimpregnated adsorbents, the adsorption efficiencies were low. The significant improvement was observed on CuS impregnated adsorbents. The adsorption kinetics followed the pseudo second order rate expression and the equilibrium data fitted reasonably well to Langmuir isotherm. All the adsorption parameters derived from the experimental data reflect the feasibility of metallic mercury removal by using CuS adsorbents. The breakthrough curves from a continuous system showed that CuS/BEA exhibited longer breakthrough time and shorter mass transfer zone than CuS/Al₂O₃.

บทคัดย่อ

รัฐกิจ กิจสงวน : การกำจัดสารปรอทจากแนฟทาหนัก โดยตัวดูดซับที่แตกต่างกัน (Mercury Removal from Heavy Naphtha by Various Adsorbents) อ. ที่ปรึกษา : ดร. ศิริพร จง ผาติวุฒิ, รศ. ดร. จินตนา สายวรรณ์ และ ดร. โซฟี จูเลียน 68 หน้า

งานวิจัยก่อนหน้านี้พบว่า ซีโอไลต์เบตามีความเหมาะสมในการกำจัดสารปรอทในนอร์ มอลเฮปเทน (ประสิทธิภาพในการดูคซับคือ ร้อยละ 90 และ 15 สำหรับไคเฟนิลเมอร์คิวรี และ ปรอทโลหะ ตามลำดับ) งานวิจัยนี้ศึกษาการดูคซับปรอทโลหะด้วยคอปเปอร์ซัลไฟด์บนซีโอไลต์ เบตา เปรียบเทียบกับตัวคูคซับชนิดต่างๆ เช่น อลูมินา, ซีโอไลต์เบตา, ถ่านกัมมันต์, คอปเปอร์ซัลไฟด์บนซีโอไลต์เบตา และซีเอมชี273 โดยความพยายามที่จะเพิ่ม ประสิทธิภาพในการดูคซับสารปรอทโลหะ การทดลองแบบกะใช้สารตั้งต้นคือ แนฟทาหนักซึ่ง เจือปนคัวขปรอทโลหะ เพื่อศึกษาจลพลศาสตร์และไอโซเทิร์มของการดูคซับที่อุณหภูมิ 50 องศา เซลเซียส ผลการทดลองพบว่า ตัวคูดซับที่ไม่เติมคอปเปอร์ซัลไฟด์ให้ประสิทธิภาพในการดูคซับ ต่ำ ขณะที่ประสิทธิภาพในการดูดซับนี้เพิ่มขึ้นอย่างมากโดยใช้ตัวคูดซับที่เดิมคอปเปอร์ซัลไฟด์ จลพลศสสตร์ของการดูดซับเป็นไปตามสมการซูโดลำคับที่สอง และข้อมูลสอดคล้องอย่างดีกับ แบบจำลองไอโซเทิร์มของแลงมัวร์ ตัวแปรทั้งหมดซึ่งได้จากข้อมูลการทดลอง ซี้ให้เห็นฉึงความ เหมาะสมในการกำจัดปรอทโลหะโดยใช้ตัวดูดซับที่เดิมคอปเปอร์ซัลไฟด์ กราฟเบรกทรูซึ่งได้จากกรศึกษาระบบต่อเนื่องแสดงให้เห็นว่า ตัวคูดซับคอปเปอร์ซัลไฟด์บนซีโอไลต์เบตาให้เวลา เบรกทรูนานกว่า และช่วงการแลกเปลี่ขนมวลสารสั้นกว่าตัวคูดซับคอปเปอร์ซัลไฟด์บนอลูมินา

ACKNOWLEDGEMENTS

This work has been made a good experience and a good opportunity to conduct a research at Aromatic (Thailand) Public Company Limited (ATC), Thailand and Institut Français du Pétrole (IFP), France. It would not be successful without the assistance of the following individuals and organization.

This thesis work is funded by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand. Moreover, I am grateful for the research funding of the thesis work provided by Aromatic (Thailand) Public Company Limited (ATC), Thailand and Institut Français du Pétrole (IFP), France.

I am grateful to my thesis advisors – Dr. Siriporn Jongpatiwut, Assoc. Prof. Chintana Saiwan and Dr. Sophie Jullian – for their valuable suggestions, comments and guidance through the course of my research work. I am also greatful to Asso. Prof. Kunchana Bunyakiat and Mr. Morakot Pongboriboon (ATC, Thailand) for well suggestions and comments, and agreeing to serve on my thesis committee.

I would also like to thank Mr. Vincent COUPARD (Division Génie des procédés), Mr. Charles-philippe LIENEMANN (Direction Physique et Analyse) and Mr. Goncalo Caeiro, IFP, France, for providing me creative comments and valuable suggestions for my experiments.

Finally, I would like to express appreciation to my family for their support and confidence all times.

TABLE OF CONTENTS

	PA	GE
T	Page	i
A	ract (in English)	i
A	ract (in Thai)	,
A	nowledgements	,
T	e of Contents v	i
L	of Tables	
L	of Figures x	i
СНАР	R	
I	INTRODUCTION	1
П	LITERATURE REVIEW	2
	2.1 Background	2
	2.1.1 Occurrence of Mercury	2
	2.1.2 Forms of Mercury	}
	2.1.3 Physical and Chemical Properties	5
	2.1.4 Mercury Distribution	}
	2.1.5 Problems Caused by Mercury)
	2.1.6 Mercury Removal Processes)
	2.1.6.1 Reaction of Mercury with Sulfur)
	2.1.6.2 Hydrogenolysis of Organometallic Mercury	#
	followed by Adsorption 13	}
	2.1.6.3 Reaction of Mercury via Amalgamation with	
	Metal on a Molecular Sieve Support 13	}
	2.1.6.4 Reaction of Mercury with Iodide Impregnated	
	Activated Carbon 14	1
	2.2 Literature Review and Developments	5
	2.3 Adsorbents 21	

CHAPTER		PAGE
	2.3.1 Alumina	21
	2.3.2 Activated Carbon	22
	2.3.3 Zeolites	23
	2.4 Kinetic Models	25
	2.4.1 The Pseudo First Order Equation	25
	2.4.2 The Pseudo Second Order Equation	25
	2.4.3 The Intraparticle Diffusion Equation	26
	2.5 Adsorption Isotherm Models	26
	2.5.1 The Brunauer-Emmett-Teller (BET) Model	26
	2.5.2 The Freundlich Model	27
	2.5.3 The Langmuir Model	27
Ш	EXPERIMENTAL	28
	3.1 Materials	28
	3.2 Equipment	28
	3.2.1 Thermogravimetric Analyzer (TGA)	28
	3.2.2 Atomic Absorption Spectroscopy (AAS)	29
	3.2.3 X-Ray Diffraction (XRD) Spectrometer	29
	3.2.4 Surface Area Analyzer	29
	3.2.5 Mercury Analyzer	29
	3.3 Methodology	30
	3.3.1 Preparation of Supports	30
	3.3.2 Adsorbent Preparation	31
	3.3.3 Preparation of Stock Solution	31
	3.3.4 Blank Test	32
	3.3.5 Appropriate Quantity of Adsorbent	32
	3.3.6 Kinetics of Adsorption of Metallic Mercury in	
	Heavy Naphtha	32
	3.3.7 Adsorption Isotherms of Metallic Mecury in	

CHAPTER		PAGE
	Heavy Naphtha	33
	3.3.8 Pilot Operation	33
	3.3.9 Sample Analysis	34
IV	RESULTS AND DISCUSSION	35
	4.1 Characterization of Adsorbent	35
	4.1.1 Water Content Analysis	35
	4.1.2 Atomic Absorption Spectroscopy (AAS)	36
	4.1.3 X-Ray Diffraction (XRD) Spectrometer	36
	4.2 Blank Test	37
	4.3 Appropriate Quantity of Adsorbent	38
	4.4 Adsorption Kinetic Study	39
	4.5 Kinetic Models	41
	4.5.1 The Pseudo First Order Equation	41
	4.5.2 The Pseudo Second Order Equaiton	43
	4.5.3 The Intraparticle Diffusion Equation	44
	4.6 Adsorption Isotherm Study	47
	4.7 Pilot Plant Testing	51
v	CONCLUSIONS AND RECOMMENDATIONS	52
	5.1 Conclusions	52
	5.2 Recommendations	52
	REFERENCES	53
	APPENDICES	57
	Appendix A Blank Test (Batch System)	57
	Appendix B Appropriate Quantity of Adsorbent	
	(Batch System)	58

СНАРТ	ER	PAGE
	Appendix C Adsorption Kinetic Study (Batch System)	59
	Appendix D Adsorption Isotherm Study (Batch System)	62
	Appendix E Pilot Plant Testing (Continuous System)	64
	CURRICULUM VITAE	68

LIST OF TABLES

TABL	E	PAGE
2.1	Published concentrations for various natural gases and oils	3
2.2	Major mercury species in environmental samples	4
2.3	Approximate natural abundance of mercury compounds in	
	hydrocarbons	4
2.4	Physical properties of elemental mercury	6
2.5	Physical and chemical properties of mercury and some of its	
	compounds	7
2.6	Mercury removal systems for hydrocarbons	10
2.7	Solubility of sulfur in liquid hydrocarbons at 25°C	11
2.8	Group of components supported on activated carbon	15
2.9	Pore sizes in typical activated carbons	23
2.10	Classification of zeolites based on size of windows	24
3.1	Physical properties of the supports	28
3.2	Operating conditions of mercury analyzer (NIC SP-3D)	30
4.1	Water content in the supports	36
4.2	Copper content on the CuS adsorbents	36
4.3	Kinetic parameters for the removal of metallic mercury	42
4.4	Effective diffusion coefficient for metallic mercury removal	47
4.5	Isotherm constants and value of R^2 for metallic mercury removal	48
4.6	Characteristics of adsorption Langmuir isotherms	50

LIST OF FIGURES

FIGURE		PAGE
2.1	Distribution of mercury compounds in distillation cuts	8
2.2	Distribution of mercury in condensate	9
2.3	The IFP RAM II process	17
2.4	Framework of Beta zeolite	25
3.1	Schematic of batch system	33
3.2	Schematic of pilot plant U844, Lyon, France	34
3.3	Sample boat with additive B and M and sample for analysis	34
4.1	Thermograms of alumina, activated carbon and Beta zeolite	35
4.2	XRD patterns of the CuS adsorbents	37
4.3	Remaining concentration of metallic mercury solution of	
	500 ppb in the study on blank test at temperature 50°C	38
4.4	Effect of adsorbent quantity on the adsorption capacity of	
	metallic mercury at 500 ppb, 50°C, and equilibrium time 6 h	39
4.5	Kinetics of adsorption of metallic mercury on the supports	
	for concentration 500 ppb at 50°C	40
4.6	Kinetics of adsorption of metallic mercury at concentration	
	500 ppb and 50°C	41
4.7	Pseudo first order plot for metallic mercury removal at	
	concentration 500 ppb and 50°C	42
4.8	Pseudo second order plot for metallic mercury removal at	
	concentration 500 ppb and 50°C	43
4.9	Intraparticle diffusion plot for metallic mercury removal at	
	concentration 500 ppb and 50°C	. 44
4.10	Plot of Bt versus time for metallic mercury removal at	
	concentration 500 ppb and 50°C	46
4.11	Adsorption isotherms of metallic mercury at 50°C	47
4.12	BET adsorption isotherm for metallic mercury removal at 50°C	48

FIGUR	RE .	PAGE
4.13	Freundlich adsorption isotherm for metallic mercury removal	
	at 50°C	49
4.14	Langmuir adsorption isotherm for metallic mercury removal	
	at 50°C	49
4.15	Separation factor of metallic mercury adsorbed at 50°C	50
4.16.	The breakthrough curves for metallic mercury removal at	
	conditions of: concentration of 1000 ppb, 50°C, 7 bar and	
	2 ml/min in feed velocity	51