โปรทีโอมและลักษณะสมบัติของจีนและโปรตีนที่มีหน้าที่เกี่ยวข้องกับการสร้างไข่ของกุ้งกุลาดำ Penaeus monodon

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้มเต่ปีคารศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มข้อมูลของนิสิญสัทธ์พลิงนุษาโลงหรัดนี่ส่หห่วพยาสบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the University Graduate School.

PROTPROTEOME AND CHARACTERIZATION OF GENES AND PROTEINS FUNCTIONALLY INVOLVED IN OOGENESIS OF THE BLACK TIGER SHRIMP *Penaeus monodon*

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Biotechnology Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

Thesis Title	PROTPROTEOME AND CHARACTERIZATION OF
	GENES AND PROTEINS FUNCTIONALLY INVOLVED
	IN OOGENESIS OF THE BLACK TIGER SHRIMP
	Penaeus monodon
Ву	Miss Witchulada Talakhun
Field of Study	Biotechnology
Thesis Advisor	Professor Piamsak Menasveta, Ph.D.
Thesis Co-Advisor	Bavornlak Khamnamtong, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

_____Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

	Chairman
(Associate Professor Thaithaworn Lirdwit	tayaprasit, Ph.D.)
	Thesis Advisor
(Professor Piamsak Menasveta, Ph.D.)	
	Thesis Co-Advisor
(Bavornlak Khamnamtong, Ph.D.)	
	Examiner
(Assistant Professor Sanit Piyapattanakor	rn, Ph.D.)
	Examiner
(Kittinan Komolpis, Ph.D.)	
	External Examiner
(Sirawut Klinbunga, Ph.D.)	
	External Examiner
(Sittiruk Roytrakul, Ph.D.)	

วิชชุลดา ตาลาคุณ : โปรทีโอมและลักษณะสมบัติของจีนและโปรตีนที่มีหน้าที่เกี่ยวข้องกับการสร้างไข่ของกุ้งกุลาดำ *Penaeus monodon.* (PROTPROTEOME AND CHARACTERIZATION OF GENES AND PROTEINS FUNCTIONALLY INVOLVED IN OOGENESIS OF THE BLACK TIGER SHRIMP *Penaeus monodon*) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร. เปี่ยมศักดิ์ เมนะเศวต, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร. บวรลักษณ์ คำน้ำทอง, 248 หน้า.

ศึกษาโปรดิโอมิกส์ของโปรตีนในรังไข่ของกุ้งกุลาดำที่ปรับปรุงพันธุ์ และกุ้งจากธรรมชาติด้วยวิธี GeLC-MS/MS พบจำนวนโปรตีนที่ เหมือนกับโปรดีนจากฐานข้อมูลจำนวน 1638 โปรตีน โดย 1253 โปรดีน (76.50%) จัดเป็นโปรดีนที่ทราบหน้าที่ และพบว่ามีโปรตีนจำนวน 514 โปรตีน ที่มี ระดับการแสดงออกที่แตกต่างกันระหว่างกลุ่มตัวอย่าง นอกจากนี้ศึกษาโปรตีนที่เกี่ยวข้องกับการสลายเยื่อหุ้มนิวเคลียสด้วยวิธีการเดียวกัน พบโปรตีนที่ เหมือนกับฐานข้อมูลจำนวนทั้งหมด 724 โปรตีน เมื่อวิเคราะห์ตำแหน่งที่แสดงออกจากการสืบค้นจากฐานข้อมูล พบว่ามีโปรตีนจำนวน 89 โปรตีนที่มี ดำแหน่งการแสดงออกที่เยื่อหุ้มนิวเคลียส และพบ 99 โปรตีนที่มีดำแหน่งการแสดงออกจากการสืบค้นจากฐานข้อมูล พบว่ามีโปรตีนที่เกี่ยวข้องกับกระบวนการ ส่งสัญญาณได้แก่ protein kinase C และ cyclic AMP regulated-protein like protein โปรตีนที่เกี่ยวข้องกับกระบวนการขนส่งโปรตีนที่เดือ valosincontaining protein , thymosin beta และ Rac GTPase-activating protein 1 และโปรตีนที่เกี่ยวข้องกับการสอายขงยี่อหุ้มนิวเคลียสคือ nuclear pore complex protein NUP133 และ semaphorin-2a ดังนั้นจึงหาลำดับนิวคลีโอไทด์ที่สมบูรณ์ของจีน Valosin containing protein (PmVCP) พบว่ามีความยาว 2724 คู่เบสมี ORF เท่ากับ 2481 เบส แปรรหัสเป็น 826 อะมิโน, Thymosin beta (PmTmsb) พบว่ามีความยาว 1084 คู่เบส มี ORF เท่ากับ 387 เบส แปรรหัสเป็น 128 กรดอะมิโน, Protein kinase C (PmPKC) พบว่ามีความยาว 3404 คู่เบส มี ORF เท่ากับ 2235 เบส แปรรหัสเป็น 744 กรดอะมิโน, cyclic AMP-regulated protein like protein (PmcAMP-RLP) พบว่ามีความยาว 1272 คู่เบส มี ORF เท่ากับ 435 เบส แปรรหัสเป็น 114 กรดอะมิโน และ Nuclear pore complex protein NUP133 (PmNUP133) พบว่ามีความยาว 14130 คู่เบส มี ORF เท่ากับ 3228 เบส แปรรหัสเป็น 1085 กรดอะมิโน นอกจากนี้สามารถแยกส่วน ORF ของจีน Rac GTPase activating protein 1 (PmRacgap1) พบว่ามี ORF ยาว 1881 คู่เบส แปรรหัส เป็น 626 กรดอะมิโน

ศึกษาระดับการแสดงออกของจีนระหว่างการพัฒนารังไข่ของกุ้งกุลาดำพบว่าจีน PmVCP มีการแสดงออกที่ไม่แตกต่างกันระหว่างการ พัฒนารังไข่ของกุ้งเต็มวัยปกติจากธรรมชาติ แต่การแสดงออกของ PmVCP สูงขึ้นในระยะไวเทลโลเจเนซิส และระยะรังไข่ที่สมบูรณ์ในกุ้งธรรมชาติที่ตัดก้าน ตา โดยการตัดก้านตาส่งผลให้การแสดงออกของจีนนี้ในรังไข่ระยะที่ 4 สูงกว่าในกุ้งธรรมชาติปกติ ส่วนจีน PmTmsb มีการแสดงออกที่ไม่แตกต่างกัน ระหว่างการพัฒนารังไข่ของกุ้งเต็มวัยปกติจากธรรมชาติ แต่การแสดงออกของ PmTmsb สูงขึ้นในระยะที่ 2 และ 4 ในกุ้งธรรมชาติที่ตัดก้านตา ระหว่างการพัฒนารังไข่ของกุ้งเต็มวัยปกติจากธรรมชาติ แต่การแสดงออกของ PmTmsb สูงขึ้นในระยะที่ 2 และ 4 ในกุ้งธรรมชาติที่ตัดก้านตา โดยการตัด ก้านตาส่งผลให้การแสดงออกของจีนนี้ในรังไข่ระยะที่ 3 ต่ำกว่าในกุ้งธรรมชาติปกติ สำหรับจีน PmcAMP-RPL และ PmPKC นั้นมีการแสดงออกที่ไม่ แตกต่างกันระหว่างการพัฒนารังไข่ของกุ้งเต็มวัยธรรมชาติปกติและกุ้งที่ตัดก้านตา อย่างไรก็ดีการตัดก้านตาส่งผลให้การแสดงออกของจีน PmFKC ในรังไข่ ระยะที่ 1-4 ต่ำกว่าในกุ้งธรรมชาติปกติ โดยจีน PmcRacgap1 มีการแสดงออกที่ไม่แตกต่างกันระหว่างการพัฒนารังไข่ของกุ้งเต็มวัยธรรมชาติปกติและกุ้งที่ ตัดก้านตา เมื่อศึกษาผลของการฉีดโปรเจลเตอโรนและซึโรโตนินต่อการแสดงออกของจีน PmVCP, PmRacgap1, PmcAMP-RPL และ PmPKC แต่ไม่มีผลต่อการ การแสดงออกของจีน PmVCP แต่ซ์โรโตนินกระตุ้นการแสดงออกของจีน PmVCP, PmRacgap1, PmcAMP-RPL และ PmPKC แต่ไม่มีผลต่อการ แสดงออกของ PmTmsb

ศึกษาการแสดงออกของโปรตีน PmVCP, PmRacgap1 และ PmTmsb ด้วยวิธี Western blot พบว่า PmVCP มีการแสดงออกในรังไข่ทุก ระยะการพัฒนา โดยการแสดงออกของโปรตีน PmVCP นั้นไม่แตกต่างกันในรังไข่ระยะต่างๆ สำหรับ PmRacgap1 พบแถบโปรตีนจำนวนสองแถบ ที่ขนาด น้ำหนักโมเลกุลประมาณ 34 และ 100 kDa โดยพบว่าแถบโปรตีนขนาด 34 kDa มีการแสดงออกลดลงในรังไข่ระยะที่ 3 และ 4 ทั้งในรังไข่ของกุ้งกุลาดำ ปกติและกุ้งกุลาดำตัดตา ในขณะที่โปรตีน PmTmsb มีแถบโปรตีนที่ให้ผลบวกจำนวนสองแถบ ที่ขนาดน้ำหนักโมเลกุลประมาณ 22 และ 28 kDa โดยการ แสดงออกของโปรตีนขนาด 28 kDa (thymosin-**β**-repeated protein 2) มีระดับลดลงในรังไข่ระยะที่ 4 ของกุ้งธรรมชาติเต็มวัยปกติ โดยไม่พบการ แสดงออกของโปรตีนนี้ในรังไข่ระยะที่ 3 และ 4 ในกุ้งธรรมชาติที่ตัดก้านตา ศึกษาตำแหน่งการแสดงออกของโปรตีน PmVCP และ PmRacgap1 พบว่า โปรตีน VCP มีตำแหน่งการแสดงออกที่ ooplasm ในระยะ previtellogenic และมีการโยกย้ายเข้าสู่นิวเคลียส ในระยะ vitellogenic และนอกจากนั้นยัง พบที่ nucleo-cytoplasm, cytoskelatal architechture และ plasma membrane ในระยะไข่ที่สมบูรณ์ (mature oocytes) ของกุ้งธรรมขาติปกติและ กุ้งที่ตัดก้านตา ในขณะที่โปรตีน Racgap1 มีการแสดงออกที่ ooplasm ของไข่ทุกระยะ นอกจากนี้ยังพบการแสดงออกของ PmRacgap1ใน nucleocytoplasm, cytoskeletal architechture และใน cortical rod ของไข่ระยะสมบูรณ์ในกุ้งธรรมชาติปกติและกู้งที่ตัดก้านตา

CHULALONGKORN UNIVERSITY

สาขาวิชา เทคโนโลยีชีวภาพ ปีการศึกษา 2556

ลายมือช่อนสิต	
ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก	
ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม	

5273852023 : MAJOR BIOTECHNOLOGY

KEYWORDS: PENAEUS MONODON / BLACK TIGER SHRIMP / ONE-DIMENSIONAL GEL ELECTROPHORESIS / MASS SPECTROMETRY

WITCHULADA TALAKHUN: PROTPROTEOME AND CHARACTERIZATION OF GENES AND PROTEINS FUNCTIONALLY INVOLVED IN OOGENESIS OF THE BLACK TIGER SHRIMP *Penaeus monodon*. ADVISOR: PROF. PIAMSAK MENASVETA, Ph.D., CO-ADVISOR: BAVORNLAK KHAMNAMTONG, Ph.D., 248 pp.

Proteomics of ovarian proteins in domesticated and wild broodstock of the giant tiger shrimp *Penaeus monodon* were studied using GeLC-MS/MS. In total, 1638 proteins were identified and 1253 (76.50%) proteins matched known proteins. Of these, 514 proteins were differential expressed between groups of samples. To characterized proteins involved in GVBD, nuclear membrane and nuclear proteins were identified. In total, 724 proteins were identified and matched known proteins. Localization of these proteins were searched and 89 and 99 proteins were classified as those integrated to membrane and nuclear proteins. In this thesis, proteins involved in signal transduction pathways and cytoskeletal reorganization during GVBD were characterized. The full-length cDNA of *Valosin-containing protein (PmVCP1, 2*724 bp with an ORF of 2481 deducing to 826 amino acids), *Thymosin beta (PmTmsb;* 1084 bp, an ORF = 387 bp, 128 aa), *Protein kinase C (PmPKC;* 3404 bp, an ORF = 2235 bp, 744 aa), *cyclic AMP-regulated protein like protein (PmcAMP-RLP;* 1272 bp, an ORF = 435 bp, 144 aa), *Nuclear pore complex protein NUP133* (*PmNup133;* 4130 bp, an ORF = 3228 bp, 1085 aa) were successfully characterized by RACE-PCR. In addition, the complete ORF of *Rac GTPase activating protein 1 (PmRacgap1;* 1881 bp, 626 aa) was also successfully isolated.

The expression levels of *PmVCP* were not significant different throughout ovarian development of intact broodstock (P > 0.05). However, *PmVCP* was up-regulated during vitellogenesis and final maturation of eyestalk-ablated broodstock (P < 0.05) and its expression in stage IV ovaries was greater than that of the same stage in intact broodstock (P < 0.05). The expression level of *PmTmsb* was not differential expressed in ovaries of wild intact broodstock but it was up-regulated in stages II and IV ovaries in eyestalk-ablated broodstock (P < 0.05). Eyestalk ablation resulted in the reduction of this transcript in stage III ovaries (P < 0.05). The expression of *PmcAMP-RPL* was not different during ovarian development of intact and eyestalk-ablated broodstock. Similarly, the expression of *PmPKC* was not significantly expressed during ovarian development of intact and eyestalk-ablated broodstock. Nevertheless, eyestalk ablation resulted in the reduction of this transcript in stage II ovaries of *PmRacgap1* was not differentially expressed during ovarian development of intact and eyestalk-ablated broodstock. Nevertheless, eyestalk ablation resulted in the reduction of this transcript in stages I-IV ovaries. The expression level of *PmRacgap1* was not differentially expressed during ovarian development of intact and eyestalk ablated broodstock (P > 0.05). In addition, effects of progesterone and serotonin (5-HT) administration in domesticated *P. monodon* were evaluated Results indicated that progesterone did not induce the expression of *PmVCP*. In contrast, the expression level of *PmVCP*, *PmRacgap1*, *PmcAMP-RPL* and *PmPKC* but not *PmTmsb* was stimulated by serotonin administration.

The expression profiles of ovarian PmVCP, PmTmsb and PmRacgap1 proteins were examined. PmVCP were observed in juvenile ovaries and at all stages of ovarian development in both intact and eyestalk-ablated broodstock of wild *P. monodon*. It seemed to be expressed at comparable levels for all stages of ovarian development in shrimp broodstock. Two immunoreactive bands (34 and 100 kDa) of PmRacgap1 was observed in ovarian membrane proteins. The expression level of PmRacgap1 reflected from a 34 kDa band seemed to be decreased in late stages of ovarian development (stages III and IV ovaries) in both intact and eyestalk-ablated broodstock. Anti-rPmTmsb PAb gave positive the immunoreactive signals of 22 and 28 kDa, respectively. The expression level of PmTmsb reflected from a positive 28 kDa band (thymosin- β -repeated protein 2) seemed to be decreased in mature (IV) ovaries in intact broodstock. In eyestalk-ablated broodstock, it was not expressed in late vitellogenic (III) and mature ovaries. Localization of PmVCP protein was observed in the ooplasm of previtellogenic oocytes and it was translocated into the nucleus of vitellogenic oocytes. Interestingly, it was found in nucleo-cytoplasmic compartments, the cytoskeletal architecture and the plasma membrane in mature oocytes of both intact and eyestalk-ablated broodstock. During vitellogenesis, it was also observed in the nucleus of vitellogenic oocytes and subsequently, in nucleo-cytoplasmic compartments, the cytoskeletal architecture and in cortical rods of more mature oocytes of both intact and eyestalk-ablated broodstock.

Field of Study: Biotechnology Academic Year: 2013

Student's Signature
Advisor's Signature
Co-Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my deepest sense of gratitude to my advisor Professor Dr. Piamsak Menasveta and my co-advisor, Dr Bavornlak Khamnamtong, Dr. Sirawut Klinbunga and Dr. Sittiruk Roytrakul for their great helps, guidance, encouragement, valuable suggestion and supports throughout my study.

My gratitude is also extended to Associate Professor Dr. Thaithaworn Lirdwitayaprasit, Dr. Kittinan Komolpis and Assistant Professor Dr. Sanit Piyapattanakorn who serve as the committee of my thesis.

I would particularly like to thank the Center of Excellence for Marine Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Faculty of Science, Chulalongkorn University, National Science and Technology Development Agency (NSTDA) for providing facilities and a student grant was supported by the Thailand Graduate Institute of Science and Technology (TGIST), NSTDA award.

I would like to extend my special thank to all of every one in AAMG laboratory and the Proteomic laboratory, Genome Institute for valuable suggestions. In addition, many thanks are also expressed to all of every one in our laboratory for best friendship, their help and friendly assistance.

Finally, I would like to express my deepest gratitude to my parents and members of my family for their love, understanding and encouragement extended throughout my study.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CONTENTS

THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
CHAPTER I INTRODUCTION
1.1 Background information
1.2 Objective of this thesis
1.3 General introduction
1.3.1 Taxonomy of <i>P. monodon</i> 5
1.3.2 Oogenesis and formation of cortical rods in shrimp
1.3.3 Ovarian development of <i>Penaeus monodon</i> and hormonal control in reproductive maturation in shrimp
1.3.4 Hormonal studies in shrimp
1.4 Control of cortical rods formation and germinal vesicle breakdown
1.5 Proteomic studies in shrimp reproduction
CHAPTER II MATERIALS AND METHODS
2.1 Experimental samples
2.2 Protein extraction
2.2.1 Total protein extraction
2.2.2 Nuclear membrane and nuclear proteins extraction
2.2.3 Membrane proteins extraction
2.3 Nucleic acid extraction
2.3.1 RNA extraction
2.3.2 Preparation of DNase I-free total RNA

2.4 Estimation of extracted total protein, total RNA and DNA concentration	. 34
2.5 One dimensional gel electrophoresis	. 35
2.5.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)	. 35
2.5.2 Silver staining	. 36
2.6 Mass spectrometry analysis	. 36
2.6.1 In-gel digestion for protein identification	. 36
2.6.2 nanoLC-MS/MS	. 37
2.6.3 Database searches	. 37
2.7 First strand cDNA synthesis	. 38
2.8 Reverse transcription (RT)-PCR of gene homologues in <i>P. monodon</i>	. 38
2.8.1 Primer design	. 38
2.8.2 RT-PCR	. 39
2.8.3 Agarose gel electrophoresis	. 39
2.9 Tissue distribution analysis of interesting genes or differential expression patt	ern
	. 40
2.9.1 Total RNA extraction and the first strand cDNA synthesis	. 40
2.9.2 Tissue expression analysis	. 40
2.10 Isolation and characterization of the full-length cDNA of functionally	
important gene homologues of <i>P. monodon</i> using Rapid Amplification of cDNA	12
2.10.1 Proparation of the 5' and 3' PACE tomplate	.42
2.10.2 Primar decigned for DACE DCD and primar walking	. 42
2.10.2 Primer designed for RACE-PCR and primer walking	.42
2.10.3 RACE-PCR	.43
2.10.4 Elution DNA fragments from agarose gels	.47
2.11 Cloning of the PCR product	. 47
2.11 Ctoning of the PCR product to the pGEM [®] -T Easy vector	. 47 . 47
2.11 Cloning of the PCR product 2.11.1 Ligation of the PCR product to the pGEM [®] -T Easy vector 2.11.2 Transformation of the ligation product to <i>E.coli</i> host cells	. 47 . 47 . 48

	Page
2.11.2.2 Transformation	48
2.12 Colony PCR and digestion of the amplified inserts by restriction	
endonucleases	49
2.13 Extraction of recombinant plasmid DNA	50
2.14. Examination of expression levels of interesting genes in ovaries of <i>P. monodon</i> by quantitative real-time PCR	51
2.14.1 Experimental animals	51
2.14.2 Primers and construction of the standard curve	52
2.14.3 Quantitative real-time PCR	52
2.15 In situ hybridization (ISH)	53
2.15.1 Sample preparation	53
2.15.2 Preparation of cRNA probes	53
2.15.3 Synthesis of the cRNA probes	54
2.15.4 Dot blot analysis	55
2.15.5 Hybridization and detection	55
2.16 In vitro expression of recombinant proteins using the bacterial expression	
system	56
2.16.1 Primer design	56
2.16.2 Construction of recombinant plasmid in cloning and expression vector	ors
	56
2.16.3 Expression of recombinant proteins	57
2.16.4 Purification of recombinant proteins	59
2.16.5 Peptide sequencing of recombinant proteins	60
2.16.6 Polyclonal antibody production and polyclonal antibody purification	60
2.16.7 Western blot analysis	60
2.17 Localization of reproduction-related proteins	61
2.17.1 Immunohistochemistry	61
2.17.2 Immunofluorescence	62

2.18 Pull down assay	62
CHAPTER III RESULTS	
CHAPTER IV DISCUSSION	161
CHAPTER V CONCLUSION	176
REFERENCES	178
APPENDIX	
Appendix A	
Appendix B	244
VITA	248

LIST OF TABLES

Table 2.1 Gene homologue, primer sequences and expected sizes of the PCR	
product designed from EST of <i>P. monodon</i>	1
Table 2.2 Primer sequence for the first strand cDNA synthesis and RACE-PCR	3
Table 2.3 Gene-specific primers (GSPs) and nested GSP used for isolation of the full-	
length cDNA of functionally important genes in <i>P. monodon</i>	4
Table 2.4 Compositions for amplification of the 5' end of gene homologues using 5'	
RACE-PCR	5
Table 2.5 Compositions for amplification of the 3' end of gene homologues using 3'	
RACE-PCR	5
Table 2.6 The amplification conditions for RACE-PCR of various gene homologues of	
P. monodon	6
Table 2.7 Nucleotide sequences and Tm of primers for synthesis of the cRNA probes	
of PmVCP	4
Table 2.8 Gene specific overhang primers, their sequences and melting temperature	
™ of PmVCP, PmRacgap1, PmTmsb, PmNUP133 and Pmsema	7
Table 3.9 Expression of reproduction-related genes in different tissues of P. monodor	n
	9
Table 3.10 Titers of polyclonal antibodies after rabbits were administrated by rCdc48	-
VCP, rNUP133, PmSema, PmRacgap1 and PmTmsb138	8
Table 3.11 Proteins identified from a pull down assay of rPmCdc48-VCP with total	
ovarian protein of <i>P. monodon</i> analyzed by nanoESI-LC-MS/MS	0
Table 3.12 Proteins identified from a pull down assay of rPmTmsb with total ovarian	
protein of <i>P. monodon</i> analyzed by nanoESI-LC-MS/MS160	0

LIST OF FIGURES

Figure 1.1 External morphology of <i>P. monodon</i> (A). Sexes of juveniles and broodstok
of penaeid shrimp can be externally differentiated by petasma of male (B) and
thelycum of female (C)
Figure 1.2 TEM micrograph and ultrastructure of oocyte of <i>P. monodon</i> stage I-IV9
Figure 1.3 Different ovarian development stages of <i>P. monodon</i> 12
Figure 1.4 Reproductive cycles of the close-thelycum penaeid shrimp14
Figure 1.5 Diagram illustrating the hormonal controls of physiological processes of
penaeid shrimp
Figure 1.6 A schematic diagram illustrating the major endocrine organs in shrimp and
electron microscopy section (8500X) of the sinus gland demonstrating hormone filled
vesicles
Figure 1.7 Localization of hormones that control several physiological systems from
the sinus gland/X-organ complex of <i>P. monodon</i> 16
Figure 1.8 Schematic diagram of the endocrine control of vitellogenesis in shrimp 20
Figure 3.9 Ovarian protein profiles of <i>P. monodon</i> analyzed by 12% SDS-PAGE65
Figure 3.10 Venn diagram representing proteins in each group of P. monodon
identified by GeLC-MS/MS67
Figure 3.11 A pie chart showing the functional categories of characterized ovarian
proteins of <i>P. monodon</i> matched those in the databases
Figure 3.12 Histogram showing numbers of characterized proteins in each functional
category
Figure 3.13 Protein profiles of the nuclear proteins and nuclear membrane extracted
from stage I and III ovaries of <i>P. monodon</i> analyzed by 12% SDS-PAGE71
Figure 3.14 Pie chart showing functional categories of nuclear membrane proteins in
ovaries of <i>P. monodon</i> analyzed by GeLC-MS/MS75
Figure 3.15 Pie chart showing functional categories of nuclear proteins in ovaries of <i>P</i> .
monodon analyzed by GeLC-MS/MS

Figure 3.16 Pie chart showing functional categories of protein with unknown cellular
components found from proteomic analysis of nuclear and nuclear protein fractions
extracted from ovaries of <i>P. monodon</i> 76
Figure 3.17 Agarose gel eletrophoresis illustrating the nested 3'RACE-PCR product of
PmVCP
Figure 3.18 Nucleotide sequences of EST and 3' RACE-PCR products of <i>PmVCP</i> 78
Figure 3.19 The full-length cDNA anddeduced amino sequences of valosin-
containing protein of P. monodon (PmVCP)
Figure 3.20 Agarose gel electrophoresis showing results from 5' and 3' RACE-PCR of
PmTmsb
Figure 3.21 Nucleotide sequence of 5' RACE-PCR, the original EST and 3' RACE-PCR of
PmTmsb. Sequences of primers are underlined
Figure 3.22 The full-length cDNA and deduced protein sequences of <i>PmTmsb.</i>
Figure 3.23 Agarose gel electrophoresis showing the amplified ORF of ovarian
PmRacgap1
Figure 3.24 The open reading frame and deduced protein sequences of PmRacgap1
Figure 3.25 Pairwise nucleotide sequences alignment of <i>PmRacgap1</i> found in ovaries
and testes
Figure 3.26 Agarose gel electrophoresis showing results from 5' RACE-PCR, nested 5'
RACE-PCR, nested 5' RACE-PCR and 3 'RACE-PCR products of PmPKC
Figure 3.27 Nucleotide sequences of 5' RACE, the original EST and 3' RACE-PCR of
РтРКС
Figure 3.28 The full-length cDNA and deduced protein sequences of <i>PmPKC</i> 93
Figure 3.29 The primary 3' RACE-PCR product of cyclic AMP-regulated protein like
protein
Figure 3.30 Nucleotide sequences of an original EST and 3' RACE-PCR
Figure 3.31 The full-length cDNA and deduced protein sequences of cyclic AMP-
regulated protein like protein of P. monodon95

Page

Figure 3.32 Agarose gel electrophoresis showing results from nested 5'RACE-PCR
product and primary 3 RACE-PCR product of <i>PmNPC133</i> 96
Figure 3.33 Nucleotide sequence of 5' RACE-PCR, the original EST and 3 RACE of
PmNPC133
Figure 3.34 The full-length cDNA and deduced protein sequences of <i>PmNPC133</i> of <i>P</i> .
monodon and diagram illustrating the full-length cDNA of <i>PmNPC133</i> 101
Figure 3.35 Agarose gel electrophoresis showing results from the primary 3 and 5'
RACE-PCR of <i>PmSema</i>
Figure 3.36 The partial nucleotide and deduced amino sequences of <i>PmSema.</i> 103
Figure 3.37 1.0% ethidium bromide-stained agarose gel showing the quality of total
RNA and corresponding first strand cDNA from female broodstock of <i>P. monodon</i>
Figure 3.38 1.6% ethidium bromide-stained agrarose gels showing results from RT-PCR
Figure 3.39 1.6% ethidium bromide-stained agrarose gels showing results from RT-
PCR of ovaries and various tissues of <i>P. monodon</i> broodstock and <i>EF-1</i> $m{\alpha}$ 109
Figure 3.40 The standard amplification curve of various genes examined by real-time
PCR analysis
Figure 3.41 Histograms showing relative expression levels of <i>PmVCP</i> during ovarian
development of intact broodstock and unilateral eyestalk-ablated of P. monodon
broodstock
Figure 3.42 Histograms showing relative expression levels of <i>PmTmsb</i> during ovarian
development of intact broodstock and unilateral eyestalk-ablated of P. monodon
broodstock
Figure 3.43 Histograms showing relative expression levels of <i>PmcAMP-RPL</i> during
ovarian development of intact broodstock and unilateral eyestalk-ablated of P.
monodon broodstock
Figure 3.44 Histograms showing relative expression levels of <i>PmPKC</i> during ovarian
development of intact broodstock and unilateral eyestalk-ablated of P. monodon
broodstock

xiv

Figure 3.45 Histograms showing relative expression levels of <i>PmRacgap1</i> during
ovarian development of intact broodstock and unilateral eyestalk-ablated of P.
monodon broodstock
Figure 3.46 Time-course relative expression levels of <i>PmVCP</i> in ovaries of
domesticated 14-month-old shrimp after progesterone injection
Figure 3.47 Time-course relative expression levels of <i>PmVCP</i> in ovaries of 18-month-
old shrimp after serotonin injection
Figure 3.48 Time-course relative expression levels of <i>PmPKC</i> in ovaries of 18-month-
old after serotonin injection
Figure 3. 49 Time-course relative expression levels of <i>PmcAMP-RPL</i> in ovaries of 18-
month-old shrimp after serotonin injection
Figure 3.50 Time-course relative expression levels of <i>PmRacgap1</i> in ovaries of 18-
month-old shrimp after serotonin injection
Figure 3.51 Time-course relative expression levels of <i>PmTmsb</i> in ovaries of 18-month-
old after serotonin injection
Figure 3.52 The digested plasmid was used as the template for synthesis of the cRNA
probe of <i>PmVCP</i> , the antisense and sense were synthesized from the gel-eluted
digested plasmid template
Figure 3.53 Localization of <i>PmVCP</i> transcript during ovarian development of intact <i>P</i> .
monodon broodstock
Figure 3.54 Localization of <i>PmVCP</i> transcript during ovarian development of eyestalk-
ablated broodstock of <i>P. monodon</i>
Figure 3.55 Alignments of deduced amino acid sequences of <i>Racgap1</i> from testesand
ovaries (ORF-OV) of <i>P. monodon.</i>
Figure 3.56 SDS-PAGE and Western blot analysisillustrating in vitro expression of two
recombinant clones of PmCdc48-VCP after IPTG induction
Figure 3.57 SDS-PAGE and western blot analysis showing expression of a
recombinant clone of PmCdc48-VCP after the culture was induced by IPTG

Figure 3.58 SDS-PAGEand western blot analysis of a recombinant clone of PmNPC-
NUP133 after induction by 1 mM IPTG
Figure 3.59 SDS-PAGE and western blot analysis showing expression of a
recombinant clone of PmNPC-NUP133 after IPTG induction
Figure 3.60 SDS-PAGE and western blot analysis of a recombinant clone of PmSema
after induction by 1 mM IPTG130
Figure 3.61 SDS-PAGE and western blot analysis showing expression of a recombinant
clone of Pmsema after induction by 1 mM IPTG
Figure 3.62 SDS-PAGE and western blot analysis of a recombinant clone of
PmRacgap1 after induction by 1 mM IPTG131
Figure 3.63 SDS-PAGE and western blot analysis showing expression of PmRacgap1
after a recombinant cloned was induced y IPTG
Figure 3.64 SDS-PAGE and western blot analysis of a recombinant clone of PmTmsb
after induction by 1 mM IPTG
Figure 3.65 SDS-PAGE and western blot analysis showing expression of rPmTmsb after
a recombinant PmTmsb was induced by 1 mM IPTG132
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG.132Figure 3.66 Purification of rPmCdc48-VCP.133Figure 3.67 Purification of rPmNUP133.134Figure 3.68 Purification of rPmSema.134Figure 3.69 Purification of rPmRacgap1135Figure 3.70 Purification of rPmTmsb.135Figure 3.71 SDS-PAGE and western blot analysis showing electro-eluted rPmCdc48-VCP, rPmNUP133, rPmSema, RacGAP 1 and rPmTmsb of <i>P. monodon</i> 139
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG
a recombinant PmTmsb was induced by 1 mM IPTG

xvi

Page

Figure 3.75 Sensitivity of anti-rPmTmsb PAb against varying amounts of rPmtmsb
protein and competitive binding assays of anti-rPmTmsb PAb
Figure 3.76 Western blot analysis showing tissue expression analysis of the PmVCP
protein and western blot analysis of PmVCP147
Figure 3.77 Western blot analysis of PmRacgap1
Figure 3.78 Western blot analysis of PmRacgap1
Figure 3.79 Western blot analysis of PmTmsb in150
Figure 3.80 Western blot analysis of PmNPC-NUP133 and PmSema
Figure 3.81 Localization of PmVCP protein revealed by immunohistochemistry using
anti-rPmCdc48-VCP PAb against conventional tissue sections from intact wild
P.monodon specimens
Figure 3.82 Localization of PmVCP protein revealed by immunohistochemistry using
anti-rPmCdc48-VCP PAb against conventional tissue sections from intact wild
P.monodon specimens
Figure 3.83 Localization of PmVCP protein revealed by immunofluorescence of anti-
PmCdc48-VCP PAb against conventional ovarian tissue sections from intact wild P.
monodon specimens
Figure 3.84 Localization of PmRacgap1 protein revealed by immunohistochemistry
using anti-rPmRacgap1 PAb against conventional tissue sections from wild intact
P.monodon
Figure 3.85 Localization of PmRacgap1 protein revealed by immunohistochemistry
using anti-rPmRacgap1 PAb against conventional tissue sections from eyestalk-
ablated wild <i>P.monodon</i> specimens157
Figure 3.86 15% SDS-PAGE and western blot analysis showing protein profiles from
the pull down assay of soluble rPmCdc48-VCP with ovarian proteins of <i>P. monodon</i>
Figure 3.87 15% SDS-PAGE and western blot analysis showing protein profiles from

the pull down assay of soluble rPmTmsb with ovarian proteins of *P. monodon.* 159

LIST OF ABBREVIATIONS

bp	base pair
°C	degree celcius
DEPC	diethylpyrocarbonate
DTT	dithiothreitol
dATP	deoxyadenosine triphosphate
dCTP	deoxycytosine triphosphate
dGTP	deoxyguanosine triphosphate
dTTP	deoxythymidine triphosphate
DNA	deoxyribonucleic acid
HCl	hydrochloric acid
IPTG	isopropyl-thiogalactoside
кь	kilobase
kDa	kilo daltan
Μ	molar
MgCl ₂	magnesium chloride
mg	mlligram

ml	mllilitre
mМ	mllimolar
ng	nanogram
OD	optical density
PCR	polymerase chain reaction
pl	isoelectric point
RNA	ribonucleic acid
RNase A	ribonuclease A
rpm	revolution per minute
RT	reverse transcription
SDS	sodium dodecyl sulfate
Tris Q M	tris (hydroxyl methyl) aminomethane
µg Сни	microgram
μι	microlitre
μΜ	micromolar
UV	ultraviolet

CHAPTER I

1.1 Background information

The giant tiger shrimp, *P. monodon* has dominated production of farmed shrimp along with the Pacific white shrimp (*Litopenaeus vannamei*) and is one of the most economically important penaeid species in South East Asia (Sambrook and Russell, 2001). Reduced reproductive maturation of captive *P. monodon* females is found (Kenway et al. (2006)); (Preechaphol et al., 2007). Accordingly, breeding of pond-reared *P. monodon* is extremely difficult and rarely produced enough quality of larvae required by the industry. In Thailand, farming of *P. monodon* in Thailand relies almost entirely on wild-caught broodstock for supply of juveniles (Sambrook and Russell, 2001). The lack of high quality wild and domesticated broodstock has probably caused the reduction of aquacultural production of *P. monodon* since the last several years.

The domestication and selective breeding programs of penaeid shrimp would provide a more reliable supply of seed stock and the improvement of their production efficiency. The use of selectively bred stocks having improved culture performance on commercially desired traits rather than the reliance on wild-caught stocks is a major mean of sustainability of the shrimp industry (Clifford and Preston, 2006) ; (Coman et al., 2006).

Several neurohormones are known to stimulate or inhibit ovarian maturation in crustaceans. These include the gonad inhibiting hormone (GIH) secreted by the Xorgan sinus gland complex (XO-SG), the gonad stimulating hormone (GSH) secreted from brain and thoracic ganglion as well as other steroids and terpenoids (Huberman, 2000). The removal of the sources of gonad inhibiting hormone by unilateral eyestalk ablation has commonly been used to induce maturation of the female of closed thelycum shrimp species, like *P. monodon*. However, the technique leads to an eventual loss in egg quality and death of the spawner (Benzie, 1998). Therefore, predictable maturation and spawning of captive penaeid shrimp without the use of eyestalk ablation is an ultimate goal for the industry (Quackenbush, 2001).

Several biotechnological areas including investigation of genetic variation (identification of stocks) and genome structure, controls of reproduction and growth, domestication of strains exhibiting required economically important traits (e.g. specific pathogen resistant, SPR and/or fast growing strains) are thought to have significant impact in the industry of this species. Moreover, identification and characterization of genes involving with reproductive maturation and mechanisms of sex differentiation and their expression patterns can be directly applied for selection of high quality pond-reared *P. monodon*.

Nevertheless, genetic improvement of *P. monodon* is slow owing to the lack of the basic information related with ovarian development and maturation in penaeid shrimp. An initial step toward understanding molecular mechanisms of ovarian and oocyte development in *P. monodon* is the identification and characterization of genes/proteins differentially expressed in different stages of ovaries in this economically important species (Preechaphol et al., 2007).

In penaeid shrimp, the mature oocyte arrests at the first meiotic prophase and oocytes reach complete metaphase I after ovulation (Yano, 1995). It remains unknown whether crustaceans possess a gonadotropin homologue that can trigger the meiotic resumption during final oocyte maturation as those in most vertebrate animals such as mammals, fishes and amphibians. Additionally, there have been no reports associated with the characterization of a maturation promoting factor (MPF) and its regulatory mechanisms for final oocyte maturation, which is an important aspect towards artificial control of maturation of the commercially important species and will contribute to a sustainable production of the shrimp industry (Qiu and Yamano, 2005).

The development of oocytes consists of a series of complex cellular events, in which different genes express to ensure the proper development of oocytes and to store transcripts and proteins as maternal factors for early embryogenesis (Qiu and Yamano, 2005). Different biotechnological approaches, for example; injection of vertebrate steroid hormones, neurotransmitters and ecdysteroids (Benzie, 1998); (Okumura, 2004) and the use of specially formulated feed (Harrison, 1990) have been applied to induce the ovarian maturation of female shrimp but results are inconsistent owing to limited knowledge on genetic and hormonal control of penaeid species (Meusy and Payen, 1988) ; (Okumura, 2004). An understanding of gene expression involving ovarian maturation between normal and eyestalk ablated *P. monodon* are useful for genetic improvement of this economically important species.

Discovery of genes expressed in ovaries of *P. monodon* has been reported based on EST (single-pass sequencing of randomly selected clones from cDNA libraries, (Preechaphol et al., 2007) and suppression subtractive hybridization (SSH) (Leelatanawit et al., 2004); (Preechaphol et al., 2010) analyses. Several reproductionrelated genes (e.g. *anaphase promoting complex subunit 11, selenoprotein M* precursor, chromobox protein, ovarian lipoprotein receptor, progestin membrane receptor component 1 and ubiquitin-specific proteinase 9, X chromosome) were isolated. Nevertheless, cellular proteomic profiles of proteins expressed during ovarian development of *P. monodon* have not been reported.

Yamano et al. (2004a) illustrated that in most cases ovaries of the kuruma prawn (*Marsupenaeus japonicus*) start to develop in the reproductive season but fail to reach full grown requisite for the formation of cortical rods (CRs). Ovaries degenerate without spawning. This is also the major constraint in *P. monodon*. Reduced spawning potential and low degree of maturation of *P. monodon* in captivity crucially prohibits the efficiency of the genetic improvement through domestication and selective breeding programs in this species.

Understanding mechanisms and functions of genes and proteins involved in oogenesis would provide a tool applicable for understanding of their important biological and molecular processes and finally, for improving cognitive processes in oogenesis of *P. monodon*. Nevertheless, identification of proteins in ovaries during ovarian development of penaeid shrimp have not been performed and reported in any species.

JHULALONGKORN UNIVERSITY

Proteomic technique is a powerful and wildly used method for analysis of protein mapping and expression of interesting expressed proteins in various cells and tissues of organisms. Proteomic techniques provide the basic information on protein expression profiles and post-translational modification of interesting proteins. Molecular mechanisms and expression patterns of proteins controlling each step of oocyte maturation and formation of CRs could be further carried out for better understanding the reproductive maturation of *P. monodon* in captivity.

In this study, proteins differentially expressed in ovaries of *P. monodon* were identified and characterized by proteomic approaches (1D-gel electrophoresis, molecular imager and nanoESI-LC-MS/MS). The full-length cDNA of the identified proteins (e.g. protein kinase C, Rac GTPase-activating protein 1) were isolated. Recombinant proteins and their polyclonal antibodies were produced. Expression profiles of interesting genes and proteins during ovarian development of *P. monodon* were examined by quantitative real-time PCR and western blot analysis and ELISA, respectively. Localizations of their mRNA and proteins are examined by *in situ* hybridization and immunofluorescence, respectively.

1.2 Objective of this thesis

The objectives of this thesis were determination of protein profiles in domesticated and wild female *P. monodon* broodstock by GeL-LC-MS/MS (SDS-PAGE followed by nanoESI-LC-MS/MS. In addition, the full-length cDNA, expression and localization of interesting genes and proteins involved in oogenesis were examined.

1.3 General introduction

1.3.1 Taxonomy of *P. monodon*

The giant tiger shrimp is taxonomically classified as a member of Phylum Arthropoda; Subphylum Crustacea; Class Malacostraca; Subclass Eumalacostraca; Order Decapoda; Suborder Natantia; Infraorder Penaeidea; Superfamily Penaeoidea; Family Penaeidae, Rafinesque, 1985; Genus Penaeus, Fabricius, 1798 and Subgenus *Penaeus*. The scientific name of shrimp is *Penaeus monodon* (Fabricius, 1798) where the English common name is giant tiger shrimp or black tiger prawn (Bailey-Brock and Moss, 1992).

The external morphology of *P. monodon* and sex characteristics of male (petasma) and female (thelycum) are illustrated in Figure 1.1.

Figure 1.1 External morphology of *P. monodon* (A). Sexes of juveniles and broodstok of penaeid shrimp can be externally differentiated by petasma of male (B) and thelycum of female (C).

1.3.2 Oogenesis and formation of cortical rods in shrimp

In penaeid shrimp, ovarian development is characterized by the accumulation of a major yolk protein and cortical rods formation in the oocytes (Okumura *et al.,* 2006). The oocytes of shrimp develop from mitotically dividing oogonia. As the daughter oogonia develop, they increase in size and enter the first stage of meiotic division and migrate away from the zone of proliferation toward the periphery of the ovarian follicles. During this time, the follicular cell surrounding the growing oocytes produced the vitellogenin protein which constitutes the yolk. The yolk vitellogenin is also produced at extraovarian sites, especially the hepatopancreas. The process of synthesis and accumulation of vitellogenin in the oocytes is called vitellogenesis (Kruevaisayawan et al., 2010). The knowledge about ovarian development stage and morphological characteristic of the oocytes have reported in *Marsupenaeus jarponicus* and *Metapenaeus ensis*.

Recently, oogenesis and formation of cortical rods in the black tiger shrimp Penaeus monodon have studied the ultrastructure of the developing oocytes by transmission electron microscopy (Kruevaisayawan et al., 2010). The unique characteristics of the stage 1 oocyte (Oc1) were the presence of several prominent nucleoli and abundant ribosomes. These characteristics indicated that there is a highly rate nucleoli into the cytoplasm via the numerous nuclear pores (Figure 1.2A). The above characteristics are similar to those of other shrimps, including *P. aztecus*, *P. setiferus*. The stage 2 oocyte (Oc_2) was characterized by an increase in the number of rough endoplasmic reticulum (RER) which started expansion. Thus, Oc₂ represent the initial stage of active protein synthesis, possibly involved with yolk production which later becomes a major component in developing oocytes (Figure 1.2B). Synthesis of other major proteins, particularly CRs, would also be initiated. In the stage 3 oocyte (Oc₃), the RER was well-developed and appeared highly dilated, and distributed throughout the cytoplasm, indicating that this stage of the oocyte is highly active in the protein synthetic activity. Moreover, the same event is also to appear on vitellogenic oocytes of many crusteceans, including lobters and other shrimps. Additionally, an increasing number of nuclear pores in this stage signify an

increased tramsport between the nucleus and cytoplasm. Furthermore, the cytoplasm of Oc_3 started to be filled with yolk granules reflecting the high rate of vitellogenasis another unique ultrastructeral feature of Oc_3 is the presence of numerous of lipid droplets in the cytoplasm.

It is not known how lipid droplets are formed. In *P. kerathurus*, it was suggested that lipid droplets in oocytes are formed from complex vesicular bodies derived from the nuclear envelope, ER and Golgi complexs. In mature oocyte (Oc₄), the appearance of rod-like structures which marks the main feature of this stage in many penaeid shrimp but lacking of in other crusteceans. In contrast to Oc₃, the dilated RER is not as noticeable in the Oc4 suggesting a reduction of synthetic activity during the final stage of maturation. The synthesis of CR is initiated in Oc₂ and increases significantly in the well-developed RER of Oc₄ as shown by the deposition of numerous gold particles in dilated RER of Oc₄. Some CR granules appear to fuse with the Oc₄ plasma membrane that bordered the CR crypt. Thus, this material may be released by exocytosis of CR granules at the periphery of an oocyte into the crypts where it is assembled into CR structure during oocyte maturation (Figure 1.2C-D).

1.3.3 Ovarian development of *Penaeus monodon* and hormonal control in reproductive maturation in shrimp

In penaeid shrimp, the major part of ovaries is found within the cephalothorax area. Ovaries are paired, but partially fused in the cephalothoracic region, and consist of a number of lateral lobes. The intensity of the ovarian shadow is due to the different density of the ovaries and the pigmentation of the egg mass. The ovarian development of penaeid shrimp are generally classified to four different

stages; underdeveloped stage (Stage I), developing or early vitellogenic stage (Stage II), nearly ripe or late vitellogenic stage (Stage III) and ripe or mature stage (Stage IV; Figure 1.3).

Figure 1.2 TEM micrograph and ultrastructure of oocyte of *P. monodon* stage I-IV. (A) Each nucleolous (No) becomesenlarged and forms a dense peripheral ring surrounding a central dense mass in the late OC1. (B) OC2 showing numerous rough endoplasmic reticulums (RER) that are well-developed throughout the cytoplasm and some of which begin to be dilated (RER-d). (C) The cytoplasm is filled with the electron dense yolk granules (Yg), (RER), ribosome and aggregates lipid droplets (Li). RER are well-developed highly dilated (RER-d) and filling the entire cytoplasm. OC4 showing the cortical rod (CR) at the cells periphery and the cytoplasm is filled with yolk granules (Yg), mitochondria (Mi), RER, and cortical rod granules (CRg). The sites where cortical rod granules join the oolemma at the crypts containing cortical rod are indicated by arrows (Kruevaisayawan et al., 2010).

In an undeveloped stage, the ovaries either do not cast any shadow or a thin opaque line is seen along the length of the tail. At this point the ovaries are composed of a connective tissue capsule surrounding a soft vascular area containing oogonia, and accessory cells (called follicle or nurse cells, Figure 1.3A). The internal wall of the ovary capsule is lined with epithelial cells (called the germinal epithelium). Once the female is sexually mature, the germinal epithelium will produce oogonia by mitosis division throughout the reproductive life of the females.

The eggs develop from oogonia in an area known as the zone of proliferation. As the oogonia develop they increase in size and enter the first stage of meiotic division and henceforth are irreversibly destined to become haploid, with only one set of maternal chromosomes. At this point, although the developing eggs are increasing in size (Figure 1.3B) they are not as yet producing yolk, and are known as previtellogenic oocytes. At this stage the ovaries can be visualized with a light beam as a large centrally located opaque rope-like structure, and classified as the stage 2.

As the oocytes develop, they migrate towards the margins of the ovarian lobes in preparation for ovulation. During this migration, follicle cells are attached to the periphery of each oocyte. It is believed that the follicle cells produce the yolk that is internal in the oocytes in a process called vitellogenesis. As vitellogenesis proceeds, oocytes mature synchronously as yolk accumulates and develop a characteristic dark green colour as a result of deposition of carotenoid pigments. It is the carotenoid pigmentation that mainly causes the dark ovarian shadow during illumination of the female by the torchlight. The female is now in the stage 3 (Figure 1.3C). By the end of vitellogenesis, the eggs develop cortical granules filled with a jelly-like substance destined to form part of the egg shell membrane after ovulation. At this time the shadow cast by the ovaries is large, resulting in a very distinct dark thick region extending the length of the abdomen, with an enlarged bulbous region directly behind the carapace, called the saddle. The saddle may not be as apparent in some broodstock. The female is now in a pre-spawning state and is regarded as in the stage 4.

Penaeid shrimp are divided into two groups: open-thelycum and closedthelycum species. In the life history of penaeid shrimps, final maturation, spawning and mating behaviour presage successful reproduction. The final phase of maturation, spawning, mating and their interrelationships differ significantly between the groups. The giant tiger shrimp is one of the closed-thelycum species. Typically, mature males insert their spermatophore into the soft thelycum of newly moulted immature females. Final maturation with germinal vesicle breakdown (GVBD) immediately precedes spawning in a closed thelycum species (Yano, 1988). Two phases are involved: the appearance of ripe ovary and germinal vesicle breakdown (GVBD) in preparation for fertilization after spawning (Figure 1.4).

GHULALONGKORN UNIVERSITY

Ovulation occurs when nuclei, shrunken during the late prematuration phase, have migrated to the peripheral cytoplasm of the oocytes. In the late phase of the maturation cycle, meiotic metaphase is arrested and remains visible just beneath the cytoplasmic membrane of the oocyte, indicating that GVBD is completed after ovulation.

Figure 1.3 Different ovarian development stages of *P. monodon.* Panel A., theunderdeveloped ovaries (Stage I), B., the developing stage (Stage II), C., the nearly ripe stage (Stage III) and D., the ripe stage (Stage IV) (<u>www.aims.gov.au/.../mdef/images/fig01-4a.gif</u>).

Immediately after release from the female gonopore, the mature eggs, still in metaphase (for example in *Marsupenaeus. japonicus*), are fertilized by sperm released into the seawater from the spermatophore held in the thelycum. Once begun, spawning is continuous, females releasing batches of eggs from the ripe ovaries and sperm from the spermatophore into the seawater, where fertilization takes place. Therefore, female shrimp have to repeat the process of molting, mating, and sexual maturation in order to achieve several spawning during their life.

Prematuration accumulation of egg-yolk protein (vitellin) in developing oocytes at the yolk-granule stage, occurs approximately 1 month after spawning without mating in spent shrimps (for example in *M. japonicus*). Female shrimp (closed thelycum), do not mature for several months, even after mating with spermatophore transfer in the season from late autumn to early spring (Yano, 1995). These observations indicate that mating dose not directly accelerate vitellogenesis in closed-thelycum species.

1.3.4 Hormonal studies in shrimp

Biological and physiological processes (growth, reproduction, body color, and metabolism etc.) are hormonal controlled (Figure 1.5). Knowledge from shrimp endocrinology is necessary to develop the hormonal manipulation techniques in shrimp

Eyestalk hormones play the important role for regulating several physiological mechanisms and unilateral eyestalk ablation is practically used for induction of ovarian development and oviposition. The technique gives predictable peaks of maturation and spawning but many associated problems, which leads to an eventual loss in egg quality and causes high mortality and death (Benzie, 1998). Predictable maturation and spawning in captive shrimp without the use of eyestalk ablation is a long-term goal for the industry (Quackenbush, 1991).

Crustacean hyperglycemic hormone (CHH) is a member of a structurally related peptide family, which also includes molt-inhibiting hormone (MIH), gonadinhibiting hormone (GIH) and mandibular organ-inhibiting hormone (MOIH). It is the most abundant peptide in the eyestalk of crustaceans (Chang et al., 1990).

Figure 1.4 Reproductive cycles of the close-thelycum penaeid shrimp (Yano, 1995).

Figure 1.5 Diagram illustrating the hormonal controls of physiological processes of penaeid shrimp (Yano, 1995).

This hormone not only plays its major role in controlling the glucose level in the hemolymph, but is also significantly contributed to other processes such as ecdysteroid synthesis and ovarian maturation. Multiple forms of CHH have been reported. CHH has been isolated from several crustaceans such as crabs, (Kegel et al., 1989) ; (Chung et al., 1998), lobster (Tensen et al., 1991), crayfishes (Kegel et al., 1991) ; (Huberman et al., 1993), shrimp (Sithigorngul et al., 1999) as well as isopod (Martin et al., 1984).

The growth in crustaceans is not continuous because of the rigid exoskeleton. It is often shed to allow periodic growth. Molting is controlled by a complex interplay of hormones (Figure 1.6), in particular, the negative regulation of molt-inhibiting hormones (MIH) from the X-organ/sinus gland (XO/SG) complex which suppresses the synthesis or secretion of molting hormones (ecdysteroids) from the Y-organ (Figure 1.7).

MIH is classified as a member of the crustacean hyperglycemic hormone (CHH) family and has been shown to inhibit the synthesis of the molting hormone, ecdysone, which release from the Y-organ of decapod crustaceans keeps the animal in the intermolt stage that dominates its molting cycle. MIH is thus one of the major keys in mediating growth and reproduction.

Udomkit et al. (2004) cloned and characterized *P. monodon CHH* transcripts and produced recombinant Pem-CHH2 and Pem-CHH3 peptides, a member of a structurally related CHH/MIH/GIM/MO-IH peptide family. Both cDNAs contained 381bp open reading frame encoding 127 amino acids.

Figure 1.6 (a) A schematic diagram illustrating the major endocrine organs in shrimp. The sinus gland is composed of the terminals from neurons which have their cell bodies in the X-organ and brain. (b) Electron microscopy section (8500X) of the sinus gland demonstrating hormone filled vesicles (dark circles) which are fused and released their contents into the blood. (www.aims.gov.au/.../mdef/images/fig01-4a.gif)

Figure 1.7 Localization of hormones that control several physiological systems from the sinus gland/X-organ complex of *P. monodon* (Okumura, 2004).

Amino acid sequence analysis revealed that Pem-CHH2 and Pem-CHH3 shared 95% identity in their amino acid sequence to that of Pem-CHH1 (Udomkit et

al., 2000). Both recombinant Pem-CHH2 and Pem-CHH3 expressed as secreted proteins in *Pichia pastoris* exhibited the hyperglycemic activity at the comparable level to that of Pem-CHH1. The *Pem-CHH* transcript in several tissues of *P. monodon* was examined by RT-PCR. Expression of Pem-CHH1, Pem-CHH2, Pem-CHH3 was not restricted only to the eyestalk but also detectable in heart. In addition, the transcript of Pem-CHH1 was also present in gills. CHHs form various origins may play different physiological roles.

Yodmuang et al. (2004) isolated cDNA encoding two types of *MIH*, *Pem-MIH1* and *Pem-MIH2* of *P. monodon* by direct PCR amplification and PCR-based genome walking strategies. *Pem-MIH1* cDNA contained a 318 bp ORF encoded for a translated product containing 28 amino acids of the signal peptide and a putative mature *Pem-MIH* of 77 amino acids. *Pem-MIH1* and *Pem-MIH2* genes have the same structures. The interruption of the three exons by the two introns occurs at the same positions in both genes. RT-PCR was used to detect the expression of *Pem-MIH1* and *Pem-MIH2* in several tissues of *P. monodon* and found that *Pem-MIH1* was abundantly detected in eyestalk and thoracic ganglia, whereas no transcript was present in heart. A lower expression level was detected in gill and muscle, *Pem-MIH1* was expressed in *Pichia pastoris* as a secreted protein. Pem-MIH1 exhibited the ability to extend molting duration of *P. monodon* from 11.8 days to 16.3 days suggesting that Pem-MIH1 played the molt-inhibiting function in this shrimp.

In crustacean females, the late phase of gonadal maturation to form mature oocytes is named vitellogenesis. This process comprises the synthesis or deposition,
or both, of yolk or vitellus. The major component of this nutritive material is the lipoprotein vitellin, derived from a precursor called vitellogenin that can be synthesized in extraovarian tissues or in the ovaries.

Penhouse (1943 and 1944 cited in (Huberman, 2000)) described that unilateral eyestalk ablation has been used to accelerate ovarian maturation and spawning in different shrimp species used as broodstock in aquaculture. The effect has been attributed to the presence of gonad inhibiting hormone, GIH (or vitellogenin inhibiting hormone, VIH) in the X- organ-sinus gland complex.

Gonad inhibiting hormone (GIH or vitellogenin inhibiting hormone, VIH) is a member of the CHH/MIH/GIH family. It plays an important role on inhibition of ovarian development. The removal of GIH by unilateral eyestalk ablation is practically used for stimulation of ovarian development in shrimp but identification of GIH was only reported in lobsters. Two isoforms of the GIH were isolated and sequenced by Soyez et al. (1991) from the sinus gland of the lobster *H. americanus*. Both consisted of 77 residues and MWs of 9.135 Kda.

Treerattrakool et al. (2008) characterized a cDNA encoding a GIH (Pem-GIH) from the eyestalk of *Penaeus monodon. Pem-GIH* cDNA is 861 bp in size with an ORF of 288 bp. The deduced Pem-GIH consists of a 17-residue signal peptide and a mature peptide region of 79 amino acids with features typical of type II peptide hormones from the CHH family. Pem-GIH transcript was detected in eyestalk, brain, thoracic and abdominal nerve cords of *P. monodon* adults. The gonad-inhibiting activity of Pem-GIH was investigated using the RNA interference technique. Double-stranded RNA, corresponding to the mature Pem-GIH sequence, triggered a decrease

in *Pem-GIH* transcript levels both *in vitro* (eyestalk ganglia and abdominal nerve cord culture) and *in vivo* (female *P. monodon* broodstock). The conspicuous increase in *Vg* transcript level in the ovary of GIH-knockdown shrimp suggests a negative influence for Pem-GIH on *Vg* gene expression, and thus implies its role as the gonad-inhibiting hormone.

Recombinant peptides related to vitellogenesis-inhibiting hormone (VIH) of the American lobster (*Homarus americanus*) were expressed in bacterial cells, and then purified after being allowed to refold. Biological activities of the recombinant VIHs having an amidated C-terminus (rHoa-VIH-amide) and a free carboxyl-terminus (rHoa-VIH-OH) were examined using an ovarian fragment incubation system derived from the kuruma prawn, *Marsupenaeus japonicus*. The rHoa-VIH-amide significantly reduced vitellogenin mRNA levels, while rHoa-VIH-OH had no effect on vitellogenin mRNA levels in ovaries (Ohira et al., 2006).

Gonad stimulating hormones, GSH (or vitellogenin stimulating hormone, VSH), believed to be secreted by the supraesophageal and thoracic ganglia has been proposed to have the opposite effects of GIH (stimulates the gonadal maturation) of shrimp. However, this hormone has not been identified and characterized in any shrimps. Ecdysteroids are known as the molting hormones in crustacean and insects. In crustacean, the inactive forms are secreted and converted to 20-hydroxyecdysone by the Y-organ. Ecdysteriods stimulate vitellogenesis in some insects. However, the levels of ecdysteriods in hemolymph of the giant freshwater shrimp (*Macrobrachium rosenbergii*) were not related to vitellogenesis and showed no distinct relation to the molt cycle suggesting that ecdysteroids are not involved in vitellogenesis in *M. rosenbergii* (Okumura and Aida, 2000).

Figure 1.8 Schematic diagram of the endocrine control of vitellogenesis in shrimp (Okumura, 2004) GIH: gonad inhibiting hormone, GSH: gonad stimulating hormone, MF: methyl farnesoate, MOIH: mandibular organ inhibiting hormone, Vg: vitellogenin, VIH: vitellogenesis-inhibiting hormone, VSH: vitellogenesis stimulating hormone.

MF is structurally related to the juvenile hormone and synthesized by mandibular organ (MO). MF has been implicated in the regulation of crustacean development and reproduction in conjunction with eyestalk molt inhibiting hormone and ecdysteroids. The presence of MF in the medium for culturing of ovarian tissue *in vitro* of *L. vannamei* resulted in a significant increase in sizes of oocytes. In

contrast, MF inhibits ovarian development in the tadpole shrimp, *Troops longicaudatus* (Tsukimura et al., 2006).

Farnesoic acid O-methyltransferase (FAMeT) catalyzes the methylation of farnesoic acid (FA) in the terminal step of MF synthesis. A schematic diagram of regulatory mechanism of vitellogenersis in shrimp is shown in (Figure 1.8).

Laufer et al. (1998) reported stimulating effects of MF on ovarian maturation in the red swamp crayfish *Procambarus clarkii* in three different trials of MF administration. After 30 days of treatment, ovaries of pre-reproductive females were 2- to 10-fold larger and were in the later stages of vitellogenesis than those of the controls. Similar and statistically significant results were observed in a second 30-day trial, which was begun during the middle of the vitellogenic cycle. The control ovaries were white or yellowish colored but ovaries from the MF-fed groups were larger and showed a dose response for which the 1-µg MF group had tan colored ovaries. A group receiving the higher dose of 2 µg MF had dark brown to black colored ovaries.

Hui et al. (2008) studies functions of *L. vannamei FAmeT* (*LvFAMeT*) in molting using the RNA interference (RNAi) technique. Injection of double stranded RNA (dsRNA) of *LvFAMeT* successfully knocked down the expression of LvFAMeT in juvenile shrimp for at least 3 days and shrimp did not proceed to the final stage of molt cycle. Furthermore, the expression of molt-related genes encoding *cathepsin-L* and *hemocyanin* gene was disturbed. Subsequently, 100% mortality of shrimp was observed in LvFAMeT dsRNA-injected shrimp. In contrast, control shrimp completed their molt and proceeded to the next molt cycle. Therefore, RNAi injection knocked

down the expression of *LvFAMeT* which could potentially result in a decrease in the production of MF and subsequently, could affect the molting process of *P. monodon* were also analyzed.

1.4 Control of cortical rods formation and germinal vesicle breakdown

As the eggs of penaeid shrimp reached maturation, cortical rods start forming around the oocytes. Its function during the egg activation process includes establishment of protective jelly layer (Clark et al., 1990), and contribution to the induction of the sperm acrosome reaction (Kruevaisayawan et al., 2007).

Medina et al. (1996) reported the inability of pond-reared shrimp *Penaeus kerathurus* to synthesie cortical rods leading to the lack of fully mature oocyes (stage IV). It was suspected that hormones play a more significant role since the sizes of oocytes are not different between then wild and pond-raised shrimp. Eyestalk ablated shrimp was not used in Medina et al experiment.

Palacios et al. (2003) reported no significant differences in eyestalk-ablated wild or pond-reared *L. vannamei* oocyte's ability of form cortical rods while Peixoto *et al* (2008) reported significantly higher frequency of oocytes with cortical rods in domesticated shrimp than that of the wild shrimp.

There are several potentials biomarkers for cortical rods formation. Thrombospondin (TSP) major protein component of cortical rods were cloned and characterized in kuruma prawn *M. japonicus* (Yamano et al., 2004b) and Chinese shrimp *F. chinensis* (Sun et al., 2006) High expression of cathepsin C gene in the ovaries of kuruma prawn coincides with the onset of cortical rod formation suggesting that the gene might play a role during CR synthesis and final oocyte maturation (Qiu et al., 2005). The level of cortical rod protein (CRP) and MjTSP expression in the ovary of kuruma prawn did not change after eyestalk ablation, but the protein levels in the ovary did increase (Okumura et al., 2006). The results suggested that the regulatory mechanism of the CRP and MjTSP control is occurred during translation.

Kim et al. (2005) reported high CRP expression during the previtellogenic and early vitellogenic stage. They suggested that CRP and VG synthesis are regulated by closely-related mechanisms. Cortical rod protein has been cloned and characterized in a species whose oocytes does not form a cortical rod structure such as giant freshwater prawn *Macrobrachium rosenbergii* (Kim et al., 2007).

One important step toward oocyte maturation that has yet to be extensively studied in crustacean is that of germ-vesicle breakdown (GVBD), the breakdown of the nuclear membrane surrounding the chromosome prior to meiosis resumption of the oocyte.

In vertebrate, GVBD and oocyte maturation are triggered by gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH). In fish and amphibians, a steroid hormone intermediate, maturation inducing hormone, is also involved in oocyte maturation (Jalabert, 2005; Patio et al., 2001). Examples of maturation inducing hormone in fish include 17,20 β -dihydroxy-4pregnen-3one (Jalabert, 2005) and 17 β -2-hydroxy-estradiol (Mishra and Joy, 2006a, b, c, d; Senthilkumaran and Joy, 2001).

Yano (1995) hypothesized that final maturation in penaeid shrimp can be induced by prostaglandin whose concentration is related to fatty acid precursors (such as arachidonic acid and eicosapentaenoic acid) in the diet of shrimp. Other stimulating factor can include mating (for some species), UV-irradiated water, temperature shock or filtration of seawater.

Biogenic amines (e.g., serotonin or 5-HT, epinephrine, and dopamine) and peptide neuroregulators are known to modulate the release of neuropeptide hormones from the sinus gland (Fingerman, 1997) ; (Sarojini et al., 1995) ; (Okumura, 2004). Serotonin (5-HT) in oocyte maturation, particularly GVBD, has been observed in several animal phyla. Simultaneous injections of 5-HT (25 μ g/g body weight) and the dopamine antagonist spiperone (1.5 or 5 μ g/g body weight) induced ovarian maturation and spawning in wild *L. stylirostris* and pond-reared *L. vannamei* (Alfaro et al., 2004).

Wongprasert et al. (2006) reported the effect on serotonin induction of ovarian maturation and spawning in *P. monodon*. They noted that spawning occurred while the ovaries were in Stage III and the quality of spawns (numbers of eggs, hatching rate, and numbers of nauplii) was better in serotonin-induced group. The stage of ovarian maturation was determined by visual observation in their study, but the correlation to oocyte development was not made. The study provides the promising evidence for serotonin beneficial role on crustacean reproduction.

1.5 Proteomic studies in shrimp reproduction

Changes in protein expression profiles in hemocytes of *P. monodon* upon white spot syndrome virus (WSSV), yellow head virus (YHV) and Vibrio harveyi infection using proteomic studies have been reported (Rattanarojpong et al., 2007) ; (Bourchookarn et al., 2008) ; (Somboonwiwat et al., 2010). Spermatogenesis and oogenesis are complex cell differentiation processes which require a coordinated series of both mitosis and meiosis cycle events. Accordingly, identification and characterization of genes and/or proteins functionally involved in gonad development are the initial step toward understanding molecular mechanisms of testicular development and sperm quality in *P. monodon* (Leelatanawit et al., 2004) ; (Leelatanawit et al., 2008).

Cellular proteomic analysis was carried out to identify reproduction-related proteins in testes of wild and domesticated broodstock of *Penaeus monodon*. In total, 642 protein spots were characterized and 287 spots (44.70%) significantly matched protein sequences in the databases (P < 0.05). To examine a role of the proteasome system in testicular development of *P. monodon*, the expression profiles of *proteasome alpha 3 subunit* (*PmPsma3*) and *proteasome beta 6* (*PmPsmb6*) mRNA in different groups of domesticated shrimp and in wild broodstock were examined. The expression levels of these transcripts in testes of 18-month-old domesticated shrimp were significantly lower than those of wild broodstock (P < 0.05). Interestingly, the expression levels of testicular *PmPsma3* and *PmPsmb6* in 18-month-old shrimp were significantly increased at 24 hr following serotonin injection (50 µg/g body weight). Results suggested that reduced degrees of maturation in captive *P. monodon* males may be partially resolved by exogenous 5-HT administration.

Recently, cellular protein profiles in different ovarian stages of *P. monodon* have not been reported. Proteomic analysis was carried out for identification of proteins functionally involved in ovarian development of the giant tiger shrimp (*Penaeus monodon*). A total of 335 protein spots including 183 spots from

vitellogenic (stage II) and 152 spots from mature (stage IV) ovaries of intact P. monodon broodstock were examined. Of these, 75 (40.98%) and 59 (38.82%) spots significantly matched known proteins in the databases, respectively. In addition, 270 protein spots including 167 and 103 spots from respective ovarian stages of eyestalkablated broodstock were also characterized. A total of 95 (56.89%) and 62 (60.19%) spots matched known proteins, respectively. Among differentially expressed reproduction-related proteins, the full-length cDNA of protein disulfide isomerase A6 (PmPDIA6) was further characterized by RACE-PCR. PmPDIA6 was 1946 bp in length containing an open reading frame (ORF) of 1293 bp corresponding to a polypeptide of 430 amino acids. PmPDIA6 was up-regulated at stage III ovaries in intact shrimp (P < 0.05). Interestingly, eyestalk ablation resulted in a lower expression level of PmPDIA6 in each stage of ovarian development compared to that of intact broodstock (P < 0.05). Results in this study clearly indicated the potential of cellular proteomic studies and gene expression analysis for identification of proteins/genes differentially expressed during ovarian development of P. monodon (Talakhun et al., 2012).

In addition, 2-DE patterns of total proteins from previtellogenic (stage III) and vitellogenic (stage IV) ovaries of the crayfish (*Procambarus clarkii*) were compared for the first time. A total of 52 significantly differentially expressed protein spots (up/down-regulated \geq 2 fold) were excised for further analysis using matrix-assisted laser desorption/ionization-tandem time of flight mass spectrometry. There were 29 spots successfully identified, including 22 unique proteins. Compared with stage III ovaries, 13 proteins in the stage IV ovaries were down-regulated (e.g., tropomysin, 70 kD heat shock protein, protein disulfide-isomerase A6, glutathione S transferase D1,

arginine kinase, and Na+/K+-ATPase) and 9 were up-regulated (e.g., peritrophin, cyclin B, elongation factor 2, transketolase, checkpoint kinase 1, and I-connectin). The results indicated the potential of cellular proteomic studies for the identification of proteins functionally involved in the ovarian development of *P. clarkia* (Shui et al., 2012).

Conventional proteomic analysis (2-DE and mass spectrometry were used to identify proteins that are differentially expressed during ovarian maturation in *Metapenaeus ensis*. 87 spots with consistently significant quantitative differences (1.5-fold for vol%) among stage I, III and V ovaries were chosen for MS/MS analysis. 45 spots were significantly matched to known proteins in the database (Mascot score > 40). Half of them were down-regulated, in contrast to 9 out of 45 proteins that were up-regulated as ovarian maturation proceeded. Functionally, these identified proteins could be classified into five major groups, including cytoskeleton (11 %), metabolism (18 %), signal transduction (32 %), gene expression (14 %) and immune response (7 %). Among the differentially expressed reproduction-related proteins, the mRNA expression level of cellular retinoic acid/retinol binding protein in *M. ensis* (MeCRABP) during ovarian maturation was further characterized by quantitative real-time PCR. It was down-regulated during ovarianmaturation. *In situ* hybridization further revealed that MeCRABP transcript was localized in ooplasm of previtellogenic oocytes but not in vitellogenic oocytes (Cui et al., 2014).

Although 2-DE is the traditional method for proteomic analysis, proteins with extremely low or high p/ and/or molecular mass cannot be fractionated efficiently. In addition, Talakhun et al. (2012) characterized ovarian proteins having p/ 4 to 7. Accordingly, the basic proteins playing the important role in ovarian development of this species have not been reported. In this thesis, proteins in ovaries of domesticated and intact wild broodstock of *P. monodon* were size-fractionated by one dimensional gel electrophoresis (SDS-PAGE) and further identified by nanoESI-LC-MS/MS (collectively called GeLC-MS/MS). Several different protein families were characterized. Moreover, the full-length cDNAs of several reproduction-related proteins were further characterized. The expression profile of reproduction-related transcripts and proteins during ovarian development and maturation of *P. monodon* were examined.

CHAPTER II MATERIALS AND METHODS

2.1 Experimental samples

For cellular proteomics analysis, domesticated 10-month-old (Group A, average body weight = 44.04 \pm 4.38 g and GSI = 0.40 \pm 0.07%; *N* = 3) and 14-month-old females were collected from Broodstock management Center (BMC), Burapha University, Chanthaburi Campus. The latter was further divided to 2 groups according to the gonadosomatic index (GSI, ovarian weight/body weight x 100; Group B, average body weight = 81.94 \pm 2.85 g and GSI = 0.36 \pm 0.04% and Group C, average body weight = 71.68 \pm 7.08 g and GSI = 1.11 \pm 0.07%; *N* = 3 for each group). In addition, 2 groups of wild broodstock were live-caught from the Andaman Sea (west of peninsular Thailand; Group D, average body weight = 209.81 \pm 4.45 g and GSI = 2.32 \pm 0.13% and Group E, average body weight = 213.93 \pm 31.92 g and GSI = 9.70 \pm 1.22%; *N* = 3 for each group).

For identification and characterization of nuclear proteins and nuclear membrane proteins, wild broodstock were live-caught from the Andaman Sea. Wild shrimp possessing ovaries stage I (body weight = 212.98 g, GSI = 1.45%) and III (body weight = 217.62 g, GSI = 4.29%).

For real-time analysis, juvenile shrimp (4-month-old, average body weight approximately 20 g; N = 6). Female broodstock were collected (average body weight of 142.98 ± 28.37 g) and acclimated under the farm conditions for 2-3 days. The post-spawning group was immediately collected after shrimp were ovulated (N = 6). Ovaries were dissected out from each shrimp and weighed. For the eyestalk ablation group, wild broodstock were acclimated for 7 days prior to unilateral eyestalk ablation. Ovaries of eyestalk-ablated shrimp were collected at 2-7 days after ablation. The ovarian developmental stages of wild shrimp were classified according to the GSI values: <1.5, >2-4, >4-6 and >6% for stages I (N = 4 and 4 for intact and eyestalk-ablated broodstock, respectively), II (N = 10 and 4), III (N = 10 and 5) and IV (N = 5 and 9) ovaries, respectively. The ovarian developmental stages of wild shrimp were confirmed by conventional histology. For RT and tissue distribution analysis, various tissues of female and testes of male of juveniles and broodstock (N = 6 for each group) were collected, immediately placed in liquid N₂ and kept at -80°C until needed.

Five groups of domesticated 14 month-old are single injected intramuscularly with progesterone (0.1 μ g/g of body weight) into the first abdominal segment of each shrimp. Ovaries of progesterone treated were collected for vehicle control (N = 5) (at 0 and 12 hour after ethanol injection), negative control (intact shrimp) (N = 5), at 12, 24, 48 and 72 hour after PG injected (N = 4). For female of domesticated 18 month-old were injected intramuscularly into the first abdominal segment with 5-HT (50 μ g/g body weight, N=5 for each group). In addition, ovaries of serotonin treated were collected for vehicle control (N = 4) (normal saline injection), at 0, 1, 3, 6, 12, 24, 48 and 72 hour after 5HT injection (N = 4). Ovarian developmental stages were classified by conventional histology (Qiu and Yamano, 2005) and divided to previtellogenic (I, N = 10 and 4 for normal and eyestalk-ablated broodstock, respectively), vitellogenic (II, N = 7 and 7), early cortical rod (III, N = 7 and 10) and mature (IV, N = 10 and 11) stages, respectively. The average body weight of *P. monodon* broodstock was 142.98 \pm 28.37 g.

2.2 Protein extraction

2.2.1 Total protein extraction

Approximately 0.5 gram of frozen ovaries of *P. monodon* were ground in the extraction buffer: 10% TCA in acetone (V/V), 0.1% DTT (W/V) and protease inhibitor cocktail. After centrifugation at 10000 g for 10 minutes at 4°C, the supernatant were collected. The extraction buffer is added and left at -20°C 2 hours. The mixtures were centrifuged at 10000 g for 30 minutes at 4°C. The supernatant is discarded. The pellet is air-dried and dissolved in 0.5% SDS (for proteomic) or lysis buffer (for western blot). The amount of extracted proteins was measured by a dye binding assay (Bradford, 1976).

2.2.2 Nuclear membrane and nuclear proteins extraction

Twenty micrograms of frozen ovarian tissues was washed with 1 ml of icecold PBS buffer (50 mM NaH₂PO₄, 150 mM NaCl, pH7.2). Different components of proteins from cytoplasm, nuclear membranes, nucleus and cytoskeleton of ovarian cells were extracted using a Qproteome Cell Compartment kit (QIAGEN) following the protocol recommended by the manufacturer. The fractions containing nuclear membrane proteins and nuclear proteins were collected and desalted using Bio-Spin®6 (BioRad). The concentration of extracted were measured (Lowry et al., 1951).

2.2.3 Membrane proteins extraction

Membrane proteins from ovaries of wild broodstocks *P. monodon* undergoing various developmental stages (stages I to IV ovaries) of ovarian maturation were prepared by homogenization of the ovarian tissue in buffer M (100 mM NaCl, 20 mM Tris–HCl, 2 mM MgCl2, 1 mM EDTA and 1 mM PMSF, pH 7.4). The tissue debris was removed by centrifugation at 600×g for 10 min and then at 6000×g for 10 min. After

centrifugation at 20,000×g for 30 min at 4 °C, the membrane pellet was dissolved in 0.2% Triton X-100 in buffer M (Ongvarrasopone et al., 2006). Protein concentration was determined by using Bradford assay (Bradford, 1976).

2.3 Nucleic acid extraction

2.3.1 RNA extraction

Total RNA was extracted from ovaries and testes of each the shrimp using TRI-PURE (Roach). A piece of tissue was immediately placed in mortar containing liquid nitrogen and ground to the fine powder. The tissue powder was transferred to a microcentrifuge tube containing 500 μ l of TRI REAGENT (1 ml/50-100 mg tissue) and homogenized. Additional 500 μ l of TRI REAGENT were added. The homogenate was left at room temperature for 5 minutes before 0.2 ml of chloroform was added. The homogenate was vortexed for at least 15 seconds, left at room temperature for 2 - 15 minutes and centrifuged at 12000 g for 15 minutes at 4°C. The mixture was separated into the lower phenol-chloroform phase (red), the interphase, and the upper aqueous phase (colorless).

The aqueous phase (inclusively containing RNA) was carefully transferred to a new 1.5 ml microcentrifuge tube. RNA was precipitated by an addition of 0.5 ml of isopropanol and mixed thoroughly. The mixture were left at room temperature for 10 - 15 minutes and centrifuged at 12000 *g* for 10 minutes at 4 °C. The supernatant was removed. The RNA pellet was washed with 1 ml of 75% ethanol and centrifuged at 7500g for 10 minutes at 4°C. The ethanol was removed. The RNA pellet was air-dried for 5-10 minutes. RNA was dissolved in DEPC-treated H₂O for immediately used. Alternatively, the RNA pellet was kept under absolute ethanol in a -80 °C freezer for long storage.

Total RNA was also extracted from other tissues including eyestalks, gills, heart, hemocytes, hepatopancreases, lymphoid organs, intestine, stomach, pleopods and throracic ganglion of *P. monodon* using the same extraction procedure. The quality of extracted total RNA was examined by electrophoresed through 1.0% agarose gels.

2.3.2 Preparation of DNase I-free total RNA

Fifteen micrograms of total RNA were treated with DNase I (0.5 U/1 µg of RNA, Promega) at 37°C for 30 minutes. After the incubation, the sample was gently mixed with a sample volume of phenol : chloroform : isoamylalcohol (25:24:1) for 10 minutes. The mixture was centrifuged at 12,000 g for 10 minutes at 4°C, and the upper aqueous phase was collected. The extraction process was then repeated once with chloroform : isoamylalcohol (24:1) and one with chloroform. The final aqueous phase was mixed with one-tenth final sample volume of 3 M sodium acetate (pH 5.2). After that, RNA was precipitated by adding two point five volume of -20°C-cold absolute ethanol. The mixture was incubated at -80°C for 30 minutes, and the precipitated RNA was recovered by centrifugation at 12,000 g for 10 minutes at room temperature. The RNA pellet was then washed twice with 1 ml of -20°C cold 75% ethanol. Alternatively, the RNA pellet was kept in absolute ethanol at -80°C until required.

2.3.3 Genomic DNA extraction

Genomic DNA was extracted from the pleopod of *P. monodon* using a phenol-chloroform-proteinase K method. The pleopod was placed in a centrifuge tube containing 2 ml of the extraction buffer (100 mM Tris-HCl, 100 mM EDTA, 250 mM NaCl; pH 8.0) and briefly homogenized with a micropestle and aliquoted into

microcentrifuge tubes (500 µl). SDS (10%) and RNase A (10 mg/ml) solution were added to a final concentration of 0.1% (w/v) and 100 µg/ml, respectively. The resulting mixture was then incubated at 37 °C for 1 hour. At the end of the incubation period, a proteinase K solution (10 mg/ml) was added to the final concentration of 200 µg/ml and further incubated at 55 °C for 3 hours. An equal volume of buffer-equilibrated phenol was added and gently mixed for 15 minutes. The upper aqueous phase was transferred to a new sterile microcentrifuge tube. This extraction process was then repeated once with phenol and twice with chloroform : isoamylalcohol (24:1). The aqueous phase was transferred into a sterile microcentrifuge. One-tenth volume of 3 M sodium citrate, pH 5.2 was added. DNA was precipitated by an addition of two volume of pre-chilled absolute ethanol and mixed thoroughly. The mixture was incubated at -80 °C for 30 minutes and centrifuged at 12000 g for 10 minutes at 4 °C. The precipitated DNA was washed twice with 1 ml of 70% ethanol (10 and 5 minutes, respectively). After centrifugation, the supernatant was removed. The DNA pellet was air-dried and resuspended in 30-50 µl of TE buffer (10 mM Tris-HCl and 0.1 mM EDTA, pH 8.0). The DNA solution was incubated at 37 °C for 1-2 hours for compete solubilization and kept at 4 °C until further used.

2.4 Estimation of extracted total protein, total RNA and DNA concentration

The concentration of extracted protein sample is estimated by a dye binding assay. The binding of the dye to protein causes a shift in the absorption maximum of the dye from 465 to 595 nm. This assay is rapid, reproducible and virtually complete in approximately 2 minutes with the color stability for 1 hour. The concentration of extracted protein sample is estimated corresponding to the BSA standard. The concentration of extracted RNA and DNA samples is estimated by measuring the optical density at 260 nm (OD_{260}). An OD_{260} of 1.0 corresponds to a concentration of 40 µg/ml single stranded RNA, 50 µg/ml double stranded DNA and 33 µg/ml single stranded DNA (Sambrook and Russell, 2001). Therefore, the concentration of RNA and DNA sample was estimated in µg/ml by using the following equation;

[RNA of DNA] = $OD_{260} \times dilution factor \times (40, 50 \text{ or } 33 \text{ for RNA}, double strand DNA and single stranded DNA)$

The ratio between OD_{260}/OD_{280} provides an estimate on the purity of extracted DNA/RNA. For the extracted DNA, a pure preparation of DNA has OD_{260}/OD_{280} ratio of 1.8-2.0. The ratio of approximately 2.0 indicates the good quality of the extracted RNA. The ratios that much lower than those values indicate contamination of residual proteins or phenol in extracted DNA or RNA (Kirby, 1992).

2.5 One dimensional gel electrophoresis

2.5.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Ovarian proteins (30 µg) extracted from different stages of ovaries of captive and intact wild broodstocks and nuclear and nuclear membrane proteins (15 µg) of stages I and III ovaries were size-fractionated in 12% SDS-PAGE (Laemmli, 1970). A low molecular weight protein standard marker (BioRad) was used to estimate sizes of electrophoresed proteins. At the end of each run, the protein gels were silverstained. The protein bands were excised according to marker proteins range (> 225 kDa, 176-225 kDa, 150-176 kDa, 102-150 kDa, 76-102 kDa, 52-76 kDa, 38-52 kDa and <38 kDa), then 4-5 pieces of approximately 1 square millimeter of gel pieces for trypsination.

2.5.2 Silver staining

At the end of each run, the gel protein was fixed in the fixing solution (50% methanol, 12% acetic acid and 50 µl of 37% formaldehyde to 100 ml fixing solution) for 2 h. The gel was removed in the washing solution (35% ethanol) 3 times for 5 min each and sensitizing in 0.02% sodium thiosulfate for 2 min. After washing in water 3 times for 5 min each, the gel was stained with silver nitrate (2%) for 20 min. The gel was shaken in the developing solution (60% NaCO₃ w/v, 0.04% Na₂S₂O₃ v/v, 37% formaldehyde CH₂O) until regarded protein spots were visualized and stopped quickly in the stopping solution (14.6% w/v sodium EDTA C₁₀H₁₂N₂Na₄O₈) for 20 min and the gel was kept in 0.1% acetic acid at 4°C.

2.6 Mass spectrometry analysis

2.6.1 In-gel digestion for protein identification

Pieces of electrophoresed proteins were excised manually from silver-stained 1DE gels. Gel pieces were placed in a 96 well plate and subjected to in-gel trypsin digestion. Acetonitrile (ACN) were added to the proteins for 5 min following by additional reduction and alkylation step using 10 mM DTT at room temperature for 1 h and 100 mM iodoacetamide in the dark at room temperature for 1 h. The gel pieces were hydrated with acetonitrile for 5 min. The dried gels were rehydrated by addition of appropriate volume of the digestion buffer 20 μ l (10 ng/ μ l of trypsin in 50% acetonitrile and 10 mM ammonium bicarbonate) and incubated for 20 min at RT and 50 μ l of 30% acetonitrile was added to cover the gel pieces. Digestion was performed overnight at RT. Tryptic peptide were extracted by an addition of 30 μ l of 30% ACN and shaken for 10 min and transferred to a new 96 well plate followed by the addition of 50 μ l of 50% ACN/0.1% FA then shaken for 10 min, and 50 μ l of 70%

ACN/0.1% FA and shaken for 10 min, respectively. The digested proteins were dried at 40°C for 3-4 hours and stored in -80°C.

2.6.2 nanoLC-MS/MS

chromatography Nano-electrospay liquid ionization tandem mass spectrometry (nanoLC-MS/MS) was performed as followed. Selected protein spots were submitted to an integrated the HCTultra ETD II system™ operated under HyStar™ (Bruker Daltonics). This system was controlled by the Chromeleon Management Chromatography system and comprised а two-pump Micromass/Loading lontrap system with an autosampler. Injected samples were first trapped and desalted on an AccLaim PepMap C18 µ Precolumn Cartridge (5 µm, 300-µm inside diameter by 5 mm) for 3 min with 0.1% formic acid delivered by a loading pump at 20 µl/min, after which the peptides were eluted from the precolumn and separated on a nano column, AccLaim PepMap 100 C18 (15 cm x 3 µm) connected inline to the mass spectrometer, at 300 nl/min using a 30 min fast gradient of 4 to 96% solvent B (80% acetronitrile in 0.1% formic acid).

2.6.3 Database searches

After data acquisition, MS/MS ion from nanoLC-MS/MS were analyzed using DeCyder MS Differential Analysis software (DeCyderMS, GE Healthcare) for quantitative protein analysis (Johansson et al., 2006) ; (Thorsell et al., 2007). Acquired LC-MS/MS raw data were converted and the PepDetect module was used for automated peptide detection, charge state assignments, and quantitation based on the peptide ions signal intensities in MS mode. The analyzed MS/MS data from DeCyderMS were submitted to database search using the Mascot software (Matrix Science, London, UK, (Cottrell and London, 1999). The data searched against of the

local shrimp database. In addition, data from nanoLC-MS/MS were searched against data of the National Central for Biotechnology Information (NCBI, nr) and SWISSPROT. For MS/MS ion search, the peptide charge was 1+, 2+ and 3+, MS/MS ion mass tolerance was ± 1.2 Da, fragment mass tolerance ± 0.6 Da, and allowance for 1 miss cleavage. Variable modification was methionine oxidation and cysteine carbamidomethylation. Proteins with having scores were selected.

2.7 First strand cDNA synthesis

One and half micrograms of total RNA from various tissues of *P. monodon* were reverse transcribed to the first strand cDNA using an ImProm-IITM Reverse Transcription System Kit (Promega). Total RNA was combined with 0.5 μ g of oligo dT₁₂₋₁₈ and appropriate amount of DEPC-treated H₂O in a final volume of 5 μ l. The reaction was incubated at 70 °C for 5 minutes and immediately placed on ice for 5 minutes. The 5x reaction buffer, MgCl₂, dNTP mix, RNasin were added to final concentration of 1x, 2.25 mM, 0.5 mM and 20 units, respectively. Finally, 1 μ l of ImProm-IITM Reverse transcriptase was added and gently mixed by pipetting. The reaction mixture was incubated at 25 °C for 15 minutes and 42 °C for 90 minutes. The reaction was terminated by incubated at 70 °C for 15 minutes to terminate reverse transcriptase activity. Concentration and rough quality of newly synthesized first strand cDNA was spectrophotometrically examined (OD₂₆₀/OD₂₈₀) and electrophoretically analyzed by 1% agarose gel.

2.8 Reverse transcription (RT)-PCR of gene homologues in P. monodon

2.8.1 Primer design

Eight primer pairs were designed from EST sequences of gene homologues from hemocyte, ovary and testis cDNA libraries of *P. monodon* (Table 2.1).

2.8.2 RT-PCR

The first strand cDNA (100 ng) of ovaries of female *P. monodon* broodstock were used as the template in a 25 μ l RT-PCR reaction composing of 10 mM Tris-HCl, pH 8.8, 50 mM KCl, 0.1% Triton X-100, 0.1 mM of each dNTP, 2 mM MgCl₂, 0.2 μ M of each primer and 1 unit of Dynazyme TM DNA polymerase (FINNZYMES). RT-PCR was carried out with the temperature profile of predenaturation at 94 °C for 3 minutes followed by 25 cycles of denaturation at 94 °C for 30 seconds, annealing at 53 °C for 45 second and extension at 72 °C for 30 seconds. The final extension was carried out at the same temperature for 7 minutes.

Fives microliters of the amplification products are electrophoresed though 1.2- 2.0% agarose gel dependent on size of the amplification products. The electrophoresed band was visualized under a UV transilluminator after ethidium bromide staining (sambrook and Russell, 2001).

2.8.3 Agarose gel electrophoresis

An appropriate amount of agarose was weighed out and mixed with the desired volume of 1X TBE buffer (89 mM Tris-HCl, 89 mM boric acid and 2 mM EDTA, pH 8.3). The gel slurry was boiled in a microwave oven to complete solubilization and allowed to lower than 60 °C before poured into the gel mold. A comb was inserted. The agarose gel was left to solidify. When needed, enough amount of 1x TBE buffer covering the gel for approximately 0.5 cm. The comb was removed. The PCR product was mixed with the one-fourth volume of the 10x loading dye (0.25% bromophenol blue and 25% ficoll in water) and loaded into the well. A 100 bp DNA ladder was used as the standard DNA marker. Electrophoresis was carried out at 5-6 volt/cm until bromophenol blue moved to approximately one-haft of gel. The

electrophoresed gel was stained with an ethidium bromide solution (25 µg/ml) for 5 minutes and destained in running tap water to remove unbound ethidium bromide from the gel. DNA fragments were visualized under a UV transluminator and photographed through a Gel Doc using a Quality One software (BioRad).

2.9 Tissue distribution analysis of interesting genes or differential expression pattern

2.9.1 Total RNA extraction and the first strand cDNA synthesis

Total RNA was extracted from eyestalk, gills, heart, hemocytes, hepatopancrease, lymphoid organ, intestine, ovaries, pleopods, stomach, thoracic ganglion, antennal gland and subcuticular epithelium of wild females and testes of male *P. monodon*. The first strand cDNA was synthesized as described previously.

2.9.2 Tissue expression analysis

For the target genes, 150 ng of the first strand cDNA from various tissues was used as the template in 25 µl reaction volume containing 10 mM Tris-HCl, pH 8.8, 50 mM KCl and 0.1% Triton X-100, 2 mM MgCl₂, 100 µM each of dATP, dGTP, dTTP and dCTP, 0.2 µM of each primer and 1 unit of Dynazyme TM DNA polymerase (FINNZYMES). *Elongation factor-1* α (F: 5'-ATGGTTGTCAACTTTGCCCC-3' and R: 5'-TTGACCTCCTTGATCACACC-3') were also amplified from the same template and considered as the positive control. The reactions were predenaturation at 94 °C for 3 min followed by 30 cycles composing of a 94 °C denaturation step for 30 s, a 53 °C annealing step for 45 s and 72 °C extension step for 30 s. The final extension was carried out at 72 °C for 7 min. Fives microliters of the amplification product was electrophoretrically analyzed though a 1.5-1.7% agarose gel base on size of product.

Gene	Primer sequence	size	
Beta Thymosin (PmTmsb)	F: 5'AGGTTTGCCAGGAACACATC3'	176	
	R: 5'ATCGCC TTGCTATTGGTGAG3'		
Valosin containing protein	F: 5'GCAGTTGAACGAGGTGGGCTAC3'	276	
(PmVCP)	R: 5'TTGCGAAGGTTGCTCTCGCATT3'		
Rac GTPase-activating protein 1	F: 5'CATGTGGCAAAAGAATTAAGTT3'	172	
(PmRacgap1)	R: 5'GGGCATACGAGATGTGTAGTCA3'		
Protein kinase C	F: 5'ACCACCATT TACACCTAAGATA3'	139	
(PmPKC)	R: 5'AAGAAAATCCTCTAAACTCGTC3'		
Cyclic AMP regulated protein	F: 5'TGTTCAAGTATGAGGGCAGCCAGGT3'	169	
like protein (PmcAMP-RPL)			
	R: 5'GTGCCCACCCAAGTTAGCATCAGGA3'		
	F: 5'AAGCGAAAATGTCCACCGATAAG3'	234	
	R: 5'AAGAGAACACAGAGCCAGATTGA3'		
Nuclear pore complex protein	F: 5'TGCTCCTCTCACAACGCTTCCTT 3'	139	
NUP133 (PmNUP133)			
	R: 5'ACTATCCCCTGCTCCAGAGAACT3'		
Semaphorin-2a (PmSema)	F: 5'GCTTGGTGGTGATGAATGTAAAT3'	242	
	R: 5'CTGGCTGATGTTATTCCTATTGG3'		

Table 2.1 Gene homologue, primer sequences and expected sizes of the PCR product designed from EST of *P. monodon*

2.10 Isolation and characterization of the full-length cDNA of functionally important gene homologues of *P. monodon* using Rapid Amplification of cDNA Ends-Polymerase Chain Reaction (RACE-PCR)

2.10.1 Preparation of the 5' and 3' RACE template

Total RNA was extracted from ovaries of *P. monodon* using TRI Reagent. The quality of extracted of total RNA was determined by agarose gel electrophoresis. Messenger (m) RNA was purified using a QuickPrep micro mRNA Purification Kit (Amercham Phamacia Biotech) according to the protocol recommended from the manufacturer. RACE cDNA template was prepared by combining 1 µg of ovarian mRNA with 1 µl of 5'-CDS primer and 1 µl of 10 µM SMART II oligonucleotide for 5' RACE-PCR or 1 µg of ovarian mRNA with 1 µl of 3' CDS primer A for 3' RACE-PCR (Table 2.2). The component were mixed and centrifuged briefly. The reaction was incubated at 70°C for 2 min and snap-cooled on ice for 2 minutes. The reaction tube was centrifuged briefly. After that, 2 µl of 5x First-Strand buffer, 1 µl of 20 mM DTT, 1 µl of dNTP Mix (10 mM each) and 1 µl of PowerScript Reverse Transcriptase were added. The reaction were mixed by gently pipetting and centrifuged briefly to collect the contents at the bottom of the tube. The reaction tube was incubated at 42 °C for 1.5 h in a thermocycler. The first strand reaction products were diluted with 125 µl of TE buffer and heated at 72 °C for 7 min. The first strand cDNA templates were kept at -20 °C until needed.

2.10.2 Primer designed for RACE-PCR and primer walking

Gene-specific primers (GSPs) were designed from ovary and hemocyte cDNA libraries. The antisense primer (and nested primer) for 5' and/or 3' RACE-PCR of each gene was designed (Table 2.3).

For sequencing of genes that showed the full-length from the 5' direction, the product from colony PCR was considered. If the insert of a particular gene was larger than that of its homologues, the 3' direction was further sequenced. Internal primers were designed for primer walking of the inserted cDNA.

2.10.3 RACE-PCR

The master mix sufficient for 5' and/or 3' RACE-PCR and the control reactions was prepared (Tables 2.4 and 2.5). For each 25 μ l amplification reaction, 14.0 μ l sterile deionized H₂O, 2.5 μ l of 10x Advantage[®] 2 PCR buffer, 0.5 μ l of 10 μ M dNTP mix and 0.5 μ l of 50x Advantage[®] 2 polymerase mix were combined.

The primary 5' and 3' RACE-PCR product were electrophoretically analyzed through 1.2-1.5% agarose gels. If the discrete expected bands were not obtained from the primary amplification, nested PCR was performed using the recipes illustrated in Tables 2.4 and 2.5. The primary PCR product was 50-fold diluted. The secondary PCR was performed using 1 - 5 μ l of the diluted first PCR product as a template using the conditions described in Table 2.6.

Table 2.2 Primer sequence	for the	first strand	cDNA	synthesis and	RACE-PCR
---------------------------	---------	--------------	------	---------------	----------

Primers	Sequence
SMART II A Oligonucleotide	5'-AAGCAG TGG TATCAACGCAGAGTACGC GGG-3'
3' RACE CDS Primer A	5'-AAGCAGTGGTATCAACGCAGAGTAC(T) $_{\rm 30}$ N $_{\rm -1}$ N-3' (N=A, C, G orT; N $_{\rm -1}$ = A,G or C)
5' RACE CDS Primer	5'-(T) ₂₅ N ₋₁ N-3' (N=A, C, G orT; N ₋₁ = A,G or C)
10X Universal PrimerA Mix (UPM)	Long : 5'-CTAATACGACTCACTATAGGGCAA GCAGTGGTATCAACGCAG AGT-3'
	Short : 5'-CTAATACGACTCACTATAGGG C - 3'
Nested Universal Primer A (NUP)	5 – AAG CAG TGG TAT CAA CGC AGA GT -3'

Gene specific primer	specific primer Sequence	
		(°C)
Thymosin- $oldsymbol{eta}$		
5' RACE	R: 5'GGCAGGTGAATCTTCTCCTCCGTC3'	65.38
3' RACE	F: 5'AGGTTTGCCAGGAACACATC3'	
3'Nested	F: 5' CAATAGCAAGGCGATGGCAAGAAGTG3'	63.57
Valosin containing proteir		
3' RACE	F: 5 TGCCACAAACCGCCCCAACTCCATCG3	68.03
Protein kinase C		
5' RACE-I	R: 5'GTTTCCTGGGGAGACTTT AGCACTTT 3'	61.99
5' RACE-II	R: 5'САССААТСААСАСТБ GCACCATAA TC3'	61.99
5' RACE-III	R: 5 TCCCTAGACCCCATATGAATTCTCGAC3	63.53
3' RACE	F: 5 TGTTCGTGCTATCAACCAAGAC3	
Cyclic AMP-regulated pro	tein like protein	
3' RACE	F: 5 CGTCTCGTCTCGGCTTCGTTCGGATA 3	66.72
Nuclear pore complex protein NUP133		
5' RACE	R: 5'ACTATCCCCTGCTCCAGAGAACT3'	60.4
3' RACE	F: 5 TGCTCCTCTCACAACGCTTCCTT 3	65.2
5' Nested	R: 5'CAGTATCCATTGTGGCAAGGGCGTA 3'	69.1
Semaphorin-2a		
5' RACE	R: 5'CTGGCTGATGTTATTCCTATTGG3'	58.6
3' RACE	F: 5'GCTTGGTGGTGATGAATGTAAAT3'	58.6

Table 2.3 Gene-specific primers (GSPs) and nested GSP used for isolation of the full-length cDNA of functionally important genes in *P. monodon*

Component	5' RACE-PCR	UPM only	GSP1 only
		(Control)	(Control)
5' RACE–Ready cDNA template	1.5 µl	1.5 µl	1.5 µl
UPM (10x)	5.0 µl	5.0 µl	-
GSP1 (10 uM)	1.0 µl	-	1.0 µl
GSP2 (10 uM)		-	-
H ₂ O		1.0 μl	5.0 µl
Master Mix	17.5 µl	17.5 µl	17.5 µl
Final volume	25 μί	25μ	25 µl

Table 2.4 Compositions for amplification of the 5' end of gene homologues using 5' RACE-PCR

Table 2.5 Compositions for amplification of the 3' end of gene homologues using 3' RACE-PCR

Component	3' RACE-PCR	UPM only	GSP1 only
		(Control)	(Control)
5' RACE–Ready cDNA template	1.5 µl	1.5 µl	1.5 µl
UPM (10x)	5.0 μl	5.0 µl	-
GSP1 (10 uM)	1.0 µl	-	1.0 µl
GSP2 (10 uM)	KORN UNIV	ERSITY	-
H ₂ O	-	1.0 µl	5.0 µl
Master Mix	17.5 µl	17.5 µl	17.5 µl
Final volume	25 µl	25 µl	25 µl

Table 2.6 The amplification conditions for RACE-PCR of various gene homologues of *P. monodon*

Gene homologue	Amplification condition
PmTmsb	
5' RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
3' RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
3' Nested RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
PmVCP	
3' RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
РтРКС	
5' RACE-PCR	20 cycles of 94 °C for 30 s, 65 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
3' RACE-PCR	20 cycles of 94 °C for 30 s, 65 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
PmcAMP-RPL	
3' RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
PmNUP133	
5' RACE-PCR	5 cycles of 94 °C for 30 s and 70 °C for 2 min 5 cycles of 94 °C for 30 s, 68°C for 30 s and 72 °C for 2 min 20 cycles of 94 °C for 30 s, 66 °C for 30 s and 72 °C for 2 min and the final extension at 72 °C for 7 min
3' RACE-PCR	5 cycles of 94 °C for 30 s and 70 °C for 2 min 5 cycles of 94 °C for 30 s, 68°C for 30 s and 72 °C for 2 min 20 cycles of 94 °C for 30 s, 66 °C for 30 s and 72 °C for 2 min and the final extension at 72 °C for 7 min
5' Nested RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
PmSema	
5' RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min
3' RACE-PCR	20 cycles of 94 °C for 30 s, 66 °C for 45 s, 72 °C for 2 min and the final extension at 72 °C for 7 min

2.10.4 Elution DNA fragments from agarose gels

After electrophoresis, the desired DNA fragment was excised from the agarose gel using a sterile scalpel and placed in a pre-weighed microcentrifuge tube. DNA was eluted out from the gel using a illustra GFX PCR DNA and Gel Band Purification Kit (GE). Three hundred microlitters of the capture buffer type 3 was added to the sample and mixed by vortexing. The mixture was incubated at 60 °C for 10 - 15 min until the gel slice was completely dissolved. During the incubation period, the tube was inverted every 2-3 min. A column was placed in a collection tube and 600 µl of the sample mixture was applied into the column and centrifuged at 6,000 g (8,000 rpm) for 1 min. The flow-through was discarded. The column was placed back in the collection tube. The column was washed by the addition of 500 µl of the ethanoladded wash buffer type 1 and centrifuged at 6,000 g for 1 min. After discarding the flow-through, the column was centrifuged for 2 min at the full speed (14,000 rpm) to dry the column matrix. The dried column was placed in a new microcentrifuge tube and 15 µl of the elution buffer type 4 was added to the center of the column matrix. The column was left at room temperature for 2 min before centrifuged for 2 minutes at the full speed to recover the gel-eluted DNA.

2.11 Cloning of the PCR product

2.11.1 Ligation of the PCR product to the pGEM[®]-T Easy vector

DNA fragments was ligated to the pGEM[®]-T Easy vector in a 10 μ l reaction volume containing 5 μ l of 2x Rapid Ligation Buffer (60 mM Tris-HCl, pH 7.8, 20 mM MgCl₂, 20 mM DDT, 2 mM ATP and 10% PEG8000), 3 unit of T4 DNA ligase, 25 ng of the pGEM[®]-T Easy vector and approximately 50 ng of the DNA insert. The reaction

mixture was incubated overnight at 4 - 8 °C before transformed to *E.coli* JM 109 (or DH5**Ω**).

2.11.2 Transformation of the ligation product to E.coli host cells

2.11.2.1 Preparation of competent cell

A single colony of *E. coli* JM109 (or DH5**Q**) was inoculated in 10 ml of LB broth (1% Bacto tryptone, 0.5% Bacto yeast extract and 0.5% NaCl, pH 7.0) with vigorous shaking at 37 °C overnight. The starting culture was then inoculated into 50 ml of LB broth and continued culture at 37 °C with vigorous shaking to OD_{600} of 0.5 to 0.8. The cells was briefly chilled on ice for 10 minutes and recovered by centrifugation at 2700 *g* for 10 minutes at 4 °C. The pellets were resuspended in 30 ml of ice-cold MgCl₂/CaCl₂ solution (80 mM MgCl₂ and 20 mM CaCl₂) and centrifuged as above. The cell pellet was resuspended with 2 ml of ice-cold 0.1 M CaCl₂ and the cell suspension was divided into 100 or 200 µl aliquots. These competent cells was used immediately or stored at -80°C for subsequently used.

2.11.2.2 Transformation

The competent cells were thawed on ice for 5 min. Fives microlitres of the ligation mixture were added and gently mixed by pipetting. The mixture was left on ice for 30 min. During the incubation period, the ice box was gently moved forward and backward a few times every 5 min. The transformation reaction was heat-shocked in a 42 °C water bath (without shaking) for exactly 45 seconds. The reaction tube was immediately placed on ice for 5 min. The mixture were removed from the tubes and added to a new tube containing 1 ml of pre-warmed SOC (2% Bacto tryptone, 0.5 % Bacto yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄ and 20 mM glucose). The cell suspension was incubated with shaking at 37 °C

for 90 min. The mixture were centrifuged for 1 minutes at room temperature, and resuspended in 100 μ l of the SOC medium and spread onto a selective LB agar plates (containing 50 μ g/ ml of amplicillin and spread with 20 μ l of 25 μ g/ml of X-gal and 25 μ l of 25 μ g/ml of IPTG for approximately 1 hr before using) and further incubated at 37 °C overnight. The recombinant clones containing inserted DNA are white whereas those without inserted DNA are blue (Sambrook and Russell, 2001).

2.12 Colony PCR and digestion of the amplified inserts by restriction endonucleases

Colony PCR was performed in a 25 μ l reaction mixture containing 10 mM Tris-HCl, pH 8.8, 50 mM KCl and 0.1% Triton X-100, 0.1 mM of each dNTP, 4 mM MgCl₂, 0.1 μ M each of pUC1 (5'-CCGGCTCGTATGTTGTGTGGA-3') and pUC2 (5'-GTGGTGCAAGGCGATTAAGTTGG-3'), 0.5 unit of *Taq* DNA polymerase (FINZYME). A colony was picked by a pipette tip, placed in the culture tube and served as the template in the reaction. PCR was carried out in a thermocycler consisting of predenaturation at 94°C for 3 min followed by 35 cycles of denaturation at 94°C for 30s, annealing at 50°C for 1 min and extension at 72°C for 1.5 min. The final extension was carried out at the same temperature for 7 min. The colony PCR products were electrophoresed through a 1.5 % agarose gel and visualized after ethidium bromide staining.

The colony PCR products containing the insert were separately digested with *EcoR* I (Promega) in a 12 μ l reaction volume containing 1x buffer (6 mM Tris-HCl, 6 mM MgCl₂, 50 mM NaCl and 1 mM DDT, pH 7.5 for *EcoR* I 0.1 mg/ml BSA, 2 units of enzyme and 5 μ l of the colony PCR product. The reaction mixture was incubated at 37°C overnight. The reaction was analyzed by 1.5% agarose gel electrophoresis.

2.13 Extraction of recombinant plasmid DNA

Plasmid DNA was isolated using a illustraTM plasmidPrep Mini Spin Kit (GE). A discrete white colony was inoculated into a sterile culture tube containing 3 ml of LB broth supplemented with 50 µg/ml of amplicillin and incubated with shaking (250 rpm) at 37 °C overnight. The culture was transferred into a sterile 1.5 ml microcentrifuge tube and centrifuged at 14,000 rpm for 1 min. The supernatant was discarded. The bacterial pellet was resuspended in 175 µl of the lysis buffer type 9 containing RNase A and thoroughly mixed by vortexed. The resuspended cells were lysed by the addition of 175 µl of the lysis buffer type 7 and mixed gently by inverting the tube for 6 times. The mixture was left for 2 minutes at room temperature. After that, 350 µl of the lysis buffer type 8 was added to neutralize the alkaline lysis step and mixed immediately by inverting the tube for 6 times. The mixture was then centrifuged at 14,000 rpm for 15 min. A mini spin column was placed in a collection tube and the clear lysate was applied into the mini spin column and centrifuged at 12,000 rpm for 30s. The flow-through was discarded. The mini spin column was placed back in the collection tube. The column was washed by the addition of 400 µl of the lysis buffer type 8 and centrifuged at 12,000 rpm for 30s. After discarding the flow-through, 500 µl of the ethanol-added Wash buffer type 1 was added and centrifuged as above. The mini spin column was further centrifuged for 2 min at the full speed (14,000 rpm) to dry the column matrix. The dried column was placed in a new microcentrifuge tube and 30 μ l of the elution buffer type 4 was added at the center of the column matrix. The column was left at room temperature for 2 min before centrifuged for 2 min at the full speed to recover the purified plasmid DNA. The concentration of extracted plasmid DNA was spectrophotometrically measured.

2.14. Examination of expression levels of interesting genes in ovaries of *P. monodon* by quantitative real-time PCR

Expression levels of several transcripts including valosin containing protein (PmVCP), thymosin- β (PmTmsb), rac GTPase-activating protein 1 (PmRacgap1), protein kinase C (PmPKC) and cyclic AMP-regulated protein-like protein (PmcAMP-RPL) were examined using quantitative real-time PCR analysis.

2.14.1 Experimental animals

Intact and eyestalk-ablated wild broodstock of *P. monodon* (ABW = 142.98 \pm 28.37) possessing different stages of ovarian development (GSI values: <2, >2–4, >4–6 and >6% for stages I (*N* = 4 and 4 for intact and eyestalk-ablated broodstock, respectively), II (*N* = 10 and 4), III (*N* = 10 and 5) and IV (*N* = 5 and 9) ovaries, respectively.

For progesterone administration, 14 month-old of domesticated shrimp were single injected with progesterone (0.1 μ g/g of body weight and average body weight = 100.79-±-17.59 g). Ovaries of progesterone treated were collected for vehicle control (N = 5) (at 0 and 12 hour after ethanol injection), negative control (intact shrimp) (N = 5), at 12, 24, 48 and 72 hour after PG injected (N = 4).

For 5-hydroxytryptamine (5-HT) administration, 18-month-old of domesticated shrimp were injected with 5-HT (50 μ g/g body weight, average body weight = 107±16.24g). Ovaries of serotonin treated were collected for vehicle control (N = 4) (normal saline injection), at 0, 1, 3, 6, 12, 24, 48 and 72 hour after 5HT injection (N =4).

2.14.2 Primers and construction of the standard curve

Primers for RT-PCR of *PmVCP*, *PmTmsb*, *PmPKC* and *PmcAMP-RPL* (Table 2.1) were applied for real-time PCR analysis. For construction of the standard curve of each gene, the PCR product of the target gene and *EF-1* $\boldsymbol{\alpha}$ was amplified, electrophoresed through agarose gel and eluted out from the gel. The gel-eluted product was cloned into pGEM-Teasy vector and transformed into *E. coli* JM109. Plasmid DNA were extracted and used as the template for construction of the standard curve. Templates of each gene homologues and *EF-1* $\boldsymbol{\alpha}$ were ten-fold diluted covering $10^3 - 10^8$ copy numbers. Real-time RT-PCR was carried out (see below) and each standard point was run in duplicate.

2.14.3 Quantitative real-time PCR

The first strand cDNA was reverse-transcribed. The target transcript (*PmVCP*, *PmTmsb*, *PmPKC* and *PmcAMP-RPL*) and internal control (*EF-1***C**) of each shrimp were amplified in reaction volume 10 µl containing 5 µl of 2x SYBR Green Master Mix (Roche). The specific primer pairs were used at a final concentration of 0.1, 0.15, 0.2 and 0.3 µM, respectively. The thermal profile for quantitative real-time RT-PCR was 95°C for 10 min followed by 40 cycles of denaturation at 95 °C for 15 s, annealing at 53 °C, 55 °C or 56 °C for 30 s and extension at 72 °C for 20 s. Continually, cycles for the melting curve analysis was carried out at 95 °C for 15 s, 65 °C for 1 min and at 98°C for continue and cooling 40 °C for 30 s. Real-time RT-PCR assay was carried out in 96 well plate and each sample was run in duplicate Relative expression levels of different group of samples were statistically test by one way ANOVA followed by Duncan's new multiple rang test (*P* < 0.05). While serotonin and progesterone administration were statistically test by multiple pairwise kruskal wallis test (*P* < 0.05).

2.15 In situ hybridization (ISH)

2.15.1 Sample preparation

Ovaries of intact and eyestalk-ablated *P. monodon* broodstock were fixed in 4% paraformaldehyde prepared in 0.1% phosphate-buffered saline (PBS, pH 7.2) overnight at 4°C. The fixed ovarian tissue was washed four times with PBS at room temperature and stored in 70% ethanol at -20°C until used. Tissue was histogically prepared, embedded in paraffin and Conventional paraffin sections (5 µm) were carried out onto poly-L-lysine-coated slides.

2.15.2 Preparation of cRNA probes

For PmVCP the template used for synthesis of the cRNA probes were PCR-(TAATACGACTCACTATAGGG) amplified. The T7/ SP6 and sequence (ATTTAGGTGACACTATAGAA) (Table 2.7) promoter sequences were added to the 5' of forward and reverse primers, respectively. PCR was carried out in a 25 µl reaction volume containing 10 ng of recombinant plasmid partial cDNA of PmVCP of the target transcripts were used as the template. The PCR condition was initially performed by predenaturation at 94°C for 3 minutes followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 65°C for 30 seconds and at 72°C for 1 minute. The PCR product was purified using a illustra GFX PCR DNA and Gel Band Purification Kit (GE). The concentration of purified PCR product was estimated by comparing with the DNA marker after electrophoresis and also spectrometrically estimated.
Table 2.7 Nucleotide sequences and Tm of primers for synthesis of the cRNA probes of *PmVCP*

Gene	Sequence	Tm
Gene	Sequence	
PmVCP-T7F	F: TAATACGACTCACTATAGGGAGGGTGACCTGTTCCTGGTGCGA	66
PmVCP-SP6R	R: ATTTAGGTGACACTATAGAACGATGGAGTTGGGGCGGTTTGTG	60

For *PmVCP*, the sense and anti-sense cRNA probes were synthesized from a recombinant plasmid containing partial cDNA of *PmVCP* using primers (PmVCP-T7F (5'-TAATACGACTCACTATAGGGAGGGTGACCTGTTCCTGGTGCGA-3') and PmVCP-SP6R (5'ATTTAGGTGACACTATAGAACGATGGAGTTGGGGCGGTTTGTG-3'). Briefly, 100 ng of recombinant plasmid *PmVCP* was reacted with the condition containing 1X transcription buffer, 0.2 mM dNTP, 0.75 unit of *pfu* Taq polymerase (Promega). The PCR condition was initially performed by predenaturation at 95°C for 3 minutes followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 65°C for 30 seconds and at 72°C for 1 minute. The PCR product was purified using a illustra GFX PCR DNA and Gel Band Purification Kit (GE). The concentration of purified PCR product were estimated by comparing with the DNA marker after electrophoresis and also spectrophotometrically estimated.

2.15.3 Synthesis of the cRNA probes

For synthesis of the cRNA probe, 1 μ g of the gel-eluted PCR product was used as the template using the protocol recommended by the manufacturer (Roche). The mixture was incubated at 40°C for 2 hours for the antisense probe and 37°C for 2 hours for the sense probe. The template DNA was eliminated by treating with DNase I at 37°C for 20 minutes. The reaction was terminated by adding 2 μ l of 0.2 M EDTA (pH 8.0). The synthesized probe (1 μ l) was determined by electrophoresis and the remaining reaction mixture was purified using an RNeasy® MinElute® Cleanup kit (Qiagen). The cRNA probe concentration was spectrophotometrically measured and stored at -80°C until needed.

2.15.4 Dot blot analysis

The quality of cRNA probes was determined before used for *in situ* hybridization using dot blot analysis. Serial dilutions of the pre-diluted probe and control cRNA were made. The diluted probe (1 μ l) was spotted on a piece of the Hybond N⁺membrane. The spotted probe was fixed to the membrane by cross-linking with UV-light for 1 minute. The membrane was washed with the washing buffer for 1 minute and incubated in the blocking solution for 1 minute. After that, the membrane was incubated in Anti-DIG-alkaline phosphatase (1:5,000 in the blocking solution) for 3 minute, washed with the washing buffer for 1 minute and incubated with the washing buffer for 1 minute and incubated in Anti-DIG-alkaline phosphatase (1:5,000 in the blocking solution) for 3 minute, washed with the washing buffer for 1 minute and incubates in the detection buffer. The positive hybridization signals was developed using NBT/BCIP solution. The intensities of the control and the dilution of probe were compared to estimate the concentration of the cRNA probe.

2.15.5 Hybridization and detection

Tissue sections were dewaxed with xylene and dehydrated in absolute ethanol. The sections were prehybridized with 2x SSC containing 50% deionized formamide, 1 μ g/ μ l yeast tRNA, 1 μ g/ μ l salmon sperm DNA, 1 μ g/ μ l BSA and 10% (w/v) dextran sulfate at 50°C for 30 min and hybridized with either the sense or antisense probe in the prehybridization solution overnight at 50°C. After hybridization, the tissue sections were washed twice with 4x SSC for 5 min each and once with 2x SSC containing 50% (v/v) formamide for 20 min at 50°C. The sections were immersed in prewarmed RNase A buffer (0.5 M NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA) at 37 °C for 30 min and treated with RNase A (10 μ g/ml) at 37 °C for 30 min. Tissue sections were washed four times with the RNase A buffer (37°C, 10 min each) and 2x SSC (50°C, 15 min each). Then tissue sections was wash twice with 2x SSC for 15 min at 50°C. And high stringent washing was carried out twice in 0.2x SSC at 50°C for 20 min each. Detection of the positive hybridization signals was carried out with a DIG Wash and Block Buffer kit (Roche) (Qiu and Yamano, 2005).

2.16 *In vitro* expression of recombinant proteins using the bacterial expression system

2.16.1 Primer design

A pair of primer was designed to amplify the complete ORF or functional domain sequence of each gene. The forward and reverse primers contained a restriction enzyme site and six His encoded nucleotides, respectively were designed (Table 2.8).

2.16.2 Construction of recombinant plasmid in cloning and expression vectors

The recombinant plasmid of each genes were amplified by PCR, ligated to pGEM®-T Easy vector and transformed in to *E. coli* JM109. Plasmid was extracted from a positive clone and used as the template for PCR amplification using 0.2 μ M of each primer, 0.75 unit *Pfu* DNA polymerase (Promega) and 0.2 mM of each dNTP.

The thermal profiles were predenaturation at 95°C for 3 minutes followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 58°C for 30/45 seconds and at 72°C for 2 minutes and the final extension at 72°C for 7 minutes. The amplification product and expression vector were digested with restriction enzymes

and analyzed by agarose gel electrophoresis. The gel-eluted product was ligated into vector digested and transformed into *E. coli* JM109. The recombinant plasmid was subsequently transformed into *E. coli* BL21-CodonPlus (DE3)-RIPL.

Table 2.8 Gene specific overhang primers, their sequences and melting temperature $^{\text{TM}}$ of *PmVCP*, *PmRacgap1*, *PmTmsb*, *PmNUP133* and *Pmsema*

Gene	Sequence	Tm
PmCdc48-VCP-F/ Bam	F: 5'-TTT CATATG GCCGAACAGGACGACTTAGC-3'	59
H1		
PmCdc48-VCP-R/ Eco	R: 5'-GCC GAATTC TCA ATG ATG ATG ATG A TG ATG	57
RI	TCGCTTAACTGGCTCTCCTT-3'	
PmRacgap1-ORF-F/	F: 5'-GCC <u>CATATG</u> GAGTCCCTTTCAGCA-3'	62
Nde I		
PmRacgap1-ORF-R/	R: 5'-GCC GGATCC TCA ATG ATG ATG ATG ATG ATG CTTCCGGAAGACATA -3'	65
Bam H I		
PmTmsb-ORF-F / Nde I	F: 5'-GCC CATATG AGCGCTGAAACT CCCCTCAAG-3'	63
PmTmsb-ORF-R/ Bam	R: 5'-GCC GGATCC TCA ATG ATG ATG ATG ATG ATG GGCCTTCTTCTCTCCTC	57
H1	AAT-3'	
PmNPC-NUP133-	F: 5'-GCC <u>CATATG</u> GAAGGCAGTGGC CAG-3'	64
Nucleoporin_N-F/ Nde		
I		
PmNPC-NUP133-	R: 5'-GCC GAATTC CTA ATG ATG ATG ATG ATG ATG CACCCGATCCCCACT	58
Nucleoporin_N-R/ Eco	GTC-3'	
RI		
PmSema-F/ Nde I	F: 5'-GCC CATATG CTT CCAGACAACGTG CTG -3'	52
PmSema-R/ Bam H I	R: 5'-GCC <u>GGATCC</u> TCA ATGATGATG ATGATGATG GAC GAA GGG ATT GCT	54
	CCT -3'	

*Restriction site (underlined) and reverse stop codon (italicized) and six His encoded nucleotides (boldfaced)

2.16.3 Expression of recombinant proteins

A bacterial colony carrying recombinant plasmid of each gene was inoculated into 3 ml of LB medium containing 50 μ g/ml ampicillin or 30 μ g/ml kanamycin and 50 μ g/ml chloramphenicol at 37°C and 250 μ l of the overnight culture was transferred to 50 ml of LB medium containing ampicillin or kanamycin and chloramphenicol and further incubated until an OD₆₀₀ was obtained at 0.4-0.6, one OD₆₀₀ was taken at 0 hour after induced by 1mM IPTG. After IPTG induction, one OD₆₀₀ was time-interval taken at 1, 2, 3, 6, 12 and 24 hr. The cultures were centrifuged at 12000 g for 1 min, resuspended with 2X loading buffer and 1XPBS (pH 7.4) and analyzed by SDS-PAGE (Laemmli, 1970). In addition, for soluble or inclusion bodies protein was investigated subsequently by cultured 20 ml of the IPTG inducedculture (3 /6 hr). The cultured was centrifuged and resuspended in lysis buffer (0.05 M Tris-HCl; pH 7.5, 0.05 M NaCl; containing 1 mg/ml lysozyme) and sonicated at 15% amplitude, pulsed on for 30 seconds and pulsed off for 45 seconds in a period 3 minutes until the solution is cleared. The protein concentration of both soluble and insoluble fractions was measured (Bradford, 1976). Overexpression of recombinant protein was analyzed by SDS-PAGE. For western blot analysis, the electrophoresed proteins were transferred to a PVDF membrane (Towbin et al., 1979).

Recombinant protein was size-fractionated using SDS-PAGE. For western blpt analysis, the electrophoresed proteins was transferred onto a PVDF membrane (Hybond P; GE Healthcare) (Towbin et al., 1979) in 25 mM Tris, 192 mM glycine (pH 8.3) buffer containing 10% methanol at 100 V for 90 min. The membrane was treated in 5% BSA blocking solution for overnight, then the membrane was incubated with the Anti-His antibody IgG2a (GE Healthcare; 1:7500 in the blocking solution) for 1 h at room temperature. The membrane was washed 3 times with 1× Tris Buffer Saline-Tween20 (TBST; 50 mM Tris–HCl, 0.15 M NaCl, pH 7.5, 0.1% Tween20) and incubated with goat anti mouse IgG (H+L) conjugated with alkaline phosphatase (Bio-Rad Laboratories) at 1:7500 for 1 h and washed 3 times with 1× TBST. Immunoreactive signals were visualized using NBT/BCIP (Roche) as the substrate.

2.16.4 Purification of recombinant proteins

Recombinant protein was purified using a His GraviTrap kit (GE Healthcare). Initially, 1 liter of IPTG-induced cultured 3-6 hr at 37°C was harvested by centrifugation at 7000 rpm for 15 min. The pellet was resuspended in the binding buffer (20 mM sodium phosphate, 500 mM NaCl, pH 7.4), sonicated and centrifuged at 12000 rpm for 45 min. The insoluble fraction was purified by using a His GraviTrap kit (GE Healthcare) under denaturing .The insoluble fraction was loaded into the column after binding with binding buffer (20 mM sodium phosphate, 500 mM NaCl, pH 7.4) and washed with 10 ml of the binding buffer containing 20 mM imidazole (20 mM sodium phosphate, 500 mM NaCl, pH 7.4 and 8M urea), 10 ml of the binding buffer containing 40 mM imidazole (20 mM sodium phosphate, 500 mM NaCl, 40 mM imidazole, pH 7.4 and 8M urea) and 5 ml of the binding buffer containing 80 mM imidazole (20 mM sodium phosphate, 500 mM NaCl, 80 mM imidazole, pH 7.4 and 8M urea), respectively. The recombinant protein was eluted with 6 ml of the elution buffer (20 mM sodium phosphate, 500 mM NaCl, 500 mM imidazole, pH 7.4 and 8M urea). For soluble fraction, the soluble protein was loaded into column after binding column with binding buffer (20 mM sodium phosphate, 500 mM NaCl, pH 7.4 containing 40 mM imidazole). The recombinant protein was obtained subsequently by washing the column with binding buffer containing 40 mM imidazole, 80 M imidazole, 150 mM imidazole (20 mM sodium phosphate, 500 mM NaCl, pH 7.4) respectively. The recombinant protein was eluted by binding buffer containing 500 mM imidazole (20 mM sodium phosphate, 500 mM NaCl, pH 7.4 and 500 mM imidazole). Fractions from the washing and eluting steps were analyzed by SDS-PAGE

and western blotting. The purified protein was stored at 4° C or -20° C for long term storage.

2.16.5 Peptide sequencing of recombinant proteins

Peptide sequencing was applied to confirm that the expressed proteins were rPmCdc48-VCP, rPmTmsb, rPmRacgap1, rPmNPC-NUP13 and rPmsemaphorin-2a_sema by using NanoLC-MS/MS.

2.16.6 Polyclonal antibody production and polyclonal antibody purification

Polyclonal antibody against rPmVCP, rPmTmsb, rPmRacgap1, rPmNPC-NUP133 and rPmSema was immunologically produced in rabbit by Faculty of Associated Medical Sciences, Chiangmai University. Western blot analysis was carried out to examine specificity and sensitivity of the antibody.

For polyclonal antibody purification: purification of polyclonal antibody using protein A (Thermo Scientific), three milliliter of polyclonal antibody was centrifuged prior to loading into the column after binding with binding buffer that followed by manufacturer protocol and some modified. For purification of polyclonal antibody using Hitrap NHS-activated HP (GE), recombinant protein was incubated by injection into the column for 15-30 minutes at room temperature or 4 hour at 4°C then followed by recommended the manufacturer protocol.

2.16.7 Western blot analysis

For western blot analysis, ovarian tissues of *P. monodon* were ground in the extraction buffer: 10% TCA in acetone (V/V), 0.1% DTT (W/V) and protease inhibitor cocktail. After centrifugation at 10000 g for 10 minutes at 4°C, the supernatant were collected. Acetone is added and left at -20°C 2 hours. The mixtures were centrifuged

at 10000 g for 30 minutes at 4°C. The supernatant is discarded. The pellet is air-dried and dissolved in lysis buffer. The amount of extracted proteins were measured by a dye binding assay (Bradford, 1976). Twenty micrograms of ovarian proteins were heated at 100°C for 5 min, immediately cooled on ice and size-fractionated by SDS-PAGE (Laemmli, 1970). The percentage of SDS-PAGE was depended on size of the protein. Electrophoretically separated proteins were transferred onto a PVDF membrane (Hybond P; GE Healthcare) (Towbin et al., 1979) in the 25 mM Tris, 192 mM glycine (pH 8.3) buffer containing 10% methanol at a constant current of 100 V for 90 minutes. The membrane was treated with the 5% BSA blocking solution for overnight and incubated with the primary antibody in the blocking solution for 1 hr at room temperature. The membrane was washed 3 times with 1x Tris Buffer Saline-Tween-20 (TBST; 50 mM Tris–HCl, 0.15 M NaCl, pH 7.5, 0.1% Tween-20) and incubated with goat anti-rabbit IgG (H+L) conjugated with alkaline phosphatase (Bio-Rad Laboratories) at 1:3000 for 1 h and washed 3 times with 1x TBST. Immunological signals were visualized using NBT/BCIP (Roche) as the substrate.

2.17 Localization of reproduction-related proteins

2.17.1 Immunohistochemistry

The paraffin sections were prepared from pieces of ovaries fixed with 4% paraformaldehyde. Deparafinized sections were autoclaved in 0.01 sodium citrate (pH 6.0) containing 0.1% Tween-20 at 120°C for 5 minutes. Then incubated in the blocking solution I (3% H_2O_2 in methanol) for 15 minutes. After treatment in the blocking solution II (Roche) for 4 hours, section were incubated with purified anti-VCP-cdc48, anti-RacGap1, anti-NPC133_N, anti-semaphorin-2a_sema, preimmunise and blocking solution (control) for 1 hour in the humid chamber. The sections were

rinsed three times for 5 minutes with 1XPBS (pH 7.2) and incubate with goat antirabbit IgG conjugated with horse radish peroxidase for 1 hour. The sections were again rinse three times for 5 minutes with 1XPBS (pH 7.2). Localization of antigen was visualized using diaminobenzidine (Wako) as the substrate. Tissue section were dehydrated and mounted for long term storage.

2.17.2 Immunofluorescence

Ovaries were dissected out from *P. monodon* broodstock and fixed in Davidson's fixative overnight at 4°C. Standard paraffin sections (6 µm) were carried out. The sections are deparaffinized and rehydrated through a grade ethanol series for 5 minutes each then immerse in TBST containing 10% glycine for 10 min. After treatment in a blocking solution (10% normal goat serum) for 2 hours, the sections are incubated with the first antibody (1:20) overnight at room temperature, and rinsed with 1x TBST three times for 20 min each. The tissue sections are incubated with goat anti-rabbit IgG conjugated with Alexa 635 or Alexa 488 (1:200 in blocking solution) for 2 hours and rinsed with 1x TBST. The sections are mounted in Mounting Medium (Thermo scientific). The slides are viewed and image-captured by a confocal laser scaning microscope. Tissue sections were also incubated preimmune rabbit sera and the blocking solution as the negative controls.

2.18 Pull down assay

Pull-down assay were carried out by a Sulfo-NHS-LC-Biotin kit (Pierce) according to the manufacturer protocol. The biotin-labeled recombinant protein was immobilized with the affinity ligand (Streptavidin) and incubated at 4°C for 30 minutes with gentle rotation and centrifuge at 1250 g for 30-60 seconds. Available streptavidin sites are blocked with free biotin by gently inverted before centrifuged at

1250 g for 30-60 sec. The ovarian lysate was added into immobilized column and incubated at 4°C for 1 hour. The column were washed by the addition of 250 µl of the wash buffer and incubated for 1 minute at room temperature. The reaction is centrifuged and the neutralization buffer (Tris-HCl ; pH 9) was added. The eluted complexes protein elution was obtained by adding 250 µl of the elution buffer and the tube is mixed by gently inverting the column and the column is further incubated for 3-5 minutes at room temperature. After centrifugation, the complex proteins were resolved by SDS-PAGE. Bound proteins are further identification protein using nanoESI-LC/MS/MS (Proteomics Laboratory, BIOTEC).

CHAPTER III RESULTS

3.1 Cellular proteomic profiles of *P. monodon* ovaries examined by 1-DE and nanoESI-LC-MS/MS

The new approach for proteomic analysis was carried out using the GeLC-MS/MS method. One-dimensional gel electrophoresis (1-DE) was performed to examine protein profiles of both domesticated shrimp and wild intact (non-ablated) *P. monodon* broodstock. Specimens were classified to five groups; 10 month-old (GSI = $0.40 \pm 0.07\%$; A), 14 month-old (GSI = $0.36 \pm 0.04\%$; B and $1.11 \pm 0.07\%$; C) and wild broodstock possessing stages II (GSI = 2.32 ± 0.13 ; D) and IV (GSI = 9.70 ± 1.22 ; E) ovaries (*N* = 3 for each group). Total soluble proteins were extracted from ovaries of each shrimp and 30 µg of the extracted proteins was size-fractionated in 12.0% SDS-PAGE (Figure. 3.9).

The protein bands were excised according to marker proteins range (> 225 kDa, 176-225 kDa, 150-176 kDa, 102-150 kDa, 76-102 kDa, 52-76 kDa, 38-52 kDa and <38 kDa) and 4-5 pieces of approximately 1 square millimeter of gel pieces each were subjected to in-gel digestion. Peptide sequencing was carried out using nanoESI-LC-MS/MS.

Figure 3.9 Ovarian protein profiles of *P. monodon* analyzed by 12% SDS-PAGE. Lanes 1-3 = 10-month-old (GSI < 0.6%), Lanes 4-6 = 14-month-old (GSI < 0.5%), lanes 7-9; 14-month-old (GSI < 1.5%), lane 10-12 = wild intact broodstock (GSI = 2.0-2.5%) and lanes 13-15 = wild intact broodstock (GSI > 6.0%), respectively.

In total, 1638 proteins matched those previously deposited in the databases and 1253 (76.50%) of which matched known proteins while the remaining 385 proteins (23.50%) significantly matched hypothetical proteins, unnamed proteins or unknown proteins (Appendix A, Table A1). Characterized proteins in this study could be divided to proteins that matched the local shrimp database (800 proteins which matched deduced peptide sequences *P. monodon* ESTs; <u>https://pmonodon.biotec.or.th</u>), those matched the non-redundant database (672 proteins; http://ncbi.nim.nih.gov) and those matched the SWISS-PROT (166 proteins; http://expasy.org/) respectively.

Among proteins identified in this study, 1451 proteins (e.g. thioredoxin domain-containing protein 3, Importin-7, serine/threonine protein phosphatase, C subunit of V-ATPase, karyopherin alpha 2, RAG cohort 1, importin alpha 1,

DEAD/DEAH box helicase, histone acetylase complex subunit, ovarian peritrophin 1 precursor, dual specificity protein kinase CLK2, F-box/ankyrin repeat protein SKIP35, bystin isoform 1, thymosin beta isoform 2, M-phase inducer phosphatase Cdc25-like protein, Heat shock protein 67B2, cyclophilin A, 14-3-3-like protein, WAP four-disulfide core domain 5 precursor, p47 protein isoform a, peritrophin-like protein 2, vesicle transport protein GOT1B, hormone receptor 3C, saposin, ras-related protein Rab-10, vitellogenin, dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11, Rho and Rac GTPase) were expressed in ovaries of both domesticated and wild broodstock (Figure 3.10).

No protein was specifically found in ovaries of domesticated 10-month-old shrimp (group A) and both groups of wild broodstock (groups D and E). However, two proteins (L-seryl-tRNA selenium transferase and 60S acidic ribosomal protein P0) were found only in ovaries of domesticated 14-month-old shrimp (groups B and C). Twenty-four proteins (e.g. cytochrome P450 49a1, Vacuolar ATP synthase subunit D, long N-terminal adhesion GPCR, TGF beta-activated kinase, Cdc16-prov protein and regulatory protein, TetR) were found only in domesticated shrimp (groups A, B and C). In addition, 76 proteins (e.g. six transmembrane prostate protein 2 variant 2, adenylate kinase-2 CG3140-PA, E3 ubiquitin-protein ligase Bre1, ras suppressor-1 CG9031-PA, periplasmic sensor hybrid histidine kinase, heterogeneous nuclear ribonucleoprotein A1, A2/B1 homolog, Ser/Arg-related nuclear matrix protein, ovarian peritrophin 2 precursor, magnesium transport protein corA, transmembrane transport protein, cyclic AMP-responsive element-binding protein 3, G2/mitotic-specific cyclin B, ankyrin repeat and SOCS box protein 4, calcium-binding protein p22 and

glyceraldehyde-3-phosphate dehydrogenase) were not foud in mature ovaries of wild broodstock (Group E) (Figure 3.10).

Proteomic spectra of a particular protein in different ovarian stages of domesticated and wild shrimp were compared in order to preliminary identify candidate proteins that play an important role on ovarian development of *P. monodon*.

In total, 514 proteins (354 known proteins, 73 hypothetical proteins and 87 unknown proteins; Appendix A, Table A1) were differentially expressed in different stages of ovarian development. These included, for example, DEAD/DEAH box helicase, ATP-dependent protease ATPase subunit HslU, cytochrome P450, integral membrane sensor signal transduction histidine kinase, membrane protein M1, nuclear cap-binding protein subunit 1, Cyclic AMP-responsive element-binding protein 3, 2-Cys thioredoxin peroxidase, calmodulin, isoform A, Dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11, NF-kappa-B inhibitor-interacting Ras-like protein, nuclear pore protein, O-methyltransferase, ubiquitin protein ligase E3A isoform 2, ankyrin repeat domain-containing protein, asparaginyl-tRNA synthetase CG10687-PA, aspartate aminotransferase, ATP-dependent RNA helicase Dbp7, calponin, calreticulin, cytochrome b, GTP-binding nuclear protein RAN1, nuclear transport factor 2, Histone H1, ubiquitin carboxyl-terminal hydrolase 5 and Y-box binding protein isoform 2.

Several reproduction-related proteins exhinibiting differential expression profiles, for example, G2/mitotic-specific cyclin B, receptor for activated protein C kinase (RACK), 14-3-3 like protein, protein disulfide isomerase A6, M-phase inducer (20Bphosphatase (Cdc25-like protein), carbonyl reductase 1-like hydroxysteroiddehydrogenabse) and ubiquitin-activating enzyme E1-domain containing protein, receptor for egg jelly 6, 5-hydroxytryptamine receptor 6 and alpha-2A adrenergic receptor, were identified. In addition, β -thymosin which is abundantly expressed as previously reported by 2-DE analysis (Talakhun et al., 2012) and Rac-GTPase activating protein 1 (PmRacgap1) which was not found in 2-DE analysis were also found. These proteins showed a trend of differential expression level in different groups of samples and were further characterized.

Among identified proteins, those matched unknown function (407 protein, 25.0%). were the most abundant group followed by those functionally categorized into biosynthetic process (118 proteins, 7.20%), transport (89 proteins, 5.43%), metabolic process (69 proteins, 4.21%), translation (42 proteins, 2.56%), regulation (41 proteins, 2.50%), catabolic process (37 proteins, 2.26%) and proteolysis (28

proteins, 1.71%). Proteins in other functional categories (e.g. cell cycle, cell adhesion and protein folding) were found in less than 1% of the characterized proteins (Figure 3.11).

Figure 3.11 A pie chart showing the functional categories of characterized ovarian proteins of *P. monodon* matched those in the databases.

The numbers of characterized proteins in each functional category of different ages of domesticated shrimp and wild intact broodstock possing stage II and IV ovaries were considered. Results indicated no obvious difference of the identified proteins were found among different groups of samples (Figure. 3.12).

Figure 3.12 Histogram showing numbers of characterized proteins in each functional category that were found in ovaries of different ages of domesticated shrimp and in wild broodstock exhibiting stage II and IV ovaries.

3.2 Characterization of nuclear membrane proteins and nuclear proteins in ovaries of *P. monodon* by GeLC-MS/MS

During oogenesis, oocyte is developed and maturation of oocytes are physically indicated by the germinal vesicle breakdown (GVBD). Therefore, identification of proteins located in the nuclear membrane is the initial step for isolation of biomarkers functional related with oocyte maturation in *P. monodon*.

Different components of proteins from cytoplasm, nuclear membranes, nucleus and cytoskeleton of ovarian cells were extracted from stage I and III ovaries of wild intact *P. monodon* broodstock. The extracted proteins were size-fractionated through 12.0% SDS-PAGE and gels containing different size-range of electrophoresed proteins were excised. Peptide sequencing was carried out using nanoESI-LC-MS/MS.

Figure 3.13 Protein profiles of the nuclear proteins and nuclear membrane extracted from stage I and III ovaries of *P. monodon* analyzed by 12% SDS-PAGE. Size-fractionated proteins were excised from the gel by reference to the molecular marker and further analyzed. Lanes 1-2 are nuclear proteins of stage I and III. Lanes 3-4 are nuclear membrane proteins of stage I and III ovaries respectively.

To simplify the proteomic analysis, both nuclear membrane and nuclear protein fractions of stages I and III were pooled and analyzed simultaneously. Bioinformatic analysis was subsequently carried out and divided the discovered proteins to those found in the nuclear membrane (called nuclear membrane proteins), those found in nuclear components (called nuclear proteins) and those with unknown cellular components.

In total, 724 proteins which matched known protein were identified. Analysis of cellular components indicated that 89 proteins were localized at integral to membrane or nuclear membrane (Table A2). Example of these proteins are Lysophospholipid acyltransferase 5-like, Ankyrin repeat-containing protein, ATP lipidbinding protein like protein, Calcium-activated chloride channel family member 1, Glucose-6-phosphate translocase, Leucine-rich receptor-like protein kinase-like, ribophorin I, Semaphorin 1a, transmembrane protein 102, voltage-dependent anion-selective channel isoform 1, vacuolar proton ATPase, gap junction Cx32.2 protein, golgi phosphoprotein 3 (coat-protein GPP34), nucleoporin 50kDa, ran gtpase-activating protein, cytochrome c oxidase subunit II, cytochrome P450 and binding-protein-dependent transport systems inner membrane component, aspartyl/asparaginyl beta-hydroxylase, capK capsular polysaccharide biosynthesis protein, Poly [ADP-ribose] polymerase 1, delta12 fatty acid desaturase, cytochrome c oxidase assembly protein COX15 and lysosomal-associated transmembrane protein.

Likewise, 99 proteins were recognized as nuclear proteins as cellular component search revealed that they are localized in nucleus, nucleolus, nucleoplasm or pronucleus (Table A3). Examples of proteins in this group were nuclear autoantigenic sperm protein, DEAD (Asp-Glu-Ala-Asp) box polypeptide 18, DEAD/DEAH box helicase domain-containing protein, vasa, myosin light chain, zinc finger protein, guanine-specific ribonuclease N1 and T1, histone acetyltransferase MYST2, E3 ubiquitin ligase, putative, formamidopyrimidine-DNA glycosylase, TATA box-binding protein, cell division control protein Cdc6, cell division cycle 2 protein, 265 proteasome non-ATPase regulatory subunit 2, cyclin dependent kinase 2, Y-box binding protein isoform 2, importin subunit alpha-2, apoptosis regulator BAX, integrase family protein, mariner transposase, PHP domain-containing protein, DNA topoisomerase I, RNA polymerase factor sigma-54, ATP-dependent RNA helicase, dual specificity tyrosine-phosphorylation-regulated kinase 2 and nuclear transcription factor Y, alpha.

The cellular components of the remaining 536 proteins could not be assigned. Therefore, these characterized proteins were not regarded as nuclear/nuclear memebrane proteins. Examples of proteins in this group were ubiquitin-conjugating enzyme E2 variant 2-like, AMP-binding domain protein, N-acyl-Lamino acid amidohydrolase, ATP-dependent DNA helicase HFM1-like, fast myosin heavy chain, methyltransferase type 11, nickel-dependent hydrogenase large subunit, cytosine deaminase or related metal-dependent hydrolase, O-methyltransferase, PH domain containing protein, calponin homology (CH) domain-containing, chdc/lrch, helix-turn-helix domain-containing protein, regulator of de-novo NAD biosynthesis NadR, malonyl CoA-acyl carrier protein transacylase, ubiquinone binding protein, FAD linked oxidase domain-containing protein, xanthine dehydrogenase, vacuolar protein sorting 8 homolog, ATP-binding ABC transporter protein, methyl coenzyme M reductase alpha subunit, alpha-2-macroglobulin-like, ADP-ribosylation factor GTPaseactivating protein, dehydrogenase E1 and transketolase domain-containing protein 1, ubiquitin carboxyl-terminal hydrolase, coatomer subunit delta-like, 14.5 kDa translational inhibitor protein, p14.5 and GTP-binding protein 5.

Notably, several proteins matched those of microorganism (e.g. bacteria and viruses). This suggested that shrimp under study may be infected by infectious agents. Accordingly, results in Tables A2-A4 should be interpreted with cautions

Functional categories of identified nuclear membrane proteins were classified based on biological functions of matched homologues. Disregarding proteins with unknown functions (22 proteins accounting for 22.72%), the most abundant group of nuclear membrane proteins in this study was those in transport (19 protein, 19.10%) followed by biosynthetic process (6 protein, 6.74%), signal transduction (4 protein, 4.49%), ATP catabolic (4 protein, 4.49%), regulation (3 protein, 3.37%), homeostasis (3 protein, 3.37%), regulation (3 protein, 3.37%), apoptotic (2 protein, 2.25%) and cell differentiation (2 protein, 2.25%). Proteins with other functions were collectively accounted for 23.60% (Figure 3.14).

Similarly, functional categories of nuclear proteins identified in ovaries of *P. monodon* were classified. Disregarding proteins with unknown functions (20 protein accounting for 20.20%), the most abundant group of nuclear membrane proteins in this study was those in regulation (18 protein, 18.8%) followed by transcription (5 protein, 5.05%), catabolic process (4 protein, 4.04%), DNA topological change (5 protein, 5.05%), DNA integration (3 protein, 3.03%), DNA repair (3 protein, 3.03%), nucleosome assembly (3 protein, 3.03%), cell division (3 protein, 3.03%), cell differentiation (2 protein, 2.02%), signal transduction (2 protein, 2.02%). Proteins with other functions (21 proteins) were collectively accounted for 27.27% (Figure 3.15).

Functional categories of protein with unknown cellular components found from proteomic analysis of nuclear and nuclear protein fractions extracted from ovaries of *P. monodon* were also classified. Disregarding proteins with unknown functions (368 proteins accounting for 68.66%), the most abundant group of nuclear membrane proteins in this study was those in biosynthetic process (28 proteins, 5.22%) followed by metabolic process and catabolic process (15 proteins each, 2.80%), transcription (10 proteins, 1.87%), signal transduction (8, 1.49%), transport and regulation (7 proteins each, 1.31%), DNA integration (4 proteins, 0.75%), DNA repair, Transposition, Tricaboxylic acid cycle (3 proteins each, 0.56%). Proteins with other functions (62 proteins) were collectively accounted for 27.27% (Figure 3.16).

Figure 3.14 Pie chart showing functional categories of nuclear membrane proteins in ovaries of *P. monodon* analyzed by GeLC-MS/MS.

Figure 3.15 Pie chart showing functional categories of nuclear proteins in ovaries of *P. monodon* analyzed by GeLC-MS/MS.

Figure 3.16 Pie chart showing functional categories of protein with unknown cellular components found from proteomic analysis of nuclear and nuclear protein fractions extracted from ovaries of *P. monodon*.

3.3 Isolation and characterization of the full-length cDNA of reproductionrelated genes of *P. monodon*

3.3.1. Valosin containing protein 1

Two discrete bands were obtained from nested 3'RACE-PCR of *P. monodon valosin-containing protein (PmVCP)*. A 1604 bp fragment was cloned and sequenced (Figure 3.7). Nucleotide sequences of this fragment and the original EST (Figure 3.18)

were assembled.

Figure 3.17 Agarose gel eletrophoresis illustrating the nested 3'RACE-PCR product of *PmVCP*. Arrowheads indicate the RACE-PCR product that was cloned and sequenced. Lane M is a 100 bp DNA ladder.

The full-length cDNA of *PmVCP* was 2725 bp in length containing an ORF of 2481 bp deducing to a polypeptide of 826 amino acids and 5' and 3' UTRs of 101 and 113 bp (excluding the poly A tail), respectively (Figure 3.19A). The closest sequence according to the best hit approach of this characterized sequence is *valosin containing protein 1* of *Eisenia fetida* (*E*-value = 0.00).

А ACAATAATCCTTCGTTTAATTTATCGAAGCCATGGCCGAACAGGACGACTTAGCTACTGCCATTCTTAA AGAGAAGAAGAAGCCCAACAGACTCATTGTCGAGGATGCTGTCAACGACGACAATTCCGTGGTGGCACT CAGCCAGGCCAAGATGGATGAGCTGCAGCTCTTCCGCGGCGACACAGTCCTGCTCAAGGGCAAGAAGCG CAAACAGACTGTGTGCATTGTGCTCTCAGACGACACCATGCAGGATGACAAGATTCGCATGAACCGTGT TGGCAAACGTATCCATGTCCTGCCGATTGATGACACTGTTGAAGGTCTCACGGGAAACATCTTTGAGGT ATATTTGAAGCCCTACTTTCTGGAGGCATACAGGCCCATCCACAAGGGTGACCTGTTCCTGGTGCGAGG TGGTATGAGGGCTGTGGAGTTCAAGGTGGTGGAGACGGATCCTGCGCCTTATTGCATCGTCTCCCAGGA CACTGTTATCTACTGTGAAGGAGAGAGCCAGTTAAGCGAGAGGAGGAGGAGGAGGAGGAGCAGTTGAACGAGGTGGG ${\tt CTACGATGACATCGGTGGCTGCCGCAAACAGTTGGCACAGATCAAGGAGATGGTGGAGCTGCCTCTCCG}$ ${\tt CCACCCTTCACTCTTCAAGGCCATTGGTGTCAAGCCCCCAAGAGGTATCCTTCTCTATGGTCCTCCTGG}$ TACTGGTAAGACCCTCATTGCCCGTGCAGTGGCCAACGAGACCGGAGCATTCTTCTTCCTCATCAACGG ${\tt GCCTGAGATCATGTCAAAGTTAGCTGGTGAATCCGAGAGCAACCTTCGCAAGGCCTTCGAAGAGGCTGA}$ GAAGAATGCCCCTGCCATCATCTTCATTGATGAGATTGATGCCATTGCACCCAAGCGTGAAAAGACACA Valo-F1

TGTTATTGTTATGGC<u>TGCCACAAACCGCCCCAACTCCATCG</u>ACCCGGCACTCAGGCGATTTGGACGCTT TGACAGGGAGGTTGACATCAGTATCCCAGACACTACAGGTCGTCTGGAGATTTTGCGCATCCACACTAA GAACATGAAGCTGTCAGATGATGTGGACCTGGAACAGATTGCAGCAGAAACCCATGGCCATGTTGGTGC TGAC

B

Valo-F1

TGCCACAAACCGCCCCAACTCCATCGACCCGGCACTCAGGCGATTTGGACGCTTTGACAGGGAGGTTGA CATCAGTATCCCAGACACTACAGGTCGTCTGGAGATTTTGCGCATCCACACAAAGAACATGAAGCTGTC AGATGATGTGGACCTGGAACAGATTGCAGCAGAAACCCATGGCCATGTTGGTGCTGACTTGGCAGCCCT GTGTTCAGAGGCTGCACTCCAGCAAATCAGAGAAAAGATGGACCTCATAGATCTAGATGATGACCAGAT TGATGCTGAGGTATTGAATTCCCTGGCCTGTCTCTATGGACAACTTTAGGTTTGCTATGGGTAAGAG

3' RACE-Valosin

3' Nested-Valosin

Figure 3.18 Nucleotide sequences of EST (A) and 3' RACE-PCR products (B) of *PmVCP*. A Varo-F1, 3 RACE-Valosin and 3 Nested-Valosin primers used for the primary and secondary 3'RACE-PCR are underlined.

The calculated p/ and MW of *PmVCP* was 5.48 and 91.67 kDa, respectively. The signal peptide was not found in this putative nonsecretory protein. The *N*-linked-glycosylation domain was found at positions 468- 470 of the deduced PmVCP protein. Two Cdc48 and AAA domains were found at positions 20-103, 120-186 (*E*-value = 3.03e-28 and 1.34e-11) and 232-368, 505-644 (E-value = 3.67e-24 and 3.73e-25; Figure 3.19B) of this deduced protein.

7 7 7		GGA	AGC	CGT	CAG	AGA	.GGA	AGG	AAC	GCT	CGG	GGG	ATT	TCT	TCG	TCT	TTT	TAT
AAA	AAA	CAC	AAT	'AAT	CCI	TCG	TTT	AAT	TTA	TCG	AAG	CCA	TGG	CCG	AAC	AGG.	ACG	ACT
													М	Α	E	Q	D	D
CTA	.CTG	CCA	TTC	TTA.		AGA	AGA	AGA	AGC	CCA	ACA	GAC	TCA	TTG	TCG	AGG.	ATG	CTG
A	T	A	1	Ц	K	E	K	K	K	P	N	R	шаа		V	E	D 7.00	A
ACG.	ACG	ACA	AT'I		rTGG	TGG	CAC	TCA T	GCC.	AGG		AGA	TGG	ATG	AGC	TGC	AGC	TCT
				<u>с</u>	V	V	A		DCD		A	R.	M		E TCT		<u>v</u>	
טטט. ס	GCG C	ACA D		TUU V	TGC	TCA T	AGG V	GCA C	AGA.	AGC	GCA D		AGA	CTG T	TGT	GCA	TTG T	TGC
R				V UTCC			R.	D C D	n mm.c.	r CCD		n.			V TCD			
CAG.	ACG	ACA D	UCCA T	M. M.	AGG	ATG D	GCA	AGA 17	TTO T	GCA D	TGA		GTG. T	TGG V	TCA V	GAA D	ACA N	ACC
3 1007				M		TCC	G The second	R CCD		R ACC			R CAC	V ACC	V TCD	ACTE	N NTC	
.GCA	.100 T	GCI T	TGG	GAG C	ACA D	TCG	TGT V	CCA	.100. T	AGC		.GIC	CAG D	ACG	T CA	AGI.	AIG V	GCA C
	<u>т</u>		шас	G Imaa		L	V	3		<u>v</u>	P 770		P		V	n	I mam	G mm.c
GTA D	TCC T	ATG U	1100 1100	T GC T	AUU.	a ro T	ATG D	ACA D	UTG T	TTC V	AAG E		TCA	ירפפ	GAAD C	ACA N	TOT	TIG.
ת ייח א יחי	ل مسسر	п С7	v		ר שאכייי	L mmc			<u>т</u>	v	E	<u></u>	шее	1	J CC			<u>r</u>
TAT.	AIT V	TGA	JUAG V	LUUI D	AC1	TIC	TGG	DDA T	CAT.	NCA V	ששע ס	DUUA D		ACA U	DDA V	C C	AUC D	T.G.T.
	I TCC		r CmC	1	<u>т</u>	<u>r</u>		E TCC	A	T CT	R DCC	P TTCC		n	r.	3000		<u>–</u>
-т СС Т	TGC VDT	UAU. G	01.0 C	AT De C	M	000 0		T GG	AG1" F	I CA	AGG V	196	100	AUA T	رتي س	ATC	ore n	
	v		un cur		M MCC	R	A	V mmc	<u>в</u>		n CmC	V	V CDC		1 (77)	<u>u</u>	P DCC	A
ATT	GCA C	UUT. T	ALC.T		AGG	ACA D	UTG. T	T.T.C	TUT.	AUT V	GIG	raac E	GAG C	IAGC F	CAG D	TTA V	AGC	UAU D
1		1	V	5 17.01			T.	V mcc		1 DCC		<u>ъ</u>	Jan Carl	<u>с</u>	r COM	V CCC	r CO7	<u></u> _
AGG. F	DDA T	AAG F	AGC T	AGI	TGA	ACG	AGG F	1.GC	GCT.	ACG V	ATG P	ACA T	TCG	ют.С	GCT C	C	GCA P	AAC
<u>в</u> mcc	<u></u> съ с	<u></u> в	E mar	Q D C C		N	ь псс	v n c c	G	х ата	ц таа		1 1700	G	G	U mam	R	n nac
TGG	CAC	AGA	TCA T	AGG 77	AGA	T.GG	TGG	AGC	TGC	UTU D	TCC	JUD. A	ACC	UT1	CAC	TCT	TCA	AGG W
ц — — — —	A	Q	1	ĸ	E	M	V	E Taa	ц тта	P	ц т т о	R	н	P	5	ц	r	к - а-
TTG.	GTG	TCA	AGC	2000		IGAG	GTA	TCC	TTC	TCT	ATC	GTC	CTC	CTG	GTA	CTG	GTA	AGA
L	G	V	K	2 2 2	ч	R	G	L	<u>ц</u>	ц ала	Y CD T	G	P	ч	G	T	G	ĸ
TCA	TTG.	000	GTC	CAG	TGC	CCA	ACG	AGA	.CCG	GAG	CAI	TCI	TCT	TCC	TCA	TCA	ACG	GGC
L	L	A	R	A	V	A	N	E	T	G	A	E.	E.	E.	ц 7.00	L	N	G
iAGA	'I'(:A	117211	'(:AA	AG'I	TAG	iCTG	(ידי א אי	('('(÷	A(÷A	(-iCA	ACC	TTC	GCA	AGG	1 11 11 11		
-	-	TOT	~		-	-	010 7		-	- 10/1	~		-	-		-	TCG	AAG
E	I	M	S	ĸ	L	A	G	E	S	E	S	N	L	R	ĸ	A	F	AAG E
E CTG	I AGA	M M AGA	S ATC	K GCCC	L CTG	A CCA	G G .TCA	E TCT	S TCA	E TTG	S ATG	N BAGA	L TTG	R ATG	K CCA	A TTG	F F CAC	AAG E CCA
E CTG A	I AGA E	M AGA K	S ATC N	K GCCC A	L CTG P	A ICCA A	G G TCA I	E TCT I	S TCA F	E TTG I	S ATG D	N AGA E	L TTG I	R ATG D	K CCA A	A TTG I	F CAC A	AAG E CCA P
E CTG A GTG	I AGA E AAA	M AGA K AGA	S LATG N ICAC	K GCCC A CATG	L CTG P GTG	A CCA A AGG	G TCA TGG	E TCT I AAA	S TCA F GAC	E TTG I GTA	S ATG D TAG	N BAGA E TGT	L TTG I CAC	R ATG D AGC	K CCA A TGC	A TTG I TAA	F CAC A CTC	AAG E CCA P TTA
E CTG A GTG R	I AGA E AAA E	M AGA K AGA K	S ATG N ICAC T	K GCCC A CATG H	L CTG P GTG G	A CCA A GAGG E	G TCA TGG V	E TCT I AAA E	S TCA F GAC R	E TTG I GTA R	S ATG D TAG I	N AGA E TGI V	L TTG I CAC S	R ATG D AGC Q	K CCA A TGC L	A TTG I TAA L	F CAC A CTC T	AAG E CCA P TTA L
E CTG A GTG R ATG	I AGA E AAA E GCC	M AGA K AGA K TCA	S ATG N ICAC T AGC	K GCCC A CATC H CAAC	L CTG P GTG G GAG	A CCA A E CCC	G TCA I TGG V ATG	E TCT I AAA E TTA	S TCA F GAC R TTG	E TTG I GTA R TTA	S ATG D TAG I TGG	N AGA E TGI V CTG	L TTG CAC S CCA	R ATC D AGC Q	K CCA A TGC L ACC	A TTG I TAA L GCC	F CAC A CTC T CCA	AAG E CCA P TTA L ACT
E CTG A CTG GTG R ATG D	I AGA E AAA E GCC G	M AGA K AGA K TCA	S ATG N ICAC T AGC K	K GCCC A CATO H CAAC Q	L CTG P GTG G GAG R	A CCA A GAGG E CCC A	G TCA TGG TGG V ATG H	E TCT I AAA E TTA V	S TCA F GAC R TTG I	E TTG I GTA R TTA V	S ATC D TAC I TGC M	N AGA E TGI V CTG A	L TTG CAC S CCA A	R ATG D AGC Q ICAA T	K CCA A TGC L ACC N	A TTG I TAA GCC R	F CAC A CTC T CCA P	AAG E CCA P TTA L ACT N
E CTG A GTG R ATG D .TCG	I AGA AAA GCC G ACC	M AGA K AGA TCA TCA L	S ATG N ICAC T AGC K GCAC	K GCCC A CATG H CAAC Q CTCA	L CTG GTG GGTG CGAG R LGGC	A CCA A GAGG E CCC A CCC	G TCA TGG TGG V ATG H TTG	E TCT I AAA E TTA V GAC	S TCA' F GAC R TTG I GCT	E TTG GTA GTA TTA V TTG	S ATG D TAG I TGG M ACA	N FAGA E TGI V CTC A GGC	L ITTG CAC S CCA A AGG	R ATC D AGC Q CAA T TTC	K CCA A TGC L ACC N ACA	A TTG I TAA GCC R TCA	F CAC A CTC T CCA P GTA	AAG E CCA P TTA L ACT N TCC
E CTG A CTG CTG A TG D TCG. I	I AGA E AAA GCC G ACC D	M AGA K AGA TCA TCA L CGG P	S ATC N CAC T AGC K SCAC	K A CATO H CAAC Q CTCA L	L CTC GTC GC CAC R CGC R R	A CCA A GAGG E CCC A CCC A CCC A CCC A CCC A	G TCA TGG TGG ATG H TTG F	E TCT I AAAA E TTA V GAC G	S TCA' F GAC R TTG I GCT R	E TTG GTA R TTA V TTG F	S ATG TAG TGG M ACA D	N AGA F TGT V CTG A GGG R	L ITTG CAC S CCA A GCCA A GCCA E	R ATG D AGC Q CAA T TTG V	K CCA TGC TGC L ACC N ACA D	A TTG I TAA GCC R TCA I	F CAC A CTC T CCA P GTA S	AAG CCA P TTA L ACT N TCC I
E CTG A CTG CTG ATG D TCG I ACA	I AGA E AAA GCC G ACC D CTA	M AGA K AGA TCA TCA CGG P CAG	S ATG N CAC T AGC K CAC A GTC	K A CATO H CAAC Q CTCA L CGTC	L CTG GTG GGGG C CGAG R CGGC R CGGC	A CCA A GAGG CCC A CCC C CCC C CCC C CCC C CCC C CCC C CCC C	G TCA TGG TGG ATG ATG H TTG F	E TCT I AAAA E TTA GAC G TGC	S TCA' F GAC R TTG' I GCT' R GCA'	E TTG GTA R TTA V TTG F TCC	S ATG D TAG TGG M ACA D	N AGA E TGI V CTC A GGGC R	L ATTG CAC S CCA S CCA A GAGG E AGA	R ATC D AGC Q CAA T TTC V ACA	K CCA A TGC L ACC N ACA D TGA	A TTG I TAA GCC R TCA I AGC	F CAC A CTC T CCA P GTA S TGT	AAG CCA P TTA L ACT N TCC I CAG
E CTG A GTG ATG ATG I CG TCG ACA D	I AGA E AAA GCC GCC GCC ACC D CTA T	M AGA K AGA TCA TCA CGG P CAG	S ATC N CAC T AGC K CAC K CAC A GTC G	K GCCC A CATC H CAAC Q CTCA L CGTC R	L CTG GTG GGTG CGAG R CGGC R CTGG L	A CCA A GAGG CCC A CCC A CCC A CCC A CCC A CCC A CCC A CCA A GAGA	G TCA TGG TGG ATG ATG TTG F TTG TTT I	E TCT I AAA TTA TTA GAC GAC G C C L	S TCA' F GAC R TTG GCT' R GCA' R	E TTG GTA GTA TTA TTA TTG F TCC I	S ATG D TAG TGG M ACA D ACA H	N AGA TGT TGT V CTG A GGG R A CTA T	L TTG S CCAC S CCA S CCA S AGG E AGG K	R ATC D AGC Q CAA T CAA T T C ACA N	K CCA TGC TGC L ACC N ACA D TGA M	A TTG TAA GCC R TCA I AGC K	F CAC A CTC T CCA CCA F GTA S TGT L	AAG CCA P TTA L ACT N TCC I CAG S
E GTG GTG GTG ATG ATG I CG I CG ATG	I AGA AAA GCC G ACC D CTA T GG	M AGA K AGA TCA TCA CGG P CGG P CAG	S ATG N CAC T AGC K CAC K CAC A GTC G	K GCCC A CATC H CAAC Q CTCA L CGTC R GAAC	L CTG GTG GGC CGAG CGAG R CGGC R CTGG L CAGA	A CCA A GAGG CCC A CCCC A CCCC A CCCC A CCCC A CCCC A CCCC A CCCC A CCCC A CCCC A CCCA A CCCA A CCA A CCA A CCA A CCA A CCA A CCA A CCA A CCA A CCA A CCA A CCA C A CCA C A CCA C A CCA C C A CCA C C A CCA C	G TCA TGG TGG ATG ATG TTG F TTTG TTT I	E TCT ZAAA E TTA CAC GAC G TGC L	S TCA' F GAC' R TTG' I GCT' R GCA' R AAA'	E TTG GTA R TTA V TTG F TCC I CCC	S ATG TAG TGG M ACA ACA H ATG	N FAGA FTGT FTGT CTG A GGG R A GGG T H GGC	L TTG CAC S CCA S CCA E AGG E AGG K AGA	R ATC D AGC Q CAA T TTC TTC ACA N	K CCA TGC TGC ACC N ACC D TGA M GTG	A TTG TAA GCC R TCA I AGC K CTG	F CAC A CTC T CCA P GTA S TGT L ACT	AAG E CCA P TTA L ACT N TCC I CAG S TGG
E CTG A CTG CTG ATG D ACA D ATG D	I AGA E AAA GCC G ACC D ACC D CTA T GG V	M AGA K AGA TCA TCA CGG P CAG T ACC	S ATG N CAC T AGC K CAC A GTC G CTGC	K GCCC A CATG H CAAC Q CTCA L CGTC R GAAC E	L CTG GTG GAG CGAG R CGGC R CGGC R CGGC R CGGC R C CGGC R C C C C	A CCA A GAGG CCC CCC CCC CCC CCC CCC CCC	G TCA TGG TGG ATG H TTG F TTTG TTTG CAG	E TCT AAA TTA CTTA GAC GAC TGC L CAG	S TCA' F GAC TTG' I GCT' R GCA' R AAA E	E TTG GTA R TTA V TTG F TCC I CCC T	S ATG D TAG I TGG M ACA A ACA H ATG H	N AGA TGT V CTC A GGC R A CTA T GGCC	L TTG SCAC SCCA A GAGG E AGA K AGA K ATG	R ATC D AGC Q CAA T CAA T T C ACA N T T C V	K CCA TGC L ACC N ACC D TGA M GTG G	A TTG TAA GCC R TCA TCA I AGC K CTG A	F CAC CTC T CCA F GTA S TGT L ACT D	AAG E CCA P TTA L ACT N TCC I CAG S TGG L
E CTG A CTG CTG ATG ATG ATG D CCC	I AGA E AAA GCC G ACC D CTA T TGG V TGT	M AGA K AGA TCA CGG CGG P CAG T ACC D	S ATC N CAC T AGC K GCAC G GTC G CAC L CAC	K GCCC A CATC H CAAC Q TCA CTCA L CGTC R GAAC E GAAC	L CTC GTC GAC CAC CTC CTC CTC	A CCA A GAG CCC A CCC A CAGA E TTG I CAC	G G TCA TGG V ATG H TTG F TTT I CCAG A TCC	E TCT I AAAA E TTA GAC G CAG CAG A AGC	S TCA' F GAC' R TTG' I GCT' R GCA' R AAA' AAA'	E TTG GTA R ITTA V TTG F ICC I CCCC T	S ATG D TAG TGG M ACA D ACA H ACA H GAG	N AGA TGI V CTC A GGC R CTA T GCC G G AAA	L TTG CAC SCCA A AGG E AGG K AGA K AGA	R ATG D AGC Q CAA T TTG V ACA N TTG V TTG	K CCA A TGC ACC A ACC A TGA M GTG G G C ACC	A TTG I TAA GCC R TCA AGC K CTG ACTG	F CAC CTC T CCA P GTA S TGT L ACT D TAG	AAG E CCA P TTA L ACT N TCC I CAG S TGG L ATC
E CTG A CTG CTG A TCG TCG A CCA D CCC A	I AGA E AAAA E GCC G ACC D CTA T TGG T TGG V TGT L	M AGA K AGA TCA T CGG P CAG T ACC D GTT C	S ATG N CAC T AGC K GCAC G GTC G CAC S	K ACCC A XATG XAAC Q XAAC Q XAAC R C XAAC R SAAC E SAGG E	L CTG G GAG CGAG R CGGC R CTGG L CAGA Q CTG A	A CCCA A AAGG CCCC A CGAT R AGAA E TTTG I I CACC A	G G TCA I TGG V ATG H TTG F TTT I CCAG A TCC L	E TCT I AAAA E TTA GAC G CAG A CAG A AGC Q	S TCA F GAC R TTG I GCT R GCA R AAA A AAA Q	E TTG GTA R TTA V TTG F TCC T CCC T TCA	S ATG D TAG TGG M ACA D ACA H ATG H GAG R	N GAGA TGT TGT CTG CTG A GGGG R CTA T GGCC G G GAAA E	L TTG CAC S CCA S CCA S A G A G A CATG H A G A K	R ATG D AGC Q CAA T TTG N ACA N TTG V V TTGG M	K CCA A TGC L ACC N ACA D TGA M GTG G G G C C D	A TTG I TAA GCCC R TCA I AGC K CTG A TCA L	FCG F CAC T CCA T CCA P GTA S TGT L ACT D TAG I	AAG E CCA P TTA L ACT N TCC I CAG S TGG L ATC D
E CTG A CTG T CG T CG T CG C C C C C C C C C C	I AGA E AAAA E GCC G ACC CTA T GG T GG V TGT L ATG	M AGA K AGA TCA TCA CGG P CAG T CACC ACC	S ATG N CAC T CAC S GTC G CAC S CAC S CAC S	K GCCC A CATC H CAAC Q CTCA C CTCA C CTCA C C C C C C C C C C	L CTG P GGTG G CGAG R CGGC R CTGG L CAGA Q CTG A CTG A CTG A	A CCCA A AGG CCCC A CCCC A CCCC A CCCC A CCCC A CCCC	G G TCA I TGG V ATG H TTG F TTT I CCAG A TCCC L AGG	E TCT I AAAA E TTA GGAC G G G G CAG A CAGC A AGC Q TAT	S TCA F GACC R TTG GCT R GCA R AAA A AAA E AAAA Q TGA	E TTG GTA R TTA V TTG F TCC I CCC T TCA I CCC	S ATG D TAG TGG M ACA D ACA H ATG H GAG R CCC	N GAGA TGT CTGT CTG CTG CTG CTA CTA CTA CTA CTA CTG CTG CTG CTG	L TTG SCAC SCCA SCCA A AGA AGA K AGA K CTG CTG	R ATG D CAAGC Q CAA T TTG X ACA N TTG V TTG M TTG	K CCA A TGC L ACC N ACA D TGA G G G ACC D CTA	A TTG I TAA GCC R TCA I AGC K CTG A CTG A TCA I TGG	FCG F CAC T CCA T CCA F GTA S TGT L ACT D TAG I ACA	AAG E CCCA P TTA L ACT TCC I CAG S TGG CAG S CAG CAG CAG ACT
E GTG A GTG R ATG D TCG. I ATG D CCC A ATG D	I AGA E AAA GCC G ACC D CTA TGG TGG V TGT L ATG D	M AGA K AGA TCA TCA CGGG P CAG T CACC D ACC D	S ATG N CAC T AGC K CAC G CAC S CAC S CAC S CAC S CAC S CAC S CAC S	K GCCCC A CATC H CAACC Q CTCA CTCA CGTCC R GAACC E GAACC E GAGG E L TTCG I	L CTG P GTG G CGAG R CGGC R CTGG L CAGA Q CTG A CTG C CTG D	A CCA A AGG CCCC A GAT R AGAT TTG I CAC A CCCC A	G G TCA TGG TGG M ATG F TTG TTT I CCAG A TCC L AGG E	E TCT I AAA E TTA GAC G CAG A CAG A A GCAG A CAG C Y TAT V	S TCA F GACC R TTG GCT R GCA R AAA A AAA E AAAA Z TGA L	E TTG GTA R TTA V TTG F TCC CCC T CCC T TCA I ATT N	S ATG D TAG TGG M ACA D ACA A ACA H GAG R CCC S	N AGGA TGT V GCTG A GGGG R CTA T GGCC G GCC G G AAA E TGG L	L TTG CAC S CCA S CCA A A A G A G A G CA C A C A C A C A	R ATG D AGC Q CAA TTG V ACA N TTG V TTG M TCI V	K CCA A TGC L ACC N ACA D TGA M GTG G G G CTA S	A TTG I TAA GCCC R TCA I AGCC K CTG A TCA I TCA I TCA M	TCG F CAC T CCA T CCA P GTA S TGT L ACT D TAG I ACA D	AAG E CCCA P TTTA L ACT I CAG S CAG S CAG L ATC D ACT N
E GCTG A GTG R ATG D TCG. I ATG ATG ATG CCCC A ATG GGT	I AGA E AAAA E GCCC G ACCC D CTA TGG TGG V TGT L ATG D TTG	M AGA K AGA TCA CGGG P CCAG T ACC D GTT C ACC D	S ATG ATG CAC T AGC CAC G CTGG CTGG S CAGA S CAGA Q TTGG	K CCCC A CATC H CAAC Q CTCA L CGTCA CGTCA E GAAC E GAAC I GGTA	L CCTG P GGGG CGGG R CTGG L CTGG L CTGG CTG C CTG C CTG C CTG C CTG C CTG C CTG C CTG C CTG C C C C	A CCA A AGG CCCC A GGAT R AGAA E TTG I GCAC A CCG A GCA	G G TCA TGG TGG V ATG TTG TTG TTG TTG CAG A CAGG E CAC	E TCT I AAAA E TTAA GACC G CAG A AGCC Q TAT V CAT	S TCA F GAC R TTG GCT R GCA R AAA A AAA Z CAG	E ITTG GTA R TTA V TTTG F ITCC I CCCC T TCA I I ATT N CTC	S ATG D TAG TGG M ACA A ACA A ACA H GAG R CCC S TGC	N GAGA E GTGT V GCTG A GGCC G GCCA C GCCA C GCCA C GCCCA C GCCCA C GCCCA C GCCCA C GCCCA C C C C C C C C C C C C C	L TTG I CAC S CCA S A G CCA E A G CCA H A CAGA K CTG A CAGA	R ATG D AGC Q CAA T T CACA N TTG M TTG M TCT V CAG	K CCA A TGC L ACC N ACA D TGA GTG G CTA S TGG	A TTG I TAA GCCC R TCA I CTG CTG CTG CTG M TGG	FCG F CAC CTC T CCA P GTA S TGT L ACT D ACA D ACA D AAAG	AAG E CCCA P TTTA L ACT I CAG S CAG S CAG L ATC D ACT N TGC
E GTG A GTG TCG I CCC A A GCC A A TG CCC A A TG CCC A C CCC A C CCC A C CCC A C CCC A C CCC A C	I AGA E AAAA GCCC G CTA TGG V TGT L ATG D TTG F	M AGA K AGA TCA CGGG P CAGG T ACC D GTT C CACC D CTA A	S ATG N CACC T AGCC K CACC A G G CACG C CACG C CACG C CACG C CACG C CACG C CACG C CACG C CACG C C CACC C C C	K CCCC A CATC H CAAC Q CTCA C CAAC E CAAC E CAAC E CAAC E CAAC E CAAC C C CAAC C C C	L CTG G G G G G G G G G G G G G G C T G C T G C T G C T G C T G C C G C C G C C C C	A CCCA A AGG CCCC A CGAT R AGAA E CACA A CCCG A CCCG A CCCG A S	GTCA TCA TGG TGG TTG TTG TTG TTG TTG TTT T TCC CAG E CAC T	E TCT I AAAA E TTA GGAC G GGC G G G CAG A GCAG A AGC Q TAT V CAT P	S S TCA F GAC R TTG GCT R GCA R AAAA E AAAA Q TGA L CAG S	E TTG GTA R TTA TTG F CCCC T CCCC T A TTA N CTCC A	S ATG D TAG I TGG M ACA D ACA H ATG H GAG R CCC S TGC L	N SAGA E STGT V SCTG A GGCG R SAAA E SGCG G C G C C G C C C C C C C C C C C	L TTG I CAC S CCA S CCA E AGG H AGA K CTG A CTG A CTG A CTG A CTG A CTG A CTG A CTG A CTG A C CAC C C C C C C C C C C C C C C C	R ATG D CAGC Q CAA T TTG V ACA N TTG V TTG M TCT V CAG T	K CCA A TGC L ACC N ACA D TGA G G G G G CTA S TGG V	A TTG I TAA GCCC R TCA I CTG CTG A CTG TGG M TGG V	FCG F CAC CTC T CCA P GTA S TGT L ACT D ACA D ACA D AAAG E	AAG E CCA P TTA L L ACT I CAG S CAG CAG L ACT D ACT N TGC V
E GTG A GTG TCG I CG I CG A CCC A A CCC A A CCC A A CCC A A CCC A A CCC A A CCC A A CCC A A CCC A C	I AGA E AAA E GCCC G ACC D CTA TGG TGG V TGT L ATG D TTG F CCA	M AGA K AGA TCA CGG P CAG T CCGG T CCGG C T CCGG C T C CCTA A CTT	S ATG N CACC T AGCC K CACC CACG CACG CACG CACG CACG CA	K GCCC A CATC CAAC Q CTCA CTCA C CTCA C CCTC R GAAC C C CCTC C C C C C C C C C C C C C C	L CCTC G GGC G CGAC R CGC R CTGC L CAGA CCTC A CCTC A CCTC A CCTC A CCTC C CCTC A CCTC C CCTC C CCTC C C C	A CCCA A AGG CCCC A CGAT R AGAA E CACC A CCAC A CCAC A CCAC A CCAC A CCAC A CCAC A CCAC A CCAC A CCAC A CCCC A C CCCCC A C CCCCC A C CCCCC A C CCCCCC	GTCA TCA TGG TGG TGG TTG TTG TTG TTG TTG TTG TCC CAG E CAG E CAC T GGTG	E TCT I AAAA E TTA GGAC G GGAC A GGAC Q TAT V CAT P GGTC	S TCA F GACC R TTG GCT R GCA R AAAA E AAAA Q TGA L CAG S TCG.	E TTG GTA R TTA TTG F ICC T CCC T CCC T CCC T CCC A AAAA	S ATG D TAG TGG M ACA D ACA H ATG R GAG R CCC S TGC L ATG	N SAGA E STGT V GCTG A GGCG R CTGG C GGCG G SAAA E STGG C C TGG C C TGG C C TGG C C TGG C C TGG C C C TGG C C C C	L TTG CAC S CCA A AGG E AGG K CATG A AGA K CTG A AGA E AGA	R ATG D CAGC Q CCAA T TTG V ACA N TTG M TTG M TCT V CAG T GAG	K CCA A TGC L ACC N ACA D TGA G G G G CTA S TGG V AAT	A TTG I TAA GCCC R TCA I AGC K CTG A CTG TGG M TGG V TGC	FCG F CAC T CTC T CCA F GTA F GTA S TGT L ACA D ACA D AAAG E AAGG	AAG E CCA P TTA L AACT I CAG S CAG CAG CAG CAG D ACT V AAC
	A ACG CGCG CCAG CCAG CCAG CCAG CCAG CCA	A T ACGACG N D GCGGCGCG R G CAGACG S D GCATACC R I GTATACC R I GTATACC R I TATATAT V Y TGGTGCC L V ATTGCAGGG E E TGGCACC I G TCATTG I G TCATTG I G TCATTG	A T A A CGACGACA N D D GCGGCGCGACA R G D CAGACGACA S D D GCATCCGCT R I R GTATCCATC R I H TATATTTGA V Y L TGGTGCGAG L V R ATTGCATCC Y C I CAGACGAGAA L A Q TTGGTGCCA C E E E TGGCACCAGA L A Q TTGGTGCCA C I A C C I A C C C C C C C C C C C C C C C C C C C	A T A I ACGACGACAACAATI N D D N GCGGCGCACACAA R G D T CAGACGACACCA S D D T GCATCCGCTTGG R I R L GTATCCATGTCCA R I H V TAGATGCAGACAAGACA V Y L K TGGTGCGAGGAGAGAGA C V R G ATTGCATCGTCT Y C I V CAGGAGGAAGAAGAC E E E E TGGCACAGATCAAGACAAGACAAGACAAGACAAGACAAG	A T A I L A T A I L ACGACGACAATTCCG N D D N S GCGGCGACACAGTCC R G D T V CAGACGACACCATGCC S D D T M GGATCCGCTTGGGAG R I R L G GTATCCATGTCCTGC R I H V L TATATTTGAAGCCCT V Y L K P TGGTGCGAGGTGGTA L V R G G ATTGCATCGTCTCCC Y C I V S AGGAGGAGAGAGACAGT E E E Q TGGCACAGATCAAGC L A Q I K TTGGTGCAGGTCAAGC L A Q I K TTGGTGCAGGTCAAGCCCA I G V K P TCATTGCCCGTGCAAGCAGT L A R A	A T A I L K ACGACGACAATTCCGTGG N D D N S V GCGGCGCACACAGTCCTGC R G D T V L CAGACGACACCATGCAGG S D D T M Q GCATCCGCTTGGGAGACA R I R L G D GTATCCATGTCCTGCCGA R I H V L P FTATATTTGAAGCCCTACT V Y L K P Y TGGTGCCAGGTGCTATGA L V R G G M ATTGCATCGTCTCCCAGG Y C I V S Q AGGAGGAAGAACAGCACGTGA L A Q I K E TTGGCACAGATCAAGGAGA L G V K P P TCATTGCCCGTGCAGTGG L A R A V AGATCATGTCAAGGTAA	A T A I L K E ACGACGACAATTCCGTGGTGG N D D N S V V GCGGGCGACACAGTCCTGCTCA R G D T V L L CAGACGACACCATGCAGGATG S D D T M Q D GCATCCGCTTGGGAGACATCG R I R L G D I GTATCCATGTCCTGCCGATTG R I H V L P I STATATTGAAGCCCTACTTCC V Y L K P Y F TGGTGCGAGGGGGGGGGGAGGGG L V R G G M R CATTGCATCGTCTCCCAGGACA Y C I V S Q D CAGGAGAAGAGCAGTTGAACG E E E Q L N TGGCGCCGGGCAGGGGAGGAGGGG L A Q I K E M TTGGTGTCAAGCCCCCAAGAG I G V K P P R TCATTGCCGTGCCGGCGATGGCCA L A R A V A	A T A I L K E K ACGACGACAATTCCGTGGTGGCAC N D D N S V V A GCGGCGACACAGTCCTGCTCAAGG R G D T V L L K CAGACGACACCATGCAGGATGGCA S D D T M Q D G GCATCCGCTTGGGAGACATCGTGT R I R L G D I V GTATCCATGTCCTGCCGATTGATG R I H V L P I D TATATTTGAAGCCTACTTTCTGG V Y L K P Y F L TGGTGCGAGGTGGTATGAGGGCTG L V R G G M R A CATTGCATCGTCTCCCAGGACACTG Y C I V S Q D T CAGGAGAAGAGCAGTTGAACGAGG E E E Q L N E TGGCACCAGATCAAGGAGATGGTGG L A Q I K E M V TTGGTGTCAAGCCCCCAAGAGGTA I G V K P P R G TCATTGCCGGTGCAGTGGCCAACG L A R A V A N	A T A I L K E K K ACGACGACAATTCCGTGGTGGCACTCA N D D N S V V A L GCGGCGACACAGTCCTGCTCAAGGGCA R G D T V L L K G CAGACGACACCATGCAGGAGAGA S D D T M Q D G K GCATCCGCTTGGGAGACATCGTGTCCA R I R L G D I V S GTATCCATGTCCTGCCGATTGATGACA R I H V L P I D D TTATATTGAAGCCCTACTTTCTGGAGG V Y L K P Y F L E TGGTGCGAGGGGGGTATGAGGGCTGTGG L V R G G M R A V ATTGCATCGTCTCCCAGGACACTGTTG Y C I V S Q D T V AGGAGGAAGAGCAGTTGAACGAGGTGG E E E Q L N E V TGGCGCAGATCAAGCCCCCAGGAGGTATCC I G V K P P R G I TTCATTGCCGTGCGAGTGGCCAACGAGA L I A R A V A N E I G GATCCATGTCCAGGTGGCCAACGAGA	A T A I L L K E K K K ACGACGACAATTCCGTGGTGGCACTCAGCC. N D D N S V V A L S GCGGCGACACAGTCCTGCTCAAGGCAAGA R G D T V L L K G K CAGACGACACCATGCAGGAGGCAAGATTC S D D T M Q D G K I GCATCCGCTTGGGAGACATCGTGTCCATCC R I R L G D I V S I GTATCCATGTCCTGCCGATTGATGACACTG R I H V L P I D D T TATATTTGAAGCCTACTTCTGGAGGCAT V Y L K P Y F L E A TGGTGCGAGGGGGGGGTATGAGGCTGTGGAGT L V R G G M R A V E ATTGCATCGTCTCCCAGGACACTGTTGTCT. Y C I V S Q D T V V AGGAGGAAGAGCAGTGGAGATGGTGGAGCTGC L A Q I K E M V E L TTGGTGTCAAGCCCCCAAGAGGTATCCTCC I G V K P P R G I L TCATTGCCGGCGGCAGTGGCAGCGGCCACCGAGACCGCCCACGAGGGGCACGCGGCACGGGCACCGCCCCCC	A T A I L K E K K K P ACGACGACAATTCCGTGGGGCACTCAGCCAGG N D D N S V V A L S Q GCGGCGACACGTCCTGCTGCTCAAGGGCAAGAGC R G D T V L L K G K K CAGACGACCACGCTGCGAGGGGGGAGCAGAGAGC S D D T M Q D G K I R GCATCCGCTTGGGAGACATCGTGTCCATCCAGC R I R L G D I V S I Q GTATCCATGTCCTGCCGATTGATGACACTGTTG R I H V L P I D D T V TATATTTGAAGCCCTACTTCTGGAGGCATACA V Y L K P Y F L E A Y TGGTGCCAGGTGGTATGATGACACTGTTGTCTACT Y C I V S Q D T V V Y AGGAGGAAGAGCAGTTGAACGAGGTGGGCTCCG E E E Q L N E V G Y TGGTGCCAAGCCCCCAAGAGGTGGGAGCTCCTC I G V K P P R G I L L TCATGCCCGGGCAGTTGACGTGCCACCGAG L A R A V A N E T G L A R A V A N E T G	A T A I L K E K K K P N ACGACGACAATTCCGTGGTGGCACTCAGCCAGGCCA N D D N S V V A L S Q A GCGGCGACACAGTCCTGCTGAAGGGCAAGAAGCGCA R G D T V L L K G K K R CAGACACCATGCAGGAGAGGCAAGATCGCATGA S D D T M Q D G K I R M GCATCCGCTTGGGAGACATCGTGTCCATCCAGCCGT R I R L G D I V S I Q P GTATCCATGTCCTGCCGATTGATGACACTGTTGAAG R I H V L P I D D T V E TATATTTGAAGCCCTACTATCTGGAGGCATACAGGC V Y L K P Y F L E A Y R TGGGTGCGAGGGGGTATGAGGCGTGGGAGTTCAAGGC L V R G G M R A V E F K CAGGAGAGAGAGCAGTGGAGACTGTGTCACTGTG Y C I V S Q D T V V Y C AGGGACACAGATCAGGAGCTGGCGCACCACTGT E E E Q L N E V G Y D TGGCACCAGATCAAGCCCCCAAGAGGTGGCAGCTCCACT I G V K P P R G I L Y TTGGTGCCAGGTGCAAGTGGCCAGAGCCGGAGCT L A R A V A N E T G A AGGATCATGTCAAGTGTGGTGGAACCGGAGCCG	A T A I L L K E K K K P N R ACGACGACAATTCCGTGGTGGCACTCAGCCAGGCCAAGA N D D N S V V A L S Q A K GCGGCGACACAGTCCTGCTCAAGGGCAAGAAGCGCAAAA R G D T V L L K G K K R K CAGACGACACCATGCAGGATGCCAAGATTCGCATGAACC S D D T M Q D G K I R M N GCATCCGCTTGGGAGGACATCGTGTCCATCCAGCCGTGTC R I R L G D I V S I Q P C GTATCCATGTCCTGCCGATGATGACACTGTTGAAGGCCCA R I H V L P I D D T V E <u>G</u> GTATATTTGAAGCCCTACTTCTGGAGGCATACAGGCCCA V Y L K P Y F L E A Y R P TGGGTGCGAGGTGGTATGAGGGCTGTGGGGGTTACAGGCCCA V Y L K P Y F L E A Y R P TGGGTGCGAGGGGGTGTCAGGGCTGTGGGGGTCAAGGCCCA V Y L K P Y F L E A Y R P TGGGACGAGGTGGTATGAGGGCTGTGGGGGTCAAGGCCCA V Y L K P Y F L E A Y R P TGGGACGAGGGGGGTGTGAGGCTGTGGGGGTCACGGCGGC L V R G G M R A V E F K V ATTGCATCGTCTCCCAGGACGAGGCTGTGTGTCATCGTGAAG E E E Q L N E V G Y D D TGGCACAGATCAAGGAGAGGGGTGGGGCTACGATGACA E E E Q L N E V G Y D D TGGCACAGATCAAGGAGATGGTGGAGCTGCCTCTCCGCC I A Q I K E M V E L P L R TTGGTGTCAAGCCCCCAAGAGGTGGGGCTACCATGATGAC I G V K P P R G I L L Y G TTCATTGCCCGGCGGCAACGAGGCGGACTTCT I A R V A N E T G A F CAGATCATGTCAAGGTAGGTGGGCTACCGAGAGCAGCAGCAGCAGCAGCAGCAGAGCAGAGCAGAGCAGAGCAGC	A T A I L K E K K K P N <u>R</u> <u>L</u> ACGACCAAATTCCGTGGTGGCACTCAGCCAGGCCAAGATGG <u>N D D N S V V A L S Q A K M</u> GCGGCGACACGTCCTGCTCAAGGGCAAGAGCGCAAACAGA <u>R G D T V L L K G K K R K Q</u> CAGACCACCATGCAGGATGGCAAGATTCGCATGAACCGTG <u>S D D T M Q D G K I R M N R</u> GCATCCGCTTGGGAGACATCGTGTCCACGAGCGTGTCCAG <u>R I R L G D I V S I Q P C P</u> GTATCCATGTCCTGCCGATTGATGACACTGTTGAAGGTCTCA <u>R I H V L P I D D T V E G L</u> TATATTTGAAGCCTACTTCTGGAGGCATACAGGCCCATCC <u>V Y L K P Y F L E A Y R P I</u> TGGTGCCAGGTGGTATGATGACACTGTTGAAGGTCGAG <u>V Y L K P Y F L E A Y R P I</u> TGGTGCGAGGTGGTATGATGACACTGTTGAAGGTCGAG <u>V Y L K P Y F L E A Y R P I</u> TGGTGCCAGGTGGTATGATGACGCGTGTGCAACGGCCATCC <u>V Y L K P Y F L E A Y R P I</u> TGGTGCCAGGTGGTATGAAGGGCTGTGTCTACTGTGAAGGAG <u>V C I V S Q D T V V Y C E G</u> AGGAGGAAGAGCAGTTGAACGAGGTGGGCTACCAGCGCACCC <u>L A Q I K E M V E L P L R H</u> TTGGTGTCAAGGCCCCCAAGAGGTGGGACCCTCCTCCGCCACC <u>I G V K P P R G I L Y G P</u> TTCATTGCCGGGCGAGCGGCGACCATTCTTCT <u>L A R A V A N E T G A F F</u> AGATCATCTCAAGGTAGTGACGGGGGAACCCGAGCCTCC	A T A I L K E K K K P N <u>R</u> <u>L</u> I ACGACGACAATTCCGTGGTGGCACTCAGCCAGGCCAAGATGGATG	A T A I L K E K K K P N <u>R</u> <u>L</u> <u>I</u> <u>V</u> ACGACGACAATTCCGTGGTGGCACTCAGCCAGGCCAAGATGGATG	A T A I L K E K K K P N R L I V E ACGACGACAATTCCGTGGTGGCACTCAGCCAGGCCAAGATGGATG	A T A I L K E K K K P N R L I V E D ACGACGACAATTCCGTGGTGGCACTCAGCCAGGCCAAGATGGAGATGAGCTGCAGG D D N S V V A L S Q A K M D E L Q GCGGGCGACACAGTCCTGCTGCAAGGGCAAGAAGAGCGCAAACAGACAG

Α

Figure 3.19 (A) The full-length cDNA anddeduced amino sequences of *valosin-containing protein* of *P. monodon* (*PmVCP*). Start and stop codons are illustrated in boldfaced and underlined. A putative *N*-linked-glycosylation site is highlighted and underlined. (B) Diagram illustrating VCP cDNA of *P. monodon*. The CDC48 and AAA domains were found in the deduced protein of this transcript. The scale bar is 50 amino acids in length.

3.3.2 Thymosin- $\boldsymbol{\beta}$

The primary 5' and 3' RACE-PCR generated several amplification products. PCR was carried out by amplification of the primary RACE-PCR product with the same gene-specific primer and nested universal adaptor primer (nUPM). After electrophoresis, discrete bands approximately 250 bp and 450 bp fragments were obtained from 5' and 3' RACE-PCR of *P. monodn thymosin-* β (*PmTmsb*) (Figure 3.20). These fragments were cloned and sequenced. Their nucleotide sequences (Figure 3.21) were assembled with the original EST sequence.

Figure 3.20 Agarose gel electrophoresis showing results from 5' (lane 1, A) and 3' (lane 1, B) RACE-PCR of *PmTmsb*. Arrowheads indicate RACE-PCR products that were cloned and sequenced. Lanes M are a 100 bp DNA ladder.

The full length cDNA of *PmTmsb* was 1084 bp in length containing an ORF of 387 bp corresponding to a polypeptide of 128 amino acids. The 5' and 3' UTRs of *thymosin-* β *5* were 69 and 602 bp (excluding the poly A tail), respectively. The poly A additional signal (AATAAA) was located between 1043-1048 of this transcript (Figure 3.22A). Its closest similarity according to the best hit approach was *thymosin-* β *5* of *Pacifastacus leniusculus (E-value = 4e-44)*.

5'race

ATTCTCCGCCGTAAACCTTAAGAAGACCGAGACGGAGGAGAAGATTCACCTGCC

B

GAGCGCTGAAACTCCCCTCAAGGACTTGCCCCAAGGTTGACCCCACCCTTAAGGGACAGCTCGAGGGATT 5'RACE

CTCCGCCGTAAACCTTAAGAAGACCGA<u>GACGGAGGAGAAGATTCACCTGCC</u>AAACAGGGAGGACGTGGA AGCAGAGAAGAAGTACAGGCCCATCTGCAGGCCGTCGAAGGCTTCAATACTGCACAACTCAAGCATGC CAATACCCAAGAAAAATTGTTTTACCTGCTCAGGAAGATATTGAGACTGAGAAGGGTCAGCAGGCACT CCGCCAGGGTATTGAGGGCTTTGACCATGCTGCTTTGAAGAAAGCTCAGACGACAGAGAAGAATACCCT 3'RACE

ATTCTTTGAGTCATTATTATTTGCTTTAGTGATAAGATCAAGGTG<u>CTCACCAATAGCAAGGCGATGGCA</u> <u>AGAAGTG</u>CAAAAGGGACATTTAGAAACTGCATGATAATTTTCATTGCTTTTGTGCACCCTCCTAGTAAT TTATCAGCAATGCTAGTGGACCAAAATTTCACCTTGCTTC

С

3'RACE

Figure 3.21 Nucleotide sequence of 5' RACE-PCR (A), the original EST (B) and 3' RACE-PCR (C) of *PmTmsb*. Sequences of primers are underlined.

The calculated p/ and MW of PmTmsb was 5.45 and 14.30 kDa, respectively.

The predicted signal peptide was not found in the deduced PmTmsb protein. Like

thymosin- β 5, THY domains were found at positions 18-54 (*E*-value = 9.48e-06), 56-92

(E-value = 5.48e-01), 94-128 (E-value = 3.68e-03) of the deduced protein, respectively

(Figure 3.22B).

Α																				
GG	GAC	GTTG	AGC	ATT	GGA	CTT	CAA	CGA	GTT.	AGC	CTT	CGA	ACC	AGA	ATC	ACC	ACC.	ACC	CACC	60
AC	CAC	CCAT	CAT	G AG	CGC	TGA	AAC	TCC	CCT	CAA	.GGA	CTT	GCC	CAA	GGT	TGA	CCC	CAC	CCTT	120
			М	s	А	Е	т	P	L	ĸ	D	L	P	ĸ	v	D	P	т	L	17
AA	GGG	GACA	GCT	CGA	GGG	ATT	CTC	CGC	CGT	AAA	CCT	TAA	GAA	GAC	CGA	GAC	GGA	GGA	gaag	180
к	G	Q	L	Е	G	F	S	Α	v	N	L	к	к	т	Е	т	Е	Е	K	37
АI	TCA	ACCT	GCC	AAA	CAG	GGA	GGA	CGT	GGA	AGC	AGA	GAA	GAA	AGT.	ACA	.GGC	CCA	TCT	gcag	240
I	н	L	P	N	R	Е	D	v	Е	Α	Е	к	к	v	Q	A	н	L	Q	57
GC	CGI	rcga	AGG	CTT	CAA	TAC	TGC	ACA	ACT	CAA	.GCA	TGC	CAA	TAC	CCA	AGA	AAA	AAT	TGTT	300
Α	v	Е	G	F	N	т	Α	Q	L	к	н	Α	N	т	Q	Е	ĸ	I	v	77
ТΊ	ACC	CTGC	TCA	.GGA	AGA	TAT	TGA	GAC	TGA	GAA	GGG	TCA	GCA	GGC.	ACT	CCG	CCA	GGG	TATT	360
L	P	Α	Q	Е	D	I	Е	т	Е	к	G	Q	Q	A	L	R	Q	G	I	97
GA	GGG	GCTT	TGA	CCA	TGC	TGC	TTT	GAA	GAA	AGC	TCA	GAC	GAC	AGA	GAA	GAA	TAC	CCT	TCCA	420
Е	G	F	D	н	Α	Α	L	к	к	Α	Q	т	т	Е	к	N	т	L	P	117
AC	TAP	AGGA	AAT	GAT	TGA	GGA	AGA	GAA	GAA	GGC	CTA	ACA	AGG	TTT	GCC	AGG	AAC.	ACA'	TCTA	480
т	ĸ	E	М	I	Е	Е	Е	к	к	Α	*	2								128
ΤC	TTC	CACT	GTG	CAT	CCC	AGT	GAT.	ATC	CTC	CCT	GCT	CTC	CCT	AGA	ACT	TCT	'AAT.	AGT	TCTG	540
CA	AGO	CCAA	AAT	GTT	TTG	TAC	TGT	ACT	TTG	ATA	ATC	TAA	GTG	TAT.	AGG	TAA	ACC	AAC	TGAT	600
ΤT	TG	raac	CGG	ATA	TCA	TAT	GCT.	ATT	CTT	TGA	GTC.	ATT.	ATT	ATT	TGC	TTT	'AGT	GAT	AAGA	660
ΤC	AAC	GGTG	CTC	ACC	AAT	AGC	AAG	GCG	ATG	GCA	AGA	AGT	GCA	AAA	GGG	ACA	TTT.	AGA	AACT	720
GC	ATC	GATA	ATT	TTC	ATT	GCT	TTT	GTG	CAC	CCT	CCT.	AGT.	AAT	TTA	TCA	GCA	ATG	CTA	GTGG	780
AC	CAA	AAAT	TTC	ACC	TTG	CTT	CCG	CCT	TGT	TCA	ATA	GAA	GGT	AAA	GGT	CTC	CCA	TGC	AGGT	840
AA	TGO	GAAA	ACT	GCC	AAA	AGG	TAC	AAT	GAA	TTT	GTA	ATT	TGC	CAG	GAT	TGT	'AAT	GTG	TGAG	900
ТC	TCA	ATT	TTT	ACC	CCA	TTT	AAT	TTG	CAT	TTA	ATT	GTT.	AGC	ATT	TAC	ATG	AAT	TTT	TAAG	960
ΤG	TTT	[ATA]	AAG	AAT	TTA	TCA	TTG	CCT	TGT	TTC	AAA	ATT.	AAT	TTG	CTT	TTT	'GGG	GCA'	TCCA	1020
AG	TAF	AATG	TGA	TTT	TGG	GAG	CCA	ATA	AAG	TGC	TTT	TGC.	AAA	AAA	AAA	AAA	AAA	AAA	AAAA	1080
AA	AA																			1084

٠

Figure 3.22 (A) The full-length cDNA and deduced protein sequences of *PmTmsb*. Start and stop codon are illustrated in boldfaced and underlined. The poly A additional signal (AATAA) is boldfaced and the THY domain are highlighted. (B) Diagram illustrating *PmTmsb*. Three THY domains were found in the deduced PmTmsb protein. The scale bar is 50 amino acids in length.

3.3.3 Rac1 GTPase-activating protein

A fragment of 1881 bp in length was obtained from amplification of cDNA in ovaries using primers designed from ORF of the testes form of *P. monodon Rac GTPase-activating protein 1 (PmRacgap1)* (Leelatanawit, 2008) (Figure 3.23). The PCR product was cloned and sequenced. The ORF of *PmRacgap1* was 1881 bp in length corresponding to a polypeptide of 626 amino acids. The closest similarity of this characterized transcript was *Rac GTPase-activating protein 1* of *Capitella teleta* (*E-*value = 2e-120).

Figure 3.23 Agarose gel electrophoresis showing the amplified ORF of ovarian *PmRacgap1* using primers designed from that previously identified in testes of *P. monodon*.

The calculated p/ and MW of the deduced PmRacgap1 protein was 8.68 and 71.47 kDa. Two domains (C1 and RhoGAP) were found at the amino acid positions 317-364 (*E*-value = 5.32e-06) and 365-540 (*E*-value = 2.26-47) of the deduced PmRacgap1 protein (Figure 3.24). The putative *N*-linked-glycosylation sites were found at positions 109-111,150-152 and 571-573, respectively.

Figure 3.24 The open reading frame and deduced protein sequences of *PmRacgap1*. Start and stop codon are illustrated in boldfaced and underlined. The predicted *N*-link glycosylation sites are highlighted and underline. The C1 and RhoGAP domain are highlighted with light-grey and dark grey, respectively. (B) Diagram illustrating *PmRacgap1*. The C1 and RhoGAP domains were found in the deduced PmRacgap1 protein. The scale bar is 50 amino acids in length.

Alignment nucleotide sequences of *PmRacgap1* in ovaries (this thesis) and testes (Leelatanawit, 2008) of *P. monodon* indicated that differences between these isoforms were resulted from small indels (C and AAACAG; position 1064 and 852 - 857) found in the testes form and a large indel (TAACACTCCAACTACAAAGGGGCAA TTGGGAACCATTGCTGACTACACATCTCGTATGCCCCCAATGGTTCCAGCC; positions 1107-1183) found in the ovary form. In addition, a single substitution from T to C was observed at position 118, 383 and 1375, A to T was observed at position 663 (Figure 3.25).

Ovary	ATGGAGTCCCTTTCAGCACAGTTTGATGACCTGATGCGCCAGATGCAGGTTCTGGCAGAT
Testis	ATGGAGTCCCTTTCAGCACAGTTTGATGACCTGATGCGCCAGATGCAGGTTCTGGCAGAT
Ovary	CCAGCAGAGTACAAATTCCTCGAATTTTTAGACCATGAAGAGAAAAATCGGGTTCAGCTA
Testis	CCAGCAGAGTACAAATTCCTCGAATTTTTAGACCATGAAGAGAAAAATCGGGTTCACTTA
Ovary Testis	AGAGAACTTGAAGCAGAAGTGAGTCGTCTTTAATGAGCAAGCA
Ovary	ATTAAAAGCCTGGAGATGAAATTAAAAAATGCAAAGCACATGCTAGATGTAGAAAAGGCC
Testis	ATTAAAAGCCTGGAGATGAAATTAAAAAATGCAAAGCACATGCTAGATGTAGAAAAGGCC
Ovary Testis	AAGAGAATCACAAACAGAAAAAGAGAAAAATGATTTGGCAGGACAGATTGGTCTGGTCATG AAGAGAATCACAAACAGAAAAAGAGAAAAATGATTTGGCAGGACAGATTGGTCTGGTCTGGTCATG ************************************
Ovary	GAGTTGTTGGGAAGAGGTCAGGTCAATGAGACAAGAGAAAGACTGCAACAGTTACAGCAC
Testis	GAGTTGTTGGGAAGAGGTCAAGTCAA
Ovary	TCGTTTACCTTTAGTGGAACAGCAACAAATCAGCGGCGAAGTACAAGAGACTTGTCACCA
Testis	TCGTTTACCTTTAGTGGAACAGTAACAAATCAGCGGCGAAGTACAAGAGACTTGTCACCA
Ovary	GGACCTCTTTCTACTATCACAGAAGACAATGACACAATGGGTTCCATCCTTAGTGTATCA
Testis	GGACCTCTTTCTACTATCACAGAAGACAATGACACAATGGGTTCCATCCTTAGTGTATCA
Ovary	GACATTGATATTACTGAGGATGATTAGAAGAATCACGTCTCCGATCAGGACGATCATTC
Testis	GACATTGATATTACTGAGGATGATTAGAAGAATCACGTCTCCGGATCAGGACGATCATTC
Ovary Testis	AAACGCAGATCTTCACCAGAACGCCAGGATTCTTCTAAGGGAAAAAGGCGCTCAGGCAGG
Ovary Testis	AGAAGTGAGGACATGCAGACCCATGAGGTGAAGACTCAAGTCACATACTATACACAAGGT AGAAGTGAGGACATGCAGACCCATGAGGTGAAGACTCAAGTCACATACTATACACAAGGT **********************************
Ovary Testis	GATGAAATTAAGAAAATCCATACAGAGACGAAAGTCAAGCCATCAGCACCTCCACTTTCC GAAGAAATTAAGAAAATCCATACAGAGACGAAAGTCAAGCCATCAGCACCTCCCCTTTCC ** ************************
Ovary	ACAGATGAAGAGACTGAGGTTAGTCACCTTAAGAAACCTACCCACGGCCATACTCTCAAT
Testis	ACAGATGAAGAGACTGAGGTTAGTCACCTTAAGAAACCTACCCACGGCCATACTCTCAAT
Ovary	ACACCCTCAACTCCACATATTCCTCAGACTGCATACTCACCACACTTTCCAAACCCAATA
Testis	ACACCCTCAACTCCACATATTCCTCAGACTGCATACTCACCACACTTTCCAAACCCAATA

Ovary	ACACCTCAGGGCACAGGTCAGATGTACTACACTCCTACAACAATCTTGTCACA
Testis	ACACCTCAGAAACAGGGCACAGGTCAGATGTACTACACTCCTACAACAAATCTTGTCACA
Ovary Testis	CCAGTATTGCGCACCCATTCCTCAGTTACAAAGATAAACCAAAGACCTCATGCCTTCTAC CCAGTATTGCGCACCCATTCCTCAGTTACAAAGATAAACCAAAGACCTCATGCCTTCTAC *******************************
Ovary Testis	ACCAAGACTATATACAAGACTGAACATTGTCAGCCATGTGGCAAAAGAATTAAGTTTGGT ACCAAGACTATATACAAGACTGAACATTGTCAGCCATGTGGCAAAAGAATTAAGTTTGGT *********************
Ovary Testis	AAGATTGCCCTTAAGTGTCGAGACTGTCGCGCGCTACCTGTCATC-TGAGTGTCGTGAATCT AAGATTGCCCTTAAGTGTCGAGACTGTCGCGCGCTACCTGTCATCCTGAGTGTCGTGGAATCT **********************************
Ovary	GTGCCGCTTCCTTGTGTTCCTACAGCTAACACTCCAACTACAAAGGGGCAATTGGGAACC
Testis	GTGCCGCTTCCTTGTGTTCCTACAGC
Ovary	ATTGCTGACTACACATCTCGTATGCCCCCCAATGGTTCCAGCCTTTGGTGGTCCATTGCAC
Testis	
Ovary	CAATGAGGTAGAAAACCGTGGTTTGAGTGAAGTTGGAATTTATCGAGTACCAGGAGCAGA
Testis	CAATGAGGTAGAAAACCGTGGTTTGAGTGAAGTTGGAATTTATCGAGTACCAGGAGCAGA
Ovary	AAAGGATGTGAAGGAACTAAAGGATCAGTTTCTGCGAGGTAAAGGCATGCCTAACCTGTC
Testis	AAAGGATGTGAAGGAACTAAAGGATCAGTTTCTGCGAGGTAAAGGCATGCCTAACCTGTC
Ovary	CCAGCTTGATATCCATGTTGTTGTGGGTGCACTTAAGGACTTCATGCGGTCACTCAAGGA
Testis	CCAGCTTGATATCCATGTTGTTGTTGTGGGTGCACTTAAGGACTTCATGCGGTCACTTAAGGA
Ovary	ACCACTTGTCACCCACCTCCTCTGGCGAGACTTTACAAGTGCTGCAGAAAAGTCGGAGGC
Testis	ACCACTTGTCACCCACCTCCTCTGGCGAGACTTTACAAGTGCTGCAGAAAAGTCGGAGGC
Ovary	CCAAGATTACCTTGCGGCTCTCTACCAGGCAATCTCAGAATTACCACAGCCCAACAGGGA
Testis	CCAAGATTACCTTGCGGCTCTCTACCAGGCAATCTCAGAATTACCACAGCCCAACAGGGA
Ovary	TACTTTGGGTTGGATCATGACTCATCTTCAAAGAGTAGCTGAATGTCCTGAATGCAAAAT
Testis	TACTTTGGCTTGGATCATGACTCATCTTCAAAGAGTAGCTGAATGTCCTGAATGCAAAAT
Ovary	GCCGGCTAGCAACCTAGCCAAGGTGTTTGGGCCAACACTTGTAGGATACTCAGTACCAGA
Testis	GCCGGCTAGCAACCTAGCCAAGGTGTTTGGGCCAACACTTGTAGGATACTCAGTACCAGA
Ovary	ACCTGATCCAGCCACTATGCTGACTGACACCGACAACAGCAAATGGTCATGGAAAAGCT
Testis	ACCTGATCCAGCCACTATGCTGACTGACACCGACAACAGCAAATGGTCATGGAAAAGCT
Ovary	GCTTGAAATCTCCACAGACTACTGGAACACTTTCATTAACGTTACTGATGAGAATGTGCA
Testis	GCTTGAAATCTCCACAGACTACTGGAACACTTTCATTAACGTTACTGATGAGAAATGTGCA
Ovary	CCAGGGAGTTCAGCAGGTTCCTACTCTAGAAGGTGGCACTCTCCTTGGAGGTTTCCCATC
Testis	CCAGGGAGTTCAGCAGGTTCCTACTCTAGAAGGTGGCACTCTCCTTGGAGGTTTCCCATC
Ovary	CTCCAACACGCGTCGACGCTCTATACTTACTCGCACTCCACTAACCCCCAGGGAAACTCC
Testis	CTCCAACACGCGTCGACGCTCTATACTTACTCGCACTCCACTAACCCCCAGGGAAACTCC
Ovary Testis	AAAGAACCGCTATGTCTTCCGGAAGTGA AAAGAACCGCTATGTCTTCCGGAAGTGA ***************************

Figure 3.25 Pairwise nucleotide sequences alignment of *PmRacgap1* found in ovaries and testes.

3.3.4. Protein kinase C

The full-length cDNA of *protein kinase C (PKC)* was identified by RACE-PCR. Primers were designed from EST clone no. OV-N-S01-1421-W which significantly matched of protein kinase C 98E-like protein of *Tribolium castaneum*; *E*-value = 5e-26). The amplified fragments of approximately 850 bp, 800 bp, 1250 bp and 800 bp were obtained from the 5 RACE-PCR, nested 5 RACE-PCR and nested-nested 5' RACE-PCR and primary 3 RACE of *PmPKC* respectively (Figure 3.26). These fragments were cloned and sequenced (Figure 3.27). Nucleotide sequences of the original EST, 5' RACE-PCR and 3 RACE were assembled.

Figure 3.26 Agarose gel electrophoresis showing results from 5' RACE-PCR (A), nested 5' RACE-PCR (B), nested-nested 5' RACE-PCR (C) and 3 'RACE-PCR (D) products of *PmPKC*. Arrowhead indicate the RACE-PCR fragments that were cloned and sequenced. Lanes M are a 100 bp DNA ladder.

The full length cDNA of *PmPKC* was 3404 bp in length containing the ORF of 2235 bp deducing to a polypeptide of 744 amino acids and the 5' and 3' UTRs of 143 and 997 bp (excluding the poly A tail), respectively (Figure 3.28A). The closest match to this transcript was *Protein kinase C* of *Ciona intestinalis* (*E*-value = 1e-110).

А

Т

GGGAGTTTTATCGAATGGTGTTGAATGGGTGACAGTACGGTCGGCCTTACAGTCACTTTCGCCCCATTT CCCTATGCACTACTGGGACCTATTGGTGAGGTGAGACGGGGCTTGTGAGCACCTGAGCAGAGAGAACAC GGGCGATGTTCACGGGCAGCCTTAAAGTGAAAATATGCGAAGCTACCGATCTCCGCCTTACCGACTGTA TGACCCGCTATGTCGGAGTAGCAGGGGTAGGAAAAGGTCCTCAAGACCAAACCCTGGATCCTTACGTGA CGCTGGAGGTGGACGAGGTACACTGGACCAAGACGCAGGCCCGACAGAAGACCTTTACGCCCATATGGA ACGAGAGCTTTGAGCAAGACGTGATGGGCGCCGTCCAGCTCGGCCTCAAGATCTTCCATGACTCCGCGG TCGGCAACGATGACTTCGTGGCCGACGCTTCCTTGCTCTTCGAGGAAATATGTGCCGAGAACCAGACCC ATGCCGACATCTGGGTGGACTTAGAACCTCAGGGGAAGCTACATGTGGTGATTGAACTAAAATGGGCAC CACCAGAAGATGGAGGCGTCCGCCCACGAGAATTCAGGGAACGGCAGGGCTTCAACCGGCGACGAGGTG CCATGAGGAGGCGGGTTCATCAGGTCAAATGGTCACAAATTCATGGCTACGTTCCTGCGGCAACCTACAT 5'R

TCTGCTCGCATTGTCGAGAATTCATATGGGGTCTAGGGA

Π

ACGGCGGGTTCATCAGGTCAAATGGTCACAAATTCATGGTTACGTTCCTACGGCAACCTACATTCTGCTC 5'RACE-PKC-III

GCATTGTCGAGAATTCATATGGGGTCTAGGGAAACAAGGATATCAATGTCAAGTATGTACTTGCGTAGT CCACAAACGCTGTCACCAGTCGGTTGTCACACGACGTCCAGGAAGCAAGAGTGAGACCATCAATGAGGA ACCTTCAGTCCAGGGAAGTTGTCAACCGCGATTCAACGTCAATGTGCCACATCGGTTTTCTGTTCACTC ${\tt CTACAAACGGTTCACATTCTGTGACCATTGTGGCTCATTACTTTATGGCCTTATTCGTCAGGGTCTCCA$ ATGTGAAGTATGCAACATGAATGTTCACAAGGGATGCCAAAAGAATGTAGCCAACAATTGTGGGATAGA CGTAAAACAGTTATCAGAAATTCTAGCCACCATGGGTATACGGCCTCAAGATGAAGCAGCCAAACGCAA GAAGAAGTCTGTTAGTGAGACTAAGTTATCATCGGCCACCGCCCCTGTTAGTGTCCCAGGAATCATCGG AGAAGTGGAAGTCCCAGGTGAAATGAATGAGGAAGAGCTAAGACTAAGGATTGAAGCTCAGCGTATCAT GGACAAGAAGATGAAGGAACGCTGTGCAGAAGAAGGACTAGATGCCAAGTCGAAGCCACATGATACTTC AGGAAGTTTTGGAAAAGTAATGCTAGCTGAACTTAAAGGGACAGATGAAGTCTACGCCATCAAGGTGCT TAAGAAAGACGTGATCCTACAAGATGATGATGTAGAATGTACAATGACTGAGCGGCGGATCTTAGCGAT GGCTGCACACCACCCCTTCCTCACTGCCCTCCACTCTAGCTTTCAAACCAAGGATCGATTATTCTTTGT TATGGAGTATGTTAATGGTGGTGACCTAATGTTCCAAATTCAGAAGGCTCGCAAGTTCACAGAGTCACG TGCAAGATTTTATGCAGCTGAGGTCACGTTGGCCTTACAGTTCCTCCATAAAAATGGTGTTATTTACAG AGATTTGAAATTAGATAATATTCTACTAGACAGTGAAGGACATTGTAAAATAGCTGATTTTGGTATGTG TAAGGAAGGCATCAGGGATAATATTACAACCACCATCTGTGGAACACCCGATTACATTGCACCAGA 5 RACE-PKC-TT

GATTCTTAAAGAGTTGGATTATGGTGCCAGTGTTGATTGGTG

ш

AAGCAGTGGTATCAACGCAGAGTACGCGGGCAAGATTTTATGCAGCTGAGGTCACCTTGGCCTTACAGT TCCTCCATAAAAATGGTGTTATTTACAGAGATTTGAAATTAGATAATATTCTACTAGACAGTGAAGGAC ATTGTAAAATAGCTGATTTTGGTATGTGTAAGGAAGGCATCAGGGATAATATTACAACAACCACCTTCC 5'RACE-PKC-II

GTGGAACACCCGATTACATTGCACCAGAGATTCTTAAAGAGTTGGATTATGGTGCCAGTGTTGATTGGT GGGCACTAGGAGTTCTCATGTATGAAATGATGGCAGGACAGCCACCATTTGAGGCTGATAATGAAGATG ATCTCTTTGAGTCCATCCTGCATGAAGAAGTTTTGTATCCAGTGTGGCTTTCAAAGGAAGCAGTTTCTA TACTGAAAGGGTTTATGACAAAGGAACCATCCAAGCGGTTGGGCTGCGTTGCAGAGCGAGGAGGAGAAT TGGCAATTCGTAACCACAAATTCTTCCAAGAGATAGACTGGGAGGCCCTTGAGCAGCGCAAAGTTAAAC CACCATTTACACCTAAGATAAAAGGACGTAAGGATACAGTCAACTTTGATGCAGAATTTACCAAGGAAG AGCCAACTCTCACCTTTATTAATGAAGAAGTTGTTCGTGCTATCAACCAAGACGAGTTTAGAGGATTTT CTTTCGTTAATCGTGAATTTAAGTCCATGGCGGCTGCACCATGTCAAACCTAAGTGCAAATGCAGCACA 5'RACE-PKC-I

GTACAAAGTGCTAAAGTCTCCCCAGGAAAC

89
В

GTAACCACAAATTCTTCCGAGAGATAGACTGGGAGGCCCTTGAGCAGCGCAAAGTTAAACCACCATTTA CACCTAAGATAAAAGGACGTAAGGATACAGTCAACTTTGATGCAGAATTTACCAAGGAAGAGCCAACTC PKC-F1

C. PKC-F1

GGCTGCACCATGTCAAACCTAAGTGCAAATGCAGCACAGTACAAAGTGCTAAAGTCTCCCCAGGAAACT TAATAGTAGGAAAGATTTCAATTTTGACTGCACAAAGAGTTGAATGTCTCAACAAGCACAACTGAGAAT GGCTGTATTGTGATTAACATTGTATATCTAATAATACTCTTTATGATGGATTTTTTCATTATTATA GTTTTTTTTGCAAAAGATTCTAATGTGGAAGATCTCTGAATTTATAAGTTACAATATTTTTAAATATA TATTTATATAGTGTTGTTCTGTAAATGCATGATGCATTTGGAATATGATAGGAAGATACAAAAGTTCGT GTGAAATTGAAAGTTATAACCTTTGACTAAAATTGCTTGTCCAGTTATGGTACCAGATGATTCCAAAGG ATGCAGGTATGGGGGGAGACCAGATGTAGGACCATACAACTCATATTAACTTTTGGCCCTCTTTTGTATT AAACAAGCGCATAAAAATATTTTATATTCGTGAAGTGGTGGAAGCCCTCCTCGTATACTTATGGTGCAA ТАТБАСААААААААААААААААААААААААААА

Figure 3.27 Nucleotide sequences of 5' RACE (AI-AIII), the original EST (B) and 3' RACE-PCR (C) of *PmPKC*. A forward primer for RT-PCR (PKC-F1 underlined) was used for 3' RACE-PCR.

The calculated p/ and MW of the deduced *PKC* protein was 6.35 and 84.47 kDa, respectively. The C2 domain was found at the amino acid position 5-116 (1.59e-9). The C1 domains were found at the amino acid positions 171 - 218 (7.57e-11), 248 – 297(2.65e-15) and S_TKc domain 407-667(1.84e-104) and S_TKx 668-731 (3.15e-25) of the deduced protein, respectively (Figure 3.28B).

90

GGGA	GTTI	гтат	'CGA	ATG	GTG	TTG	FAAT	GGG	STGA	CAG	TAC	GGT	'CGG	CCT	'TAC	AGT	CAC	TTTC
GCCC	CAT	FTCC	CTA	TGC	ACT	ACT	'GGG	ACC	CTAT	TGG	TGA	.GGT	'GAG	ACG	GGG	CTT	GTG	AGCA
CCTG	AGCA	AGAG	iAGA	ACA	CGG	GCG	ATG	TTC	CACG	GGC	AGC	CT'I		GTG		A'I'A	TGC	GAAG
CIMAC	0000			CIDIT		~~~~~	ייים כיים	ב האותר	T DOC	G	<u>a</u> m 7 m		r CCD		r CC7			
ν π	כGA1. מיי	TCTC	JUU.	T	ACC T	.GAC	.TG1	MIC: M		.CGC P	V NI	v	.GGA C	UGTA V		C C	U GTA	GGAA
			GAC		ACC		<u>с</u> лт			CTTC	ACG	V CTTC	-C 7 C	CTTC				CACT
AAGG			DAD.		ACC T	.CIG	AD. ת		v	v	ACG T		GAG F	V	DAD:	GAG. T	U U	UACI U
CCAC			<u>C7C</u>	<u>×</u>		<u></u>	1770	E DCC	<u>ד</u> התההי	V ACC			<u>т</u> сс	• • • • • •			v mmm	GACC
w T		JACG T		3000 7	DUU.		IAAC V	TACC T	-111 F	ACC T	D D		w W	N	GAC F	AGC		F
7767	CGTC	- - 7 T C		CCC			CTC	'GGC	TCTTC	770	T T T T T T T C		<u>и</u> С Л П			0 1000	CTTC	GGCA
	V	M	c C	.GCC 7	VIC.		T	C C	T	R R	T	- IIC	u.	GAC D	.100	2000. 7	v	C C
			GTG	<u>a</u>		CCT	TUTCC	יחידים	CTC		GAG	GAA		тст			AAC	
			v	7	ישרטי. ת	.001 A	c	T		. TTC	-OAO	F			N	,UAU F		
			י א ייר		<u>. стс</u>	GAC	איתיתי	GAZ		CAG	CCC	770		CAT		<u>стс</u>	7.000	
T L		ידהר ש	ліс т	.100 W	v	DAO	T.	LOAA F	D	OAC	GGG	R	T.	u	v	v	- 	F
<u> </u>			- 	CC7	GDA	GAT	GGA	GGC	GTC	× CGC	CCA	CGA	GAN		• 2000	GDA	- CGG	CAGG
ייייייי ד. ע	W		P P	P	F	ראטי	C C	C C	v	P	P	P	F	ਹਾ। ਜ	AGG R	r F	990 R	
с . С. т.т.				CGA	GGT	GCC	מתמי	:AGG	ACC	CGG	CTTT	CAT	CAG	GTC	יאאי		CAC	× ЪЪЪТ
म् २२ स	י א	2000 R	R	R	G	2	M	R	R	R	v	H	0	v	N	G.	H	K
годи						CAA	CCT	DCZ		TGC	TCG	СЪТ	× mGTT		GDD	UTTC	<u>היי</u> ב מידים	TGGG
F N		THOU T	<u>्रा</u>	т.	R	0	P	TTCI.	ידד ד	C	S.	н	C	R	E	ा 10 न	T	W
				GGA	 		TGT		LGTA	TGT		TGC	GTA	GTC		- 		TGTC
зтот г т	C	x	0	G	v	0111	C	011	v	C	лот Т	C	V	v	н	K	R	C
	GTTCC	2.CTTT				CGT		CGI	AGC	AAG	AGT	GAG	ACC		<u>יא</u>		GAA	
		V	v	т	B	B	D D	-DOL	C C	K	C C	F	лсс T	T	N	-OAO F	- F	D
- X			AGT	тст		CCG		TTTC	DAG	GTC	ידע מי	GTIC		CAT		արդոր։ Դերենություն	<u>т</u> ст	CTTC
s v		- C	S	C	0	P	R	TT.	N	v	N	v	P	н	R		S	v
	א מתייריי	מממי	CGG	U TTTC	'''''''	т тс	TTCT	GAC	TCAT	тст	CCC	ч ПС Л	ב תיתים	CTT	יתיתי		CTTT	
	v	<u>x</u>	R	ा। न	T T	े 1 1 1 च	C	D	н	C	G	S	T.	т.	v	G	СТТ Т.	T
3TCA	GGG			TGT		GTA	UT GC	'AAC	'ATG	ТДД	GTT	CAC		GGA	TGC	'C'AA	AAG	AATG
3 C	G	т.	0	C	E	v	с.	N	M	N	v	н	K	G	C	0	X	N
PAGC		TAAT	× ™GT	GGG		GAC	GTA				TCA	GAA	ATT	CTA	GCC	'ACC	ATG	GGTA
7 2	N	N	C	G	т	D	v	x	0	т.	S	E	т	т.	Δ	лос Т	M	G
	GCC		GAT	GDD	GCA	GCC	מממי	CGC	א ממי		D D G	тст	<u>-</u> השתיםי			- 2007	AAG	TTATT.
TR	р Р	0	מ	E.	Δ	Δ	ĸ	R	ĸ	ĸ	N N	S	v	S	E	ייייי ד	N	T.
~ <u> </u>		- × - 200	GCC	- ССТ	 GTT	'AGT	GTC		AGGA	атс		GGA	GAA	GTG	GAA	- GTC		GGTG
s s	Δ	ייינכ ד	۵۵۵۹ ۵	P	v	S	v	P	G	T	T	G	E.	v	E	v	P	G
 7		rgag	GAA	GAG	СТА	AGA	CTA	- AGG		- GA A	GCT	CAG	- CGT	י סידמי	<u>–</u> АПС	GAC		AAGA
	1 N	F	F	F	т.	R	T.	B	т	F	<u>م</u>	0	R	T	M	n D	л Т	R N N
	GGAI		тCт	GCA	GAA	GAA		CTZ	<u>+</u> \сат			ж тсс			CAT	ים שיים יי	аст	TCTT
N N		P R	C C		r F	F	-1002	T.	ידסנ	<u>م</u>	лло х	c c	лло х	D	ч	ידאט	лст Т	c c
ים ביי רים ביי	. <u>–</u> ආඋආං	יי מייעק	ى سىسى	പ			- 	ם. גידים:		ഹ ഗന്നവ	אי העב:	GDO	רייידייריי ריידידירי	ב תייזיתי		ע. היית בי	<u>ר</u> בב	GTAC
IAGA I. P	. V	M	τ.	توں د	000 C	and M	лас х	V	סאסי מוסי	стс Т.	יאטי	одс п		, ICH		1 1 F 1	ALLA N	V
н н	י א מאמי:		<u>л</u> ст	т т	. 	227		י מידר א	ים גידיי):	പ		بر مست	<u>ה</u> מממי	GGC		GAT	GD 7	GTCT
		AUDA	C C	111 E	GGA		11-DI 17	M			GAA				TCA T		GAA F	v
		1770	<u>о</u>	CURR		A	V			A	<u> </u>	<u> </u>		G		0		
	TAJ.		77		AAG		JAU	.GTC				GAI	GAT	GAI	GTA 17		TGT	
		N CCC	V			CCC		V									CILIC	
TGAC	TGA	JUGG		ATC	TTA T		ATC	GC1	IGCA	.CAC	.CAC		TTC T	.CTC	ACT	GCC	CTC	CACT
M 1	E	R	R	1		A	M	A	A	H	H	P	E	<u></u>	T	A	_ بل	H

A

SFQTKDRLFFVNGGD422TAATGTTCCAAATTCAGAAGGCTCGCAAGGTCCACGTGCACGTTGCACGTTCCACAGTCCACGAGGACGACGTTTATTCACAGAGATTTGA172017201720ACKAKFFSRARF132CTGAGGTCACGTTGGCCTTACAGTCCTCCCATAAAAATGGTGTTATTTCACAGAGATTGA172032172032<	CTA	AGC'	TTT	CAA	ACC	AAG	GAT	CGA:	ГТА	TTC	TTT	GTT	ATG	GAG	TAT	GTT	'AA'I	GGT	GGI	GACC	1600
TARTGTTCCAAATTCAGAAGGCTCGCAAGTTTACACAGGTCACGTGCAGAGTTTAGCAG 1660 L M F C I Q K A R K F T E S R A R F Y A 512 CTGAGGTCACGTGGCCTTACAGTTCCCCATAAAAATGGTGTATTATCACAGAGTTTGA N E V T L A L Q F L H K N G V I Y R D L 522 AATTAGATAATATTCTACAGAGAGGACAGTGTAAAATGGTGTATTTAGGAGATTGTA K L D N I L L D S E G H C K I A D F G M 552 GTAAGGAGGCATCAGGGATAATATTACAACAACCACCTCTTGTGGAACACCCGATTACA 1840 C K E G I R D N I T T T F C G T P D Y 572 TTGCACCAGAGATTCTTAAAGAGTGGGAGGAGCACACTTTGAGGGCCATAG I A P E I L K E L D Y G A S V D W W A L 552 GAGTTCTCATGTAGAAATGATGGCAGGACAGCCACCATTGGAGGCTGATAATGAGGAG I A P E I L K E L D Y G A S V D W W A L 552 GAGTTCTCATGTAGAAATGATGGCAGGACAGCACCACTTTGAGGGCTGATAATGAGGAG I A P E I L K E L D Y G A S V D W W A L 552 GAGTTCTCATGTAGAAAGGGTTATGCAAGGAAGCCACCATTGGAGGCTGATAATGAGGAG I A V S I L H E V L Y P V W L S K E 632 CAGTTCTCATACTGAAAGGAGTTTGCGAAGCAACCACCAAGGGGTGGGCTGCGGCGG A V S I L K G F M T K E P S K R L G C Y CAGAGCGAGGAGGAGATTGGCAATTCGTAACCAAAATCTTCCGAGAGAATGAAGGGG A V S I L K G F M T K E P S K R L G C Y CAGAGCGAGGAGGAATTGGCAATTCGTAACCACAAATCTTCCGAGAGAAGAATGGG A V S I L K G F M T K E P S K R L G C Y CAGAGCGAGGAGGAGATTGCCAATTACCACACAATCTTCCGAGAGATAGACTGG A U S I L K G F M T K E P S K R L G C Y CAGAGCGAGGAGGAATTGCCAATTACCACACAATCTTCCGAGAGATAAAGGACGG A L E Q R K V K P P F T P K I K G R K A TTCAGTCAACTTGAGCAAGTTAAACCACACATTTACACCTAAGGAAGAATTCTAATTG 2200 D I V N F D A E F T K E E P T L T F N AATACAGTCCACTGGCCAACCCACCTTAGAGGAGGACTTCTTAGGGA 2310 E F K S M A A P C Q T * AATACAGTCTAGGGGCGCGCCCCCCCTCTCAACCACACTTAAGGAGAGTTCTAATTTT 2500 ACTCCACAAAGGTTGAAAGAATTAAATGCGACAATTGCAAAGGAGGATTCTTATGGAA 2400 CTTAAAGTCTTATGTGGAAAATTAACTAGGGAGAGTGAAATTCTAATTTTAAGTTTTTT 2500 CTCACTAAGGTCTCTAAAGTCCCAAGAACTTAAGGAAGAGTTCTAATTTTAAATT 2500 CTCACAAAGGTTGAAGAAGAAAATTAACTAGGGAGAGGAACTACTATATGGAAGGAA	s	S	F	Q	т	к	D	R	L	F	F	v	м	Е	Y	v	N	G	G	D	492
LMFQKAKFTSS	TAZ	ΑTG	TTC	CAA	ATT	CAG	AAG	GCT	CGC	AAG	TTC	ACA	GAG	TCA	CGT	GCA	AGA	TTT	TAT	'GCAG	1660
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L	М	F	Q	I	Q	K	Α	R	K	F	Т	Е	S	R	Α	R	F	Y	A	512
	CTC	GAG	GTC	ACG	TTG	GCC.	ГТА	CAG.	ГТС	CTC	CAT	AAA	AAT	GGT	GTT	ATT	'TAC	AGA	.GAT	'TTGA	1720
AATTAGATAATATTCTACTAGACAGTGAAGGACATTGTAAAATAGCTGATTTGGTATGT1780KLDNILLDSEGHCKLADFGM552GTAAGGAAGGCATCAGGGATAATATACAACAACCACCTTCTGTGGAACACCCGATTACA1840ITTTTFCGTPDY572TTGCAACAGAGAATTCTTAAAGAGTTGGCAGGACAGACACCACTTTGAGGCAGCACTAG1900IALKLKYGAVDWA1592GAGTTCTCATGTATGAAATGAGGCAGGACAGCACCACTTTGAGGCTGATAATGAGAAG1900IFKACQPFEADNED1212CAGTTCTGATGCAAGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	Α	Ε	v	Т	L	Α	L	Q	F	L	H	K	N	G	v	I	Y	R	D	L	532
KLDNILLDSEGHCKIADFGMGTAAGGAAGGCATCAGGAATAATAATATTACAACAACCACCTTCTGTGGAACACCCGATTACA1840TTTTFFCGPPDY572TTGCACCAGAGAATTCTTAAAGAGTTGGATTAGTGGCCACTATGTGATGGGCACTAG1900SYNNAL592GAGTTCTATGTATGAATGATGGCAGCAGCACCACCACTTGAGGCATAATGAAGAAG1960YNNAL612ACTTCTTGACTCCATCCACCACAGAGGACAGCCACCACTTGAGGCGTGGCTTCCAAGGAAG2020LFESLHEVYPPFADNE632CAGTTCTATACTGAAAGGGTTTATGACAAAGGAACCATCCAAGGGGTGGGCTGCGTTG2080CYSILKGFMKEPFNNKE632	AA	ΓTΑ	GAT	AAT	ATT	CTA	CTA	GAC	AGT	GAA	GGA	CAT	TGT	AAA	ATA	.GCT	'GA'I	TTT	GGI	ATGT	1780
TAAGGAAGGCATCAGGGATAATATTACAACAACCACCTTCTGTGGGAACACCCGATTACA1840C K E G I R D N I T T T F C G T P D Y572TTGCACCAGAGATCTTAAAGAGTGGCATGTGGATTGGGTGCACATTTGGGGCCCATCAG1960I A P E I L K E L D Y G A S V D W W A I592GAGTCTCATGTATGAAGGATGGCAGGACAGCCACCATTGAGGCTGATATAGAGAG1960G V L M Y E M M A G Q P P F E A D N E D612ATCTCTTTGAGTCCATCCTGCATGAGAAGAGTTTTGTATCCAGTGTGGCTTTCAAAGGAGG2020D L F E S I L H E E V L Y P V W L S K E632CAGTCATCATACTGGAAGAGGTTATGGCAACACACAAAATCTTCCGAGAGGATAGACTGGG2140A V S I L K G F M T K E P S K R L G C Y652CAGAGCGAGGAGGAATTGGCAATTCGTAACCACATTACACCAAAATCTTCCGAGAGATAGACTGGG2140A E R G G E L A I R N H K F F R E I D Y672AGGCCCTTGAGCAGGCGAAAGTTAAACCACCATTACACCAAATTCTTCCGAAAAGGACGTAAGG2200E A L E Q R K V K P P F T P K I K G R K692ATACAGTCAACCTGGCGCACACGTGCACACAGAGGAGGATTCTTCGGTAATCGTG2200E A L E Q R K V K P P F T K C F S F V N R732AAGAGTTGTCCTGCGGCGCGCCACCTGCCAAGGAGGATTCTTTGGTAATCGTG2300E F K S M A A A P C Q T *744AGGGCCAAAGGTGGAAGGTAAAAAAAAAAAAAAAAAAAGGAAAGGCAAAGGCTGAAATGCAGAGGATTCTTAGGAAA2500ACTGCCAAAAGATCTAAAGGAAGATATTACATGGGAGAGTTGTAGGAGAATTCTATATTTAAGGTATATTTT2600TTGCAAAAGATTCTAATGTGAGAAGATATTAAAGGAGAAATTATAGAGGAAGATTTAAATTTCAATATTTAATTTTAAAGTCAAAGGAAGAAGAAGAAAAAAAA	ĸ	L	D	N	I	L	L	D	S	Е	G	H	С	K	I	Α	D	F	G	M	552
CKEGIRDNITTTTTFCGTPDYTGCACCACAGAGATTCTTAAGAGATGGCAGTATTGGGCCACGATTAGTGGGGGCGCACTATGGGCATGACTAGTGGCAGGACTACCAGTGGCAGGACAGCCACCATTGAGGCCTGATAATGAAGAAG1960GVLMYELDYGAVDWMAG1960GVLMYEMMAGQPFFAADNED612ATCTCTTGAGTCATCCTGCATCGCATGCAGAAGAGAGAGCGTCCGGGTGGGCTTGGGCTTCCTAAAGGAAGG	GTZ	AAG	GAA	.GGC2	ATC	AGG	GAT	AATZ	ATT	ACA	ACA	ACC	ACC	TTC	TGT	GGA	ACA	CCC	GAT	TACA	1840
TTGCACCAGAGATTCTTAAAGAGTTGGATTATGTGCCAGTGTTGATTGGTGGCACTAG1900I A P E I L K E L D Y G A S V D W W A I592CAGTTCTATGTAGAATGATGCCAGCAGCAGCACCATTGGAGCGATAATGAAGAGG1960G V L M Y E M M A G Q P P F E A D N E D612ATCTCTTTGAGCATCCAGCATGAAGAAGATTTGTATCCAGTGGGCTTCAAAGGAGA2020D L F E S I L H E V L Y V W L S K E632CAGTTCTATATCTAAAGGATTTAGACAAAGGAACTCCACACGCGGTTGGCGCGGTG2080A V S I L K G F M T K E P S K R L G C V652CAGAGCGAGGAGGAGAATTGGCAATTCGTAACCACAATTCTTCCGAGGATAGACTGG2140A G G E L A I R N H K F F R E I D W672AGGCCCTTGAGCAGCGCAGAGTTAAGCACCACTTTACAACGATAAAAGGAGCTAAGG2200E A L E Q R K V K P P F T P K I K G R K692ATACAGTCAACTTTGCTGCTATCAACCAAGAGGAGGAACTCTCACCTTATTATAG2260D T V N F D A E F T K E E P T L T F I N712AAGAAGTTGTCGTGCTATCAACCAAGACGAGGTTAAGCAGAACACCACACCACATTAA2380E F K S M A A A A P C Q T *744AGTGCTAAAGTTCTAACGGAGAAATTGATGGGAAATTAACTAGGAGAAGAAGAATTTAATTCAATTTT2560CATTGAAAAGATTCTAATGTGGAAAATAATGAGGAAGATTCTAAGGAAGAGTTCTTAAGGAAAGATTCTAATTTT2680GGAAGATACAAAGATTCTAATGTTGTTGTGTCTGTGAATAACAAGAAGATTCTAATGTTAAGAGGAAGATTCTAATGTTAAGAGAAGATTCTAATGTTGAAAGAAGATTTAAAGTAACACACTACAAGAAGATTCTAATGTTGTTGTTCTTATATAAGTTACAAGGAAGAATTTAAAGTAAGAAGATTTAAAGTTACAAGGAAGATTTAAAGAAGAAGATTATAATACTTCTAATGTTAGGAAAAGATATTAACTAGGAAAGAAGATTATAAGGAAGAAGAAGAAGAAGAAGAA	С	ĸ	Е	G	I	R	D	N	I	Т	Т	Т	Т	F	С	G	Т	Р	D	Y	572
IAPILKELDYGASVDWWAI592GAGTTCCATGATGAAAGAGTGGCAGGCAGGCACCACTTTGAGGCTGCATAATGAAAGGI9601960612612ATCTCTTTGAGGTCCATCCTGCAGAGAAGGAAGTTTTTATACCAATGGGCTGGCT	TTC	GCA	CCA	GAG	ATT	CTTZ	AAA	GAG.	ΓTG	GAT	TAT	GGT	GCC	AGT	GTT	GAT	'TGO	TGG	GCA	CTAG	1900
GAGTTCTCATGTATGAAATGATGGCAGGACAGCACCACTTTGAGGCTGATAATGAAGAGA1960G V L M Y E M M A G Q P P F E A D N E D612ATCTCTTTGAGTCCTCGCATGAAGAAGTTTGTATCCAGTGTGGCTTTCAAAGGAAG2020D L F E S I L H E E V L Y V W L S K E632CAGTTTCTATACTGAAAGGGTTTATGACAAAGGAACCATCCAAGCGGTGGGCTGGGCTGG2080A V S I L K G F M T K E P S K R L G C V652CAGAGCGAGGAGGAGATTGGCAATTCGTAACCACAAATTCTTCCGAGAGATAGACTGGG2140A E R G G E L A I R N H K F F R E I D VAGGCCCTTGAGCAGCGCAAGTTAAACCACCATTTACACCAAGATAAAAGGACGTAAGGAGGCCCTTGAGCAGCGCAAAGTTAAACCACCATTTACCACGAAGATCACCCTATATAAAGGACGTAAGG2200E A L E Q R K V K P P F T P K I K G R K692ATACAGTCAACTTTGATGCAGAATTTACCAAGGAAGGCCAACTCCTCACCTTTATTATG2260D T V N F D A E F T K E E P T L T F I N712AAGAAGTTGTCCGTGCTATCAACCAAGGAGGAGGAGGCCAACTCCTCAGCACAGTACAA2320E E V V R A I N Q D E F R G F S F V N R732AAGTGCTAAAGTCAGCGAGGAAAAAAATAATGAGGAACTTATATGAGGAAGTTCTTAGGGA2440AGGAGGAGAGAAGAAGGAAGAAAAAATAATGAGGAACTATATGAGAAGGATTCTTAGGGA2500ACTGCAAAAGGTTGAAGGAAGGAAGAATTTACATGGGAAGTGTAAGGCGATATGGAATAGAA2600GAAGATCTAAAAGGAAGGAAGAATTTACATGGGAAGTGTAAGGAAGATTTCAATTTT2620CTTGCAAAAGATTCAAAGGAAGATCTTATAGGAAAGAATATTACAGGAAGATTCTATAGGAAAGATTTTATATATTATAGGAAGATTTTATATATAGTGTTTTTT	I	Α	Р	Е	I	L	к	Е	L	D	Y	G	Α	S	v	D	W	W	Α	L	592
GVLMYEMMAGQPPFEADNED2020DLFSILHEVLYPVWLSKE632CAGTTCTATATCGAAAGGATTTATACACAAAGGAACCATCCAAAGGGTGGGCTGGGCTGGGCTGGGCTGGGCTGGACCAGAGAAGGGAATGGCAAATGGCAAATGCAAAAGGAAGACCAACACACAC	GA	TT	CTC	ATG	TAT	GAA	ATG	ATG	GCA	GGA	CAG	CCA	CCA	TTT	'GAG	GCT	'GAT	'AAT	GAA	GATG	1960
ATCTCTTTGAGTCCATCCTGCATGAAGAGAGTTTTGTATCCAGTGTGGCTTTCAAAGGAAG2020DLFESILHEVLYPVWLSKECAGTTTCTATACTGAAAGGGTTTATGACAAAGGAACCATCCAAGGCGTGGGCTGGGCTGGGCTGGGCGGCGGAGGAGAATTGGCAATTCGTAACCACAAATTCTTCCGGAGAGAAGACTGGG2140ALKGFMKKERLDM672CAGGCCCTTGAGCAGCGCAAAGTTAACCACCACTATTACACCTAAGATAAAAGGACGTAAGG2200EALEQKVKPFTPKIKGR692AGGCCCTTGAGCGACAGGTATGACACAAGAGAGGACCTAAGGCCAACTCTCACCTTTATTAAGG2260EXNKPPFTN712AGGAGAGTGTGTCGTGCTATCGACCAAGGAAGGAGAGAGA	G	v	L	М	Y	Е	М	М	Α	G	Q	Р	Р	F	Е	Α	D	N	Е	D	612
DLFESILHEVLYPVWLSKEAVSILKGFMTKEPSKRLGCGGG	ATC	CTC	TTT	GAG	LCC3	ATC	CTG	CAT	GAA	GAA	GTT	TTG	TAT	CCA	GTG	TGG	CTT	TCA	AAG	GAAG	2020
CAGTTTCTATACTGAAAGGGTTTATGACAAAGGAACCATCCAAGCGGTTGGGCTGCGTTG2080A V S I L K G F M T K E P S K R L G C V652CAGAGCGAGGAGAGAATTGGCAATTGCTAACCACAAATTCTCCCGAGGATAGACTGGG2140A E R G G E L A I R N H K F F R E I D W672AGGCCCTTGAGCAGCGCAAAGTTAAACCACCATTTACACCTAAGATAAAAGGACGTAAGG2200E A L E Q R K V K P P F T P K I K G R K692ATACAGTCAACTTTGATGCAGAATTACCAAGGAGAGGAG	D	L	F	Е	S	I	L	H	Ε	Е	v	L	Y	Р	v	W	L	S	K	E	632
AVSILKGFMTKEPSKRLGCVCAGAGCGAGGAGGAGAATTGGCAATTCGTAACCACAAATTCTTCCGAGAGAGA	CAC	GT T'	ТСТ	ATA	CTG	AAA	GGG	TTTZ	ATG	ACA	AAG	GAA	CCA	TCC	AAG	CGG	TTG	GGC	TGC	GTTG	2080
CAGAGCGAGGAGGAGAATTGGCAATTCGTAACCACAAATTCTTCCGAGAGATAGACTGGG2140A E R G G E L A I R N H K F F R E I D Ø672AGGCCCTTGAGCAGCGCAAAGTTAAACCACCATTAACACCTAAGATAAAAGGACGTAAGG2200E A L E Q R K V K P P F T P K I K G R K692ATACAGTCAACTTGGAGCAGCATTACACCAAGGAGGAGCCAACTCTCACCTTTATAATG2260D T V N F D A E F T K E E P T L T F I N712AAGAAGTTGTCGTGCTATCAACCAAGACGAGTTTAGAGGAGATTTCTTTC	Α	v	S	I	L	K	G	F	М	т	К	Е	Р	S	K	R	L	G	С	V	652
AERGGELAIRNHKFREIDWAGGCCCTTGAGCAGCGCAAAGTTAAACCACCACTTTACACCTAAGATAAAAGGACGTAAGG2200EALEQRKVKPPFTPKIKGR692ATACAGTCAACTTTGATGCAGAATTTACCAAGGAGAGCCAACTCACCTCACCTTATATAAGGQAEFTNR712AAGAAGTTGTCGTGCTATCAACCAAGACGAGGTTAGAGGAGTTTTCTTCGTTAATCGTG2320QA732AAGTAGTCATGGCGGCTGCACCATGTCAAACCTAAGGGAGTTCTTTCGTTAATCGTG2380732AATTTAAGTCCATGGCGGCTGCACCATGTCAAACCTAAGGTGCAAATGCAGCACAGTACAA2380EFKSMAAPCQT*744AGTGCTAAAGTCTCCCCAGGAAACTTGATGTGCAGACCTGAGAAAGGATTCTTATGGGAA2500ACTGCAAAAGAGTTGTAAATACTCTTATAGAGGACAACTGAGAAGGATTCTTATGGTATTAT2500ACTGCAAAAGAGTGTGAAGGAAAGATATTACAAGGCACAACTGAGAAAGGATGTTTTTTTT	CAC	GAG	CGA	GGA	GGA	GAA	TTG	GCA	ATT	CGT	AAC	CAC	AAA	TTC	TTC	CGA	GAG	ATA	GAC	TGGG	2140
AGGCCCTTGAGCAGCGCAAAGTTAAACCACCATTTACACCTAAGATAAAAGGACGTAAGG2200EALEQRKVKPPFTPKIKGRK692ATACAGTCAACTTTGATGCAGAATTTACCAAGGAAGAGCCAACTCTCACCTTTATTAATG2260DTVNFDAEFTKEPTLTFIN712AAGAAGTTGTCGTGCTATCAACCAAGACGAGTTTAGAGGATTTCTTTC	Α	E	R	G	G	Е	L	Α	I	R	N	н	K	F	F	R	Е	I	D	W	672
EALEQRKVKPFTPKIKGRKATACAGTCAACTTTGATGCAGAATTTACCAAGGAAGTAGGACGAACTCTCACCTTTATTAATG2260DTVNFDAEFTKEPTLTFIN712AAGAAGTTGTCGTGCTATCAACCAAGACGAGGAGGAGGAGGAGTTTTCTTCGTTAATCGTG2320EEVVRAINQDEFRGFXNR732AATTTAAGTCCATGGCGGGCGGCGCACCATGTCAAACCTAAGTGGCAGAATGGCAGAGAGAAGGAAG	AG	GCC	CTT	GAG	CAG	CGCI	AAA	GTT	AAA	CCA	CCA	TTT	ACA	CCT	AAG	ATA	AAA	GGA	CGT	'AAGG	2200
ATACAGTCAACTTTGATGCAGAATTTACCAAGGAAGAGCCAACTCTCACCTTTATTAATG2260D T V N F D A E F T K E E P T L T F I N712AAGAAGTTGTCGTGCTATCAACCAAGACGAGTTTAGAGGATTTTCTTTC	E	Α	L	Е	Q	R	к	v	Κ	Р	Р	F	т	Р	к	I	K	G	R	K	692
DTVNFDAEFTKEPTLTFINAAGAAGTTGTTCGTGCTATCAACCAAGACGAGGTTAGAGGAGTTTTCTTTC	AT/	ACA	GTC	AAC	TTT(GAT	GCA	GAA	TTT	ACC	AAG	GAA	GAG	CCA	ACT	CTC	ACC	TTT	ATT	'AATG	2260
AAGAAGTTGTTCGTGCTATCAACCAAGACCAAGACGAGTTTAGAGGATTTTCTTTC	D	Т	v	N	F	D	Α	Е	F	Т	K	Е	Е	Р	т	L	Т	F	I	N	712
EVVRAINQDEFRGFSFVNR732AATTTAAGTCCATGGCGGCGCGCACCATGTCAAACCTAAGTGCCAAATGCAGCACAGTACAA2380238023802440AGTGCTAAAGTCTCCCCAGGAAACTTGATGTGCAGACTATATGAGAGGAGGATTCTTTAGGGAA244025002500ACTGCACAAAGAGTTGAATGTCTCAACAAGCACAACTGAGAATGGCTGTATTGTGATTAA25602640CATTGTATATCTAATAATACTCTTTATGATGGATGGATTTTTTCATTATTATATGTGTGATTAA26802640AGAAGATTCTAATGTGGGAAGATCTCTGAATTTATAAGTTTATATATGTGTTTTTTAAATAT26802680AGATATATTTCATGAGGAAAGATATTACATGGGAGAGAGTGTAGAGAGAATTTTTTTAAA27402740TTGAAGATAGTATTTATATGTGTTGTTCTGTAAATGCATGATGAGAGAGA	AA	GAA	GTT	GTT(CGT	GCTZ	ATC	AAC	CAA	GAC	GAG	TTT	AGA	GGA	TTT	TCT	TTC	GTT	AAT	CGTG	2320
AATTTAAGTCCATGGCGGCTGCACCATGTCAAACCTAAGTGCAAATGCAGCACAGTACAA2380EFKSMAAAPCQT*744AGTGCTAAAGTCTCCCCAGGAAACTTGATGTGCAGACTATATGAGAGAGA	E	E	v	v	R	Α	I	N	Q	D	Е	F	R	G	F	S	F	v	N	R	732
EFKSMAAPCQT744AGTGCTAAAGTCTCCCCAGGAAACTTGATGTGCAGAGCTATATGAGAGGAGTTCTTTAGGAA2440AGAAGGCAGATGAAGGAAGGAAAAAAAAAAAAAAAAAAA	AA	CT T.	AAG	TCC	ATG	GCG	GCT	GCA	CCA	TGT	CAA	ACC	TAA	GTG	CAA	ATG	CAG	CAC	AGI	ACAA	2380
AGTGCTAAAGTCTCCCCAGGAAACTTGATGTGCAGACTATATGAGAGGATTCTTTAGGGA2440AGAAGGCAGATGAAGGAAGGAAGAAAAAAATAATGAGTAATAGTAGGAAAGATTTCAATTTG2500ACTGCACAAAGAGTTGAATGTCTCAACAAGCACAACTGAGAATGGCTGTATTGTGATTAA2560CATTGTATATCTAATAATACTCTTTATGATGGATGTGTTTTCATTATTATATAGTTTTTT2620TTGCAAAAGATTCTAATGGGAAGATCTCTGAATTTATAAGTTACAATATTTTAAAATAT2680AGATATATTCATGATGGAAGATCTCTGAATTTACAAGTAGAGAGATTTTTTAAAATAT2680GGAAGATACAAAAGTTCGTAAAGGATATTACATGGGAGAGTTGTAGAGAGATTTTTTAAA2740TTGAAGATAGTATTTATATAGTGTTGTTCTGTAAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGATTCTAATGTTTATTTT2860TTACTGACTTCTTTCAATGTATTGTAGGGAAAATTGCCAACTTTTGAACTTCCAGTTCT2920GGAGGTTTAAAGGATATATATTGCATTTTAATGCCAGTAAGCACTTACTATAGATAAACAA2980CCTATGAGGCTCATGATTTAGCACATTTAAAGAAAGAAAAGGAAGTGAAATTGAAAGT3040AAGAAGTGCACAAAGATAACTAGCATCAGATATATTTAATGTCTGGCAGCGGAAAGAAA	Е	F	ĸ	s	м	А	А	A	P	С	Q	т	*								744
AGAAGGCAGATGAAGGAAGGAAAAAAATAATGAGTAATAGTAGGAAAGATTTCAATTTTG2500ACTGCACAAAGAGTTGAATGTCTCAACAAGCACAACTGAGAATGGCTGTATTGTGATTAA2560CATTGTATATCTAATAATACTCTTTATGATGGATGGATTTTTTCATTATTATTATAGTTTTTT2620TTGCAAAAGATTCTAATGTGGAAGATCTCTGAATTTATAAGTTACAATATTTTAAAATAT2680AGATATATTTCATGATGGAAAGATATTACATGGGAGAGTTGTAGAGAGATTTTTTTAAA2740TTGAAGATAGTATTATATATGTGTTGTTGTTCGTAAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGCATGATGCATTTGGAATATGATA2920GGAAGGTTTAAAGGATATATATTGCATTTTAATGCCAGATAGCACTTACTATAGATAATCAA2980CCTATGAGGCTCATGATTTAGCACATTTAAAGGAAAGGA	AG	[GC	TAA	AGT	CTC	CCCZ	AGG	AAA	CTT	GAT	GTG	CAG	ACT	ATA	TGA	GAG	GAI	TCT	TTA	GGGA	2440
ACTGCACAAAGAGTTGAATGTCTCAACAAGCAACTGAGAATGGCTGTATTGTGATTAA2560CATTGTATATCTAATAATACTCTTTATGATGGATGGATTTTTTCATTATTATATGTTTTTT2620TTGCAAAAGATTCTAATGTGGAAGATCTCTGAATTTATAAGTTACAATATTTTAAAGTTTTTAAATAT2680AGATATATTTCATGATGGAAAGATATTACATGGGAGAGTTGTAGAGAGATTTTTTTAAATAT2740TTGAAGATAGTATTATATAGTGTTGTTCTGTAAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGATTCTAATGTTTATTTTT2860TTACTGACTTCTTTCAATGTATTGTTAGGGAAAATTGCCAACTTTTGAACTTCCAGTTCT2920GGAGGTTTAAAGGATATATATTGCATTTTAATGCAGTAAGCACTTACTATAGATAATCAA2980CCTATGAGGCTCATGATTGGCACATTGCCAGATATGGTACCAGATGATAGCAAATTGAAAGT3040AAGAAGTGCACAAAGATAACTAGCATCAGATATATTTAATGTCTGGCAGCGGAAAGAAA	AGA	AG	GCA	GAT(GAA	GGA	AGG	AAA	AAA	ATA	ATG	AGT	AAT	AGT	AGG	AAA	GAT	TTC	AAT	TTTG	2500
CATTGTATATCTAATAATACTCTTTATGATGGATTTTTTCATTATTATTATAGTTTTTT2620TTGCAAAAGATTCTAATGTGGAAGATCTCTGAATTTATAAGTTACAATATTTTTAAATAT2680AGATATATTTCATGATGGAAAGATATTACATGGGAGAGGTTGTAGAGAGATTTTTTTAAA2740TTGAAGATAGTATTTATATATGTGTTGTTCTGTAAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGATTCTAATGTTTATTTTT2860GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAAAGA	AC	[GC	ACA	AAG	AGT	TGA	ATG	TCT	CAA	CAA	GCA	CAA	CTG	AGA	ATG	GCT	GTA	TTG	TGA	TTAA	2560
TTGCAAAAGATTCTAATGTGGAAGATCTCTGAATTTATAAGTTACAATATTTTTAAATAT2680AGATATATTTCATGATGGAAAGATATTACATGGGAGAGTTGTAGAGAGATTTTTTTAAA2740TTGAAGATAGTATTTATATATGTGTTGTTCTGTAAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGATTCTAATGTTTATTTA	CAT	ΓTG	TAT	ATC	TAA'	TAA	TAC'	TCT	ГТА	TGA	TGG	ATT	TTT	TCA	TTA	TTA	TTA	TAG	TTT	TTTT	2620
AGATATATTTCATGATGGAAAGATATTACATGGGAGAGTTGTAGAGAGATTTTTTTT	TTC	GCA	AAA	GAT	ГСТИ	AAT	GTG	GAA	GAT	CTC	TGA	ATT	TAT	AAG	TTA	CAA	TAT	TTT	TAA	ATAT	2680
TTGAAGATAGTATTTATATAGTGTTGTTGTTGTGAAATGCATGATGCATTTGGAATATGATA2800GGAAGATACAAAAGTTCGTAAAGAATTTTACAAAGAATGATTCTAATGTTTATTTA	AGA	ATA	TAT	TTC	ATG	ATG	GAA	AGA	ΓAT	TAC	ATG	GGA	GAG	TTG	TAG	AGA	GAT	TTT	TTT	TAAA	2740
GGAAGATACAAAAGTTCGTAAAGAATTTTTACAAAGAATGATTCTAATGTTTATTTA	TTC	GAA	GAT	AGT	ATT	TAT	ATA	GT G.	ΓTG	TTC	TGT	AAA	TGC	ATG	ATG	CAT	TTG	GAA	TAT	GATA	2800
TTACTGACTTCTTTCAATGTATTGTTAGGGAAAATTGCCAACTTTTGAACTTCCAGTTCT2920GGAGGTTTAAAGGATATATATTGCATTTTAATGCAGTAAGCACTTACTATAGATAATCAA2980CCTATGAGGCTCATGATTTAGCACATTTAAAGAAAGAAAG	GGZ	AAG.	ATA	CAA	AAG	TTC	GTA	AAG	AAT	TTT	ACA	AAG	AAT	GAT	TCT	AAT	GTT	TAT	TTA	TTTT	2860
GGAGGTTTAAAGGATATATATATTGCATTTTAATGCAGTAAGCACTTACTATAGATAATCAA2980CCTATGAGGCTCATGATTTAGCACATTTAAAGAAAGAGAAAAGGAAGTGAAATTGAAAGT3040TATAACCTTTGACTAAAATTGCTTGTCCAGTTATGGTACCAGATGATTCCAAAGGCTAGT3100AAGAAGTGCACAAAGATAACTAGCATCAGATATATTTAATGTCTGGCAGCGGAAAGAAA	TΤΖ	ACT	GAC	TTC	TTT(CAA	TGT.	ATTO	GTT	AGG	GAA	AAT	TGC	CAA	CTT	TTG	AAC	TTC	CAG	TTCT	2920
CCTATGAGGCTCATGATTTAGCACATTTAAAGAAAGAAAAGGAAAGGAAGTGAAATTGAAAGT3040TATAACCTTTGACTAAAATTGCTTGTCCAGTTATGGTACCAGATGATTCCAAAGGCTAGT3100AAGAAGTGCACAAAGATAACTAGCATCAGATATATTTAATGTCTGGCAGCGGAAAGAAA	GGZ	4GG'	TTT	AAA	GGA'	TAT	ATA	TTG	CAT	TTT	AAT	GCA	GTA	AGC	ACT	TAC	TAT	'AGA	TAA	TCAA	2980
TATAACCTTTGACTAAAATTGCTTGTCCAGTTATGGTACCAGATGATTCCAAAGGCTAGT3100AAGAAGTGCACAAAGATAACTAGCATCAGATATATTTAATGTCTGGCAGCGGAAAGAAA	CC	TAT	GAG	GCT	CAT	GAT	TTA	GCA	CAT	TTA	AAG	AAA	GAG	AAA	AGG	AAG	TGA	AAT	TGA	AAGT	3040
AAGAAGTGCACAAAGATAACTAGCATCAGATATATTTAATGTCTGGCAGCGGAAAGAAA	TAT	[AA]	CCT	TTG	ACT	AAA	ATT	GCT	IGT	CCA	GTT	ATG	GTA	CCA	GAT	GAT	TCC	AAA	GGC	TAGT	3100
TTGGATGCAGGTATGGGGGGAGACCAGATGTAGGACCATACAACTCATATTAACTTTTGGC3220CCTCTTTTGTATTGTTTTTAGATCACTCAGTCACATAAACATACACTCATGTACACTCAC3280ATGCTATAACACACTCACAATCAAACAAGCGCATAAAAAAAA	AA	GAA	GTG	CAC	AAA	GAT/	AAC	TAG	CAT	CAG	ATA	TAT	TTA	ATG	TCT	GGC	AGC	GGA	AAG	AAAC	3160
CCTCTTTTGTATTGTTTTTAGATCACTCAGTCACATAAACATACACTCATGTACACTCAC ATGCTATAACACACTCACAATCAAACAAGCGCATAAA AATA TTTTATATTCGTGAAGTGG 3340 TGGAAGCCCTCCTCGTATACTTATGGTGCAATATGACAAAAAAAA	TTC	GGA	TGC	AGG	TAT	GGG	GGA	GAC	CAG	ATG	TAG	GAC	CAT	ACA	ACT	CAT	TTA	AAC	TTT	TGGC	3220
ATGCTATAACACACTCACAATCAAACAAGCGCATAAAAAAAA	CC		mmm	CILIA															a a		3280
TGGAAGCCCTCCTCGTATACTTATGGTGCAATATGACAAAAAAAA			TTI	GTA.	ΓTG	$\Gamma_{1}\Gamma_{1}$	TTA	GAT	CAC	TCA	GTC	ACA	TAA	ACA	'T'AC	AC1	'CA'I	'G'I'A	CAU	TCAU	J200
АААА 3404	ATC	GCT	ттт Ата	ACA(CAC	TCA	TTA CAA'	GAT(TCA)	CAC AAC	TCA AAG	GTC CGC	АСА АТА	TAA AA A	ACA ATA	TAC.	AC'I TAT	'CA'I T'TA'	'G'I'A 'CGT	GAC GAA	GTGG	3340
	ATC TGC	GCT GCT	ATA GCC	GTA: ACA(CTC(L'TG CAC' CTC(TTT. TCA(GTA	ΓΤΑ CAA' ΓΑC'	GAT(TCA TTA'	CAC AAC FGG	TCA AAG TGC	GTC CGC AAT	ACA ATA ATG	TAA AA A ACA	ACA ATA AAA	TTT TTT AAA	TAT AAA	'CA'I 'AT'I AAA	'G'I'A 'CGT AAA	GAA AAA	GTGG AAAA	3340 3400

B

Figure 3.28 (A) The full-length cDNA and deduced protein sequences of *PmPKC*. Start and stop codons are illustrated in boldfaced and underlined. The *N*-linked-glycosylation sites and domain proteins are highlighted and underlined. The poly A additional signal (AATTAA) is boldfaced. (B) Diagram illustrating the full length cDNA of *protein kinase C* of *P. monodon*. The C1, C2, S_TKc domain and S_TKx domain were found in this transcript. The scale bar is 50 amino acids in length.

3.3.5. Cyclic AMP-regulated protein like protein

A primer was designed from an EST clone no. HPa-N-N01-0641-LF which significantly matched *cyclic AMP regulated protein-like protein* of *Marsupenaeus japonicus* (*E*-value = 1e-54). RACE-PCR was carried out. An amplified fragment of approximately 1100 bp was obtained from the primary 3['] RACE-PCR (Figure 3.29). This fragment was cloned and sequenced. Nucleotide sequences of the original EST and 3' RACE-PCR were assembled (Figure 3.30).

Figure 3.29 The primary 3' RACE-PCR product of *cyclic AMP-regulated protein like protein.* An arrowhead indicates a RACE-PCR product that was cloned and sequenced. Lanes M is a 100 bp DNA ladder.

A

CCTCTCTCGCTCGCTCTCCCTCTCTCGCTCGCTCTCCCCTCTCTCTCTCTCTGTGCCTCT CGTTGGCTCGAAGCTCTCCCCCGGTCTCCTCCGCTGATCCGTCTCGGCTTCGGTTCGGATAAAA TCACGGTG**ATG**GCTAGTACCCAGATCGACCGGGAAGGCCTACACAGCGCTTATAGTGATGTCAGGGACG

3'RACE

B

3'RACE

TGTTCAAGTATGAGGGCAGCCAGGTGACTGTGGCGGCCAAGGGACAGACCTTTGATGACTTCAAGGTGC AGTTTGGGGATGATGAGCGTGCGTTCGCTTACCTGCGCATCCAGACTGGGGATGAGATGAGCAAGAGAT ${\tt CGAAGTTCCTGATGCTAACTTGGGTGGGCACCGAGGTCTCGCCCATCAAGAAAGCGAAAATGTCCACCG}$ ATAAGGCCCTCGTCAAAGAGGTTCTTGCAAACTTTGCAGTGGAGTTGACAATAGAAAGCGCTCACGAAC TGGACCACGAAGCCTTTTTACAAGAGCTCGTGAAAGCTGGTGGAGCCAACTATGGCACAGGATTCCGCG ${\tt CTGTGTTCTCTCAAAAAATTGCTAATGTCAGGGAATGGAACAGAATCGTTTTAATAAATGAAATACAAT$ ${\tt CAAATTATATAAAGTGCTTTGTGGGTCCATGATCAAAATATTGCAGGTACTTTTGTTAATATTCCCATA}$ TTTTTATTTATTTTTGATTATTATCTTTTGGGCAGGAGAGAATTATCATTATTTGGAACTACACTGAA ${\tt CTAGTATTAACCTAGAATTAAGCAGTGCCATCAGTTATTCAATTTTTTTCTGTAAATCCTCTATTTTTA$ GCATTACAATTGATAGACTGGTCATATTTAATTCTACAAAAAATACAATATAATCAGATATAGATTT TAAATAGAAGTATCATTCTTTTCTGGTTTTTAAAATTTTTTGTATTGTTTTTAGGCCATACACAATCTTGG AAAAAA

Figure 3.30 Nucleotide sequences of an original EST (A) and 3' RACE-PCR (B). Start and stop codons are illustrated in boldfaced and underlined. 3' RACE-PCR primer for isolation of the full-length cDNA of this gene is underlined.

The full-length cDNA of *P. monodon cyclic AMP-regulated protein-like protein* (*PmcAMP-RPL*) was 1272 bp in length consisting an ORF of 435 bp corresponding to a polypeptide of 144 amino acids and 5' and 3' UTRs of 146 and 663 bp (excluding the poly A tail) (Figure 3.31A). The closest similarity of this transcript was *cyclic AMP-regulated protein like protein* of *Marsupenaeus japonicus* (*E*-value = 3e-95).

The calculated p/ and MW of the deduced cyclic AMP regulated protein like protein was 5.39 and 16.02 kDa, respectively. The ADF domain was found at the amino acid position 9-131 (1.63e-15) of the deduced protein (Figure 3.31B).

94

А																				
CC	TCT	CTC	GCT	CGC	TCT	CCC	TCT	CTC	GCT	CGC	TCT	CCC	TCT	CTC	GCT	CTC	CCT	CTC	TCTC	60
ΤG	TGC	CTC	TCG	TTG	GCT	CGA	AGC	TCT	CCC	TCG	GTC	TCT	CCT	'CGC	TGA	TCC	GTC	TCG	TCTC	120
GG	CTT	CGT	TCG	GAT	AAA	ATC	ACG	GTG	ATG	GCT	AGT	ACC	CAG	ATC	GAC	CGG	GAA	GGC	CTAC	180
									м	А	s	т	Q	I	D	R	Е	G	L	11
AC	AGC	GCT	TAT	AGT	GAT	GTC	AGG	GAC	GCA	AAA	GCG	ACC	GTC	AAT	'TGG	GCC	GTG	TTC	AAGT	240
н	s	Α	Y	s	D	v	R	D	D	к	s	D	v	N	W	Α	v	F	K	31
АT	GAG	GGC	AGC	CAG	GT G.	ACT	GTG	GCG	GCC.	AAG	GGA	CAG	ACC	TTT	'GAT	GAC	TTC	AAG	GTGC	300
Y	Е	G	S	Q	v	т	v	Α	Α	K	G	Q	т	F	D	D	F	к	A	51
AG	TTT	'GGG	GAT	GAT	GAG	CGT	GCG	TTC	GCT	TAC	CTG	CGC	ATC	CAG	ACT	GGG	GAT	GAG	ATGA	360
Q	F	G	D	D	Е	R	Α	F	Α	Y	L	R	I	Q	т	G	D	Е	м	71
GC	AAG	AGA	TCG	AAG	TTC	CTG	ATG	CTA	ACT	TGG	GTG	GGC	ACC	GAG	GTC	TCG	CCC	ATC	AAGA	420
s	к	R	S	к	F	L	м	L	т	W	v	G	т	Е	v	S	Р	I	K	91
AA	.GCG	AAA	ATG	TCC	ACC	GAT	AAG	GCC	CTC	GTC	AAA	GAG	GTT	CTT	'GCA	AAC	TTT	GCA	GTGG	480
к	Α	K	м	S	т	D	к	Α	L	v	к	Е	v	L	Α	N	F	Α	v	111
AG	TTG	ACA	ATA	GAA	AGC	GCT	CAC	GAA	CTG	GAC	CAC	GAA	GCC	TTT	TTA	CAA	GAG	CTC	GTGA	540
E	L	т	I	Е	S	Α	н	E	L	D	н	Е	Α	F	L	Q	E	L	v	131
E AA	L .GCT	T 'GGT	I GGA	E GCC	S AAC	A TAT	H GGC	E ACA	L IGGA	D TTC	H CGC	E GAT	A TAG	F GCT	L TGT	Q GGG	E STGC	L TCG	V CGTT	131 600
E AA K	L .GCT A	T GGT G	I GGA G	E GCC A	S AAC N	A TAT Y	H GGC G	E ACA T	L IGGA G	D TTC F	H CGC R	E GAT D	A TAG *	F GCT	L TGT	Q GGG	E ftgc	L TCG	V CGTT	131 600 144
E AA K TO	L .GCT A .GCA	T GGT G TTT	I GGA G 'AGA'	E GCC A TAT	S AAC N GAT	A TAT Y AGG	H GGC G ACA	E ACA T	L IGGA G GAAA	D TTC F TGT.	H CGC R AAT	E GAT D CAA	A TAG * TCT	F GCT GGC	L TGT TCT	Q GGGG	E TGC TTC	L TCG TCT	V CGTT TCAA	131 600 144 660
E AA K TO AA	L GCT A GCA ATT	T GGT G .TTT GCT	I GGA G 'AGA'	E GCC A TAT GTC	S AAC N GAT	A TAT Y AGG GAA	H GGC G ACA	E ACA T ACTG AAC	L IGGA G AAA AGA	D TTC F TGT. ATC	H CGC R AAT GTT	E GAT D CAA TTA	A TAG * TCT ATA	F GCT GGC	L TGT TCT GAA	Q GGG GTG ATA	E TGC TTC CAA	L TCG TCT TCT	V CGTT TCAA AATT	131 600 144 660 720
E AA K TC AA AI	L GCT A GCA ATT ATA	T GGT G TTT GCT AAG	I GGA AGA AGA AAT	E GCC A TAT GTC TTT	S AAC N GAT AGG	A TAT Y AGG GAA GGT	H GGC G ACA TGG CCA	E ACA T CTG AAC	L GGA G GAAA CAGA	D TTC F TGT ATC AAA	H CGC R AAT GTT	E GAT D CAA TTA TGC	A TAG * TCT ATA AGG	F GCT GGC AAT TAC	L TGT TCT GAA	Q GGGG GTG ATA	E TGC TTC CAA	L TCG TCT TCA TCA	V CGTT TCAA AATT TCCC	131 600 144 660 720 780
E AA K TO AA AI AI	L GCT GCA GCA ATT ATT	T GGT G TTT GCT AAG TTT	I GGA AGA AGA AAT TGC	E GCC A TAT GTC TTT TAT	S AAC N GAT AGG GTG	A TAT Y AGG GAA GGT TTG	H GGC G ACA TGC CCA ATT	E ACA T ACTG AAC AAC ATGA	L GGA G AAAA AGA ATCA	D TTC F TGT. ATC AAA	H CGC R AAT GTT TAT	E GAT D CAA TTA TGC GCA	A TAG * TCT ATA AGG .GGA	F GCT GGC AAT TAC	L TGT CTCT GAA CTTT GAAT	Q GGG GTG ATA TGT	E STGC STTC CAA TAA CAT	L TCG TCT TCA TCA TAT	V CGTT TCAA AATT TCCC TTGG	<pre>131 600 144 660 720 780 840</pre>
E AA TO AA AI AI AA	L GCT GCA GCA ATT ATT ATT CTA	T GGT G TTT GCT AAG TTT CAC	I GGA AGA AAT TGC ATT	E GCC TAT GTC TTT TAT ATT	S AAC GAT GAT GTG GTG TTT TTC	A TAT Y AGG GAA GGT TTG ATA	H GGC G ACA TGG CCA ATT GCA	E ACA T ACTG ACTG AAAC ATGA ATTT	L GGGA G GAAA GAGA AGA ATCA ATC	D TTC F TGT. ATC AAA TTT	H CGC R AAT GTT TAT TGG AGT	E GAT D CAA TTA TGC GCA TTC	A TAG * TCT ATA AGG GGA ATT	F GCT GGC AAT TAC GAG ATG	L TGT GAA TTT AAT CAT	Q GGG GTG ATA TGT TGT TAT	E JTGC JTTC CAA TAA CAT ACAT	L TCG TCT TCA TCA TAT	V TCAA AATT TCCC TTGG TTCA	131 600 144 660 720 780 840 900
E AA TO AA AI AI AI TI	L GCT GCA ATT ATT ATT CTA	T GGT G TTT GCT AAG TTT CAC	I GGA AGA AAT TGC ATT TGA	E GCC TAT GTC TTT TAT ATT AAC	S AAC GAT GAT GTG TTT TTC	A TAT Y AGG GAA GGT TTG ATA CAG	H GGC G ACA TGG CCA ATT GCA	E ACTG ACTG ACTG ATGA TGA TGA TTT ATTT	L GGGA G AAA AGA AGA ATCA ATC ATC	D TTC F TGT. ATC AAA TTT ATG. TAT.	H CGC R AAT GTT TAT TGG AGT	E GAT D CAA TTA TGC GCA GCA TTC CAT	A TAG TCT ATA AGG GGA ATT AGC	F GGC AAT TAC GAG ATG	L TGT GAA TTT AAT CAT	Q GGG ATA TGT TAT GCA AAG	E STGC STTC CAA CAA CAT CAT CAT ACA STTG	L TCG TCT TCA TCA TAT TAT	V TCAA AATT TCCC TTGG TTCA TGAA	131 600 144 660 720 780 840 900 960
E AA TC AA AI AI AI AI	L GCT GCA ATT ATT ATT CTA GAG ACA	T GGT GCT GCT AAG TTT CAC GAG	I GGGA G AGA AAT TGC TGC TTT, TGA	E GCC TAT GTC TTT TAT AAT AAC	S AAC SAAC GAT AGG TTT TTC AGA AAA	A TAT Y AGG GAA GGT TTG ATA CAG ACA	H GGC ACA TGG CCA ATT GCA GCA	E ACA T ACTG ACTG ATGA ATTT ATTT ACTG	L GGGA G GAAA CAGA TCA CATC CATC CATC CAT	D TTC F TGT. ATC ATC ATC TTT TTT TAT.	H CGC R AAT GTT TAT TGG AGT AGT	E GAT D CAA TTA TGC GCA TTC CAT ATT	A TAG * TCT ATA AGG GGA ATT AGC AAC	F GGCT GGCC AAT TAC GAG ATG CTTT	L TGT GAA TTT GAAT CAT CAA	Q GGG ATA TGT TAT GCA AAG	E STGC STTC CAA CAA CAT CAT AACA STTG	L TCG TCT TCA TCA TAT TAT TAT ACT	V TCAA AATT TCCC TTGG TTCA TGAA GCCA	131 600 144 660 720 780 840 900 960 1020
E AA TO AA AI AI AI AI TI AI	L GCT GCA ATT ATT CTA GAG ACA AGT	T GGT GCT GCT AAG TTT CAC GAG TTC TAT	I GGA AGA AAT TGC TTCA TTT ATT TCA	E GCC TAT GTC TTT TAT AAT AAC AAT	S AAC N GAT AGG TTT TTC AGA AAA TTT	A TAT Y AGG GAA GGT TTG ATA CAG ACA TTC	H GGC ACA TGG CCA ATT GCA GCA TTA TGT	E ACTG ACTG ACTG ATGA ATGA ATTT ACTG AAA	L GGAA G AAAA ATCA ATCA ATCA ATCA TTA TTA TAA	D TTC F TGT. ATC ATC ATC TTT ATG. TAT. ACT.	H CGCC R AATC GTT TAT TGG AGT AGT ATA	E GAT D CAA TTA TGC GCA TTC CAT ATT TTT	A TCT ATA AGG GGA ATT AGC AAC AGC	F GGC AAT TAC GAG ATG ATG CTA CTA	L TGT GAA TTT GAAT CAT CAA CAA CAA	Q GGG ATA TGT TAT GCA AAG ATTA	E STGC STTC CAA CAA CAT CAT AACA STTG AAGC	L TCG TCT TCA TCA TAT TAT ACT AGT AGA	V CGTT TCAA AATT TCCC TTGG TTCA TGAA GCCA CTGG	131 600 144 660 720 780 840 900 960 1020 1080
E AA K TG AA AT AT AT TT AT TC TC	L GCT GCA ATT ATT ATT CTA GAG ACA AGT ATA	T GGT GCT GCT GCT GCT GAG GAG TTC TAT TTT	I GGA AGA AAT TGC TGC TTT TGA TTT ATT ATT	E GCC TAT GTC TTT TAT AAT AAC AAA ATT TCT	S AAC AGAT AGG TTT TTC AGA AAA TTT ACA	A TAT Y AGG GAA GGT TTG ATA CAG ACA TTC AAA	H GGC ACA TGG CCA ATI GCA GCA TTA TGT AAI	E ACTG ACTG AAC TGA TGA TTT ACTG ACTG AAAA ACA	L GGGA G AAAA AGA TCA ATC ATC TTA TAA TCC ATA	D TTC F TGT. ATC AAA TTT ATG. TTT. ACT. TCT. TAT.	H CGCC R AAT GTT TAT TGG AGT AGT AGT ATT AAT	E GAT D CAA TTA TGC GCA TTC CAT TTT CAG	A TCT ATA AGG GGA ATT AGC AGC AGC	F GGCT AAT TAC GAG ATG ATG CTT CTA CTA TAG	L TGT GAA TTT GAA CAT CAA CAA CAA ACA ACA	Q GGG ATA TGT TAT GCA AAG ATTA ATT	E GTTC CAA TAA CAT CAT GAT GAT GAT	L TCG TCT TCA TAT TAT TAT ACT AGA AGA	V CGTT TCAA AATT TCCC TTGG TTCA TGAA GCCA CTGG AGTA	131 600 144 660 720 780 840 900 960 1020 1080 1140
E AA K TC AA AI AI AI AI TI AI TC TC	L GCT A GCA ATT ATA ATT CTA GAG ACA AGT ATT	TTTT GCT GCT GCT GCT GAG GAG TTC GAG TTC TAT	I GGA 'AGA' 'AAT' 'TGC 'TTT. 'TTC. 'TTC	E GCC TAT GTC TTT TAT AAT AAC AAA TCT TGG	S AAC D GAT AGG GTG TTT TTC AGA TTT ACA TTT	A TAT Y AGG GAA GGT TTG ATA CAG ACA TTC AAA TAA	H GGC ACA TGC CCA GCA GCA TTA TGT AAT	E ACA T ACTG ACTG ATGA ATTT ACTG ACTG ACA TTTT	L GGAA G AAAA AGA TCA ATCA TTA TTA TTA ATCC ATA TGT	D TTC F TGT. ATC ATC ATG. TTT ATG. TCT. TCT. ATT	H CGC R AAT GTT TAT TGG AGT AGT ATA AGT GTT	E GAT D CAA TTA TGC GCA TTC CAT TTT CAG TTT	A TCT ATA AGG GGA ATT AGC AAC AGC AGC	F GGCT GGC AAT TAC GAG ATG CTA CTA CTA TAG CCA	L TGT GAA TTT GAA CAT CAA CAA GAA ACA ATT TAC	Q GGG ATA TGI TAI GCA AAG ATI ATI ATI	E TGC TTC CAA TTAA CAT CAT CAT GAT GAT GAT AATC	L TCG TCT TCA TAT TAT TTT ACT AGA AGA TTG	V CGTT TCAA AATT TCCC TTGG TTCA TGAA GCCA CTGG AGTA GGGC	131 600 144 660 720 780 840 900 960 1020 1080 1140 1200
E AA K TG AA AT AT AT AT TT TT TC TC TC	L GCI A GCA ATT ATA ATI CTA GAG ACA AGI ATA ATI GTI	T GGT GCT GCT GCT GCT GAG GAG TTC GAG TTC TTT CTT CTT	I GGA G AGA TGC TGC TGA TTT ATT ATT AAT TCA TTC TAT	E GCC A TAT GTC TTT TAT AAT AAC AAA ATT TCT TGG TGT	S AAC D GAT AGG TTT TTC AGA TTT ACA TTT CAT	A IAT Y AGGG GAA GGT ITG ATA CAG ACA CAG ACA TTC AAA ITC AAA	H GGCC G ACA TGC CCA ATTI GCA GCA TTA TTA ATT TAA	E ACA T ACTG ACTG ATGA TTT ACTG ACA TTT ACA ACA TTT	L GGA G AAA CAGA TCA CATC CATG TTA TCC ATA TGT AAA	D TTC F TGT. ATC ATC ATC TTT ATG. TAT. TCT. TAT. ATT TAT.	H CGC R AAT GTT TGG AGT AGT AGT AAT GTT AAA	E GAT D CAA TTA TGC GCA TTC CAT TTT CAG TTT ATA	A TCT ATA AGG GGA ATT AGC AAC AGC ATA AGG ATA	F GGCT AAT TAC GAG ATG ATG CTA CTA CTA CTA CCA CCA CCA	L TGT GAA TTT GAA CAT CAA GAA GAA ACA ACA ACA	Q GGG TGT TGT GCA AAG TTA AAG ATT ACA AAA	E TGC TTC CAA TAA CAT CAT CAT CAT CAT CAT CA	L TCG TCT TCA TAT TAT ACT AGT AGA AGA TTG AAA	V CGTT TCAA AATT TCCC TTGG TTCA TGAA GCCA CTGG AGTA GGGC AAAA	131 600 144 660 720 780 840 900 960 1020 1080 1140 1200 1260
E AAA K TG AAA AT AT AT TT AAT TC TC TC TC AAA	L GCT A GCA ATT ATA ATT CTA GAG ACA AGT ATT GTT AAA	T GGT G TTTT GCT GCT GCT GCTG CTTT CTT C	I GGA G AGA TGC TGC TGA TTT ATT TCA TTC TTC TTC TTC	E GCCC A TAT GTC TTT TAT AAT AAT TCT TGG GT GT A	S AAC D GAT. AGG TTT TTC. AGA AAA TTT ACA TTT CAT.	A Y AGGG GAA GGT ITG ATA CAG ACA ITC AAA ITC AAA IAA	H GGCC G ACA TGC CCA ATI GCA GCA TTA TGT AAT TAA	E CACA T CTGG CAAC CATT CTTT CTG CAAA CACA CAC	L GGA G AAA AGA TCA ATC ATC TTA TAA TCC ATA TGT AAA	D TTC F TGT. ATC AAAA TTT ATG. TAT. ACT. TCT. TAT. ATT	H CGCC R AATO GTT' TGG AGT' AATA AGT AATO GTT' AAA	E GAT D CAA TTC GCA TTC CAT TTC CAT TTT CAG	A TAG TCT ATA AGG GGA ATT AGC AAC AGC ATA AGG ATA	F GGC AAT TAC GAG ATG CTA CTA CTA ATT CTA CCA AGT	L TGT GAA TTT GAAT CAT CAA GAA ACA GAA TAC ZAAA	Q GGG ATA TGT TAT GCA AAG TTA AAA ATT TTA ACA	E STGC STTC ACAA TAAA CAT ACAT AACA CAT GAT AACA AACA	L TCT TCT TCA TAT TAT TTT ACT AGA AGA TTG AAA	V CGTT TCAA AATT TCCC TTGG TTCA TGAA GCCA CTGG AGTA GGGC AAAA	131 600 144 660 720 780 840 900 960 1020 1080 1140 1200 1260

В

Figure 3.31 (A) The full-length cDNA and deduced protein sequences of *cyclic AMP-regulated protein like protein* of *P. monodon*. Start and stop codon are illustrated in boldfaced and underlined. The poly A additional signal (AATAAA) is boldfaced. (B) Diagram illustrating the full-length cDNA of *cyclic AMP-regulated protein like protein* of *P. monodon*. The ADF domain was found in this deduced protein. The scale bar is 50 amino acids in length.

95

3.3.6. Nuclear pore complex protein NUP133

Primers were designed from an EST clone no. HC-N-S01-0025-LF significantly matched *nuclear pore complex protein nup133* (*Pediculus humanus corporis*; *E*-value = 8e-34). The amplified fragments of approximately 900 bp and 2.3 kb were obtained from nested 5['] and primary 3['] RACE-PCR (Figure 3.32). The amplification fragments were cloned and sequenced. Nucleotide sequences of the original EST, 5['] and 3' RACE-PCR were assembled (Figure 3.33).

The full-length cDNA of *PmNUP133* was 4130 bp in length consisting an ORF of 3228 bp corresponding to a polypeptide of 1085 amino acids and 5' and 3' UTRs of 438 and 464 bp (excluding the poly A tail) (Fig. 3.34A). The closest similarity of this newly characterized transcript was *nuclear pore complex protein nup133* of *Pediculus humanus corporis (E-*value = 0.00).

Figure 3.32 Agarose gel electrophoresis showing results from nested 5'RACE-PCR product (A) and primary 3 RACE-PCR product of *PmNPC133.* An arrowhead indicates a RACE-PCR product that was cloned and sequenced. Lanes M is a 100 bp DNA ladder.

A

I

Nested 5'RACE

AATATTATCAAGACTCTGCGGAGAATG<u>TGCTCCTCTCACAACGCTTCCTT</u>CTTTGTGCAAACACAGCTT ATATTTACAACAAGAACACAGTCCTTTGTGTCTCAGCTGTGGGCGAAGGGGACAGTGGGGATCGGGTGG NPC133-R1

AGTTCTCTGGAGCAGGGGATAGT

B

 $\label{eq:cagactcagacg} CAGAGTCAGATGAACGTTCAGTGCTGGTGCTGTCTGCCAACTCCTTGCAGAAGTGGTACTTGATCCCTA ATGAACCTGACAAGCTTGTTTATGAGTGTGAAATGTTGAAAAATACATCAGAGAAGGATTTGTTGATCATG TTTGGGGCCCGTGAGAGAGCAGGAGCGACACAGTTGAGGGTGTGGTTGGCACATGCAGCCGACCTCAGGGTGTCACCAGCAGTTGGCCGACCTCAGGGCCGACCTCAGGGCCGACCTCAGGTCTCACAGCAGTTGGCCACATGGGTGCCCCTTGCCACAGTTGGCCAATTGCGGTGTCACCGGTATTAAAGCATT NPC133-F1 \\$

CCGAATATTATCAAGACTCTGCGGAGAATG<u>TGCTCCTCTCACAACGCTTCCTT</u>CTTTGTGCAAACACAG CTTATATTTACAACAAGAACACAGTCCTTTGTGTCTCAGCTGTGGGCGAAGGGGACAGTGGGGATCGGG NPC133-R1

97

NPC133-F1 <u>TGCTCCTCTCACAACGCTTCCTT</u>CTTTGTGCAAACACAGCTTATATTTACAACAAGAACACAGTCCTTT NPC133-R1

GTGTCTCAGCTGTGGGCGAAGGGGACAGTGGGGATCGGGTGGAGTTCTCTGGAGCAGGGGATAGTATCC TGGGTGTTGGCAGATCGCAGGCTTGCCCCTTTCTTCTCTGCAAACCATGGCATTGTGTCTATCACGCCC AGTCAGCACCTGAACCAGTCAAGCATGTTGTTGAATGAGAGTGTGGCTGAAGATACGTCTCGGCTTTGT GAGGCTCTCAACATCAGCAAGATCCTGGGTGTTGGCAGATCGCAGGGCTTGCCCCTCTTCTTCTGCA AACCATGGCATTGTGTCTATCACGCCCAGTCAGCACCTGAACCAGTCAAGCATGTTGTTGAATGAGAGT GTGGCTGAAGATACGTCTCGGCTTTGTGAGGCTCTCAACATCAGCAGTGTGGGCCTGGAAGCTATCACA TCCAGCCAAGACCATACGGCCCGACTCCAGGCAGCCTTCCTGCATTTCAATAAGAACAACATTCCACAG GCTCAGGCTCTTCTGGATGAGCTCTTCCCAGGGGCAGACAACTCCACTCTAGATGCTACTGTCATCAGC ${\tt CTTTCAACCAATCTGCTGGATGACTCTCCAGCAACAGATCCTCGCTGGGCTGAGAGCAATGAGGCAGGT}$ GGTACAGGTGCTCCGATGTCCCTCATTTTACAGAATCAGCTGAGAGACAAGACAACAGCTCATCAGTAC TACATTAACTTTTTGCACCAGACTGGACTATGGCAGCGCTTGAGTGTTGGTCAGGTAGAAGAAACCCGC GTCCTGACTCGAGTATTGCTTGCAGAACATGCAGAACAGTTAGCATTTGCAACATCTCTACGCACAAGA AAAGGGAAACTGACCCATGCAGACCTCTTCTATCGCCGTGTTAGCCAGATTGAAGGCATCATCTGGGGA TTGTTACGTGCACAGAGGAGGTCTTGGCTGCTGATGTCGCACCTCGCGATGCTCCGGGCCACTATTCAC TCGGTAAACAGCCTTGTCTTAGCACTGTTACAAAGTGCCAGGGTAGGCAGCGCATCCATTCTGGGATC ACAGGGACTGTTAACGATCCTCCTCTTGAACACATACCTTGGACTGCCACACAGGGGTCCCGTGGAGTG CGAACCCTTCTGCTGGAGCAGCATAACACCACAGTGGAGGTTGGCCTAGCAAGAGCTGAGGATGGAGCA ACCCGAGCTAAACTCTACACACAGATGGTTGACCTTGCTGATTGCATTCTGACTGGATACCAGCCACAG CTTCGTTCTCTTGTATCTGTTAGCCACGACTTGCACCAGTCCCTTCTGCGCTCATATGAGAGGGACCGC TACAATTTGATTCAACCTCTTGTACAAGGCGAGCAGTACGATCAAGCAGTTGGACTTGCTGAGAAGTAC ACACAGTTTGGCTCTGAGGGTTTCTCGGACTTTGTGTTCCGTTGGTACTTGGAGACAGGTAAACGAGGT CGCTTGCTGAGCCATGGTGACCAAGGGGGGCCTTTCTCGCTTCTTGCAAGACTACACTTCCCTCGCTTGG TTGCACCAAATCCAAACCAGAGATTTTTCATCAGCCTCTACCACTTTACGTCAGCTTGGCTTGGATGAG ATGACTTACCTTAGCAGAAAAAAGACATTGTTAAGCCTTAGTAAATTATGCAACCTGGCTGCTAGTGTG ${\tt CCAGGCAGCAGCAGATACAAGTGTGATGGAGGATGACACTATGACCTTAGAAGAGGACTTATTCTGTACC}$ AGGAGCAGTTGCCTGAACCGGTCTCATGCGCACTCCCTTGAGCTGATACCATGAAGTCTTTCACTACTG AGCTGTCATCTCTAATACTGGAGATGAAACACTATGCATGATCGACTTCAGGCGCTAGATTGCTGCTTG TGGAACTGCAATTCCATTGAAGCCAGTATGGACACGTGCCCTCCGGAGCCTCTCGGTTCGGGCAGAGAG ATTACACTCCCTTGGTGGTGGACCCATCAACCAGGATTTCATTACGCCTTAACCATTACGTCAGCTTGG CTGGGATGAGATGACTAACTAGCAGAAAAAGACATTGTTAGGCTAGTAATTATGCAACCTGCTGCTAGT GTGCAGCAGCAGCAGAATACAAGTGTGATGGAGGATGACACTATGACTAGAGAGACTTATTCTGTACCAG AGCAGTTGCTGAACCGGTCCTCAATGCGCACTCCTTGAGGCTGATACCATGAAGGTCCTTTCACTACTG AGCTTGTTCATCTCTATACTGGAGATGAAAACACCCTATGCCCCAATGAATTCGACTTCAAGAAGGCTTTA GCTTCGCAACTCCTGGCATCACATGGACACAGACAATCCACTAGAAGCAATTAGTGACACGTTGCTTTT CAAGACTATAGAGCTGGCATTCACACAAGGGACTGACATAAAGGAACTGCTACTTCCCGCTGAAGAATT GCTGGAGTGTGAAGAACTAGGGGACCTCAAGGAAGATGCCACATTCAAGTTCCTGGTGAATGCTGGCTA ${\tt TGAGAAGATCACTCAGCTGGTTGGG{\tt TAG} ATTTATTTGCAAGAAAAGGGAACAACAGGAAGGAACCTCAA}$ GTAATTGAAGTGGTCATGAACTTTGGAACTGTGATAAGTTTAGTAAAGGATAAGTGATAGAGCTTGTTT TAGTGGCATTTTTTTTTTTTTGTGTCGGCCTGGTTAGAGAGAACATGTTTACCTAGTGTTATTTAAGATGT GATTGTTGGCTTTATATACAAAGAAAAGATTAAAGTCAGTGTTCAAGAATTATGTGAGTTCAGGTACTA GAAGCATTTTGAAGTTTGTGCATGAAATATAAGGTACTCCCTTTTTTATAGTTTTATGTACTGTTAGCT TGTTTTATTTAAGATACATGGAAGTACTGATGCATTTTATGGTTTGCTGTACCTGAGATTTGAAATATT

Figure 3.33 Nucleotide sequence of 5' RACE-PCR (A), the original EST (B) and 3 RACE (C) of *PmNPC133*. Forward and reverse RT-PCR primer (NPC133-F1 and NPC133-R1, underlined) was used for 5' and 3 RACE-PCR of this gene.

С

The calculated p/ and MW of the deduced PmNUP133 protein was 5.18 and 118.78 kDa, respectively. The nucleoporin_N and nucleoporin_C domains were found at the amino acid position 5-374 (E value = 1.1e-16), 518-1033 (E value = 5.7e-59) of the deduced PmNUP133 protein (Figure 3.34B).

Α

GGT	GCC	ACT	TTA	AAG	GGT	TTT	TTT	ATT	GTG	TGG	GAAA	GAG	ATO	GCCZ	AGTI	TACT	TAT	ATG	CACA	60
GTA	AGG	ACA	GGT	'AAT	TGA	GGT	GCC	ACA	TAG	AT	FGTT	TGT	GAA	GAZ	AAA	GATA	ACT	TTT	GTAA	120
TGA	AAA	TTG	TGA	TCA	TGG	CCG	ACA	TAT	TTA	TTC	GAAT	TTA	AAG	TCA	ACTO	GATT	TGA	AGTT	IGAA	180
GAC	ATC	GGC	GGG	;AAT	ACG	ACG	TAC	GCT	TAT	ATC	CCGG	TGG	ATT	TTT	[AC]	TTTG	GCTC	CTG	ГСАТ	240
TTG	ATA	TCT	'ACA	GCC	CCA	TTT	GCA	AGA	TGT	ACA	ACTO	CAG	TCT	CAC	GAC	CGAG	GGG	GGA	GGAG	300
GGG	CAG	CCA	ATA	CTT	CCT	TCA	CAT	CTG	CGA	GT	GCAA	GAG	CAG	CAC	GCAC	GCAG	CTC	GCT	GCAC	360
GCA	GAC	GCA	GTG	CAG	TTG	GCT	TCA	ATA	CCA	GTO	GCAA	GAC	GAT	CAC	CCAT	TTT	ACAZ	ACA	CCAG	420
GTC	GCT	CCA	CAC	CTC	TCA	ACC	GAT	CTC	TGC	AAC	GCAT	CAC	AGC	TCZ	ATG	GAAG	GCZ	AGT	GGCC	480
															М	Е	G	s	G	5
AGT	ATA	CCC	TTG	AGA	GCT	ATG	GGG	CCT	CCC	TGO	CCAG	CCI	TGG	TAT	ATGO	GAAG	CAC	CTGA	ACGT	540
Q	Y	т	L	Е	S	Y	G	Α	S	L	Р	Α	L	v	М	Е	Α	L	т	25
TTG	CTG	ACC	GAA	ATG	TGG	AGA	TGT	CAG	CAG	TT	TAT	CAC	CAGI	GTO	GGCI	rgge	GCGI	rgg	CTTG	600
F	Α	D	R	N	v	Е	м	s	Α	v	L	S	Q	С	G	W	Α	W	L	45
TGT	GTG	GCC	GAC	GTC	TCT	TAG	TGT	GGA	GGT	ATA	AAAG	TAG	ATG	ACT	CAC	CGAC	GCC	CTTC	GTCA	660
v	С	G	R	R	L	L	v	W	R	Y	K	v	D	D	S	R	R	L	v	65
ACC	ACC	AGT	TCC	GGG	AAC	TTA	CTT	TAC	CTC	CAT	ICAG	ACT	TGG	CAC	CACA	AGAG	GCC	CAG	CTGG	720
N	н	Q	F	R	Е	L	т	L	Р	P	S	D	L	Α	н	R	Α	Q	L	85
TGG	TTG	TAT	ATG	CCG	CAA	ATG	AAG	GCC	AGG	TAC	CCAG	GCGI	GTG	TAC	GCAG	GCAT	CAC	ccc	GAGG	780
v	v	v	Y	Α	Α	N	Е	G	Q	v	Р	Α	С	v	Α	Α	S	P	E	105
GGT	TCG	TCA	GAT	TCT	'GGC	CCA	GTA	TTG	CAC	CAT	GAAG	GCI	CAT	'AT'	TTT	GAAG	TCF	AGCI	ACTG	840
G	F	v	R	F	W	Р	S	I	Α	н	Е	G	S	Y	F	Е	v	S	Т	125
AAC	TAC	AGG	GCC	AAG	AGT	GTG	ACA	GCC	TGG	GTG1	TTCC	TGG	GGI	'CA'	rcc1	TAC	GGG	[GT(CTGC	900
Е	L	Q	G	Q	Е	С	D	S	L	v	F	L	G	S	S	L	G	С	L	145

UHULALONGKORN UNIVERSITY

AC		. Oz 11 .			0011		000	100	-1 OZ 3	.100	'nnu	CAG	GUU	AGG	901	CIG	GIG	GGA	AC
A	Α	т	т	т	S	т	т	L	L	I	Q	Р	G	Q	G	S	G	G	N
	CCA	TTA	ATG	TGA	.GGC.	AGT	TGA	AGG	TTC	CTG	CTG	GAC	TCT	TAG	GGG	GTA	TAT	CAC	GCI
	т	I	N	v	R	Q	L	к	v	Р	Α	G	L	L	G	G	I	S	R
GI	ΓTT	CCI	'CAC	TAG	TGT	TTG	GAT	CCA	CGC	CCA	CGC	AAG	ccc	CAG	AAG	CGC	GCT	TGG	TC
	v	s	s	L	v	F	G	s	т	Р	т	Q	Α	Р	Е	Α	R	L	v
GC	CAG	TAG	CAG	TTC	CTG	GT G	CAG.	AGT	CAG	ATG	AAC	GTT	CAG	TGC	TGG	TGC	TGT	CTG	CCZ
	Α	v	Α	v	P	G	Α	Е	s	D	Е	R	s	v	L	v	L	S	Α
r(ССТ	TGC	AGA	AGT	GGT.	ACT	ΓGA	TCC	СТА	ATG	AAC	CTG.	ACA	AGC	TTG	TTT	ATG	AGT	GTZ
	S	L	Q	K	W	Y	L	I	Ρ	N	Е	Ρ	D	K	L	v	Y	Е	С
G	ΓTG	AAA	AAT	ACA	TCA	GAG	AAG	GTT	TTG	TTG	ATC	ATG	TTT	GGG	GCC	GTG	AGA	GAG	CAC
	v	Е	K	Y	I	R	Е	G	F	v	D	н	v	W	G	R	Е	R	Α
GC	CGA	CAC	AGT	TGA	GGG	TGT	GGT	TGG	TTG	ATA	TGC	AGC	CGA	.CCT	CAG	GGG	TGT	CAT	CAC
	Α	т	0	L	R	v	W	L	v	D	м	0	Р	т	S	G	v	S	S
дг	TGG	тсс	тGA	CAG	CAG	CAG	тта	ACC	СТС	AGC	TCT	CAC	- AGC	- AGT	тGG	 ጥጥጥ	ACG	ccc	ТТТ (
	м	v	т.	т	Δ	Δ	v	N	P	0	v	S	0	0	т.	v	Y	Δ	т.
۵۵	~	TGG	ב <u>ה</u> מית ב:	CTTC	GTG	GCTU	- AG	CTTC	CAC	'CCC	TTTC	CAG	× ттс	SC A	בי ביתית	• псп	cee	ት ምልሞ	ם ביים קרביתי
. 1/	T	M		.стс т	C	C C	SAG S	A	P	P	T	∆	v	C	N	- C I	200 C	171	- F-1/
~ 7	հ	CCC	- - 7. 7. m	 ∧	7.000	770		CTTC	- CCC			A TCC		- C	CDO	- 770	.		ц ттт/
Ŀ	LTT.	CCC C	AAT F	ATT V	AIC.		AUT P	CTG C	7	AGA	ATG	1GC	T	TOT	CAC		GCT P	TCC F	тт(т
n /		. 	L	1		X		э лал	A	L DCD	N	V CDC			ം	<u>х</u>	R	г ата	
11	51G			.CAG		ATA.	TTT.	ACA	ACA	AGA	ACA	CAG	100	- T T T	GTG C	TUT	CAG	CTG	T.G(
~ -	C	A	N	T	A	Y	1	Y	N	K	N	T	V 07.5	<u>ц</u>	С 7 С	V	S	A	V
Ξŀ	AAG	GGG	ACA	.GTG	GGG.	ATC(GGG	TGG	AGT	TCT	CTG	GAG	CAG	GGG	A'I'A	G'I'A	TCC	TGG -	GT'O
	Е	G	D	S	G	D	R	v	E	F	S	G	A	G	D	S	I	L	G
GO	GCA	GAT	'CGC	AGG	GCT	TGC	CCC	TCT	TCT	TCT	CTG	CAA	ACC	ATG	GCA	TTG	TGT	CTA	TCA
	G	R	s	Q	G	L	P	L	F	F	S	Α	N	H	G	I	v	s	I
C	CCA	GTC	AGC	ACC	TGA	ACCI	AGT	CAA	.GCA	TGT	TGT	TGA	ATG	AGA	GTG	TGG	CTG	AAG	ATA
	P	s	Q	н	L	N	Q	S	S	М	L	L	N	Е	S	v	А	Е	D
r(CTC	GGC	TTT	GTG	AGG	CTC	TCA	ACA	TCA	GCA	GTG	TGG	GCC	TGG	AAG	СТА	TCA	CAT	CCA
	s	R	L	С	Е	А	L	N	I	S	s	v	G	L	Е	А	I	т	s
CZ	AAG	ACC	ATA	CGG	CCC	GAC	TCC.	AGG	CAG	CCT	TCC	TGC.	ATT	TCA	ATA	AGA	ACA	ACA	TT
	0	D	н	т	А	R	L	0	А	A	F	L	н	F	N	к	N	N	I
C7	∼ AGG	СТС	AGG	стс	TTC	TGG	ATG	AGC	TCT	TCC	CAG	GGG	CAG	ACA	АСТ	CCA	стс	TAG	ATC
	0	Δ	0	Δ	Τ.	τ.	D	E	Т.	F	P	G	Δ	D	N	S	Т	т.	D
<u>م</u>	ж СтС	 תרייתיי	ж тсл	 CCC		C770		- 7 T C	— тсс	- 	- 	ACT	 СТС	CAG	CAA	CAG	<u>-</u>	<u>-</u> стс	-
-11	-10 m	V		.000 C	T T T	CAA	TT T	N	-1 GC	.100		D D	CIC C	DAU		UAU.	AIC A		DD.
~	т ата	• •	-	ъ		3	-		<u>ц</u>				с .		A		л		7000
3(JTG.	AGA	GCA	ATG	AGG	CAG	GTG	GTA	CAG	GTG	CTC.	CGA	TGT	000	TCA	T.T.T.	TAC	AGA	ATC
~-	A	E	5	N	E	A	G	G	T	G	A	P	M		<u>ц</u>	1	<u>ц</u>	Q	N
C'.	I'GA	GAG	iaca	AGA	CAA	CAG	CTC.	ATC	AGT	ACT	'ACA	'1''I'A	ACT	1.1.1	TGC	ACC	AGA	CTG	GA
	L	R	D	K	т	т	Α	н	Q	Y	Y	I	N	F	L	н	Q	т	G
	~ ~ ~	AGC	GCT	TGA	GTG	TTG	GTC.	AGG	TAG	AAG	AAA	CCC	GCG	TCC	TGA	CIEC C	CAC		
ГC	GC													100	TON	CTC	GAG	TAT	TGO
P C	GGC W	Q	R	L	S	v	G	Q	v	Е	Е	Т	R	v	L	T	R	TAT V	TG(L
T(G(GGC W CAG	Q AAC	r Atg	L CAG	S AAC	V Agti	G TAG	Q CAT	V TTG	E CAA	E CAT	T CTC	r TAC	V GCA	L CAA	T GAC	R ATA	TAT V ATG	TGO L ACO
T(GGC W CAG A	Q AAC E	R ATG H	L CAG A	S AAC. E	V AGT Q	G TAG L	Q CAT A	V TTG F	E CAA A	E CAT T	T CTC S	R TAC L	V GCA R	L CAA T	T GAC R	R ATA H	TAT V ATG N	TGO L ACO D
F(G(CZ	GGC W CAG A AGC	Q AAC E ATC	R ATG H TCA	L CAG A TTG	S AAC E ATG	V AGT Q CTG	G TAG L CCA	Q CAT A TTA	V TTG F	E CAA A ATG	E CAT T TGC	T CTC S TAA	R TAC L ATG	V GCA R AAC	L CAA T GAG	GAC R GAG	R ATA H AGA	TAT V ATG N CTC	TGO L ACO D CAP
F(G(CZ	GGC W CAG AGC Q	Q AAC E ATC H	R ATG H TCA L	L CAG A TTG I	S AAC E ATG D	V AGT Q CTG A	G TAG L CCA A	Q CAT A TTA I	V TTG F .GGC R	E CAA A ATG H	E CAT T TGC V	T CTC S TAA L	R TAC L ATG N	V GCA R AAC E	L CAA T GAG R	GAC GAC GAG GAG	R ATA H AGA	TAT V ATG N CTC T	TG(L AC(D CAP P
	W CAG A AGC Q GGA	Q AAC E ATC H AAC	R ATG H TCA L	L CAG A TTG I	S AAC E ATG D ATG	V AGT Q CTG A CAG	G TAG L CCA A ACC	Q CAT A TTA I TCT	V TTG F .GGC R TCT	E CAA A ATG H	E CAT T GTGC V	T CTC S TAA L GTG	R TAC L ATG N TTA	V GCA R AAC E	L CAA T GAG R AGA	GAC R GAG GAG G	R ATA H AGA E AAG	TAT V ATG N CTC T GCA	TGO ACO D CAP P TCP
T(G(CZ	W CAG A AGC Q GGA	Q AAC E ATC H AAC	R ATG H TCA L TGA	L CAG TTG TTG CCC	S AAC E ATG D ATG	V AGT Q CTG A CAG	G IAG L CCA A ACC D	Q CAT TTA TTA I TCT I.	V TTG F .GGC R TCT F	E CAA A CATG H 'ATC Y	E CAT T GCC V GCC R	T CTC S TAA L GTG R	R TAC L ATG N TTA V	V GCA R AAC E .GCC	L CAA T GAG R AGA	T GAC GAG GAG TTG	R ATA H AGA E AAG	TAT V ATG N CTC T GCA G	TG(L AC(D CAP P TCP
	W CAG A AGC G G AGC	Q AAC E ATC H AAC K	R ATG H TCA L TGA L	L CAG TTG CCC T	S AAC ATG ATG ATG H	V AGT Q CTG A CAG A	G IAG CCA A ACC D	Q CAT A TTA I TCT L	V TTG F GGC R TCT F	E CAA A CATG H 'ATC Y	E CAT TGC TGC CGCC R	T CTC S TAA L GTG R	R TAC L ATG N TTA V	V GCA R AAC E GCC S	L CAA T GAG R AGA Q	GAC GAC GAG GAG TTG I	R ATA H AGA E AAG E	TAT V ATG N CTC T GCA G CG ^A	TGC L ACC D CAP TCP TCC TCC
	W CAG A AGC G G G G G G G G G G G G	Q AAC E ATC H AAC K GAT	R ATG H TCA L TGA L TGT	L CAG TTG CCC T TAC	S AAC. ATG ATG ATG GTG	V AGT Q CTG CTG CAG A CAG	G IAG CCA A ACC D AGA	Q CAT TTA I TCT GGA	V TTG GGC R TCT F .GGT	E CAA A CATG H CATC Y CTT	E CAT TGC TGC CGCC R GGC	T CTC S TAA GTG R TGC TGC	R TAC L ATG N TTA V TGA	V GCA R AAC E .GCC S .TGT	L CAA T GAG R AGA Q CGC	T GAC GAG GAG TTG I ACC	R ATA H AGA E AAG E TCG	TAT V ATG CTC T GCA G CGA	TGC L ACC D CA/ P .TC/ I .TC/
	W CAG A AGC Q GGA G G G G G G G G G G G G G	Q AAC E ATC H AAC K GAT GAT	R ATG H TCA L TGA L TGT L	L CAG TTG CCC T TAC L	S AAC. E ATG ATG ATG H GTG R	V AGT CTG A CAG A CAC A	G IAG CCA A ACC D AGA Q	Q CAT TTA TTA I TCT L GGA R	V TTG GGC R TCT F GGT R	E CAA A ATG H ATC Y 'CT'T S	E CAT T GCC R GGC W	T CTC S TAA GTG GTG R TGC L	R TAC L ATG N TTA V TGA L	V GCA R AAC E .GCC S .TGT M	L CAA GAG R AGA Q CGC S	T GAC GAG GAG TTG I ACC H	R ATA H AGA E AAG E TCG L	TAT V ATG CTC T GCA G CGA A	TGO L ACO D CAP P TCP TCP TGO M
	W CAG A G G G G G G G G G G G G G G G G G	Q AAC H AAC K GAI GAI CCA	R ATG H TCA L TGA L TGT L	L CAG TTG CCC T CCC T TAC L	S AAC ATG ATG ATG GTG R ACT	V AGT Q CTG A CAG A CAG A CGG	G IAG CCA A ACC D AGA Q IAA	Q CAT TTA TTA I TCT GGA R ACA	V TTG F GGC R TCT F GGT R GCC	E CAA ATG ATG 'ATC 'ATC Y 'CTT S 'TTG	E CAT TGC TGC CGCC R CGCC R CGCC W TCT	T CTC S TAA GTG GTG R TGC L TAG	R TAC L ATG N TTA V TGA L CAC	V GCA R AAC E .GCC S .TGT M TGT	L CAA T GAG R AGA Q CGC S TAC	T GAC GAG GAG TTG TTG ACC H AAA	R ATA H AGA E AAG E AAG E TCG L .GTG	TAT V ATG CTC T GCA G CGA A CCA	TGO L ACO D CAP TCP TCP TGO M .GGO
	W CAG A G G G G G G G G G G G G G G G G G	Q AAC H AAC K GAT GAT CCA	R ATG H TCA L TGA L TGT L CTA M	L CAG TTG CCCC T TAC L TTC V	S AAC. ATG ATG ATG GTG GTG ACT D	V AGT Q CTG A CAG A CAG A CGG L	G TAG L CCA A ACC D AGA Q TAA A	Q CAT TTA I TCT GGA R ACA D	V TTG GGC R TCT F GGT R GCC C	E CAA ATG H ATC Y CTT S STTG I	E CAT TGC TGC CGCC R GGC W TCT L	T CTC S TAA GTG GTG TGC L TAG TAG	R TAC L ATG N TTA V TGA CAC G	V GCA R AAC E .GCC S .TGT M TGT Y	L CAA T GAG AGA AGA CGC S TAC Q	T GAC GAG GAG TTG I ACC H AAA P	R ATA H AGA E AAG E TCG L GTG Q	TAT V ATG CTC T GCA G CGA CGA CCA	TGO L ACO D CA4 P TC4 I TGO M .GGO R
	W CAG A AGC G G G G G G G G G G G G G G G	Q AAC H AAC K GAT GAT CCA Q GTC	R ATG TCA TCA TGA TGA TGT L CTA M	L CAG TTG CCC T TAC L TTC V CCA	S AAC. E ATG ATG GTG GTG R ACT D TTT	V AGT CTG CAG CAG CAG CAG CGG L CTG	G IAG L CCA A ACC D AGA Q IAA A GGA	Q CAT TTA TTA TCT GGA GGA R ACA D TCA	V TTG GGC R TCT F GGT R GCC C C AG	E CAA ATG H ATC Y CTT S CTTG I GGA	E TGC TGC GCC R GGC W TCT L	T TAA GTG GTG TGC L TAG TAG	R TAC L ATG TTA V TGA CAC G ACG	V GCA FAAC E GCC S TGT M TGT Y ATC	L CAA T GAG R AGA Q CGC S TAC Q CTC	T GAC GAG GAG TTG TTG ACC H AAA P CTC	R ATA H AGA E AAG TCG L GTG Q TTG	TAT V ATG CTC GCA GCA CGA CCA L AAC	TGC L ACC D CAL P TCL I TGC M GGC R ACL
	GGC W CAG AGC Q GGA G GGG W 3GGG T GCA R	Q AAC H AAC K GAT GAT CCA Q GTG A	R ATG H TCA TGA TGA L CTA M CAT T	L CAG TTG CCC T TAC L TAC L TTC V CCA I	S AAC. E ATG ATG C GTG GTG ACT D TTT H	V AGT CTG CAG CAG A CAC A CGG L CTG S	G IAG CCA A ACC D AGA Q IAA Q IAA GGA V	Q CAT TTA TTA TCT GGA R ACA D TCA N	V TTG GGC R TCT F GGT R GCC C C S	E CAA A CATG PATC Y CTT S CTTG I GGA L	E TGC TGC CGCC R GGC W TCT L CTG V	T TAA GTG R TGC L TAG TAG TTA L	R TAC L ATG N TTA V TGA L CAC G ACG A	V GCA AAC E GCC S TGT M TGT Y ATC L	L CAA T GAG R AGA Q CGC S TAC Q CTC L	GAC GAG GAG TTG TTG ACC H AAA P CTC Q	R ATA H AGA E AAG E TCG L GTG S TTG	TAT V ATG CTC GCA GCA CGA A CCA L AAC A	TGC L ACC D CAH P TCH TCH TGC M GGC R ACH R
	GGC W CAG AGC Q GGG G GGG G GGG T GGG T GGG T CTT	Q AACC E ATCC H AACC K GAI GCCA Q GTCG A GGCA	R ATG H TCA TGA TGA TGT L CTA M CAT CAT	L CAG TTG CCC T TAC TAC L TTC V CCA	S AAC. E ATG ATG ATG GTG CTG R ACT D TTT H CAC.	V AGT Q CTG CAG A CAG CAG CAG CAG CAG CTG S	G IAG L CCA A AACC D AGA Q IAA A GGA V GGT	Q CAT A TTA I TCT L GGA R ACA D TCA N CCC	V TTG F GGC R TCT F GGT R GCC C C CAG S GTG	E CAA A CATG H CTT S CTT S CTTG I GGA GAG	E TGC TGC TGC CGC R GGC W TCT L CTG TGC	TAA TAA GTG R TGC L TAG TAG TTA GAA	R TAC L ATG TTA V TGA CAC G ACG ACG CCC	V GCA R AAC E .GCC S .TGT M TGT Y ATC TTC	L CAA T GAG R AGA Q CGC S TAC Q CTC L TGC	T GAC GAG GAG TTG TTG AAC H AAA P CTC Q TGG	R ATA AGA E AAGA E AAG TCG L GTG Q TTG S AGC	TAT V ATG CTC T GCA G CGA A CCA L AAC AAC	TGC L ACC D CAL P TCL TGC M GGC R GGC R ACL R ACL
	GGC W CAG A AGC Q GGG G G G G G CTT G	Q AACC H AACC K GAT G GTG A GGA S	R ATG TCA TCA TGA TGT L CTA M CCAT T CCAT A	L CAG TTG CCCC T TAC L TTC V CCA I CCA S	S AAC ATG ATG ATG GTG R ACT D TTT H CAC I	V AGT Q CTG A CAG A CGG L CTG S AGG S	G IAG L CCA A ACC D AGA Q IAA A GGA GGT G	Q CAT A TTA I TCT L GGA R ACA D TCA N CCCC I	V TTG GGC R TCT F GGT R GCC C C C GTG S GTG T	E CAA A CATC H CATC Y CTT S CTTG I GGGA L GGAG G	E CAT T TGC V GGCC R GGC W TCT L CTG V TGC T	TAA STAA L GTGG R TGC L TAG TAG TAG TAG V	R TAC L ATG N TTA V TGA CAC G ACG A CCC N	V GCA R AACC E GCCC S TGT TGT Y ATC L TTC D	L CAA T GAG R AGA Q CGC S TAC Q CTC L TGC P	T GAC R GAG G TTG I ACC H AAA P CTC Q TGG P	AGAG ATA H AGA AAGA E AAGG C C C C C C C C C C C C C C C C C	TAT V ATG CTC T GCA G CGA CCA L AAC A AGC E	TGC L ACC D CAH P TCH TGC M GGC R ACH R ACH R ATH
	W CAG A G G G G G G G G G C T G C C A	Q AACC E ATCC H AACC K GAT GCCA GCCA GGCA S CAG	R ATG H TCA TGA L TGA L CTGA M CCAT T CCG A CTGG	L CAG TTG CCCC T TAC L TTCC V CCA I CCA S AGG	S AAC. E ATG D ATG H GTG R ACT D TTT H CAC. I TTG	V AGT Q CTGC A CAG2 A CAG2 A CCGG S CTGC S GCC	G IAG L CCA A ACCC D AGA Q IAA Q GGA V GGT G IAG	Q CAT A TTA I TCT L GGA R ACA D TCA N CCCC I CAA	V TTG GGC R TCT F GGT R GCC C C GGT GTG T GAG	E CAA A CATC H CTT S CTTG I GGAA L GGAG G CTG	E CAT T GCC V GCC R GGC W TCT L CTG V TGC T GAGG	T CTC S TAA L GTG T TGC T TAG T TAG T TAG C A T GAA V ATG	R TAC L ATG N TTA V TGA CAC G A CCC N GAG	V GCA R AACC E GCCC S TGT M TGT Y ATCC L TTC D CCAA	L CAA T GAG R AGA Q CGC S TAC Q CGC C TGC L CTC L CCC	T GAC R GAG G TTG I ACC H AAA P CTC Q TGG P GAG	AGAG ATA H AGAA E AAGG C GTG Q TTG S AGC L CTA	TAT V ATG CTC GCA G CGA A CCA L AAC AAC AAC	TGC L ACC D CAH P TCZ TGC M GGC R ACH R ACH R ATH TCT

ACA	CAC	AGA	TGG	TTO	ACC	TTG	CTG	ATI	IGCA	ATTO	TGA	CTG	GAT	ACC	AGC	CAC	CAGC	TTC	GTT	2660
N	т	т	v	Е	v	G	L	Α	R	Α	Е	D	G	Α	т	R	Α	к	L	745
CTC	TTG	TAT	CTG	TTA	AGCC	ACG	ACT	TGC	CACC	CAGI	CCC	TTC	TGC	GCT	'CAT	ATC	GAGA	GGG	ACC	2720
s	L	v	s	v	S	н	D	L	н	Q	S	L	L	R	S	Y	Е	R	D	765
GCT	ACA	ATT	'TGA	TTC	CAAC	CTC	TTG	TAC	CAAC	GCC	GAGC	CAGI	ACG	ATC	AAG	CAC	TTG	GAC	TTG	2780
R	Y	N	L	I	Q	Р	L	v	Q	G	E	Q	Y	D	Q	Α	v	G	L	785
CTG	AGA	AGT	ACT	GTO	GACT	TCC	GCA	CGC	CTGC	TAG	GAAC	TCT	'GCG	ATC	GTA	CCC	GACA	ACC	AAG	2840
A	Е	к	Y	С	D	F	R	т	L	v	Е	v	С	D	R	т	D	N	Q	805
AAA	.GAC	TGA	.GCC	AGI	'ACA	TGA	CAC	AGI	TTTO	GCI	CTO	AGO	GTT	TCT	CGG	ACI	TTC	TGT	TCC	2900
Е	R	L	S	Q	Y	М	т	Q	F	G	S	Е	G	F	S	D	F	v	F	825
GTT	GGT	ACT	TGG	AGA	ACAG	GTA	AAC	GAC	GTC	CGCI	TGC	TGA	GCC	ATG	GTG	ACC	CAAC	GGG	GCC	2960
R	W	Y	L	Е	т	G	ĸ	R	G	R	L	L	S	н	G	D	Q	G	G	845
TTT	CTC	GCT	TCT	TGC	CAAG	ACT	ACA	CTJ	rccc	TCG	CTT	'GG'I	TGC	ACC	AAA	TCC		CCA	GAG	3020
L	S	R	F	L	Q	D	Y	т	S	L	A	W	L	н	Q	I	Q	т	R	865
ATT	TTT	CAT	'CAG	CC1	CTA		CTT	TAC	CGTC	CAGC	TTC	GCI	'TGG	ATG	AGA	TGF	ACTT	ACC	TTA	3080
D	F	S	S	A	S	т	т	L	R	Q	L	G	L	D	Е	м	т	Y	L	885
GCA	.GAA		AGA	CA1	TGT.		'GCC	TTZ	AGTA	LAA1	TAT:	GCA	ACC	TGG	CTG	CTA	AGTO	TGC	CAG	3140
S	R	ĸ	ĸ	T	Ц	Ц	S	Ц	S	ĸ	Ц	С	N	<u>ь</u>	A	A	S	V	P	905
GCA	.GCG	CAG	A'I'A		AG'I'G	'I'GA	'I'GG	AGO	SA'I'O	JACA	ACTA	A'I'GA	CCT	TAG	AAG	AGC	;AA(:T'TA	TTC	3200
G	S	A	D Too	T	5	V	M	E	D	U D	T	M	T	Ц	E	E	E	<u>ь</u>	L	925
TGT	ACC	AGG	AGC	AGI	TGC.	CTG		CGC	STCC	TCA	A.L.G	JCGC	ACT	000	TTG	AGO	CTC.	ATA		3260
шсл	L	V	E	Q	ц лаша	P	E.	P	V			A	п	3		E	A	U COT	T	945
TGA	AGG	TCC	TTT	CAC		ICTG	AGC	-T-T-C	21.TC	ATC	TCI	ATA V	ICTG	GAG	ATG				ATG	3320
	n nmc	V N N M		а 1707		1				ת התהגי		I I I I I I I I I I I I I I I I I I I		G	ч тл с			ב יה הי	I DDC	2200
	ATG	AAT	TCG	ACI	TCA		AGC V	1001 7	TAG	ATT	TGC.	TTG	ICCT N	TTG	TAC		JGAG	AAG	AAG	3360
A			ב יות כי זע		E	n NCD		A						E CCD	V ACT			ב תעי		3440
V		AGI	TGA	IAGA V	AAG V	ACA		GGC M	VD 16			v.	.11C	GCA D	N		. GGC	AIC.	ACA u	1005
TGG		CAG		ATC		יידים כ	- 	CDZ	v vororz		ACA	CGT		т т		AGI			AGC	3500
M	ACA D	.CAG	ACA D	N	D	T.	RAC F	TCAP A	11 17 T	2010 C	ACA D	تى س	T.	T.	F	vage v	ч Т	TAG	F	1025
TGG	CDT					CT G				200	TTGC	יידים ⊂			CTIC	:D D C	יעע:	ב ידים		3560
T.		F	T T	0	-DOOL	T T	D	T	NOC	F	T.	T.	т.	P	Δ	E	E	т.	T.	1045
AGT	GTG			אייי 🗙 🗠	GGGG			AGO	AAG	ATC	CCA	CAT		AGT	TCC	'ТG0	TGZ	<u>а</u> тс	CTG	3620
E	c	E	E	L	G	D	L	K	E	D	A	Т	F	K	F	L	v	N	A	1065
GCT	ATG	AGA	AGA	TCA	ACTC	AGC	TGG	TTC	GGI		ידידע	– דידאי	- TGC	AAG	AAA	AGO	GAZ	CAA	CAG	3680
G	Y	Е	ĸ	I	т	0	L	v	G	*			2.00							1075
GAA	- GGA	ACC	TCA	AGT	- דאמי	TGA	AGT	GGT	CAT	GAA	CTT	TGG	AAC	TGT	GAT	AA	ትጥጥት	AGT	AAA	3740
GGA	TAA	GTG	ATA	GAG	CTT	GTT	TTA	GTO	GCA	TTT	TTT	TTC	TTG	TGT	CGG	CCJ	GGT	'TAG	AGA	3800
GAA	CAT	GTT	TAC	CTA	GTG	TTA	TTT	AA	ATO	TGA	TTO	TTG	GCT	TTA	TAT	ACA		AAA	AGA	3860
TTA	AAG	TCA	GTG	TTC	AAG	AAT	TAT	GTO	GAGT	TCA	GGT	ACT	AGA	AGC	ATT	TTC	AAG	TTT	GTG	3920
CAT	GAA	ATA	TAA	GGT	ACT	'ccc	TTT	TTT	TAT	GTT	TTA	TGT	ACT	GTT	AGC	TTC	TTT	TAT	TTA	3980
AGA	TAC	ATG	GAA	GTA	ACTG	ATG	CAT	TTT	TATO	GTT	TGC	TGT	ACC	TGA	GAT	TTC	JAAA	TAT	TAC	4040
TGC	CAC	ATG	TAG	TGI	TTAT	ATT	TTT	TTT	TAC	CAAT	'AA'I	'AA'I	TTT	TAA	AAT	GTA			AAA	4100
AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA		ł										4130
																				-
B																				

Figure 3.34 (A) The full-length cDNA and deduced protein sequences of *PmNPC133* of *P. monodon*. Start and stop codon are illustrated in boldfaced and underlined. The poly A additional signal (AATAA) is boldfaced. A putative *N*-linked-glycosylation site is highlighted and underlined. (B) Diagram illustrating the full-length cDNA of *PmNPC133*. The nucleoporin_N and nucleoporin_C domains were found in the deduced PmNPC133 protein. The scale bar is 50 amino acids in length.

3.3.7 Semaphorin-2a

An amplified fragment of approximately 1500 and 1050 bp were obtained from the primary 3[°] and 5' RACE-PCR of *semaphorin-2a* (Figure 3.27). This fragment was cloned and sequenced. Nucleotide sequences of the original EST (OV-N-S01-0003-W) and 5' and 3[°] RACE-PCR (Figure 3.35) were assembled.

Figure 3.35 Agarose gel electrophoresis showing results from the primary 3[°] (lane 1) and 5['] (lane 2) RACE-PCR of *PmSema*. An arrowhead indicates a RACE-PCR product that was cloned and sequenced. Lanes M is a 100 bp DNA ladder.

The partial nucleotide sequence covering the 3 UTR and C-terminus portion of *P. monodon semaphorin-2a* (*PmSema*) were obtained. This transcript was significantly similar to *semaphorin-2a* of *Tribolium castaneum* (*E*-value = 7e-158). The Sema domain which is found in secreted and transmembrane proteins, was found in the deduced protein of this partial transcript (Figure 3.36).

СТ	TCC	AGA	CAA	CGT	GCT	GAC	ATT	ССТ	CCA	GTC	GCA	TCC	ССТ	GAT	GGA	CGA	AGC.	AGT	GGCT	60
L	P	D	N	v	L	т	F	L	Q	s	н	P	L	М	D	Е	A	v	A	20
CA	TGA	ACA	CAA	CAA	GCC.	AGT	GTT	CTT	CAA	GCG	GGA	TCT	TAT	CTT	CAC	ACA	ССТ	GGT	GGTA	120
н	Е	н	N	к	Р	v	F	F	к	R	D	L	I	F	т	н	L	v	v	40
GA	TAA	GGT	TAC	TGG	AGG	CAC	TTA	TGG	TCA	AGA	GAA	CAC	TTA	TAC	CGT	TTA	TTA	TGC	TGGT	180
D	к	v	т	G	G	т	Y	G	Q	Е	N	т	Y	т	v	Y	Y	Α	G	60
ТC	ATT	GGA	AGG	CCG	TGT	CTA	TAA	GGT	GGT	TGA	GTG	GTT	GGA	TTC.	AGA	TGG	AGT	TTC	TCAT	240
S	L	Е	G	R	v	Y	к	v	v	Е	W	L	D	S	D	G	v	S	н	80
ТC	TGA	ACT	TCT	TGA	CGT	GTA	TGA	AGT	TAC	AAC	TCC	AGA	ACC	CAT	TAG	AGC	TAT	TCA.	AATC	300
S	Е	L	L	D	v	Y	Е	v	т	т	Ρ	Е	Ρ	I	R	Α	I	Q	I	100
ТC	CAA	GAA	GCA	CAA	GTC.	ACT	GTA	TGT	CTC	ATC	GGA	TAC	ACG	AGT	GCG	CCA	AGT	GGA	TCTC	360
S	к	к	н	ĸ	S	L	Y	v	S	S	D	т	R	v	R	Q	v	D	L	120
ΤA	CAT	GTG	TAA	GGG	GAG.	ATA	TGA	CAA	CTG	ССТ	TCG	CTG	CTC	ACA	TGA	CCC	ATA	CTG	TGGA	420
Y	М	С	к	G	R	Y	D	N	С	L	R	С	S	н	D	Ρ	Y	С	G	140
ΤG	GGA	CAA	GGA	TGC	TAA	TAC	CTG	CAA	ACC	TTA	TGA	.GCC	AGG	ACT	TCT	GCA	AGA	TGT	CATG	480
W	D	к	D	Α	N	т	С	к	P	Y	Е	P	G	L	L	Q	D	v	м	160
GG	AAC	AAC	CCC	TGG	TCT	CTG	TGA	CGC	GTG	CAT	TGC	GAA	GAA	GAA	AAT	GGT	AGT	GAC	CTGG	540
G	т	т	P	G	L	С	D	Α	С	I	A	к	к	к	М	v	v	т	W	180
GG	GCA	GAG	TAT	CCA	TTT.	AGG	CTG	TGC	AGT	GAA	ACT	TCC	CCG	TCC	GAT	TTC	ССТ	CAA	GGAT	600
G	Q	s	I	н	L	G	С	Α	v	к	L	P	R	P	I	S	L	к	D	200
ΑT	TAC	TTG	GCA	TCA	СТА	TTC	TAA	GGA	TAA	GGG	CAA	ATA	CCA	GAT	TAG	ATA	CAG	GCC.	AGAC	660
I	т	W	н	н	Y	S	к	D	к	G	к	Y	Q	I	R	Y	R	Ρ	D	220
AA	ATA	TAT	TGA	GAC	TTC.	AGA	ACA	TGG	CTT	GGT	GGT	GAT	GAA	TGT.	AAA	TGA	AGC	TGA	TGCT	720
К	Y	I	Е	т	s	Е	н	G	L	v	v	М	N	v	N	Е	Α	D	A	240
GG	TCG	TTA	TGA	CTG	CAA	GAT	GGG	AGG	AGA	TAT	TGT	CTG	CTC	ATA	CAA	CAT	TAC	TGT	TGAT	780
G	R	Y	D	С	к	М	G	G	D	I	v	С	S	Y	N	I	т	v	D	260
GC	ACA	CCG	GCTG	CTC	TGC.	ACC'	TGC	TCG	CAC	TAA	TGA	TTT	CCA	GAA	GGT	GTA	TAG	CGA	CTGG	840
Α	н	R	С	S	A	Р	A	R	т	N	D	F	Q	к	v	Y	S	D	W	280
ΤG	ССА	TGA	ATT	TGA	GAA.	ATA	CAA	GCT	AGC	CAT	GAA	GAC	GTG	GGA.	AAG	GAA	GCA.	AGC	GCAA	900
С	н	Е	F	Е	к	Y	к	L	Α	м	к	т	W	Е	R	к	Q	Α	Q	300
ΤG	TGC	CAA	TAG	GAA	TAA	CAT	CAG	CCA	GCA	GAA	CAG	CCA	TCC	CAA	TGA	CAT	TTA	TCA	GAGG	960
С	Α	N	R	N	N	I	S	Q	Q	N	S	н	Р	N	D	I	Y	Q	R	320
AG	CAA	TCC	CTT	CGT	C TG	A TT2	ACA	CCA	AGA	AAG	TAT	AAC	TAT	TGT	CAA	GGA	GTA	GAA	GGGT	1020
s	N	Р	F	v	*	-														325
CA	GGA	ATT	CTC	CTT	ССТ	CGA	GAT	GGT	СТА	GAA	TTT	GCC	TGG	TAT	TTT	TAG	TTC.	AGC	TACT	1080
ΤA	AAT	TAT	TAC	TAC	ACA	CTG	GAA	ACA	TGT	ATA	GTG	TTG	ACA	ATC.	ACC	ATC	TTC.	AGT	GACA	1140
AG	TGA	CTT	ACT	TTA	CAA	CAA	GTG.	AAT	TCA	TTA	GCT	CTG	TCA	CAG.	AGA	ATA	CTG	CCA.	АААА	1200
CA	GGC	ATG	TAA	TAG	TAT	TGA	TTT	TTT	TTT	TTT	TTT	TAC	CAA	TTG	TTT	GTT	TCC.	ACA	TTAA	1260
GA	TCA	TAT	'GAA	ATT	TTA	ATG	TAA	ТСА	ATC	ATG	GTG	CCA	CCA	AAA	AAA	TGG	GTG	СТА	GCAA	1320
GG	ACT	GGT	GCC	ATG	TGC.	ACA	GAA	AAT	GAT	CTC	TTA	CAG	TAT	ATC	TTA	TGC	TAA	AGT	TCTG	1380
AC	AGG	CAA	CTT	GAC	CCA	AAC'	TCC	AGT	AAC	AAT	CAG	GGT	ACC	ATA.	AGC	TAT	TGA	CTA.	ATTC	1440
AT	TTT	AAT	TTA	CCA	ATC	TTG	GTA.	AAA	TCT	TTT	AAC	TGT	GAA	GGA	GTT	CAT	TAG	GAT	CTAG	1500
ΤТ	Стт	GCT	CCT	GGA	CAA	TCG	ССТ	GTG	GGC	АТТ	 А.Т.Т	GCT	тст	GCA	TTC	AAA	GAG	СТТ	CAGT	1560
GA	GCA	GTG	GAT	CTT	AGA	<u>- 00</u> , АСТ(CC	210	200			201		2.011	0		5.10			1582
011	5017				- 10/1															1002

Figure 3.36The partial nucleotide and deduced amino sequences of *PmSema*. The stop codon is illustrated in boldfaced and underlined.

3.4 RT-PCR and tissue distribution analysis of reproduction-related genes

Total RNA extracted from ovaries revealed predominated discrete bands along with smeared high molecular weight RNA (Figure 3.37A). The ratios of purified RNA were 1.7-2.0 implying that the quality of extracted DNA was acceptable for further applications. The first cDNA synthesized from these total RNA covered the large product sizes (Figure 3.37B).

Figure 3.37 1.0% ethidium bromide-stained agarose gel showing the quality of total RNA (A) and corresponding first strand cDNA (B) from female broodstock of *P. monodon*. Lane M (A and B) = λ -Hind III. Lanes 1-4 (A) = total RNA from ovaries of each *P. monodon* broodstock. (B). Lanes 1-4 (B) = the first strand cDNA from ovaries of each *P. monodon* broodstock.

Seven primer pairs were designed from nucleotide sequences of EST libraries previously established from ovaries (2 primers pairs), hemocyte (4 primers pairs) and hepatopancrease (1 primer pairs) of *P. monodon*. RT-PCR was carried out using an identical amplification conditions across all primers.

Initially, the first strand cDNA synthesized from ovaries and testes were subjected to RT-PCR and eletrophoretically analyzed. *PmVCP* was more abundantly expressed than in ovaries than testes in both juveniles and broodstock. Similarly the expression of *PmPKC* and *PmSema* in ovaries was greater than that in testes of *P. monodon*. In contrast, *PmTmsb*, *PmcAMP-RPL* and *PmRacgap1* seemed to be nondifferentially expressed between ovaries and testes of *P. monodon* (Figure 3.38).

Tissue distribution analysis of these transcripts was carried out and it indicated that *PmVCP* was abundantly expressed in ovaries, the heart and lymphoid organ but less so in testes, the subcuticular epithelium and hepatopancreas. Based on RT-PCR, PmVCP mRNA was not found in eyestalks, gills, pleopods, the thoracic ganglion, the stomach, hemocytes or the intestine of wild female *P. monodon* (Figure 3.39A).

PmTmsb was constitutively expressed in all examined tissues of wild females (ovaries, intestine, heart, lymphoid organs, eyestalk, hepatopancrease, gill, stomach, pleopods, thoracic ganglion and hemocyte) and testes of wild males (Figure 3.39B).

PmcAMP-RPL was abundantly expressed in pleopods, thoracic ganglion, hemocyte, eyestalk and hepatopancrease. A lower expression was observed in testes, intestine, gills, heart and lymphoid organs. Limited expression of this transcript was observed in ovaries and stomach (Figure. 3.39C).

PmPKC was abundantly expressed in ovaries and lower expression was found in thoracic ganglion, heart and testis. Extremely low expression of this transcript was observed in eyestalk, intestine, stomach, gills, hemocytes, lymphoid organs, subcuticular epithelium, pleopods and antennal gland. Based on RT-PCR, it was not expressed in hepatopancrease (Figure 3.39D).

PmRacgap1 was highly expressed in ovaries, antennal gland, eyestalk and hemocytes. A lower expression was observed in testes, gill, heart and lymphoid organs. Based on RT-PCR, this transcript was limitedly expressed in subcuticular epithelium, hepatopancreas, intestine pleopods, stomach and thoracic ganglion (Figure. 3.39E). *PmSema* was abundantly expressed in ovaries followed by stomach, gill and lymphoid organs. This transcript was expressed with very low levels extremely in eyestalk, intestine, subcuticular epithelium, hepatopancrease, heart, hemocytes, pleopods and antennal gland. Based on RT-PCR analysis, PmSema was not expressed in testes of male broodstock (Figure. 3.39F).

PmNUP133 was abundantly expressed in ovaries followed by tetes. A lower expression was observed in gills, heart and eyestalk and it was not expressed in subcuticular epithelium, intestine, hemocyte, thoracic ganglion, lymphoid organs, hepatopancrease, pleopods and antennal gland (Figure. 3.39H).

Figure 3.39 1.6% ethidium bromide-stained agrarose gels showing results from RT-PCR of *PmVCP* (A) *PmTmsb* (B) *PmcAMP-RPL* (C) *PmPKC* (D) *PmRacgap1* (E) *PmSema* (F), *PmNUP13* (G) using first strand cDNA of ovaries and various tissues of *P. monodon* broodstock and *EF-1* $\boldsymbol{\alpha}$ was successfully amplified romthe same template. Lanes M are a 100 bp DNA ladder marker. AN= antennal gland, ES = eyestalk, IN = intestine, ST = stomach, GL = gill, HC = hemocytes, TG = thoracic ganglion, LO = lymphoid organ, EP = subcuticular epithelium, HP = hepatopancrease, HE = heart, TT = testes, PL = pleopod and OV = ovaries.

A summary on expression of these genes in various tissues was illustrated in Table 3.9.

Gene homologues	Expected	Tissue
	size (bp)	
1. PmVCP	276	OV, HE, LO, TT, EP, HP
2. PmTmsb	176	ES, IN, ST, GL, HC, TG, HE, HP,
		LO, TT, PL, OV, EP
3. PmcAMP-RPL	169	PL, TG, HC, ES, HP, TT, IN, GL,
		HE, LO, OV, ST
4. PmPKC	139	OV, TG. HE, TT, ES, IN, ST, GL,
		HC, LO, EP, PL, AN
5. PmRac1gap1	172	OV, AN, ES, HC, TT, GL, HE, LO,
		EP, HP, IN, PL, ST, TG
6. PmSema	242	OV, GL, LO, ST, AN, EP, ES, HC,
		IN, PL, HE
7. PmNUP133	139	OV, TT, ES, GL

Table 3.9 Expression of reproduction-related genes in different tissues of *P. monodon*

3.5 Quantitative analysis of *PmVCP*, *PmTmsb*, *PmRacgap1*, *PmPKC* and *PmcAMP-RPL* during ovarian devlopment of *P.* monodon

The standard curves for real-time PCR analysis of *PmVCP*, *PmTmsb*, *PmRacgap1*, *PmPKC and PmcAMP-RPL* and EF-1 \mathbf{C} was constructed (Figure. 3.40). High amplification efficiency but low errors of each transcript were found.

3.5.1 PmVCP

Quantitative real-time PCR analysis revealed that the level of *PmVCP* expression in ovaries of juvenileswas significantly lower than in ovaries of broodstock (P < 0.05) (Figure 3.34). *PmVCP* mRNA was significantly higher in stages II and IV (mature) ovaries in wild intact broodstock of *P. monodon* (P < 0.05). By contrast, there was no statistically significant difference in PmVCP mRNA expression during ovarian development of eyestalk-ablated broodstock. The expression level of PmVCP mRNA in each ovarian stage (I–IV) of eyestalk-ablated broodstock seemed to be greater than that in intact broodstock but results were not significant owing to large standard errors among groups of samples (Figure 3.41).

3.5.2 PmTmsb

The expression level of *PmTmsb* in ovaries of juveniles was significantly lower than that in stages III, IV and post-spawning (V) ovaries of wild intact broodstock (P < 0.05). In intact broodstock, *PmTmsb* was not differentially expressed in different ovarian stages of *P. monodon* (P > 0.05). In unilateral eyestalk-ablated broodstock, its expression was significantly increased in vitellogenic (II) and mature (IV) ovaries (P < 0.05). Eyestalk ablation resulted in a significantly lower expression of *PmTmsb* in previtelogenic (I) and late vitellogenic (III) ovaries compared to the same stages in intact broodstock (P < 0.05, Figure 3.42).

3.5.3 PmcAMP-RPL

Quantitative real-time PCR analysis shown that the mRNA levels of *PmcAMP-RPL* in stage IV (mature) ovaries was greater than that in premature ovaries of juveniles (P < 0.05). Nevertheless, this transcript was not differentially expressed during ovarian development in both intact and eyestalk-ablated broodstock (P > 0.05; Figure 3.43).

Figure 3.40 The standard amplification curve of various genes examined by real-time PCR analysis. The standard curve of *PmVCP* (A; r^2 for standard curve = 0.9930, efficiency for the amplification = 1.986), *PmTmsb* (B; r^2 for standard curve = 0.9820, efficiency for the amplification = 1.964), *PmcAMP-RPL* (C; r^2 for standard curve = 1.0035, efficiency for the amplification = 2.007), *PmPKC* (D; r^2 for standard curve = 0.9780, efficiency for the amplification = 1.956), *PmRacgap1* (E; r^2 for standard curve = 0.9790, efficiency for the amplification = 1.958) and *EF-1***C** (F; r^2 for standard curve = 0.9805, efficiency for the amplification = 1.961). The abscissa reveals log copy number concentrations of each gene (10^3 to 10^8 copy, respectively).

HULALONGKORN UNIVERSITY

Figure 3.41 Histograms showing relative expression levels of *PmVCP* during ovarian development of intact broodstock and unilateral eyestalk-ablated of *P. monodon* broodstock. The same letters indicate non-significant differences between relative expression levels of different groups of samples.

Figure 3.42 Histograms showing relative expression levels of *PmTmsb* during ovarian development of intact broodstock and unilateral eyestalk-ablated of *P. monodon* broodstock. The same letters indicate non-significant differences between relative expression levels of different groups of samples.

Figure 3.43 Histograms showing relative expression levels of *PmcAMP-RPL* during ovarian development of intact broodstock and unilateral eyestalk-ablated of *P. monodon* broodstock. The same letters indicate non-significant differences between relative expression levels of different groups of samples.

3.5.4 Protein kinase C

Result from quantitative real-time PCR indicated that the expression level of *PmPKC* in intact broodstock was significantly greater than that of juveniles (P < 0.05). Its expression level in different developmental stages in wild intact broodstock was comparable (P > 0.05). In eyestalk-ablated broodstock, the expression level of *PmPKC* was also not differentially expressed (P > 0.05). Eyestalk ablation resulted in significant reduction of *PmPKC* in stages I-IV ovaries (P < 0.05) (Figure 3.44).

Figure 3.44 Histograms showing relative expression levels of *PmPKC* during ovarian development of intact broodstock and unilateral eyestalk-ablated of *P. monodon* broodstock. The same letters indicate non-significant differences between relative expression levels of different groups of samples.

3.5.5 PmRacgap1

The expression level of *PmRacgap1* in intact broodstock was significantly greater than that of juveniles (P < 0.05). Its expression was not significantly altered during ovarian development in intact broodstock (P > 0.05). The expression level of *PmRacgap1* I in eyestalk-ablated shrimp seemed to be lower than that in intact

broodstock but results were not statistically significant due to large standard deviations between groups of samples (P > 0.05, Figure 3.45).

Figure 3.45 Histograms showing relative expression levels of *PmRacgap1* during ovarian development of intact broodstock and unilateral eyestalk-ablated of *P. monodon* broodstock. The same letters indicate non-significant differences between relative expression levels of different groups of samples.

3.6 Effects of progesterone and 5-HT administration on transcription of reproduction-related genes in ovaries of *P. monodon*

PmVCP, PmcAMP-RPL, PmPKC, PmTsb and *PmRacgap1* are involved in ovarian development and/or signal transduction pathway in ovaries of shrimp. To verify the regulatory effects of neurotransmitters and steroid hormones on expression of these genes, various groups of domesticated shrimp samples were treated with progreterone and 5-HT. The gene expression analysis was carried out

3.6.1 Effect of progreterone administration on transcription of *PmVCP* in ovaries of domesticated 14-month-old broodstock

The effect of progesterone on expression of *PmVCP* in ovaries of 14-monthold of *P. monodon* was examined. The expression level of *PmVCP* in ovaries of 14month-old shrimp was not significantly altered following progesterone injection (P >0.05) (Figure 3.46).

Figure 3.46 Time-course relative expression levels of *PmVCP* in ovaries of domesticated 14month-old shrimp after progesterone injection (1 μ g/g body weight) at 12, 24, 48 and 72 hours post injection (hpt; *N* = 4 for each stage). Shrimp injected with absolute ethanol at 0 hpi were included as the vehicle control.

3.6.2 Effects of 5-HT administration on transcription of PmVCP, PmcAMP-

RPL and PmPKC in ovaries of domesticated 18-month-old broodstock

The effects of 5-HT on expression of *PmVCP*, *PmcAMP-RPL* and *PmPKC* in ovaries of 18-month-old *P. monodon* were examined. Exogenous 5-HT injection resulted in a rapid increase of ovarian *PmVCP* mRNA of 18-month-old shrimp at 6 and 24 h post-injection (hpi) (P < 0.05). Its expression level returned to non-significance level relative to the vehicle control at 48 and 72 hpi (Figure 3.47).

Figure 3.47 Time-course relative expression levels of *PmVCP* in ovaries of 18-month-old shrimp after serotonin injection (50 μ g/g body weight) at 1, 2, 3, 6, 12, 24, 48 and 72 hours post injection (hpt; *N* = 4 for each stage). Shrimp injected with 0.85% saline solution at 0 hpi were included as the vehicle control.

In contrast, 5-HT administration resulted in significant increasing of ovarian *PmPKC* expression for approximately 50-fold at 6 hpi (P < 0.05). Subsequently, its expression level was reduced but still significantly greater than that of the vehicle control at 12-48 hpi (P < 0.05) (Figure 3.48).

In addition, the expression level of *PmcAMP-RPL* was significantly increased at 6 h following the injection of 5-HT (P < 0.05). Its expression level peaked at 12 hpi (P < 0.05) and the expression level was reduced but still significantly greater than that of the vehicle control at 24-48 hpi (P < 0.05) (Figure 3.49).

In addition, exogenous 5-HT administration resulted in significant increasing of ovarian PmRacgap1 expression for approximately 250-fold at 6 hpi (P < 0.05). Its

expression level was reduced but still significantly greater than that of the vehicle control for 50 fold at 12-48 hpi (P < 0.05) (Figure 3.50).

Unlike other transcripts, exogenous 5-HT injection resulted in a lower expression level of *PmTmsb* relative to the vehicle control at 6-72 hpi (P < 0.05) (Figure 3.51)

Figure 3.48 Time-course relative expression levels of *PmPKC* in ovaries of 18-monthold after serotonin injection (50 μ g/g body weight) at 1, 2, 3, 6, 12, 24, 48 and 72 hours post injection (hpt; *N* = 4 for each stage). Shrimp injected with 0.85% saline solution at 0 hpi were included as the vehicle control.

Figure 3. 49 Time-course relative expression levels of *PmcAMP-RPL* in ovaries of 18-month-old shrimp after serotonin injection (50 μ g/g body weight) at 1, 2, 3, 6, 12, 24, 48 and 72 hours post injection (hpt; *N* = 4 for each stage). Shrimp injected with 0.85% saline solution at 0 hpi were included as the vehicle control.

Figure 3.50 Time-course relative expression levels of *PmRacgap1* in ovaries of 18month-old shrimp after serotonin injection (50 μ g/g body weight) at 1, 2, 3, 6, 12, 24, 48 and 72 hours post injection (hpt; *N* = 3 for each stage). Shrimp injected with 0.85% saline solution at 0 hpi were included as the vehicle control.

Figure 3.51 Time-course relative expression levels of *PmTmsb* in ovaries of 18month-old after serotonin injection (50 μ g/g body weight) at 1, 2, 3, 6, 12, 24, 48 and 72 hours post injection (hpt; *N* = 4 for each stage). Shrimp injected with 0.85% saline solution at 0 hpi were included as the vehicle control.

3.7 Localization of VCP genes in ovaries of P. monodon broodstock

3.7.1. Quantification of the cRNA probe

The sense and antisense cRNA probes were synthesized from an insert (600 bp) of the recombinant plasmid of *PmVCP* (Figure. 3.52A). The antisense and sense probes gave the positive signal at approximately 1 ng/µl. However, the amount of both cRNA probes of *PmVCP* was higher than 1 ng/µl (Figure 3.52B). An appropriate amount of the cRNA probe of each transcript was applied for examination of transcriptional localization using *in situ* hybridization.

Figure 3.52 (A) The digested plasmid was used as the template for synthesis of the cRNA probe of *PmVCP* (lanes 1-3). (B) The antisense (lane 1) and sense (lane 2) were synthesized from the gel-eluted digested plasmid template. A 100 bp ladder (lanes M, A and B) was used as the DNA marker.

3.7.2 In situ hybridization (ISH)

Cellular localization of *PmVCP* transcripts in ovaries of *P. monodon* broodstock was determined by *in situ* hybridization. No signal was observed with the sense (control) probe (Figures 3.53A and 3.54A). The positive signal was observed when the tissue sections were hybridized with the antisense probe of *PmVCP*. The positive signals were observed in oogonia and ooplasm of previtellogenic and vitellogenic oocytes in different stages of ovaries of both intact and eyestalk-ablated broodstock (Figures. 3.53-3.54; B-E).

Figure 3.53 Localization of *PmVCP* transcript during ovarian development of intact *P. monodon* broodstock visualized by *in situ* hybridization using the antisense (B-E), sense (A) cRNA probes. No signal was observed from the sense cRNA probe. The conventional hematoxylin/eosin staining was carried out for identification of oocyte stages (F). EP = early previtellogenic oocytes; Oog = oogonia; LCR=late cortical rod oocytes; Vg = vitellogenic oocyte.

Figure 3.54 Localization of *PmVCP* transcript during ovarian development of eyestalk-ablated broodstock of *P. monodon* visualized by *in situ* hybridization using the antisense (B-E) and sense (A) cRNA probes. No signal was observed from the sense cRNA probe The conventional hematoxylin/eosin staining was carried out for identification of oocyte stages (F). EP = early previtellogenic oocytes; Oog = oogonia; LCR=late cortical rod oocytes; Vg = vitellogenic oocyte.

3.8 *In vitro* expression of reproduction-related proteins using the bacterial expression system

3.8.1 Construction of recombinant plasmids for cloning and expression of recombinant proteins

Two recombinant plasmids carrying the complete ORF of *PmRacgap1* and *PmTmsb* and three plasmids carrying the partial ORF of *PmVCP*, *PmNUP133* and *PmSema* covering Cdc48, nucleoporin_N and Sema domains, respectively, were constructed.

PmRacgap1 was initially identified from testis cDNA library and the full-length cDNA of this transcript in testes was characterized by RACE-PCR. The full-length cDNA of testis *Racgap1* was 2838 bp in length containing an ORF of 1812 bp deducing to 603 amino acids. This transcript significantly matched *Rac GTPase-activating protein 1* of *Crassostrea gigas* (*E*-value = 2e-127) (Leelatanawit, 2008). The ORF of the ovarian form was successfully amplified using primers designed from the testis form. It was 1881 bp inlength corresponding to 626 amino acids and significantly matched *Rac GTPase-activating protein 1* of *Crassostrea gigas* : E-value = 6e-117). The deduced amino acids of both isoform of *PmRacgap1* were aligned (Figures 3.55).

ORF-TT ORF-OV	MESLSAQFDDLMRQMQVLADPAEYKFLEFLDHEEKNRVQLRELEAEVSRLNEQAARYQKE MESLSAQFDDLMRQMQVLADPAEYKFLEFLDHEEKNRVQLRELEAEVSRLNEQAARYQKE ******
ORF-TT ORF-OV	IKSLEMKLKNAKHMLDVEKAKRITTEKEKNDLAGQIGLVMELLGRGQVNETRERLQQLQH IKSLEMKLKNAKHMLDVEKAKRITTEKEKNDLAGQIGLVMELLGRGQVNETRERLQQLQH *********************************
ORF-TT ORF-OV	SFTFSGTVTNQRRSTRDLSPGPLSTITEDNDTMGSILSVSDIDITEDDLEESRLRSGRSF SFTFSGTATNQRRSTRDLSPGPLSTITEDNDTMGSILSVSDIDITEDDLEESRLRSGRSF *******
ORF-TT ORF-OV	KRRSSPERQDSSKGKRRSGRRSEDMQTHEVKTQVTYYTQGEEIKKIHTETKVKPSAPPLS KRRSSPERQDSSKGKRRSGRRSEDMQTHEVKTQVTYYTQGDEIKKIHTETKVKPSAPPLS ***********************************
ORF-TT ORF-OV	TDEETEVSHLKKPTHGHTLNTPSTPHIPQTAYSPHFPNPITPQKQGTGQMYYTPTHNLVT TDEETEVSHLKKPTHGHTLNTPSTPHIPQTAYSPHFPNPITPQGTGQMYYTPTHNLVT ************************************
ORF-TT ORF-OV	PVLRTHSSVTKINQRPHAFYTKTIYKTEHCQPCGKRIKFGKIALKCRDCRATCHPE PVLRTHSSVTKINQRPHAFYTKTIYKTEHCQPCGKRIKFGKIALKCRDCRATCHLSVVNL ***********************************
ORF-TT ORF-OV	CRESVFLPCVFTALVVHCTNEVENRGLSEVGIYRVPGAE CRFLVFLQLTLQLQRGNWEPLLTTHLVCPQWFQPLVVHCTNEVENRGLSEVGIYRVPGAE ** * *
ORF-TT ORF-OV	KDVKELKDQFLRGKGMPNLSQLDIHVVCGALKDFMRSLKEPLVTHLLWRDFTSAAEKSEA KDVKELKDQFLRGKGMPNLSQLDIHVVCGALKDFMRSLKEPLVTHLLWRDFTSAAEKSEA
ORF-TT ORF-OV	QDYLAALYQAISELPQPNRDTLAWIMTHLQRVAECPECKMPASNLAKVFGPTLVGYSVPE QDYLAALYQAISELPQPNRDTLAWIMTHLQRVAECPECKMPASNLAKVFGPTLVGYSVPE ************************************
ORF-TT ORF-OV	PDPATMLTETRQQQMVMEKLLEISTDYWNTFINVTDENVHQGVQQVPTLEGGTLLGGFPS PDPATMLTETRQQQMVMEKLLEISTDYWNTFINVTDENVHQGVQQVPTLEGGTLLGGFPS ************************************
ORF-TT ORF-OV	SNTRRRSILTRTPLTPRETPKNRYVFRK SNTRRRSILTRTPLTPRETPKNRYVFRK ************************

Figure 3.55 Alignments of deduced amino acid sequences of *Racgap1* from testes (ORF-TT; Leelatanawit et al., 2008) and ovaries (ORF-OV) of *P. monodon*.

Primers overhang with appropriate restriction enzymes were designed to amplified the complete ORF of was designed to amplify cDNA of *PmRacgap1* and *PmTmsb* and *Cdc48* of *PmVCP*, *nucleoporin_N* of *PmNUP133* and *Sema* domains of *Pmsema*, *PmVCP* (called PmCdc48-VCP plasmid), *PmNUP133* (called PmNPC-NUP133) and *PmSema* (PmSema plasmid). The amplified fragment was ligated, cloned into pGEM-T easy vector and transformed into *E. coli* JM109. Plasmid DNA of the positive clone was re-sequenced to confirm the orientation and nucleotide sequence of a particular recombinant clone. Recombinant plasmid in the cloning vector was used as the template for amplification of the corresponding fragment of each transcript.
The amplification product of *PmRacgap1*, *PmTmsb* and *PmSema* were digested with *Nde* I and *BamH*I and ligated into pET17b while *PmCdc48-VCP* was digested with *EcoR* I and *BamH* I and ligated to pET29a. The *PmNPC-NUP133* fragment was digested with *Nde* I and *EcoR* I ligated to pET15b. All recombinant plasmids were transformed into *E. coli* BL21C+(DE3)RIPL.

3.8.2 In vitro expression of recombinant proteins

In vitro expression of five recombinants of PmRacgap1 (72 kDa), rPmTmsb (15.3 kDa), rPmCdc48-VCP (24 kDa), rPmNPC-NUP133 (41.37 kDa) and rPmSema (38.3 kDa) were carried out. After IPTG induction, the recombinant proteins were examined by SDS-PAGE and western blot analysis. In addition, soluble and insoluble protein fractions were also determined.

The rPmcdc48-VCP (containing cdc48_N and cdc48_2 domains) was expressed after induction by IPTG for 3 hr. The expected protein band of rPmCdc48-VCP (24 kDa) was observed when total proteins were incubated with Anti-6XHis tag. The expression level of rPmCdc48-VCP after indication for 6 hr was greater than that after IPTG induction for 3 hr (Figure 3.56). The rPmCdc48-VCP was expressed in both soluble and insoluble form when the recombinant clone was cultured at 15°C for overnight. However, the expression in the inclusion bodies was greater than that in the soluble fraction (Figure 3.57).

A recombinant clone of PmNPC-NUP133 was induced by IPTG for 0, 1, 2, 3, 6, 12 and 24 hr. The expected protein bands at 41.37 kDa of rPmNPC-NUP133 were observed at 1-3 hr post induction. The expression of this recombinant protein was reduced at 6 hr post induction and the positive band was not observed at 12 and 24 hr post induction (Fig 3.58). The rPmNPC-NUP133 was solely expressed in the inclusion bodies (Figure 3.59).

The rPmSema was stably expressed during 1-24 hr post induction with IPTG (Figure 3.60). It was entirely expressed as the insoluble protein when the recombinant clone was cultured at 37° C (Fig. 3.61).

Figure 3.56 SDS-PAGE (A) and Western blot analysis (B) illustrating *in vitro* expression of two recombinant clones of PmCdc48-VCP after IPTG induction (1 mM) for 3 hr (lanes 4 and 6) and 6 hr (lanes 5 and 7). *E. coli* BL21C+(DE3)RIPL cells (lane 1), pET29a vector in *E. coli* BL21C+(DE3)RIPL cell (lane 2) and a recombinant clone at 0 hr after induction by 1 mM IPTG (lane 3) was included as the control.

Figure 3.57 SDS-PAGE (A) and western blot analysis (B) showing expression of a recombinant clone of PmCdc48-VCP after the culture was induced by IPTG for 3 hr at 15°C. Lane 1= whole cells of *E. coli* BL21C+(DE3)RIPL, Lane 2 = an insoluble protein fraction (30 μ g protein), and Lane 3 = a soluble protein fraction (30 μ g protein).

Figure 3.58 SDS-PAGE (A) and western blot analysis (B) of a recombinant clone of PmNPC-NUP133 after induction by 1 mM IPTG for 0, 1, 2, 3, 6, 12 and 24 hr (lanes 3-9). *E. coli* BL21C+(DE3)RIPL cells (lane 1) and pET15b in *E. coli* BL21C+(DE3)RIPL (lane 2) were included as the negative controls.

Figure 3.59 SDS-PAGE (A) and western blot analysis (B) showing expression of a recombinant clone of PmNPC-NUP133 after IPTG induction (1 mM) for 3 hr at 37°C. Lane 1 = E. *coli* BL21C+(DE3)RIPL. Lane 2 = pET15b in *E. coli* BL21C+ (DE3)RIPL. Lane 3 = whole cells after IPTG induction for 0 hr, lane 4 = soluble fraction (30 µg proteins) and lane 5 = inclusion bodies (30 µg proteins).

The expected protein band of 72 kDa was observed at 1-12 hr post induction with IPTG. However, the expression of rPmRacgap1 was quite low and it was not expressed after IPTG induction overnight (Figure 3.62). A protein band with a lower molecular weight of approximately 22 kDa was observed at 12 and 24 hr post induction. This suggested that rPmRacgap1 was not stable in the long culture period. Western blot analysis indicated that rPmRacgap1 was expressed in the insoluble form (Figure 3.63).

Like PmRacgap1, PmTmsb (15.3 kDa) was expressed at 1-12 hr post induction with IPTG. However, it was not expressed after induction with IPTG overnight (Figure 3.64). Western blot analysis indicated that rPmTmsb was expressed in the insoluble form (Figure 3.65).

Figure 3.60 SDS-PAGE (A) and western blot analysis (B) of a recombinant clone of PmSema after induction by 1 mM IPTG for 0, 1, 2, 3, 6, 12 and 24 hr (lanes 3-9). *E. coli* BL21C+(DE3)RIPL (lane 1) and pET17b in *E. coli* BL21C+(DE3)RIPL (lane 2) were included as the negative controls.

Figure 3.61 SDS-PAGE (A) and western blot analysis (B) showing expression of a recombinant clone of Pmsema after induction by 1 mM IPTG for 3 hr at 37°C. Lane 1 = *E. coli* BL21C+(DE3)RIPL. Lane 2 = pET17b in *E. coli* BL21C+(DE3)RIPL. Lane 3 = whole cell at 0 hr after induction with IPTG, lane 4 = soluble fraction (30 μ g protein) and lane 5 = inclusion bodies (30 μ g protein).

Figure 3.62 SDS-PAGE (A) and western blot analysis (B) of a recombinant clone of PmRacgap1 after induction by 1 mM IPTG for 0, 1, 2, 3, 6, 12 and 24 hr (lanes 3-8). *E. coli* BL21C+(DE3)RIPL (lane 1) was included the negative controls.

Figure 3.63 SDS-PAGE (A) and western blot analysis (B) showing expression of PmRacgap1 after a recombinant cloned was induced y IPTG (1 mM) for 3 hr at 37°C. Lane 1 = E. *coli* BL21C+(DE3)RIPL. lane 2 = soluble fraction (30 µg protein) and lane 3 = inclusion bodies (30 µg protein).

Figure 3.64 SDS-PAGE (A) and western blot analysis (B) of a recombinant clone of PmTmsb after induction by 1 mM IPTG for 0, 1, 2, 3, 6, and 12 (lanes 3-8). *E. coli* BL21C+(DE3)RIPL (lane 1) and pET17b in *E. coli* BL21C+(DE3)RIPL cell (lane 2) were included as the negative controls.

Figure 3.65 SDS-PAGE (A) and western blot analysis (B) showing expression of rPmTmsb after a recombinant PmTmsb was induced by 1 mM IPTG for 3 hr at 37°C. Lane 1 = soluble fraction (30 μ g protein) and lane 3 = inclusion bodies (30 μ g protein).

3.8.3 Purification of rPmTmsb, rPmCdc48-VCP, rPmRacgap1, rPmNPC-NUP133 and rPmSema

Recombinant proteins produced were further purified before used as the immunogens for the production of polyclonal antibodies. The soluble fractions of rPmTmsb, rPmCdc48-VCP proteins were purified under the non-denaturing conditions whereas rPmRacgap1, rPmNPC-NUP133 and rPmSema which were expressed as insoluble proteins were purified under the denaturing conditions. Washed and eluted fractions were analyzed by SDS-PAGE and western blot (Fig 3.66-3.70). After purification, eluted proteins were keeping at -20°C.

Figure 3.66 Purification of rPmCdc48-VCP (cultured at 15°C, overnight). Recombinant protein was examined by using SDS-PAGE (A-B). (A) lane 1 = the soluble protein fraction before pass through the column, lane 2 = the soluble protein fraction after pass through the column, lanes 3-4 = the first wash (40 mM imidazole) fractions 9 and 10, lanes 5-6 = the second wash (80 mM imidazole) fractions 9 and 10 and lanes 7-8 = the third wash (150 mM imidazole) fractions 3 and 5 respectively. (B): lanes 1-5 = eluted protein fractions 1-5, respectively.

Figure 3.67 Purification of rPmNUP133 (cultured at 37° C, 3 hr). Recombinant protein was examined using SDS-PAGE (A-B). (A) lane 1 = the insoluble fraction before pass through the column, lane 2 = the insoluble fraction after pass through the column, lanes 3-6 = the first wash (20 mM imidazole) fractions 7, 8, 9 and 10, lanes 7-9 = the second wash (40 mM imidazole) fractions 8, 9 and 10 respectively. (B): lanes 1-3 = the third wash (80 mM imidazole) fractions 1, 3 and 5, lanes 4-6 = the last wash (150 mM imidazole) fractions 1, 3 and 5, lanes 7-9 = eluted protein fractions 1-3, respectively.

Figure 3.68 Purification of rPmSema (cultured at 37°C, 3 hr). Recombinant protein was examined using SDS-PAGE (A-B). (A) lane 1 = the insoluble fraction before pass through the column, lane 2 = the insoluble fraction after pass through the column, lanes 3-5 = the first wash (20 mM imidazole) fractions 8, 9 and 10, lanes 6-8 = the second wash (40 mM imidazole) fractions 8, 9 and 10. (A) lane 9 and (B) lanes 1-2 = the third wash (80 mM imidazole) fractions 1, 3 and 5, lanes 3-5 = the last wash (150 mM imidazole) fraction 1, 3 and 5, lanes 6-9 = eluted protein fractions 1-4, respectively.

Figure 3.69 Purification of rPmRacgap1 (cultured at 37° C, 3 hr). Recombinant protein was examined using SDS-PAGE (A-B). (A) Lane 1 = the insoluble fraction before pass through the column, lane 2 = the soluble fraction after pass through the column, lanes 3-6 = the first wash (20 mM imidazole) fractions 7, 8, 9 and 10, lanes 7-9 = the second wash (40 mM imidazole) fractions 8, 9 and 10. (B) Lanes 1-3 = the third wash (80 mM imidazole) fractions 1, 3 and 5, lanes 4-6 = the last wash (150 mM imidazole) fraction 1, 3 and 5; lanes 7-9 = eluted protein fractions 1-3, respectively.

Figure 3.70 Purification of rPmTmsb (cultured at 37° C, 3 hr). Recombinant protein was examined using SDS-PAGE (A-B). (A) Lane 1 = the soluble fraction before pass through the column, lane 2 = the soluble fraction after pass through the column, lanes 3-5 = the first wash (40 mM imidazole) fractions 8, 9 and 10, lanes 6-7 = the second wash (80 mM imidazole) fractions 9 and 10 and lanes 8-9 = the third wash (150 mM imidazole) fractions 3 and 5, respectively. (B): lanes 1-5 = eluted protein fractions 1-5, respectively.

The eluted fractions of rPmCdc48-VCP, rPmNPC-NUP133, rPmSema, PmRacgap1 and PmTmsb proteins were poled and concentrated (*in vacuo* and ultrafiltration) (Figure 3.71) and subjected to the polyclonal production by Faculty of Medical Technology, Chiang Mai University.

Anti-rPmCdc48-VCP, anti-NPC-NUP133, PmSema, PmRacgap1 and PmTmsb polyclonal antibodies were successfully produced with a relatively high titer (1:32,000 with OD450 = 0.192, 0.653, 1.015, 0.163 and 0.294 against 1 μ g of purified respective recombinant proteins) (Table 3.10).

3.9 Sensitivity and specificity of anti-rPmCdc48-VCP, PmrRacgap1 and rPmTmsb

The detection sensitivity for the produced antibody was tested. The positive reactions were observed with 0.1, 0.2 and 0.5 μ g of rPmCdc48-VCP (Figure. 3.72A). In subsequent specificity tests with anti-rPmCdc48-VCP PAb, 0.2 μ g of rPmCdc48-VCP was used. Anti-rPmCdc48-VCP PAb gave positive immunoreactive signals with the target but did not cross-react with non-target proteins including rPmCdc2 which contained an S_TKc domain, rPmRuvBL2 which contained an AAA domain, rPmRacGAP1 which contained a C1 domain, rPmCdc25 which contained a rhodanase domain, rPmDRK which contained the Src homolog domains SH2 and SH3, and rPmTHY- β which contained THY domains (Figure. 3.72B).

In addition, both 24 and 97 kDa bands were found when 0.2 μ g of rPmCdc48-VCP was mixed with varying concentrations of total ovarian proteins (2.5, 5, 10 and 20 μ g) and probed with purified anti-rPmCdc48-VCP PAb (Figure 3.72C).

Antigen-antibody competition assay was carried out to examine the specificity of the raised antibody and to determine whether positively reactive bands generated from each antibody are the target protein. Importantly, a 97 kDa band reacted specifically with the purified antibody when different concentrations of rPmCdc48-VCP were used to compete with the antibody before probing total ovarian proteins. The positive immmunoreactive band was observed from 2.5, 5, 10 and 20 µg total ovarian proteins whether or not the purified antibody was used in competition with 1 µg rPmCdc48-VCP. Increasing competition from rPmCdc48-VCP to 2.5 µg resulted in the disappearance of the positive band in 2.5 µg total ovarian proteins. Only a faint positive band was observed with 10 and 20 µg ovarian proteins when the purified antibody was used in competition from rPmCdc48-VCP (Figure 3.73).

			Polyclonal a	ntibody		
	rPmCdc4	48-VCP	PmNPC-N	UP133	PmSer	na
Dilution of serum	Pre-immunized serum	Immunized	Pre-immunized serum	Immunized serum	Pre-immunized serum	Immunized
Dilution of serun					1 V.	
1:500	0.026	2.125	0.108	3.073	3 6 4 -	
1:2000	0.009	1.449	0.069	2.641	0.086	2.567
1:8000	0.004	0.595	0.06	1.556	0.071	2.036
1:32000	0.002	0.192	0.056	0.653	0.069	1.015
	PmRac	cgap1	PmTm	sb		
Dilution of serun		NO.	Seal of the seal o			
1:500	0:030	1.977	0.035	2.327		
1:2000	0.020	1.351	0.017	1.703		
1:8000	0.009	0.554	0.016	0.858		
1:32000	0.007	0.163	0.011	0.294		

Table 3.10 Titers of polyclonal antibodies after rabbits were administrated by rCdc48-VCP, rNUP133, PmSema, PmRacgap1 and PmTmsb

Pre-immunised serum = serum from normal rabbit; Immunised serum = serum from rabbit injected with the recombinant protein

Figure 3.71 SDS-PAGE (A) and western blot analysis (B) showing electro-eluted rPmCdc48-VCP (I), rPmNUP133 (II), rPmSema (III), RacGAP 1 (IV) and rPmTmsb (V) of *P. monodon* (Figure 3.65C).

Figure 3.72 Sensitivity of anti-rPmCdc48-VCP PAb against varying amounts of rPmCdc48-VCP protein (0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2 and 0.5 µg, lanes 1–8, respectively) (A) (B) Specificity of anti-rPmCdc48-VCP PAb tested against various recombinant proteins (0.2 µg) of *P. monodon* including rPmCdc48-VCP, rPmRacgap1, rPmRuvBL2, rPmCdc2, rPmCdc25, rPmDRK, and rPmTmsb (lanes 1–7, respectively), and showing binding only with rPmCdc48-VCP (lane 1). (C) Western blot analysis using anti-rPmCdc48-VCP PAb against rPmcdc48-VCP (lane 1) and varying concentrations of total ovarian proteins (2.5 µg, lanes 2 and 6; 5 µg, lanes 3 and 7; 10 µg, lanes 4 and 8 and 20 µg, lanes 5 and 9) pre-mixed with 0.2 µg of rPmCdc48-VCP.

Figure 3.73 Competitive binding assays with rPmcdc48-VCP PAb. Western blot analysis of the purified anti-PmCdc48-VCP PAb (1:300) pre-mixed with 0, 1, 2.5 and 5 µg of rPmCdc48-VCP was carried out and used against 2.5, 5, 10 and 20 µg total ovarian proteins (lanes 1-4, respectively) of a female shrimp with vitellogenic ovaries (stage II) and showing complete competitive blocking at 5 µg rPmCdc48-VCP.

The detection sensitivity of the produced anti-rPmRacgap1 PAb was tested and positive reaction was observed with 0.5 and 1 µg of rPmRacgap1 (Figure. 3.74A). In the competitive binding assay, the positive immmunoreactive band of 34 kDa was observed from 2.5-20 µg ovarian membrane proteins while that of 100 kDa was observed from 5-20 µg ovarian membrane proteins when no competition of the purified antibody was carried out. In competition with 1 and 2.5 µg rPmRacGAP1, the 34 kDa band was still observed from 2.5-20 µg ovarian membrane proteins. However, the 100 kDa band was found from 5-20 µg and 10-20 µg, respectively. Increasing competition of rPmRacgap1 to 5 µg resulted in the disappearance of both positive bands in 2.5 and 5 µg ovarian membrane proteins. Only faint positive bands were observed from 20 µg ovarian membrane proteins when the purified antibody was used in competition with 10 µg rPmRacgap1 (Figure. 3.74B). This confirmed that both 35 and 100 kDa bands are specifically recognized by anti-rPmRacgap1 PAb.

Figure 3.74 (A) Sensitivity of anti-rPmRacgap1 PAb against varying amounts of rPmRacgap1 proteins (0.001, 0.002, 0.005, 0.05, 0.1, 0.2, 0.5 and 1 μ g corresponding to lanes 1-8, respectively). (B) Competitive binding assays with anti-rPmRacgap1 PAb. Western blot analysis of the purified anti-rPmRacgap1 PAb (1:100) pre-mixed with 0, 1, 2.5, 5 and 10 μ g of rPmRacGAP 1 were carried out and used against 2.5, 5, 10 and 20 μ g membran ovarian proteins (lanes 1-4, respectively) of a female shrimp with vitellogenic ovaries (stage II) and showing complete competitive blocking at 10 μ g rPmRacgap1.

The positive signals of anti-rPmTmsb PAb were observed against 0.05, 0.1, 0.2, 0.5 and 1 µg of rPmTmsb (Figure 3.75A). For anti-PmTmsb, the positive immunoreactive bands of 22 and 28 kDa were observed from 5-20 µg and 10-20 µg total ovarian proteins whether or not the purified antibody was used in competition with 1 µg rPmTmsb. Nevertheless, these bands were disaapeared in the Ag-Ab competition test when anti-PmTmsb PAb competed with 2.5 or 5 µg rPmTmsb. Results from nanoESI-LC-MS/MS further indicated that these bands were closest similar to thymosin isoform 2 (EST clone HC-N-S01-0235-LF) and thymosin- β -2 (EST clone HC-H-S01-0682-LF) repeated of P. monodon protein (http://pmonodon.biotec.or.th), respectively. Notably, a constant level of a 76 kDa band which significantly matches vitellogenin of Fenneropenaeus chinensis (gi|86129739) was observed in all examined samples (Figure 3.75B). Nevertheless, the vitellogenic band was not observed in subsequent Western blotting for expression analysis of ovarian PmTmsb during ovarian development of *P. monodon*.

3.9 Mass spectrometry analysis of immunoreactive bands and recombinant proteins

A discrete immunoreactive band of 97 KDa was observed when anti-PmCdc48-VCP PAb testes against total ovarian proteins of juveniles and wild intact and eyestalk-ablated broodstock. The positive protein band on a Western blotted PVDF membrane was trypsinized and further analyzed by nano ESI-LC-MS/MS. Internal peptide sequences of the immunoreactive protein were K.G-D-L-F-L-V-R.G, K.G-V-L-F-Y-G-P-P-G-C-G-K.T and K.V-T-H-G-F-S-G-A-D-L-T-E-I-C-Q-R.A which significantly matched valosin containing protein 1 of *Eisenia fetida* (score = 81; P < 0.05) and perfectly matched the deduced amino acid sequence obtained from *P. monodon* EST (gi|000034674). The internal peptide of rPmTmsb were K.G-Q-L-E-G-F-S-A-V-N-L-K-.K, R.Q-G-I-E-G-F-D-H-A-A-L-K-.K, K.G-Q-L-E-G-F-S-A-V-N-L-K-K.T, K.G-Q-L-E-G-F-D-H-A-A-L-K-.K, K.G-Q-L-E-G-F-S-A-V-N-L-K-K.T, K.I-V-L-P-A-Q-E-D-I-E-T-E-K.T, K.I-H-L-P-N-R-E-D-V-E-A-E-K.K, K.V-Q-A-H-L-Q-A-V-E-G-F-N-T-A-Q-L-K.H and K.K-V-Q-A-H-L-Q-A-V-E-G-F-N-T-A-Q-L-K.H which significantly matched Tmsb of *Scylla paramamosain* (score 309; P < 0.05).

Results from nanoESI-LC–MS/MS further indicated that the positive molecular size 28 and 22 kDa generated from anti-PmTmsb PAb against total ovarian proteins of *P. monodon* were closest similar to thymosin- β -repeated protein 2 (EST clone HC-H-S01-0682-LF) and thymosin isoform 2 (EST clone HC-N-S01-0235-LF; http://pmonodon.biotec.or.th) of *P. monodon*, respectively.

3.10 Expression of PmVCP, PmRacgap1 and PmTmsb proteins during ovarian development of *P. monodon*

Western blot analysis revealed that PmVCP protein (97 kDa) was abundantly expressed in gonads (ovaries and testes). Limited expression of PmVCP was observed in the heart and lymphoid organ. PmVCP protein was not detected in the subcuticular epithelium and hepatopancreas (Figure 3.76A).

The molecular size of ovarian PmVCP (approximately 97 kDa) was greater than that predicted from the PmVCP cDNA suggesting that it was post-translationally modified by glycosylation. Female shrimp with the immunological signals of ovarian PmVCP were observed in juvenile ovaries and at all stages of ovarian development in both intact and eyestalk-ablated broodstock of wild *P. monodon* (Figure 3.76B).

Α									
kDa M	1	2	3	4	5	6	7	8	
100_ 75- 50- 37-									
25_ 20-									
15-					-		-	Annih	•

В	No	comp	oetiti	on		_	1 µ	ıg rT	'HY-	β
kDa M	[1	2	3	4		М	1	2	3	4
100 - 75 =	_	_	_		100_					
50-					75-		-			
37-					50-					
-					37-					
25-					25-					
20-					20-					
15 -					 ■ 15 					
					15-					
	25	T	TTTT	0			-		TX 7 0	
	2.5 µ	ug rT	'HY-	β			5 µg	; rTI	ŦY-β	
kDa M	2.5 µ 1	ug rT 2	'НҮ- 3	β 4		м	5 μ <u>g</u> 1	rTF 2	ΙΥ-β 3	4
kDa M 100-	2.5 µ 1	ug rT 2	<u>'НҮ-</u> 3	β 4	100-	м	5 μ <u>g</u> 1	rTI 2	IY-β 3	4
kDa M 100_ 75-	2.5 µ	ug rT 2	<u>'HY-</u> 3	β 4	100- 75-	м	5 μg 1	rTH 2	<u>4Y-β</u> 3	4
kDa M 100_ 75- 50-	2.5 µ	ug rT 2	<u>'HY-</u> 3	β4	100- 75- 50-	M	5 μg 1	2 2	<u>4Y-β</u> 3	4
kDa M 100- 75- 50- 37-	2.5 µ	ug rT 2	<u>'HY-</u> 3	β4	100- 75- 50- 37-	м	5 µg 1	g rTH 2	<u>ΗΥ-β</u> 3	4
kDa M 100- 75- 50- 37- 25-	2.5 µ 1	ug rT 2	<u>'HY-</u> 3	β 4	100- 75- 50- 37- 25-	м	5 μ <u>g</u> 1	g rTH 2	<u>HY-β</u> 3	4
kDa M 100- 75- 50- 37- 25- 20-	2.5 µ	ug rT 2	<u>'HY-</u> 3	β 4	100 - 75 - 50 - 37 - 25 - 20 - 20 - 20 - 20 - 20 - 20 - 20	M	5 μ <u>g</u> 1	g rTH 2	<u>HY-β</u> 3	4
kDa M 100_ 75- 50- 37- 25- 20- 15 -	2.5 µ	ug rT 2	<u>'HY-</u> 3	β 4	100- 75- 50- 37- 25- 20-	M	5 μg 1	<u>g rTH</u> 2	<u>ΗΥ-β</u> 3	4
kDa M 100- 75- 50- 37- 25- 20- 15-	2.5 µ 1	ug rT 2	3 3	β 4	100- 75- 50- 37- 25- 20-	M	5 μg	<u>2</u>	<u>ΗΥ-β</u> 3	4
kDa M 100_ 75- 50- 37- 25- 20- 15 -	2.5 µ	ug rT 2	3	β 4	100- 75- 50- 37- 25- 20-	M	<u>5 μ</u> g	2 2	<u>ΗΥ-β</u> 3	4
kDa M 100_ 75- 50- 37- 25- 20- 15 -	2.5 µ	ug rT 2	<u>HY-</u> 3	β 4	100- 75- 50- 37- 25- 20-	M	<u>5 μ</u> g	<u>; rTI</u> 2	<u>ΗΥ-β</u> 3	4

Figure 3.75 (A) Sensitivity of anti-rPmTmsb PAb against varying amounts of rPmtmsb protein (0.001, 0.002, 0.005, 0.05, 0.1, 0.2, 0.5 and 1 μ g; lanes 1-8 respectively). (B) Competitive binding assays of anti-rPmTmsb PAb. Western blot analysis of the purified anti-rPmTmsb PAb (1:200) pre-mixed with 0, 1, 2.5, and 5 μ g of rPmTmsb was carried out and used against 2.5, 5, 10 and 20 μ g total ovarian proteins (lanes 1-4, respectively) of a late vitellogenic ovaries (stage III) and showing complete competitive blocking at 5 μ g rPmTmsb.

It seemed to be expressed at comparable levels for all stages of ovarian development in both intact wild broodstock and eyestalk-ablated broodstock.

A discrete band of 34 kDa and a faint band of approximately 100 kDa (in stages I and II ovaries) were observed from western blot analysis of total soluble proteins against purified anti-rPmRacgap1 PAb. The expression level of PmRacgap1 reflected from a 34 kDa band seemed to be decreased in late stages of ovarian development (stages III and IV ovaries) in both intact and eyestalk-ablated broodstock (Figure 3.77). However, both intense 34 and 100 kDa bands were observed when membrane proteins of ovaries were analyzed.

The expression level of these bands was comparable during ovarian development in intact broodstock but it was decreased in mature ovaries in eyestalk-ablated broodstock (Figure 3.78).

Anti-rPmTmsb PAb gave positive immunoreactive signals of 22 and 28 kDa, respectively. The expression level of PmTmsb reflected from a positive 28 kDa band (thymosin- β -repeated protein 2) seemed to be decreased in mature (IV) ovaries in intact broodstock. In eyestalk-ablated broodstock, it was not expressed in late vitellogenic (III) and mature ovaries of wild *P. monodon* broodstock. A similar expression profile of a 22 kDa band (thymosin isoform 2) was found with the exception that the positive immunoreactive signal was not observed in mature ovaries (Figure 3.79).

Figure 3.76 (A) Western blot analysis showing tissue expression analysis of the PmVCP protein in pooled hemocytes (HE), subcuticular epithelium (EP), the hepatopancreas (HP), lymphoid organ (LO),ovaries (OV) andtestes (TT) from 3 shrimp broodstock. (B) Western blot analysis of PmVCP in 20 μ g total ovarian proteins from 3 sample sets consisting of juvenile shrimp (J, N = 3), intact broodstock (N = 3 each of stages I–IV) and eyestalk-ablated broodstock (EA, N = 3 each of stages I–IV). Lanes M = a protein standard marker.

Figure 3.77 Western blot analysis of PmRacgap1 in 20 μ g total ovarian proteins from 3 sample sets consisting of juvenile shrimp (J, N = 3), intact broodstock (N = 3 each of stages I–IV) and eyestalk-ablated broodstock (EA, N = 3 each of stages I–IV). Lanes M = a protein standard marker.

Figure 3.78 Western blot analysis of PmRacgap1 in 20 μ g ovarian membrane proteins from 3 sample sets consisting of intact broodstock (N = 3 each of stages I–IV) and eyestalk-ablated broodstock (EA, N = 3 each of stages I–IV). Lanes M = a protein standard marker.

Figure 3.79 Western blot analysis of PmTmsb in 20 μ g total ovarian proteins from 3 sample sets consisting of juvenile shrimp (J, N = 3), intact broodstock (N = 3 each of stages I–IV) and eyestalk-ablated broodstock (EA, N = 3 each of stages I–IV). Lanes M = a protein standard marker.

Anti-rPmNPC-NUP133 PAb generated a single discrete band against rPmNPC-NUP133 but non-specific signal were observed against ovarian membrane proteins (Figure 3.80A). Anti-rPmSema PAb also gave a single discrete band against rPmSema. Nevertheless, no positive signal was observed when tested against ovarian membrane proteins (Fig. 3.80B).

Figure 3.80 Western blot analysis of PmNPC-NUP133 (A) and PmSema (B) in 40 μ g ovarian membrane proteins of intact broodstock (stages I–IV, lanes 2-5) and eyestalk-ablated broodstock (EA, stages I–IV, lanes 6-9). Lane 1 = rPmNPC-NUP133, A and rPmSema, B. Lanes M = a protein standard marker.

Chulalongkorn University

3.11 Localization of VCP protein in ovaries of *P. monodon* during ovarian development

Localization of PmVCP protein in oocytes at different developmental stages was examined by both immunohistochemistry (Figure 3.81-3.82) and immunofluorescence (Figure 3.83). Results from both methods were comparable but the latter provided clearer results. PmVCP protein was observed in the ooplasm of previtellogenic oocytes and was translocated into the nucleus of vitellogenic oocytes. Interestingly, it was found in nucleo-cytoplasmic compartments, the cytoskeletal architecture and the plasma membrane in mature oocytes of both intact and eyestalk-ablated broodstock.

The immunoreactive signals of PmRacgap1 protein in ovaries of *P. monodon* were examined by immunohistochemistry (Fig 3.84-3.85). PmRacgap1 was observed in ooplasm of oogonia and all developmetal stages of oocytes (previtellognic, vitellogenic, early cortical rod and mature oocytes) in both intact and eyestalk-ablated broodstock. During vitellogenesis, it was also observed in the nucleus of vitellogenic oocytes. it was found in nucleo-cytoplasmic compartments, the cytoskeletal architecture and in cortical rods in more mature oocytes of both intact and eyestalk-ablated broodstock.

CHULALONGKORN UNIVERSITY

Figure 3.81 Localization of PmVCP protein revealed by immunohistochemistry using anti-rPmCdc48-VCP PAb against conventional tissue sections from intact wild *P.monodon* specimens (D-F). Hematoxylin and eosin staining (A) of tissue sections was carried out for classification of oocyte stages. Blocking solution (B) and the preimmune serum (C) was used as the negative control. EP = early previtellogenic oocytes; VG = vitellogenic oocytes; LCR = late cortical rod (mature) oocytes and Cr = cortical rods. Arrowheads indicate the immunologically positive signals.

Figure 3.82 Localization of PmVCP protein revealed by immunohistochemistry using anti-rPmCdc48-VCP PAb against conventional tissue sections from intact wild *P.monodon* specimens (D-F). Hematoxylin and eosin staining (A) of tissue sections was carried out for classification of oocyte stages. Blocking solution (B) and the preimmune serum (C) was used as the negative control. EP = early previtellogenic oocytes; VG = vitellogenic oocytes; LCR = late cortical rod (mature) oocytes and Cr = cortical rods. Arrowheads indicate the immunologically positive signals.

UHULALONGKORN UNIVERSITY

Figure 3.83 Localization of PmVCP protein revealed by immunofluorescence of anti-PmCdc48-VCP PAb against conventional ovarian tissue sections from intact wild *P. monodon* specimens (C–D) and eyestalk-ablated broodstock (E-F). Light microscopy of ovarian tissue section incubated with preimmune serum (A). Goat anti-rabbit IgG labeled with Alexa 635 was used as the second antibody. Ovarian tissue sections incubated with the preimmune serum were used as the negative control (B).

JHULALONGKORN UNIVERSITY

Figure 3.84 Localization of PmRacgap1 protein revealed by immunohistochemistry using anti-rPmRacgap1 PAb against conventional tissue sections from wild intact *P.monodon* (D-F). Hematoxylin and eosin staining (A) of tissue sections was carried out for classification of oocyte stages. Blocking solution (B) and the preimmune serum (C) was used as the negative controls. EP = early previtellogenic oocytes; VG = vitellogenic oocytes; LCR = late cortical rod (mature) oocytes and Cr = cortical rods. Arrowheads indicate the immunologically positive signals.

Figure 3.85 Localization of PmRacgap1 protein revealed by immunohistochemistry using anti-rPmRacgap1 PAb against conventional tissue sections from eyestalk-ablated wild *P.monodon* specimens (D-F). Hematoxylin and eosin staining (A) of tissue sections was carried out for classification of oocyte stages. Blocking solution (B) and the preimmune serum (C) was used as the negative controls. EP = early previtellogenic oocytes; VG = vitellogenic oocytes; LCR = late cortical rod (mature) oocytes and Cr = cortical rods. Arrowheads indicate the immunologically positive signals.

3.13 Interaction between rPmCdc48-VCP and rPmTmsb analyzed by a pull down assay

To identify the partner proteins that interact with recombinant proteins in this study, protein-protein interaction was examined using Sulfo-NHS-LC-Biotin kit (Pierce). The pull down assay of rPmCdc48-VCP and rPmTmsb was carried out. Initially, these soluble recombinant proteins were separately conjugated with biotin before immobilized with strevtavidin ligand column. In the control reaction, TBS buffer was incubated in the streptavidin ligand column before prey proteins was loaded into the column. After washed and eluted protein-protein interaction profiles was determined by SDS-PAGE and western blot analysis (Figure 3.86-3.87).

Partners of rPmVCP and PmTmsb were analyzed from the eluted fractions using nanoESI-LC-MS/MS.

Figure 3.86 15% SDS-PAGE (A) and western blot analysis (B) showing protein profiles from the pull down assay of soluble rPmCdc48-VCP with ovarian proteins of *P. monodon*. Lane 1 is rPmCdc48-VCP and lanes 5-8 are rCdc48-VCP conjugated with biotin, prey protein flow through column, eluted fraction 1 and eluted fraction 2 of protein-protein interaction, respectively. Lanes 2-4 are immobilized ligand column with TBS buffer (prey protein flow through column and eluted fraction, respectively), as the control fraction.

Figure 3.87 15% SDS-PAGE (A) and western blot analysis (B) showing protein profiles from the pull down assay of soluble rPmTmsb with ovarian proteins of *P. monodon*. Lane 1 is rTmsb of *P. monodon* and lanes 2-4 are rTmsb conjugated with biotin, prey protein flow through column, eluted 1 of protein-protein interaction, respectively.

The identified proteins from a pull down assay of rPmCdc48-VCP were those seinificantly matched Cadherin of *Ligia exotica*, Cysteine-rich receptor-like protein kinase 23-like of *Cicer arietinum*, NADPH oxidase 1 isoform X1 *Heterocephalus glaber*, acyl-CoA Delta(11) desaturase-like, partial *Apis florae* and Double WAP domaincontaining protein and Receptor-type tyrosine-protein phosphatase T of *P. monodon* (Table 3.11).

In addition, a pull down assay of rPmTmsb was also carried out and results indicated that its candidate interacting partners were those significantly matched F-box and leucine-rich repeat protein 16 of *Clonorchis sinensis*, Acetylserotonin O-methyltransferase of *Felis catus* and 26S proteasome non-ATPase regulatory subunit 6, MFS transporter, Aldehyde dehydrogenase, and two unknown protein (clones no. HC-N-N01-0618-LF and OV-N-S01-0835-W) of *P. monodon* (Table 3.12).

Table 3.11 Proteins identified from a pull down assay of rPmCdc48-VCP with total ovarian protein of *P. monodon* analyzed by nanoESI-LC-MS/MS

Protein name	Accession	Clone no.	Score	Peptide
	no.			
Cadherin <i>Ligia exotica</i>	gi 61162138	2	40	R.TMAIHYGILLLLCVISCR.S + Oxidation (M)
Cysteine-rich receptor-like protein kinase 23-like, <i>Cicer arietinum</i>	gi 502100240	2	36	K.CRSSLEGIIWYSHCLLR.Y
NADPH oxidase 1 isoform X1, <i>Heterocephalus</i> glaber	gi 512901969	-	35	K.SDEYFYTREILGTALAMAR.A
acyl-CoA Delta(11) desaturase-like, partial, Apis florae	gi 380020875	-	29	MPFVFELTVSGTCSAK.I
Double WAP domain-containing protein	gi 0026991	HC-N-N01-7369-LF	7.23	ATKSFA
Receptor-type tyrosine-protein phosphatase T	gi 0023772	HPa-N-N04-1092-LF	5.21	AVMRVDSCR

Table 3.12 Proteins identified from a pull down assay of rPmTmsb with total ovarian protein of *P. monodon* analyzed by nanoESI-LC-MS/MS

Protein name	Accession	Clone no.	Score	Peptide
	no.			ia∰ ⊒
F-box and leucine-rich repeat protein 16, Clonorchis sinensis	gi 358341784	125	33	R.IVLAHAQEEAMQK.S + Oxidation (M)
Acetylserotonin O-methyltransferase, partial, Felis catus	Gi 410988030	1 .	31	K.DPLPEAELYVLAR.V
26S proteasome non-ATPase regulatory subunit 6	Gi 0030169	OV-N-S01-1436-W	11.47	TGSTK
Unknown	Gi 0020350	HC-N-N01-0618-LF	4.86	TPNTQK
Unknown	Gi 0006847	OV-N-S01-0835-W	4.33	QMEVYHK
MFS transporter	Gi 0028539	OV-N-N01-0169-W	4.28	GSGTI
Aldehyde dehydrogenase	Gi 0022675	HPa-N-N04-1004-LF	1.43	AEDLVLHDLA

CHAPTER IV DISCUSSION

4.1 Cellular proteomics of ovarian proteins in domesticated and wild *P. monodon* adults

An important step toward understanding molecular mechanisms of development and maturation of ovaries and oocytes in *P. monodon* is the identification and characterization of reproduction-related proteins expressed in ovaries of this economically important species. In this study, proteomic analysis based on SDS-PAGE and nanoESI-LC-MS/MS was further applied. The GeLC-MS/MS used in this study is more convenient and cost-effective than the typical approach based on 2-DE/mass spectrometry analysis. Differentially expressed proteins during ovarian development of *P. monodon* were inferred from the protein spectra. This readily resolves problems from non-quantitative examination of the protein intensity based on silver staining in our laboratory.

Functionally important proteins for meiotic maturation of oocytes including cyclin B, Cdc2, Cdc25 and 14-3-3 were identified. Of these, only cyclin B showed a differential expression profile among different groups of samples. Cyclin B forms a complex with Cdc2 (called the maturation-promoting factor, MPF) which control the meiotic maturation of animal oocytes (Okano-Uchida et al., 1998). Signal transduction pathways that activate Cyclin/Cdc2 complex and subsequent processes are the key pathways in meiotic maturation of eukaryotes oocytes. Cdc25 removes inhibitory phosphates (Thr14 and Tyr15) from cdc2 to activate the MPF allowing the progression to the M-phase (Nigg, 2001) ; (Voronina and Wessel, 2004).
Phosphorylated of Cdc25 by protein kinase A (PKA) results in binding of 14-3-3 and thereby, inhibits its phosphatase activity or interaction with positive regulators or with substrate (Oe et al., 2001) ; (Kishimoto, 2003).

Recently, the full-length cDNA of *P. monodon cyclin B* (*PmCyB*, three transcripts with an identical ORF of 1206 bp corresponding to 401 amino acids but three different 3' UTR lengths of 416, 543 and 1117 bp, respectively; (Visudtiphole et al., 2009) and *Cdc2* (an ORF of 900 bp in length corresponding to a polypeptide of 299 amino acids; (Phinyo et al., 2013). Gene expression analysis suggested their functionally important roles in ovarian development of *P. monodon*.

Molecular mechanisms on promotion of development and maturation of oocytes/ovaries have received high attention and may lead to the possible ways to control reproductive maturation in shrimp. Although results in this study clearly illustrated the induction effects of 5-HT on transcription of reproduction-related genes in several pathways, for example, *P. monodon broad-complex (PmBr-c*; an early ecdysteroid responsive gene) and *adipose differentiation-related protein (PmADRP*; neutral lipid accumulation), *small androgen receptor-interacting protein (PmSARIP1*; sex steroid pathway) and *cell division cycle 2 (PmCdc2*; meiotic signal transduction pathway) in domesticated shrimp, receptors for neurotransmitters have not been discovered based on EST (Leelatanawit et al., 2004) ; (Preechaphol et al., 2007) ; (Hiransuchalert et al., 2013) ; (Buaklin et al., 2013) and proteomic 2-DE (Talakhun et al., 2012) analyses of genes and proteins expressed in ovaries of *P. monodon*. Using a simple GeLC-MS/MS approach, both 5-HT receptor 6 and Alpha-2A adrenergic receptor (**Q**₂-AR) were identified.

The full-length cDNA of 5-hydroxytryptamine (5-HT) receptor was isolated and characteized from *Metapenaeus ensis* (1675 bp containing an ORF of 1230 bp deducing to a protein of 409 amino acids; (Tiu et al., 2005) and *P. monodon* (2291 bp containing an ORF of 1776 bp encoding a deduced protein of 591 amino acids; (Ongvarrasopone et al., 2006). The deduced proteins contained seven hydrophobic transmembrane domains and shared high amino acid sequence homology to G protein-coupled receptors (GPCRs). ARs are also a member of GPCRs. They mediate the physiological effects of the biogenic amine hormones/neurotransmitters and control intracellular second messenger systems by activating guanine nucleotide–binding regulatory proteins (G-proteins) (Ruuskanen et al., 2004). However, a gene encoding \mathbf{Q}_2 -AR and its expression profile have not been characterized and reported in *P. monodon*.

The ubiquitin-proteasome pathway involved in several control mechanisms of gametogenesis and sexual reproduction (Sutovsky et al., 1999) ; (Sutovsky et al., 2001) ; (Sakai et al., 2004). Ubiquitin-activating enzyme E1-domain containing 1 (UBE1), two UBE2 (ubiquitin-conjugating enzyme E2 variant 2 and ubiquitin-conjugating enzyme E2) and 2 UBE3 (ubiquitin protein ligase E3A isoform 2 and E3 ubiquitin-protein ligase Bre1) which play an important role in steroid receptor activity for growth and reproduction (Koshiyama et al., 2006) were identified. In starfish, a proteasome-associating complex plays the important role oocyte maturation (Sakai et al., 2004). The non-traditional extracellular functions of ubiquitin-proteasome system also participate in the elimination of paternal mitochondria in fertilized eggs (Sutovsky et al., 1999) ; (Sutovsky et al., 2001).

In this study, several types of proteasomes (26S proteasome regulatory complex ATPase RPT4, 26S proteasome non-ATPase regulatory subunit 4, 26S proteasome non-ATPase regulatory subunit 6, proteasome 26S subunit, non-ATPase 13, proteasome subunit alpha type 6, proteasome accessory factor PafA, proteasome subunit p58 and proteasome subunit beta type) were identified in ovaries of *P. monodon.* Functionally analysis of proteins in the ubiquitin-proteasome system should be further carried out for better understanding of their roles in ovarian development of female *P. monodon.*

The oocyte maturation process is accompanied by several organelle (e.g. cytoskeleton, yolk granules and cortical granules) transformations. Microfilaments form the scaffold for organelle movement during oocyte maturation. In starfish and sea urchin oocytes, actin polymerization takes place at the onset of maturation (Heil-Chapdelaine and Otto, 1996); (Wessel et al., 2002), and (Voronina and Wessel, 2004).

The intracellular calcium levels are second messengers linking to the activation of MPF (cyclinB/Cdc2 complex). An increase in the intracellular calcium level is required for the induction of oocyte maturation, or GVBD (Masui and Clarke, 1979) ; (Pesty et al., 1998) ; (Voronina and Wessel, 2004). In this study, main proteins involved in signaling and homeostasis of Ca²⁺ including calmodulin, calreticulin and calnexin were identified. The full-lemgth cDNA of *P. monodon calriticulin (PmCRT,* 1682 bp in length, containing an ORF of 1221 bp corresponding to a deduced protein of 406 amino acids) were identified. The expression level of *PmCRT* in ovaries of intact broodstock was significantly reduced at stage III ovaries (*P* < 0.05). Eyestalk ablation resulted in a significant greater level than that in stages I-II ovaries in intact broodstock (*P* < 0.05) (S. Klinbunga, unpublished data).

Previously, several reproduction-related proteins during ovarian development of wild intact and eyestalk-ablated adults of *P. monodon* were identified based on the conventional 2-DE followed by mass spectrometry (Talakhun et al., 2012). The most abundantly expressed protein in ovaries of *P. monodon* was the protein disulfide isomerase family (PDI, PDIA6 and PDIA3; 17 spots) that are functionally involved in chaperone activity and cell redox homeostasis. Cellular structure proteins such as β -actin (14 spots) and Tmsb (7 spots) were also abundantly expressed (Talakhun et al., 2012). Tmsb functions as the G-actin sequestering factors preventing actin polymerization to filaments and is functionally related to intracellular signaling through kinase activation (Zhang et al., 2011). Accordingly, PmTmsb gene and protein were further characterized in subsequent experiments.

4.2 Proteomic analysis of ovarian nuclear membrane proteins and nuclear proteins of wild *P. monodon* adults

Nuclear membrane proteins and nuclear proteins from ovaries of *P. monodon* were also studied for isolation the potential molecular markers functionally involved in GVBD of oocytes. In this study, proteins that are localized at nuclear membrane of the oocytes were found for example, DEAD/DEAH box helicase domain-containing protein, importin subunit alpha-2, inner-membrane translocator, nucleoporin 50 kDa, ran GTPase-activating protein, leucine-rich receptor-like protein kinase-like and cytochrome P450, nuclear pore complex protein NUP133 and semaphorin). The nuclear envelope forms the boundary of the nuclear compartment in eukaryotes. Its primary functions involve selective transport of macromolecules between the nucleus and the cytoplasm and organization of higher level nuclear architecture (Senior and Gerace, 1988).

DEAD box proteins are putative ATP-dependent RNA unwinding proteins whose primary biochemical function is the alteration of RNA secondary structure. They have been implicated in translation initiation, ribosome assembly, RNA splicing, and RNA stability (Goldbout et al., 2002). DEAD-box RNA helicases required for germ cell functions. The conserved motif, (V/I)-L-D-E-AD- X-(M/L)-L-X-X-G-F, observed in all members of the DEAD box protein family (Linder, 1989) ; (Tanner and Linder, 2001).

Previously, Talakhun (2008) isolated the full-length cDNA of *DEAD box ATPdependent RNA helicase* (ORF of 1209 bp corresponding to a polypeptide of 402 amino acis), The deduced DEAD box ATP-dependent RNA helicase of *P. monodon* contained the conserved motif, (V/I)-L-D-E-AD- X-(M/L)-L-X-X-G-F, observed in all members of the DEAD box protein family was found. In addition, the predicted DEXDc and HELICc domains were found in the deduced DEAD box ATP-dependent RNA helicase protein of *P. monodon*

In the present study, genes encoding nuclearpore complex protein NUP133 (PmNUP133) and semaphorin (PmSema) of *P. monodon* were further characterized.

4.3 Isolation of full-length cDNA of *PmVCP*, *PmPKC*, *PmTmsb* and the complete ORF of *PmRacgap1*

In this study, the full length cDNA of *PmVCP* (2724 bp with an ORF 2481 deducing to 826 amino acids), *PmTmsb* (1084 bp, ORF of 387 bp, 128 amino acids) *PKC* (3404 bp, ORF of 2235 bp, 744 amino acids), *PmcAMP-RLP* (1272 bp, ORF of 435 bp, 144 amino acids), *PmNUP133* (4130 bp, ORF 3228 bp, 1085 amino acids) were successfully characterized by RACE-PCR. In addition, the complete ORF of

PmRacgap1 (1881 bp, 626 amino acids) was successfully characterized by amplification from the ORF of PmRacgap1 previously isolated in testes.

Valosin-containing protein (VCP) belongs to the ATPase-associated with diverse cellular activity (AAA) family of ATPase (Bug and Meyer, 2012). VCP is a highly conserved protein in eukaryotes. In humans, p97/VCP/Cdc48 has been reported to be required for the mitotic M-phase (Wójcik et al., 2004). In *Caenorhabditis elegans*, two VCP homologs were characterized and shown to be essential for embryogenesis (Yamanaka et al., 2004). Characterization of VCP-depleted embryos and oocytes revealed that this protein was required not only for progression of meiotic metaphase I but also for chromosome condensation at the diakinesis phase in meiotic prophase I (Sasagawa et al., 2007)

PKC is reported to be involved in oocyte maturation following the resumption of meiosis, and regulates spindle organization in meiosis-I and -II until fertilization and embryogenesis (Kalive et al., 2010). The existence of a conserved phosphorylation site for PKC suggested that this enzyme may be involved in the cAMP-mediated MAPK activity regulation (Fan and Sun, 2004) by phosphorylation.

Rac, a member of Rho family GTPase, regulates specific morphologic changes in the actin microfilament-based cytoskeleton. Reorganization of cellular cytoskeleton facilitates the dynamic changes necessary for cellular adhesion, growth, and motility (Moorman et al., 1999). The catalytic activity of small GTPases can be enhanced by GTPase-activating proteins (GAPs). However, relative little information concerning the functional roles of Racgap1 in ovary/oocyte development is known. Accordingly, PmVCP, PmPKC, PmTmsb and PmRacgap1 genes and proteins were further examined.

4.4 Expression analysis of *PmVCP*, *PmPKC*, *PmTmsb*, *PmRacgap1* and *PmSema* during ovarian development and under the induction with 5-HT

Gene expression and tissue distribution analysis are important and provide the basic information to set up the priority for further analysis of functional genes. Based on the fact that a particular genes may express in several tissues and possesses a different function in different tissues.

Tissue distribution analysis revealed constitutive expression of *PmTmsb* and *PmcAMP-RPL* in all examined tissues suggesting they conserved function in different tissues. The *PmVCP* transcript was more abundantly expressed in ovaries than other tissues suggesting that it may crucial role in ovary/oocyte development. VCP is present in all types of cellular components from human to yeast, suggest that VCP an important role in cellular activities (Song et al., 2003). *PmRacgap1* was more abundantly in gonads than other tissues. This suggested that *PmRacgap1* may play its important role in reproduction of *P. monodon*. Moreover, *PmPKC*, *Pmsema* and *PmNUP133* were highly expressed in ovaries than other tissues, the results indicated that these transcripts are functional involved in ovarian development of *P. monodon*.

ULALONGKORN UNIVERSITY

Transcripts preferentially expressed at different stages of ovarian development can be used as indicators for reproductive maturation in *P. monodon*. Quantitative real-time PCR analysis further confirmed that the expression level of *PmTmsb* and *PmRacgap1* in juveniles was lower than that during ovarian development in either intact or eyestalk-ablated broodstock. Likewise, *PmVCP* was lower expressed in juveniles than that both of intact and eyestalk-ablated broodstock of *P. monodon*. At the transcriptional level, a single form of *PmTmsb*

transcript was identified and *PmTmsb* mRNA was not differentially expressed. Unilateral eyestalk ablation resulted in a significant reduction of this transcript in stages I and III ovaries. This suggested that the accumulated *PmTmsb* mRNA in oocytes at the early ovarian development stage was not sufficient for rapid translation of its protein during the later stages of ovarian development in intact shrimp. Similarly, non-differential expression of *PmRacgap1* was observed in intact broodstock of *P. monodon*. Its transcription level seemed to be decreased following eyestalk ablation. Nevertheless, results were not statistically different due to large standard variation of each group of samples.

PmVCP expression was significantly increased during vitellogenesis and final ovarian maturation in intact broodstock. Eyestalk ablation seemed to slightly increase ovarian *PmVCP* transcripts. On the other hand, *PmPKC* transcripts exhibited significantly lower expression levels in ovaries of eyestalk-ablated broodstock of *P. monodon*, relative to intact broodstock. This result suggested that, higher levels of *PmVCP* but lower levels of *PmPKC* affected ovarian development of *P. monodon*. In addition, the expression level of *PmcAMP-RPL* was not differently expressed in ovaries of both intact and eyestalk-ablated broodstock.

Ovarian maturation of penaeid shrimp results from rapid synthesis and accumulation of the major yolk protein, vitellin (Meusy and Payen, 1988). The differential expression of these reproduction-related genes during ovarian development in intact wild broodstock suggests that it has a functional role in *P. monodon* reproduction.

Estrogen-like compounds in invertebrates were first described in the ovaries of an echinoderm (Donahue and Jennings, 1937). Progesterone, P4, and its derivatives (progestins) are sex steroid hormones that play important roles in gametogenesis (Miura et al., 2006). Progesterone stimulated ovarian maturation and yolk protein synthesis of penaeid shrimp (Kulkarni et al., 1996) ; (Yano, 1985) ; (Quackenbush, 2001). It also promoted spawning of *Metapenaeus ensis* (Yano, 1985).

Recently, progesterone and $17\mathbf{Q}$ -hydroxyprogesterone were extracted from the polychaetes. Their activity in comparison with the synthetic hormones (0.4, 0.7 and 1.0 ng/ml for P4 and 1.0, 2.0 and 3.0 ng/ml for $17\mathbf{Q}$ -OHP4) were in vitro tested against previtellogenic ovaries of *P. monodon* for 24 h. P4 was more effective in enhancing the final maturation of oocytes while $17\mathbf{Q}$ -OHP4 had more effects on vitellogenic oocytes. Interestingly, synthetic steroid hormones at equal hormone concentrations produced similar results to steroid hormones extracted from natural polychaetes (Meunpol et al., 2007).

In *P. monodon*, progesterone administration has been reported to promote expression of *progestin membrane receptor component 1 (PmPgmrc1*) at 72 hpi (S. Klinbunga, unpublished data) and *broad-complex (PmBr-c*) at 48–72 hpi (Buaklin et al., 2013) in 14-month-old shrimp. Similarly, administration of progesterone also had a significant effects on the expression of *fenesoate O-methyltransferase (PmFAMeT*) in ovaries of *P. monodon*. The results further indicated that progesterone stimulates ovarian development in *P. monodon* through several pathways including the signal transduction, ecdysteroid biosynthesis and MF biosynthesis. The information implied that progesterone is functionally involved in ovarian development in *P. monodon*. The indicated that progesterone may directly enhance maturation through vitellogenesis stimulation or act as a precursor of the vitellogenin-stimulating ovarian hormone (VSOH) in shrimp (Fingerman et al., 1993) ;

(Yano and Hoshino, 2006). Overexpression of *PmPgmrc1* and *PmBr-c* also indicated that appropriate form(s) of progesterone can potentially induce oocyte/ovarian development and maturation of *P. monodon*.

In this study, exogenous injection of progesterone did not affect *PmVCP* expression, suggesting that progesterone may affect such things in the steroid receptor and ecdysteroid biosynthetic pathways but not the VCP pathway.

Effects of exogenous 5-HT on the reproductive performance of shrimp were reported (Vaca and Alfaro, 2000). Simultaneous injections of 5-HT (25 μ g/g body weight) and dopamine antagonist, spiperone (1.5 or 5 μ g/g body weight) induced ovarian maturation and spawning in wild *L. stylirostris* and pond-reared *L. vannamei* (Alfaro et al., 2004). 5-HT induced ovarian development of *P. monodon* (Wongprasert et al., 2006) and *M. rosenbergii* (Meeratana et al., 2006) dose dependently.

Exogenous 5-HT administration clearly promoted expression of *P. monodon* Ovarian-Specific Transcript (*Pm-OST1*) in ovaries of subadults (5-month-old). *Pm-OST1* was up-regulated at 12-78 hpi (P < 0.05), with the highest expression level observed at 48 hpi (P < 0.05) (Klinbunga et al., 2009). In addition, its effects on promoting the expression of *P. monodon adipose differentiation related protein* (*PmADRP*) in ovaries of this shrimp group was also reported (Sittikankaew et al., 2010).

The GSI values of domesticated broodstock vary between 0.4-1.5% where most shrimp possess less than 1.0% GSI. Therefore, their ovaries are regarded as stage I compared with wild broodstock. The effects of 5-HT on expression of *PmFAMeT* in ovaries of 18-month-old *P. monodon* were examined. The injection of

5-HT resulted in increasing of *PmFAMeT* expression for approximately 50-fold at 1 hpt.

In this study, the expression levels of *PmVCP*, *PmPKC*, *PmcAMP-RLP* and *PmRacgap1* was significantly induced by serotonin injection. The molecular effects of 5-HT on expression of various reproduction-related genes (*Pm-OST1*, *PmADRP*, *PmFAMeT*, *PmVCP*, *PmPKC*, *PmcAMP-RLP* and *PmRacgap1*) in stage I ovaries of domesticated shrimp suggested that high expression levels of this gene should stimulate the early stage of ovary/oocyte development in *P. monodon*. More importantly, serotonin administration showed similar effects on promoting expression of various genes in ovaries of *P. monodon*.

Serotonin administration reduced *PmTmsb* transcripts in ovaries of *P. monodon.* In the previous publication, two *Tmsb* transcripts (*HaTHY1* and *HaTHY2*) encoding 19.0 and 14.5 kDa polypeptides was isolated in *Helicoverpa armigera. HaTHY1* was mainly transcribed in the integument and midgut, while *HaTHY2* was principally presented in the fat body and haemocytes. These transcripts were up-regulated following the ecdysteroid, 20-hydroxyecdysone (Zhang et al., 2011). In crustaceans, ecdysteroids recognized is the molting hormones as in other arthropods (Huberman, 2000) ; (Okumura and Sakiyama, 2004). Crustacean ecdysteroids are also synthesized in ovaries and testes of crustaceans under the negative and positive regulation of molt-inhibiting hormone (MIH) and methyl farnesoate (MF), respectively (Styrishave et al., 2008) ; (Brown et al., 2009). Accordingly, it is speculated that *PmTmsb* should play the important role in reproductive development and maturation in *P. monodon*.

4.5 Expression and localization of reproduction-related proteins

A partial PmVCP covering two Cdc48 domains (PmrCdc48-VCP approximately 24 kDa) was successfully expressed *in vitro* and an anti-rPmCdc48-VCP PAb was successfully produced in a rabbit. Antigen-antibody competition experiments revealed that the anti-rPmCdc48-VCP PAb was specific for a 97 kDa protein identified as valosin-containing protein by nanoESI-LC–MS/MS. The level of PmVCP protein was comparable during ovarian development of naturally maturing broodstock. By contrast, the PmVCP mRNA in intact shrimp was up-regulated in stages II and IV ovaries. This suggested that the accumulated PmVCP mRNA in oocytes at the early ovarian development stage was not sufficient for rapid translation of the PmVCP protein during the later stages of ovarian development in non-ablated *P. monodon*. In eyestalk-ablated broodstock, relatively stable levels of the PmVCP transcript and protein were found, suggesting that a steady state amount of this mRNA was sufficient to maintain all stages of ovarian development.

Immunoreactive signals for PmVCP protein were observed in the ooplasm of previtellogenic oocytes in *P. monodon*. There was a subsequent translocation of PmVCP to the germinal vesicle during vitellogenesis. After GVBD, the protein was observed in the nucleo-cytoplasmic compartment, the cytoskeletal architecture and the plasma membrane of oocytes.

Similarly, p97/VCP in *Ciona* was reported to be localized first in the endoplasmic reticulum (ER) region and cortical region of oocytes, later in the germinal vesicle (GV) and finally in the cortical ER region after GVBD (Kondoh et al., 2008). The p97/VCP/Cdc48 protein is involved in several biological functions. These include membrane fusion, protein folding and activation of membrane-bound transcription factors in association with various cofactors (Meyer et al., 2000). In

addition, p97/VCP/Cdc48 plays an important role in degradation of misfolded secretory proteins via the ER-associated degradation pathway (Madsen et al., 2011). The temporal changes in PmVCP location suggested that it also facilitates protein degradation during oogenesis in *P. monodon*.

Likewise, rPmRacgap1 and rPmTmsb and their polyclonal antibodies were successfully produced. At the protein level, a slightly lower level of PmRacgap1 (34 kDa) was found in late stages of ovarian development when total soluble proteins of ovaries were analyzed. The reduction of membrane PmRacgap1 (both 34 and 100 kDa bands) protein in stage IV ovaries in both intact and eyestalk-ablated broodstock further suggested its roles on prevention of cytoskeleton formation during the late stages of oocyte development.

Immunoreactive signal of PmRacgap1 was observed in ooplasm of oogonia and all developmetal stages of oocytes (previtellognic, vitellogenic, early cortical rod and mature oocytes) in both intact and eyestalk-ablated broodstock. During vitellogenesis, it was also observed in the nucleus of vitellogenic oocytes. its was found in nucleo-cytoplasmic compartments, the cytoskeletal architecture and in cortical rods in more mature oocytes of both intact and eyestalk-ablated broodstock. This result indicated that PmRacgap1 may be involved in translocation of cortical granules during meiotic maturation of *P. monodon*.

The expression level of PmTmsb protein was concordant to mRNA level. The reduction of expression level of PmTmsb (both 22 and 28 kDa) protein during late stage of ovarian development and also suggested that a decreased level of PmTmsb protein is required for cytoskeleton proliferation during ovarian maturation in *P. monodon*.

In this study, a large number of soluble proteins nuclear membrane and nuclear proteins expressed in ovaries of *P. monodon* ovaries were identified by 1-DE (SDS-PAGE) followed by mass spectrometry. The expression levels of PmVCP, PmTmsb, PmRacgap1, PmcAMP-RLP and PmPKC mRNAs during ovarian development in intact and eyestalk-ablated shrimp were examined. Additionally, the expression levels of PmVCP, PmTmsb and PmRacgap1 protein were examined and indicated the functionally important role of PmTmsb, PmRacgap1 and PmPKC as the negative effectors while PmVCP seemed to be the positive effectors on the maturation of ovary/oocyte development in P. monodon. For further applications of the basic knowledge found in this thesis, RNA interference (RNAi) of *PmTmsb*, *PmRacgap1* and PmPKC should be carried out to determine whether the inhibition of these genes (separately or simultaneously) affects ovarian development of *P. monodon*. At the protein level, anti-rPmTmsb and anti-rPmRacgap1 PAb may also be used for determination of their in vivo effects in ovarian development of P. monodon. In addition, rPmCdc48-VCP was expressed in both soluble and insoluble forms. Accordingly, the purified rPmCdc48-VCP could be used to determine its stimulation effects on ovarian development of *P. monodon in vivo*.

UHULALONGKORN UNIVERSITY

CHAPTER V CONCLUSION

1. A total of 1638 proteins were identified from cellular proteomics of ovarian proteins of domesticates and wild broodstock of *P. monodon*. Of these 514 proteins (354 known proteins, 73 hypothetical proteins and 87 unknown proteins) were differentially expressed in between examined samples.

2 A total of 724 proteins were identified from proteomic analysis of nuclear membrane proteins and nuclear proteins of ovaries of wild *P. monodon* broodstock. Of these, 89 proteins were localized at integral to membrane or nuclear membrane and 99 proteins were recognized as nuclear proteins.

3. The full-length cDNAs of a *PmVCP*, *PmTmsb*, *PmPKC*, *PmcAMP-RPL* and *PmNup133* and the complete ORF of *PmRacgap1* were characterized.

4. The expression level of *PmTmsb* and *PmcAMP-RPL* was not differential expressed in ovaries of intact and eyestalk-ablated broodstock of *P. monodon*. However, the expression level of *PmVCP*, *PmPKC* and *PmRacgap1* were affected by eyestalk ablation.

5. Progesterone did not induce the expression of *PmVCP*. 5-HT injection did not affect the expression of *PmTmsb* but promoted the expression of *PmVCP*, *PmRacgap1*, *PmcAMP-RPL* and *PmPKC* in ovaries of 18-month-old shrimp.

6. Localization of PmVCP mRNA was examined and the positive signals were found in oogonia and ooplasm of previtellogenic and vitellogenic oocytes in different stages of ovaries in both intact and eyestalk-ablated broodstock.

7. Expression profiles of PmVCP, PmRacgap1 PmRacgap1 proteins suggested their functionally important roles during ovarian development of *P. monodon*.

8. PmVCP and PmRacgap1 proteins were localized in the ooplasm of previtellogenic oocytes. These proteins were translocated into the nucleus of vitellogenic oocytes and were found in nucleo-cytoplasmic compartments and the cytoskeletal architecture of mature ooytes. The former was also localized at the plasma membrane while the latter was also found in cortical rods in mature oocytes of both intact and eyestalk-ablated broodstock.

REFERENCES

- Alfaro, J., Zúñiga, G., and Komen, J. (2004). Induction of ovarian maturation and spawning by combined treatment of serotonin and a dopamine antagonist, spiperone in *Litopenaeus stylirostris* and *Litopenaeus vannamei*. *Aquaculture* **236**, 511-522.
- Bailey-Brock, J. H., and Moss, S. M. (1992). "Penaeid taxonomy, biology and zoogeography," Elsevier Science Publisher B.V, Netherlands.
- Benzie, J. A. (1998). Penaeid genetics and biotechnology. Aquaculture 164, 23-47.
- Bourchookarn, A., Havanapan, P.-O., Thongboonkerd, V., and Krittanai, C. (2008). Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected *Penaeus monodon*. *Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics* **1784**, 504-511.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical biochemistry* **72**, 248-254.
- Brown, M. R., Sieglaff, D. H., and Rees, H. H. (2009). Gonadal ecdysteroidogenesis in Arthropoda: occurrence and regulation. *Annual review of entomology* **54**, 105-125.
- Buaklin, A., Sittikankaew, K., Khamnamtong, B., Menasveta, P., and Klinbunga, S. (2013). Characterization and expression analysis of the *Broad-complex* (*Br-c*) gene of the giant tiger shrimp *Penaeus monodon*. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* **164**, 280-289.
- Bug, M., and Meyer, H. (2012). Expanding into new markets–VCP/p97 in endocytosis and autophagy. *Journal of structural biology* **179**, 78-82.
- Chang, E. S., Prestwich, G. D., and Bruce, M. J. (1990). Amino acid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, *Homarus americanus. Biochemical and biophysical research communications* **171**, 818-826.
- Chung, A. C.-K., Durica, D. S., and Hopkins, P. M. (1998). Tissue-Specific Patterns and Steady-State Concentrations of Ecdysteroid Receptor and Retinoid-X-Receptor mRNA during the Molt Cycle of the Fiddler Crab, *Uca pugilator. General and comparative endocrinology* **109**, 375-389.

- Clark, W. H. J., Yudin, A. I., Lynn, J. W., Griffin, F. J., and Pillai, M. C. (1990). Jelly layer formation in Penaeoidean shrimp eggs. *Biological Bulletin* **178**, 295-299.
- Clifford, H., and Preston, N. (2006). Genetic improvement. Operating Procedures for Shrimp Farming: Global Shrimp OP Survey Results and Recommendations", Global Aquaculture Alliance, St. Louis, 73-77.
- Coman, G., Arnold, S., Peixoto, S., Crocos, P., Coman, F., and Preston, N. (2006). Reproductive performance of reciprocally crossed wild-caught and tankreared *Penaeus monodon* broodstock. *Aquaculture* **252**, 372-384.
- Cottrell, J. S., and London, U. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* **20**, 3551-3567.
- Cui, J., Wu, L. T., and Chu, K. H. (2014). Comparative proteomic profiling during ovarian development of the shrimp Metapenaeus ensis. *Molecular biology reports* 41, 519-528.
- Donahue, J. K., and Jennings, E. D. (1937). The occurrence of estrogenic substances in the ovaries of echinoderms. *Endocrinology* **21**, 690-691.
- Fan, H.-Y., and Sun, Q.-Y. (2004). Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. *Biology of reproduction* **70**, 535-547.
- Fingerman, M. (1997). Roles of neurotransmitters in regulating reproductive hormone release and gonadal maturation in decapod crustaceans. *Invertebrate Reproduction & Development* **31**, 47-54.
- Fingerman, M., Nagabhushanam, R., and Sarojini, R. (1993). Vertebrate-type hormones in crustaceans: localization, identification and functional significance. *Zoological Science* **10**, 13-29.
- Harrison, K. E. (1990). The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. *J. Shellfish Res* **9**, 1-28.
- Heil-Chapdelaine, R. A., and Otto, J. J. (1996). Characterization of changes in F-actin during maturation of starfish oocytes. *Developmental biology* **177**, 204-216.
- Hiransuchalert, R., Yocawibun, P., Klinbunga, S., Khamnamtong, B., and Menasveta, P. (2013). Isolation of cDNA, genomic organization and expression of *small*

androgen receptor-interacting protein 1(*PmSARIP1*) in the giant tiger shrimp *Penaeus monodon*. Aquaculture **412**, 151-159.

Huberman, A. (2000). Shrimp endocrinology. A review. Aquaculture 191, 191-208.

- Huberman, A., Aguilar, M. B., Brew, K., Shabanowitz, J., and Hunt, D. F. (1993). Primary structure of the major isomorph of the crustacean hyperglycemic hormone (CHH-I) from the sinus gland of the Mexican crayfish *Procambarus bouvieri* (Ortmann): Interspecies comparison. *Peptides* 14, 7-16.
- Hui, J. H. L., Tobe, S. S., and Chan, S.-M. (2008). Characterization of the putative farnesoic acid O-methyltransferase (LvFAMeT) cDNA from white shrimp, *Litopenaeus vannamei:* Evidence for its role in molting. *Peptides* 29, 252-260.
- Jalabert, B. (2005). Particularities of reproduction and oogenesis in teleost fish compared to mammals. *Reproduction Nutrition Development* **45**, 261-279.
- Johansson, C., Samskog, J., Sundström, L., Wadensten, H., Björkesten, L., and Flensburg, J. (2006). Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. *Proteomics* **6**, 4475-4485.
- Kalive, M., Faust, J. J., Koeneman, B. A., and Capco, D. G. (2010). Involvement of the PKC family in regulation of early development. *Molecular reproduction and development* **77**, 95-104.
- Kegel, G., Reichwein, B., Tensen, C. P., and Keller, R. (1991). Amino acid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, *Orconectes limousus*: Emergence of a novel neuropeptide family. *Peptides* 12, 909-913.
- Kegel, G., Reichwein, B., Weese, S., Gaus, G., Peter-Kataliníc, J., and Keller, R. (1989).
 Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, *Carcinus maenas. FEBS letters* 255, 10-14.
- Kenway, M., Macbeth, M., Salmon, M., McPhee, C., Benzie, J., Wilson, K., and Knibb,W. (2006). Heritability and genetic correlations of growth and survival in blacktiger prawn *Penaeus monodon* reared in tanks. *Aquaculture* 259, 138-145.
- Kim, Y. K., Kawazoe, I., Jasmani, S., Ohira, T., Wilder, M. N., Kaneko, T., and Aida, K. (2007). Molecular cloning and characterization of cortical rod protein in the giant freshwater prawn Macrobrachium rosenbergii, a species not forming cortical rod structures in the oocytes. *Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology* 148, 184-191.

- Kim, Y. K., Tsutsui, N., Kawazoe, I., Okumura, T., Kaneko, T., and Aida, K. (2005). Localization and developmental expression of mRNA for cortical rod protein in kuruma prawn Marsupenaeus japonicus. *Zoological science* 22, 675-680.
- Kishimoto, T. (2003). Cell-cycle control during meiotic maturation. *Current opinion in cell biology* **15**, 654-663.
- Klinbunga, S., Sittikankaew, K., Yuvanatemiya, V., Preechaphol, R., Prasertlux, S., Yamano, K., and Menasveta, P. (2009). Molecular cloning and expression analysis of *ovary-specific transcript 1 (Pm-OST1)* of the giant tiger shrimp, Penaeus monodon. *Zoological science* **26**, 783-790.
- Kondoh, E., Konno, A., Inaba, K., Oishi, T., Murata, M., and Yoshida, M. (2008). Valosincontaining protein/p97 interacts with sperm-activating and sperm-attracting factor (SAAF) in the ascidian egg and modulates sperm-attracting activity. *Development, growth & differentiation* **50**, 665-673.
- Koshiyama, A., Hamada, F. N., Namekawa, S. H., Iwabata, K., Sugawara, H., Sakamoto,
 A., Ishizaki, T., and Sakaguchi, K. (2006). Sumoylation of a meiosis-specific
 RecA homolog, Lim15/Dmc1, via interaction with the small ubiquitin-related
 modifier (SUMO)-conjugating enzyme Ubc9. *Febs Journal* 273, 4003-4012.
- Kruevaisayawan, H., Vanichviriyakit, R., Weerachatyanukul, W., Magerd, S., Withyachumnarnkul, B., and Sobhon, P. (2007). Biochemical characterization and physiological role of cortical rods in black tiger shrimp, *Penaeus monodon*. *Aquaculture* **270**, 289-298.
- Kruevaisayawan, H., Vanichviriyakit, R., Weerachatyanukul, W., Withyachumnarnkul, B., Chavadej, J., and Sobhon, P. (2010). Oogenesis and formation of cortical rods in the black tiger shrimp, *Penaeus monodon*. *Aquaculture* **301**, 91-98.
- Kulkarni, J., de Castella, A., Smith, D., Taffe, J., Keks, N., and Copolov, D. (1996). A clinical trial of the effects of estrogen in acutely psychotic women. *Schizophrenia research* **20**, 247-252.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *nature* **227**, 680-685.
- Laufer, H., Biggers, W. J., and Ahl, J. S. (1998). Stimulation of Ovarian Maturation in the Crayfish *Procambarus clarkii* by Methyl Farnesoate. *General and comparative endocrinology* **111**, 113-118.

- Leelatanawit, R. (2008). Identification and Characterization of Genes Functionally Related to Growth and Reproduction of The Ginat Tiger Shrimp *Penaeus monodon*, Chulalongkorn University, Thailand.
- Leelatanawit, R., Klinbunga, S., Aoki, T., Hirono, I., Valyasevi, R., and Menasveta, P. (2008). Suppression subtractive hybridization (SSH) for isolation and characterization of genes related to testicular development in the giant tiger shrimp *Penaeus monodon*. *BMB Rep* **41**, 796-802.
- Leelatanawit, R., Klinbunga, S., Puanglarp, N., Tassanakajon, A., Jarayabhand, P., Hirono, I., Aoki, T., and Menasveta, P. (2004). Isolation and characterization of differentially expressed genes in ovaries and testes of the giant tiger shrimp (*Penaeus monodon*). *Mar Biotechnol* **6**, S506-S510.
- Linder, P. (1989). Birth of the DEAD box. Nature 337, 121-122.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. *J biol chem* **193**, 265-275.
- Madsen, L., Kriegenburg, F., Vala, A., Best, D., Prag, S., Hofmann, K., Seeger, M., Adams,
 I. R., and Hartmann-Petersen, R. (2011). The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins. *PloS one* 6, e25061.
- Martin, G., Jaros, P., Besse, G., and Keller, R. (1984). The hyperglycemic neuropeptide of the terrestrial isopod, *Porcellio dilatatus*. II. Immunocytochemical demonstration in neurosecretory structures of the nervous system. *General and comparative endocrinology* **55**, 217-226.
- Masui, Y., and Clarke, H. J. (1979). "Oocyte maturation," Academic Press.
- Medina, A., Vila, Y., Mourente, G., and Rodríguez, A. (1996). A comparative study of the ovarian development in wild and pond-reared shrimp, *Penaeus kerathurus* (Forskål, 1775). *Aquaculture* **148**, 63-75.
- Meeratana, P., Withyachumnarnkul, B., Damrongphol, P., Wongprasert, K., Suseangtham, A., and Sobhon, P. (2006). Serotonin induces ovarian maturation in giant freshwater prawn broodstock, *Macrobrachium rosenbergii* de Man. *Aquaculture* **260**, 315-325.
- Meunpol, O., Iam-Pai, S., Suthikrai, W., and Piyatiratitivorakul, S. (2007). Identification of progesterone and 17**Q**-hydroxyprogesterone in polychaetes (*Perinereis sp.*)

and the effects of hormone extracts on penaeid oocyte development in vitro. *Aquaculture* **270**, 485-492.

- Meusy, J.-J., and Payen, G. G. (1988). Female reproduction in malacostracan Crustacea. *Zoological Science* **5**, 217-265.
- Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D., and Warren, G. (2000). A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. *The EMBO journal* **19**, 2181-2192.
- Mishra, A., and Joy, K. P. (2006a). 2-Hydroxyestradiol-17**Q**-induced oocyte maturation in catfish (Heteropneustes fossilis) involves protein kinase C and its interaction with protein phosphatases. *Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology* **144**, 416-422.
- Mishra, A., and Joy, K. P. (2006b). 2-Hydroxyestradiol-17**Q**-induced oocyte maturation: Involvement of cAMP-protein kinase A and okadaic acid-sensitive protein phosphatases, and their interplay in oocyte maturation in the catfish *Heteropneustes fossilis. Journal of Experimental Biology* **209**, 2567-2575.
- Mishra, A., and Joy, K. P. (2006c). HPLC-electrochemical detection of ovarian estradiol-17Î² and catecholestrogens in the catfish *Heteropneustes fossilis*: Seasonal and periovulatory changes. *General and Comparative Endocrinology* **145**, 84-91.
- Mishra, A., and Joy, K. P. (2006d). Involvement of mitogen-activated protein kinase in 2-hydroxyestradiol-17**Q**-induced oocyte maturation in the catfish *Heteropneustes fossilis* and a note on possible interaction with protein phosphatases. *General and Comparative Endocrinology* **147**, 329-335.
- Miura, T., Higuchi, M., Ozaki, Y., Ohta, T., and Miura, C. (2006). Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel. *Proceedings of the National Academy of Sciences* **103**, 7333-7338.
- Moorman, J. P., Luu, D., Wickham, J., Bobak, D. A., and Hahn, C. S. (1999). A balance of signaling by Rho family small GTPases RhoA, Rac1 and Cdc42 coordinates cytoskeletal morphology but not cell survival. *Oncogene* **18**.
- Nigg, E. A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. *Nature reviews Molecular cell biology* **2**, 21-32.

- Oe, T., Nakajo, N., Katsuragi, Y., Okazaki, K., and Sagata, N. (2001). Cytoplasmic Occurrence of the Chk1/Cdc25 Pathway and Regulation of Chk1 in *Xenopus* Oocytes. *Developmental biology* **229**, 250-261.
- Ohira, T., Tsutsui, N., Nagasawa, H., and Wilder, M. N. (2006). Preparation of two recombinant crustacean hyperglycemic hormones from the giant freshwater prawn, Macrobrachium rosenbergii, and their hyperglycemic activities. *Zoological science* **23**, 383-391.
- Okano-Uchida, T., Sekiai, T., Lee, K.-s., Okumura, E., Tachibana, K., and Kishimoto, T. (1998). *In Vivo* Regulation of Cyclin A/Cdc2 and Cyclin B/Cdc2 through Meiotic and Early Cleavage Cycles in Starfish. *Developmental biology* **197**, 39-53.
- Okumura, T. (2004). Perspectives on hormonal manipulation of shrimp reproduction. Japan Agricultural Research Quarterly **38**, 49-54.
- Okumura, T., and Aida, K. (2000). Hemolymph vitellogenin levels and ovarian development during the reproductive and non-reproductive molt cycles in the giant freshwater prawn *Macrobrachium rosenbergii*. *Fisheries Science* **66**, 678-685.
- Okumura, T., Kim, Y. K., Kawazoe, I., Yamano, K., Tsutsui, N., and Aida, K. (2006). Expression of vitellogenin and cortical rod proteins during induced ovarian development by eyestalk ablation in the kuruma prawn, *Marsupenaeus japonicus*. *Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology* 143, 246-253.
- Okumura, T., and Sakiyama, K. (2004). Hemolymph levels of vertebrate-type steroid hormones in female kuruma prawn *Marsupenaeus japonicus* (Crustacea: Decapoda: Penaeidae) during natural reproductive cycle and induced ovarian development by eyestalk ablation. *Fisheries Science* **70**, 372-380.
- Ongvarrasopone, C., Roshorm, Y., Somyong, S., Pothiratana, C., Petchdee, S., Tangkhabuanbutra, J., Sophasan, S., and Panyim, S. (2006). Molecular cloning and functional expression of the *Penaeus monodon* 5-HT receptor. *Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression* **1759**, 328-339.
- Palacios, E., Racotta, I. S., and Villalejo, M. (2003). Assessment of ovarian development and its relation to mating in wild and pond-reared *Litopenaeus*

vannamei shrimp in a commercial hatchery. *Journal of the World Aquaculture Society* **34**, 466-477.

- Patio, R., Yoshizaki, G., Thomas, P., and Kagawa, H. (2001). Gonadotropic control of ovarian follicle maturation: The two-stage concept and its mechanisms. *Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology* 129, 427-439.
- Peixoto, S., Wasielesky Jr, W., Martino, R. C., Milach, Â., Soares, R., and Cavalli, R. O. (2008). Comparison of reproductive output, offspring quality, ovarian histology and fatty acid composition between similarly-sized wild and domesticated *Farfantepenaeus paulensis. Aquaculture* 285, 201-206.
- Pesty, A., Avazeri, N., and Lefèvre, B. (1998). Nuclear calcium release by InsP3receptor channels plays a role in meiosis reinitiation in the mouse oocyte. *Cell Calcium* **24**, 239-251.
- Phinyo, M., Visudtiphole, V., Roytrakul, S., Phaonakrop, N., Jarayabhand, P., and Klinbunga, S. (2013). Characterization and expression of *cell division cycle 2* (*Cdc2*) mRNA and protein during ovarian development of the giant tiger shrimp *Penaeus monodon. General and comparative endocrinology* **193**, 103-111.
- Preechaphol, R., Klinbunga, S., Khamnamtongand, B., and Menasveta, P. (2010). Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp *Penaeus monodon* by suppression subtractive hybridization (SSH). *Genetics and molecular biology* **33**, 676-685.
- Preechaphol, R., Leelatanawit, R., Sittikankeaw, K., Klinbunga, S., Khamnamtong, B., Puanglarp, N., and Menasveta, P. (2007). Expressed sequence tag analysis for identification and characterization of sex-related genes in the giant tiger shrimp *Penaeus monodon*. *Journal of biochemistry and molecular biology* **40**, 501-510.
- Qiu, G.-F., and Yamano, K. (2005). Three forms of cyclin B transcripts in the ovary of the kuruma prawn *Marsupenaeus japonicus*: Their molecular characterizations and expression profiles during oogenesis. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 141, 186-195.

- Qiu, G. F., Yamano, K., and Unuma, T. (2005). Cathepsin C transcripts are differentially expressed in the final stages of oocyte maturation in kuruma prawn *Marsupenaeus japonicus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology* **140**, 171-181.
- Quackenbush, J. (2001). Computational analysis of microarray data. *Nature Reviews Genetics* **2**, 418-427.
- Quackenbush, L. (1991). Regulation of vitellogenesis in penaeid shrimp. Developments in aquaculture and fisheries science.
- Rattanarojpong, T., Wang, H. C., Lo, C. F., and Flegel, T. W. (2007). Analysis of differently expressed proteins and transcripts in gills of *Penaeus vannamei* after yellow head virus infection. *Proteomics* **7**, 3809-3814.
- Ruuskanen, J. O., Xhaard, H., Marjamäki, A., Salaneck, E., Salminen, T., Yan, Y.-L., Postlethwait, J. H., Johnson, M. S., Larhammar, D., and Scheinin, M. (2004).
 Identification of duplicated fourth **Q**2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. *Molecular biology and evolution* **21**, 14-28.
- Sakai, N., Sawada, M. T., and Sawada, H. (2004). Non-traditional roles of ubiquitinproteasome system in fertilization and gametogenesis. *The international journal of biochemistry & cell biology* **36**, 776-784.
- Sambrook, J., and Russell, D. W. (2001). "Molecular Cloning," Cold Spring Harbor Laboratory Press, New York, USA.
- Sarojini, R., Nagabhushanam, R., and Fingerman, M. (1995). Mode of action of the neurotransmitter 5-hydroxytryptamine in stimulating ovarian maturation in the red swamp crayfish, *Procambarus clarkii*: An in vivo and in vitro study. *Journal of Experimental Zoology* **271**, 395-400.
- Sasagawa, Y., Yamanaka, K., Nishikori, S., and Ogura, T. (2007). *Caenorhabditis elegans* p97/CDC-48 is crucial for progression of meiosis I. *Biochemical and biophysical research communications* **358**, 920-924.
- Senior, A., and Gerace, L. (1988). Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. *The Journal of cell biology* **107**, 2029-2036.
- Senthilkumaran, B., and Joy, K. P. (2001). Periovulatory changes in catfish ovarian oestradiol-17 β , oestrogen-2-hydroxylase and catechol-O-methyltransferase

during GnRH analogue-induced ovulation and in vitro induction of oocyte maturation by catecholoestrogens. *Journal of Endocrinology* **168**, 239-247.

- Shui, Y., Guan, Z.-B., Xu, Z.-H., Zhao, C.-Y., Liu, D.-X., and Zhou, X. (2012). Proteomic identification of proteins relevant to ovarian development in the red swamp crayfish *Procambarus clarkii*. *Aquaculture* **370**, 14-18.
- Sithigorngul, P., Panchan, N., Vilaivan, T., Sithigorngul, W., and Petsom, A. (1999). Immunochemical analysis and immunocytochemical localization of crustacean hyperglycemic hormone from the eyestalk of *Macrobrachium rosenbergii*. *Comparative biochemistry and physiology*. *Part B, Biochemistry & molecular biology* **124**, 73-80.
- Sittikankaew, K., Hiransuchalert, R., Yocawibun, P., Yamano, K., and Klinbunga, S. (2010). Identification, characterization and expression of *adipose differentiation-related protein* (*ADRP*) gene and protein in ovaries of the giant tiger shrimp *Penaeus monodon*. *Aquaculture* **308**, S91-S99.
- Somboonwiwat, K., Chaikeeratisak, V., Wang, H.-C., Fang Lo, C., and Tassanakajon, A. (2010). Proteomic analysis of differentially expressed proteins in *Penaeus monodon* hemocytes after Vibrio harveyi infection. *Proteome science* **8**, 39-49.
- Song, C., Wang, Q., and Li, C.-C. H. (2003). ATPase activity of p97-valosin-containing protein (VCP) D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. *Journal of Biological Chemistry* **278**, 3648-3655.
- Soyez, D., Le Caer, J., Noel, P., and Rossier, J. (1991). Primary structure of two isoforms of the Vitellogenesis Inhibiting Hormone from the lobster *Homarus americanus*. *Neuropeptides* **20**, 25-32.
- Styrishave, B., Lund, T., and Andersen, O. (2008). Ecdysteroids in female shore crabs *Carcinus maenas* during the moulting cycle and oocyte development. *Journal of the Marine Biological Association of the UK* **88**, 575-581.
- Sun, Y. D., Zhao, X. F., Kang, C. J., and Wang, J. X. (2006). Molecular cloning and characterization of Fc-TSP from the Chinese shrimp *Fennerpenaeus chinensis*. *Molecular Immunology* **43**, 1202-1210.
- Sutovsky, P., Moreno, R., Ramalho-Santos, J., Dominko, T., Thompson, W. E., and Schatten, G. (2001). A putative, ubiquitin-dependent mechanism for the

recognition and elimination of defective spermatozoa in the mammalian epididymis. *Journal of Cell Science* **114**, 1665-1675.

- Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Development: Ubiquitin tag for sperm mitochondria. *Nature* **402**, 371-372.
- Talakhun, W. (2008). Identification of genes and proteins related to ovarian development the giant tiger shrimp *Penaeus monodon*, Chulalongkorn University, Thailand.
- Talakhun, W., Roytrakul, S., Phaonakrop, N., Kittisenachai, S., Khamnamtong, B., Klinbunga, S., and Menasveta, P. (2012). Identification of reproduction-related proteins and characterization of the protein disulfide isomerase A6 cDNA in ovaries of the giant tiger shrimp Penaeus monodon. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7, 180-190.
- Tanner, N. K., and Linder, P. (2001). DExD/H box RNA helicases: from generic motors to specific dissociation functions. *Molecular cell* **8**, 251-262.
- Tensen, C. P., Kleun, D. P., and Herp, F. (1991). Cloning and sequence analysis of cDNA encoding two crustacean hyperglycemic hormones from the lobster Homarus americanus. *European journal of biochemistry* **200**, 103-106.
- Thorsell, A., Portelius, E., Blennow, K., and Westman-Brinkmalm, A. (2007). Evaluation of sample fractionation using micro-scale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. *Rapid communications in mass spectrometry* **21**, 771-778.
- Tiu, S. H., He, J.-G., and Chan, S.-M. (2005). Organization and expression study of the shrimp (*Metapenaeus ensis*) putative 5-HT receptor: Up-regulation in the brain by 5-HT. *Gene* **353**, 41-52.
- Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proceedings of the National Academy of Sciences* **76**, 4350-4354.
- Treerattrakool, S., Panyim, S., Chan, S. M., Withyachumnarnkul, B., and Udomkit, A. (2008). Molecular characterization of gonad-inhibiting hormone of *Penaeus monodon* and elucidation of its inhibitory role in vitellogenin expression by RNA interference. *FEBS journal* **275**, 970-980.

- Tsukimura, B., Nelson, W., and Linder, C. (2006). Inhibition of ovarian development by methyl farnesoate in the tadpole shrimp, *Triops longicaudatus*. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* **144**, 135-144.
- Udomkit, A., Chooluck, S., Sonthayanon, B., and Panyim, S. (2000). Molecular cloning of a cDNA encoding a member of CHH/MIH/GIH family from *Penaeus monodon* and analysis of its gene structure. *Journal of experimental marine biology and ecology* **244**, 145-156.
- Udomkit, A., Treerattrakool, S., and Panyim, S. (2004). Crustacean hyperglycemic hormones of *Penaeus monodon*: cloning, production of active recombinant hormones and their expression in various shrimp tissues. *Journal of Experimental Marine Biology and Ecology* **298**, 79-91.
- Vaca, A. A., and Alfaro, J. (2000). Ovarian maturation and spawning in the white shrimp, *Penaeus vannamei*, by serotonin injection. *Aquaculture* **182**, 373-385.
- Visudtiphole, V., Klinbunga, S., and Kirtikara, K. (2009). Molecular characterization and expression profiles of *cyclin A* and *cyclin B* during ovarian development of the giant tiger shrimp *Penaeus monodon*. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* **152**, 535-543.
- Voronina, E., and Wessel, G. M. (2004). The regulation of oocyte maturation. *Current topics in developmental biology* **58**, 53-110.
- Wessel, G. M., Conner, S. D., and Berg, L. (2002). Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. *Development* **129**, 4315-4325.
- Wójcik, C., Yano, M., and DeMartino, G. N. (2004). RNA interference of valosincontaining protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. *Journal of cell science* **117**, 281-292.
- Wongprasert, K., Asuvapongpatana, S., Poltana, P., Tiensuwan, M., and Withyachumnarnkul, B. (2006). Serotonin stimulates ovarian maturation and spawning in the black tiger shrimp *Penaeus monodon*. *Aquaculture* **261**, 1447-1454.
- Yamanaka, K., Okubo, Y., Suzaki, T., and Ogura, T. (2004). Analysis of the two p97/VCP/Cdc48p proteins of *Caenorhabditis elegans* and their suppression of

polyglutamine-induced protein aggregation. *Journal of structural biology* **146**, 242-250.

- Yamano, K., Qiu, G.-F., and Unuma, T. (2004a). Molecular cloning and ovarian expression profiles of thrombospondin, a major component of cortical rods in mature oocytes of penaeid shrimp, *Marsupenaeus japonicus*. *Biology of reproduction* **70**, 1670-1678.
- Yamano, K., Qiu, G. F., and Unuma, T. (2004b). Molecular cloning and ovarian expression profiles of thrombospondin, a major component of cortical rods in mature oocytes of penaeid shrimp, *Marsupenaeus japonicus*. *Biology of Reproduction* **70**, 1670-1678.
- Yano, I. (1985). Induced ovarian maturation and spawning in greasyback shrimp, *Metapenaeus ensis*, by progesterone. *Aquaculture* **47**, 223-229.
- Yano, I. (1988). Oocyte development in the kuruma prawn *Penaeus japonicus. Marine Biology* **99**, 547-553.
- Yano, I. (1995). Final oocyte maturation, spawning and mating in penaeid shrimp. Journal of experimental marine biology and ecology **193**, 113-118.
- Yano, I., and Hoshino, R. (2006). Effects of 17 β-estradiol on the vitellogenin synthesis and oocyte development in the ovary of kuruma prawn (*Marsupenaeus japonicus*). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 144, 18-23.
- Yodmuang, S., Udomkit, A., Treerattrakool, S., and Panyim, S. (2004). Molecular and biological characterization of molt-inhibiting hormone of *Penaeus monodon*. *Journal of Experimental Marine Biology and Ecology* **312**, 101-114.
- Zhang, F. X., Shao, H. L., Wang, J. X., and Zhao, X. F. (2011). β-thymosin is upregulated by the steroid hormone 20-hydroxyecdysone and microorganisms. *Insect molecular biology* **20**, 519-527.

Appendix A

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of *P. monodon*

Ductoin nome	Coond	Tunoffon	Accession	R	elative II	itensity	Ratio		Duclus
	21070	T ULUCION	по.	Υ	в	с	Q	Э	r-value
Hemocyanin	113	Oxygen transport	gi 16612121		0.94	0.97	1.06	1.1	0.042288803
								61	
RNA-binding protein squid	77	mRNA export from nucleus	SQD_DROME	1	0.95	1.02	1.09	1.1	0.00445696
		(mRNA 3'-UTR binding)						8	
Thrombospondin Fenneropenaeus	40	cell adhesion (calcium ion	gi 000015205	1	0.91	1.02	1.11	1.0	0.04124319
chinensis OV-N-N01-0896-W		binding)						0	
Signal peptide peptidase SppA, 67K	32	signal peptide processing	gi 113970247	-	1.00	1.00	1.16	1.2	0.004596717
type		(peptidase activity)						ŝ	
Predicted protein	30		gi 222869979	-	1.04	0.97	1.03	3.1.1	0.004848374
tRNA uridine 5-	30	tRNA methylation (flavin	gi 33866912	1	1.02	1.19	1.10	1.1	0.006317882
Carboxymethylaminomethyl Carboxymethyl Carboxymethyl Carbon modification enzyme GidA		adenine dinucleotide binding)						•	
FCH domain only 2, partial	27		gi 115743065	-	1.00	1.00	1.16	1.2	0.004596717
								s	
SMC protein	27	DNA recombination (ATP	gi 28375555	1	0.91	0.95	1.03	0.0	0.006471426
		binding)						0	
Amidohydrolase	27	nitrogen compound	gi 269926591	1	1.02	1.03	1.13	1.1	0.021946657
		metabolic process (N-						9	
		acetyltransferase activity)							
AKT1-like potassium channel	26	Ion transport (voltage-gated potassium channel activity)	gi 17887457	-	1.02	1.03	1.13	1.1	0.021946657
V-type ATP synthase subunit D	26	ATP biosvnthetic process	gi 87302997	-	0.91	0.95	1.08	0.0	7.22E-08
		(proton-transporting ATPase	5					0	
		activity, rotational mechanism)							
Hypothetical protein Oter_3272	26	2)	gi 182415085	-	1.02	1.03	1.13	1.1 6	0.021946657
Pol protein	26	DNA integration (DNA	gi 156140948	1	1.07	1.05	1.24	1.3	0.002572325
		binding)						0	
Glutamyl-tRNA synthetase 1	25	,	SYE1_NEOS M	1	0.91	1.00	1.10	1.1	0.001112917
Squalene-hopene cvclase	25	hopanoid biosvnthetic	2i 16519641	1	1.00	1.05	1.09	1.2	0.001687306
		process (lyase activity)	2					5	

Ductoin nome	Coope	Tunction	Accession no	R	elative I	ntensit	y Ratio		D unlar
	21076	T. MILCHAN		A	B	ပ	D	ы	antea- r
Glyceraldehyde-3-phosphate	24	glycolysis (NAD	G3P1_KLUMA		1.01	1.03	1.13	1.17	0.002175479
denyar ogenase 1 Glyceraldehyde-3-phosphate	24	entonig) glycolysis, Apoptosis	G3P1 JACOR	1	1.01	1.03	1.13	1.17	0.002175479
dehydrogenase, muscle		(NAD binding)	I						
Hypothetical protein	24	0	gi 296417753	1	1.02	1.19	1.10	1.10	0.006317882
Hypothetical protein LOC100410715	24		gi 296209385	1	0.94	0.97	1.05	1.09	9.00E-04
Phosphotyrosine protein phosphatase	24	Peptidyl-tyrosine dephosphorylation (protein tyrosine	gi 149188172	- /	1.02	1.19	1.10	1.10	0.006317882
		phosphatase activity)							
Hypothetical protein NAEGRDRAFT_58086	23		gi 290988356	-//	0.97	1.00	1.09	1.10	0.001991721
Potential zinc-binding dehydrogenase	23	Oxidation-reduction (oxidoreductase activity)	gi 68485591	-	1.00	1.00	1.06	1.11	0.001378242
Ribonuclease PH	23	tRNA processing (tRNA nucleotidyltransferase	gi 109900580	-	66.0	1.02	1.01	1.07	0.019285565
O-sialoglycoprotein endopeptidase	22	activity) (metalloendopeptidase activity)	GCP_DECAR		1.01	1.02	1.11	1.24	0.010371256
Retinal dehydrogenase 1	22	response to oxidative stress (retinal	AL1A1_RABIT	-	0.69	0.00	0.99	1.08	0.004355756
Acetate kinase	22	denydrogenase activity) organic acid metabolic	gi 296445450	-	1.02	1.19	1.10	1.10	0.006317882
Diaminonimelate decarhoxulase	3	process (ATP binding) lysine hiosynthetic	oi 118602155	-	1 04	0.97	1 03	113	0 004848374
	1	process via diaminopinelate		•					
Kinesin heavy chain	22	axon cargo transport (plus-end-directed microtubule motor activity)	gil51316437	-	1.02	1.19	1.10	1.10	0.006317882
ATP-binding region ATPase domain protein	21	peptidyl-histidine phosphorylation (ATP binding)	gi 268680200	1	0.90	0.97	0.97	1.08	0.036500726

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

					telative I	ntensity	Ratio		.
Protein name	Score	Function	Accession no.	P	в	C	٩	Э	P-value
Galactose/methyl galactoside import ATP-binding protein MgIA	21	Sugar transport (ATP binding)	MGLA_YERP A	-	1.02	1.03	1.06	1.08	0.027235862
LIM domain containing protein	21	cell migration (zinc ion binding)	gi 170588449	1	0.91	06.0	0.94	1.03	0.037243493
Hypothetical protein	21	,	gi 145497294	-	0.93	1.02	1.07	1.11	0.001118945
Hypothetical protein SELMODRAFT 187364	21	e) h	gi 300138864	-	00.00	0.93	00.00	1.08	0.015990637
C4-dicarboxylate transport sensor	20	peptidyl-histidine	gi 167568606	1	1.04	1.14	1.10	1.10	0.02556746
protein		phosphorylation (ATP binding)							
DNA mismatch repair protein	20	DNA repair (ATP binding)	gi 56479127	-//	0.90	0.97	0.97	1.08	0.036500726
DNA replication factor Cdt1, putative	20		gi 242010543	-	1.06	1.08	1.23	1.28	0.013457094
TraG Comamonas sp. CNB-1	20	unidirectional	gi 190572004	1	0.91	0.95	1.08	0.00	7.22E-08
		conjugation							
Conjugal transfer protein TrbG	20	conjugation	gi 163858945	1	1.04	1.14	1.10	1.10	0.02556746
Succinate-semialdehyde	20	gamma-aminobutyric	gi 254452417	1	0.97	1.03	1.09	1.14	0.005710353
dehydrogenase		acid catabolic process							
		(succinate-semialdehyde							
		dehydrogenase (NAD+) activity)							
Sugar transport system permease	20	carbohydrate transport	gi 291459418	1	1.02	1.01	1.13	1.24	1.71E-04
protein		(transporter activity)							
DNA-directed RNA polymerase,	19	Transcription (DNA	gi 294085951	1	0.94	0.97	1.06	1.12	0.042288803
beta subunit/140 kD subunit		binding)							
Fis family GAF modulated sigma54	19	Transcription regulation	gi 114321883	1	0.97	1.00	1.09	1.10	0.001991721
specific transcriptional regulator									
30S ribosomal protein S3	18	translation (SSU rRNA	gi 72163039	1	1.09	1.00	1.09	1.10	0.022005359

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Drotoin nemo	Score	Function	Accession no	R	elative I	ntensity	Ratio		D value
	21070	T ULCHON		Υ	в	c	D	Е	antra- r
Voltage-dependent L-type calcium channel subunit alpha-1S	18	Calcium transport (voltage-gated calcium channel activity)	CACIS_CHICK		06.0	0.97	0.97	1.08	0.036500726
Pyrrolo-quinoline quinone	1	Oxidation-reduction (oxidoreductase activity, acting on CH-OH group of donors)	gil196232348	- /	0.91	1.02	1.11	1.00	0.04124319
SH3 and PX domain-containing protein 2A	17	cell communication (phosphatidylinositol binding)	gi 157820515	-//	96.0	0.94	1.01	1.14	0.002949992
Sphingomyelinase C	17	cytolysis (sphingomyelin phosphodiesterase activity)	gi 229095326	AL	86.0	1.02	1.08	1.12	0.015446262
Vacuolar protein sorting 26, putative	17	vacuolar transport	gi 159107953	-	1.07	1.05	1.24	1.30	0.002572325
Acetyl-coenzyme A synthetase	17	acetyl-CoA biosynthetic process (AMP binding)	gi 114326929	-	0.91	1.02	H	1.00	0.04124319
Ammelide aminohydrolase	17	(hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds)	gi 12644702	-	1.06	1.08	1.23	1.28	0.013457094
Copper ion binding / methyltransferase	17		gi 30697060	1	1.06	1.08	1.23	1.28	0.013457094
Disco-interacting protein, putative	17	Metabolic process (catalytic activity)	gi 240973890	1	1.01	1.01	1.04	1.22	9.43E-05
Peptidase M24 family protein	17	cellular process (metalloexopeptidase activity)	gi 66812452	-	0.96	0.78	1.14	0.00	0.022774031
Predicted protein	17	,	gi 168042089	1	0.98	0.98	1.07	1.22	0.001830104
Biotin synthase	16	biotin biosynthetic process (2 iron, 2 sulfur cluster binding)	BIOB_NITHX	-	0.95	0.98	1.07	1.07	0.037908323
Chaperone protein htpG	16	protein folding (ATP binding)	HTPG_ECOHS	1	1.05	1.09	1.05	1.12	0.001031452
Lysine exporter protein (LYSE/YGGA)	16	amino acid transport	gi 269125145	-	1.02	1.19	1.10	1.10	0.006317882

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Tuctoir and		Turneficer		R	elative II	ntensity	Ratio		
Госеш наше	SCOFE	F UNCUON	ACCESSION NO.	A	в	ပ	D	Е	P-Value
MFS monocarboxylate transporter (Mct), putative	16	transmembrane transport (transporter activity)	gi 119482369	1	0.91	1.02	1.11	1.00	0.04124319
Protein kti 12	16	Transcription regulation (ATP binding, chromatin binding)	gi 254567335	-	1.00	1.00	1.16	1.25	0.004596717
TCP protein	16		gi 37726698	-	1.02	1.04	1.09	1.14	0.008524377
Trigger factor	¹⁶ GKO	de novo' cotranslational protein folding (peptidyl- prolyl cis-trans isomerase activity)	TIG_LACLS	4/2	66.0	1.01	1.06	1.09	0.014510365
Uncharacterized protein FLJ40521	16	×	YH007_HUMAN	1	0.94	0.98	1.03	1.14	0.001738786
Conjugal transfer protein TrbI	16	conjugation	gi 260655648	7	0.91	1.02	111	1.00	0.04124319
Dystonin, partial	16	Cell adhesion, regulation of microtubule polymerization or depolymerization (actin binding, microtubule plus- end binding)	gi 149436017	-	1.09	1.00	1.09	1.10	0.022005359
Hypothetical protein	16		gi 296416293	1	1.05	1.03	1.08	1.15	3.70E-04
Hypothetical protein	16) [E	gi 70944686	1	1.00	1.00	1.16	1.25	0.004596717
Lipoprotein	16		gi 226952572	1	1.01	1.01	1.07	1.11	0.005041977
Phosphopentornutase	16	nucleotide metabolic process	gi 172057039	1	1.06	1.08	1.23	1.28	0.013457094
Protein of unknown function DUF58	16	ı	gi 222528472	0	0.00	1.00	1.02	1.03	9.29E-04
Transposase, IS116/IS110/IS902 family	16	transposition, DNA-mediated (DNA binding)	gi 282879224	1	1.02	66.0	1.04	1.10	0.021498727
Unnamed protein product	16		gi 47213656	1	1.01	1.02	1.07	00.00	2.41E-11
Extracellular ligand-binding receptor	15	amino acid transport (receptor activity)	gi 239820623		1.09	1.00	1.09	1.10	0.022005359

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Drotoin nemo	Score	Eurefion	Accession no	R	elative I	ntensity	Ratio		D value
	Store	F ULCCITOR	ACCESSION NO.	Α	в	С	D	Е	r-value
Ghrtamate-1-semialdehyde 2,1- aminornutase	SHULA	porphyrin-containing compound biosynthetic process (ghtamate-1- semialdehyde 2,1- aminomutase activity)	GSA_PROM5	-	10.0	0.95	1.08	0.00	7.22E-08
Paired box protein Pax-5	15	cell differentiation (DNA binding)	PAX5_HUMAN	A	0.94	1.04	1.10	1.15	0.01949566
Alpha adaptin-like protein, putative	15	vesicle-mediated transport (binding)	gi 86171157	4	66.0	1.04	1.11	1.10	0.009711495
Deoxyguanosinetriphosphate triphosphohydrolase	15	GTP metabolic process (dGTPase activity)	gi 188583269	2	86.0	0.97	1.16	1.15	0.032421067
Hypothetical protein BACCAC_01249	15	โมา	gi 153806973		1.09	1.02	1.06	1.23	1.45E-04
Proton-translocating NADH-quinone oxidoreductase, chain M subfamily	15	mitochondrial electron transport, NADH to ubiquinone (NADH dehydrogenase (ubiquinone) activity)	gi 254445382	-	66:0	1.04	E	1.10	0.009711495
Uracil-DNA glycosylase	15	DNA repair (uracil DNA N-glycosylase activity)	gi 227504428	-	0.95	0.96	1.07	1.09	0.013199708
Zinc-binding dehydrogenase	15	Oxidation-reduction process (nucleotide binding)	gi 188535420	-	66:0	1.04	1.11	1.10	0.009711495
Amthiotic biosynthesis monooxygenase	14	antibiotic biosynthetic process (monooxygenase activity)	gi 152965462	1	0.98	1.02	1.20	1.15	0.002800226
Carboxylate-amine ligase Noca_3311	14	glutathione biosynthetic process(ATP binding)	CAAL2_NOCSJ	1	0.88	0.92	1.08	0.00	3.19E-08
Chemotaxis response regulator protein-glutamate methylesterase	14	chemotaxis (Hydrolase)	CHEB_SHEFN	1	0.88	0.92	1.08	0.00	3.19E-08
DEAD/DEAH box helicase	14	ATP catabolic process (ATP binding)	gi 301062611		1.00	1.10	1.17	1.21	1.14E-05

 Table A1 Ovarian proteins showing significantly different expression profiles in different groups of *P. monodon* (Cont.)
Ductoin nemo	Conno	Eurofion	Accession	R	elative I	ntensity	Ratio		D volue
	סוחכ	L'ULCHUN		Α	в	С	D	Е	r-valuc
G2/mitotic-specific cyclin-B	14	G2/M transition of mitotic	CCNB_ASTPE	-	0.94	1.01	1.08	0.00	4.58E-12
		cell cycle (cyclin-dependent							
		protein kinase regulator							
		activity)							
Lipoyl synthase	14	protein lipoylation (4 iron, 4	LIPA_PARDP	T	0.88	0.92	1.08	0.00	3.19E-08
		sulfur cluster binding)							
Magnesium transport protein corA	14	Ion transport (cobalt ion	CORA_METJA	7	0.88	0.92	1.08	00.0	3.19E-08
		transmembrane transporter activity)							
UDP-3-0-[3-hydroxymyristoyl]	14	lipid A biosynthetic process	LPXD_PSYCK	2	0.88	0.92	1.08	0.00	3.19E-08
glucosamine N-acyltransferase		(N-acyltransferase activity)							
Hypothetical protein HNE_2434	14	\$	gi 114798242	1	1.03	0.97	1.16	1.21	0.001494441
Hypothetical protein NECHADRAFT_15869	14		gi 256720222	7	1.09	0.95	0.00	96.0	0.015496448
Major facilitator superfamily	14	Transport (transmembrane	gi 23308910	1	1.07	0.95	1.17	0.98	0.019548474
permease		transporter activity)							
Phosphonate ABC transporter,	14	Transmembrane transport	gi 113474247	-	0.94	66.0	1.11	1.08	0.018720636
Periplasmic phosphonate-binding protein		(ATP binding)							
Pyruvate carboxyltransferase	14	leucine biosynthetic process (2-isopropylmalate synthase	gi 281357417	5	1.01	1.01	1.04	1.22	9.43E-05
		activity)							
rCG38503, isoform CRA_b	14		gi 149033955	1	0.98	0.97	1.16	1.15	0.032421067
Radical SAM family protein	14	Metabolic process (catalytic activity)	gi 83591239	1	0.94	0.99	1.11	1.08	0.018720636
Transglutaminase-like enzyme, mutativa evetaina motaasa	14	proteolysis (mentidase activity)	gi 15895675	1	0.89	0.91	1.03	1.15	0.004544464
ATD-dependent protesse ATDsse	13	resumes to heat	Ud IIS II ISH	-	1 00	1 13	1 20	000	0 003036167
ALF-ucpendent protease ALF ase subunit HslU	C .	(ATP binding)		-	L.U.2	C1.1	1.12	00.0	101050500.0

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Ductoin nomo	Crowo	Ennotion	A second second second		R	elative Iı	ntensity Rat	io	o nino
	STOLE	F uncerou	ALLESSION NO.	Υ	в	c	D	E	-r-value
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial	13	Electron transport (metal ion binding)	NIDUV1_BOVIN	1	1.09	1.13	1.29	00.00	0.003036167
FMN-binding negative transcriptional regulator	13	Oxidation-reduction (FMN binding)	gi 121606632	1	00.0	1.01	1.07	1.16	0.004611616
NADH-quinone oxidoreductase subunit H	- 13	(NADH dehydrogenase (quinone) activity)	NUOH_ROSDO	-/	1.09	1.13	1.29	0.00	0.003036167
Conserved hypothetical protein	13		gi 115401770	7	0.94	0.97	1.06	1.12	0.042288803
Hypothetical protein ANACAC_02610	13	15	gi 167747881	7	1.01	1.05	1.10	1.14	0.004147349
Hypothetical protein Rru_A2166	13	1	gi 83593501	-	66.0	0.97	1.16	1.26	0.005768772
Nickel-dependent hydrogenase large subunit		Oxidation-reduction (ferredoxin hydrogenase activity)	gi 296272893	-	0.98	0.83	1.07	0.00	0.020424636
Phytochrome Agp1	13	peptidyl-histidine phosphorylation (ATP binding)	gi 51243765		0.92	66.0	0.97	1.24	0.017018035
tRNA and rRNA cytosine-C5- methylase	13	regulation of transcription, DNA-dependent (RNA binding)	gi 110638264	-	1.02	1.01	1.06	1.17	4.03E-05
Actin, acrosomal process isoform	12	RNA-dependent DNA replication (RNA binding)	ACTA_LIMPO	4	1.04	1.05	1.04	1.11	0.04473307
DNA mismatch repair protein MutS	12	DNA repair (ATP binding)	gi 17988084	1	1.20	1.10	0.98	1.29	0.006748606
Nucleoprotein	12	(RNA binding)	NCAP_MILVL	1	1.06	1.00	1.12	00.0	1.86E-06
Phosphoghcosamine mutase	12	UDP-N-acetylghtcosamine biosynthetic process	GLMM_PROMP	1	0.95	66.0	1.10	1.14	0.036934517
Succinyl-CoA ligase [ADP- forming] subunit beta	12	tricarboxylic acid cycle (ATP binding)	SUCC_ECOBW	1	1.01	1.00	1.05	1.19	1.68E-04
Acyl-Coenzyme A oxidase 1	12	fatty acid beta-oxidation (acyl-CoA dehydrogenase artivity)	gi 55741614	1	1.04	0.97	1.03	1.13	0.004848374

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Ductoin nomo	00000	Function	Accession up		Relativ	e Intensi	ity Ratio		D violue
	20010	F ULCCION		Υ	B	c	D	Е	ante - r
Hypothetical protein	12	,	gi 225431149		0.93	1.02	1.07	1.11	0.001118945
Hypothetical protein Kcr_0722	12	-	gi 170290339	1	0.88	0.91	1.05	0.96	0.048885066
Hypothetical protein MPER_06122	12		gi 238596436	1	1.04	0.97	1.03	1.13	0.004848374
Hypothetical protein T22B7.7	12		gi 17569955	1	1.05	1.03	1.08	1.15	3.70E-04
Oxidoreductase/ transcriptional repressor	12	Oxidation-reduction (binding)	gi 297844608	-	0.91	0.90	0.94	1.03	0.037243493
Possible glucokinase	12	carbohydrate phosphorylation (Transferase activity)	gi 227874553	7/	76.0	86.0	1.09	0.00	0.001194695
Transcription-repair coupling factor	12	regulation of transcription, DNA-dependent (ATP binding)	gil298369031	-	1.03	1.00	1.06	1.09	0.026793158
Adaptive-response sensory-kinase sasA	:	peptidyl-histidine phosphorylation (ATP binding)	SASA_PROMA	-	0.93	1.03	1.10	1.09	0.04420454
Chromosomal replication initiator DnaA domain protein	11	DNA replication initiation (ATP binding)	gi 258406588	-	1.00	1.07	1.09	1.15	5.38E-04
L-carnitine dehydratase/bile acid- inducible protein F	11	Metabolic process (catalytic activity)	gi 254293873	-	1.00	1.03	1.18	1.17	0.001062525
Neuroplastin	11	Cell adhesion	NPTN_HUMAN	-	0.94	1.02	1.08	1.13	0.002158625
Cytochrome P450	512	Oxidation-reduction (electron carrier activity)	gi 224066581	-	1.00	1.03	1.18	1.17	0.001062525
Flavoprotein monooxygenase	11	aromatic compound catabolic process (monooxygenase activity)	gi 159469768	1	1.00	1.03	1.18	1.17	0.001062525
Integral membrane sensor signal transduction histidine kinase	11	peptidyl-fristidine phosphorylation (kinase, transferase)	gi 253575400	1	1.00	1.03	1.18	1.17	0.001062525
Membrane protein M1	11		gi 61612084	1	1.00	1.03	1.18	1.17	0.001062525
Nuclear cap-binding protein subunit 1	11	RNA splicing (protein binding)	gi 259155144	1	1.00	1.07	1.09	1.15	5.38E-04

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Ductoin nomo	0,000	Tunation	A sector sector		Rel	ative Int	ensity Ratio	0	anles a
Frotem name	SCOFE	FUNCTION	Accession no.	A	B	υ	D	Е	- r-value
Unnamed protein product	=	,	gi 47230656		0.95	1.01	1.03	1.13	0.034732834
Unnamed protein product	11		gi 170940313	1	0.94	0.94	1.00	1.06	3.12E-05
AdoMet-dependent methyltransferase involved in rRNA processing and 60S rtbosomal subunit maturation	9 9 W	RNA methylation (Methyltransferase activity)	gi 6319796	- /	1.05	1.03	1.08	1.15	3.70E-04
Aspartate carbamoyltransferase	ุ ≏ าลง	Pyrimidine biosynthesis (protein binding)	PYRB_EHRCR	- /	0.93	06.0	1.02	00.0	0.047206968
UPF0725 protein At1g02770	10	24	Y1277_ARATH	4	0.95	1.04	1.17	1.14	0.005967635
Uncharacterized oxidoreductase YKL107W	10	Oxidation-reduction (nucleotide binding)	YKK7_YEAST	-	0.95	96.0	1.07	1.21	0.004572335
Carbamate kinase	9 1.3197	cellular amino acid biosynthetic process (carbamate kinase activity)	gi 146312782	-01	1.02	1.01	1.06	1.17	4.03E-05
Glycine dehydrogenase	าวิท	glycine catabolic process (decarboxylating activity)	GCSPA_CARH Z	-	1.02	1.01	1.09	1.13	0.043270014
Transporter	10		gi 299143613	-	1.00	1.03	1.18	1.17	0.001062525
Unknown Zea mays	10		gi 219887593	1	1.00	1.00	1.06	1.11	0.001378242
Nicotinate-nucleotide dimethylbenzimidazole phosphoribosyftransferase	8 1 8	nucleoside biosynthetic process	COBT_GEOBB		0.96	1.01	1.03	1.13	9.56E-04
Peptide chain release factor 1	σ	regulation of translational termination (translation release factor activity, codon specific)	RF1_HAEPS	1	0.94	1.01	1.08	0.00	4.58E-12
Sell domain-containing protein	6	Transport (binding)	gi 154246047	1	0.91	1.02	1.11	1.00	0.04124319

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Drotoin namo	Score	Eurotion	Accession no	R	[elative]	ntensity	r Ratio		D violance
	along	r unction		¥	в	c	D	н	anip
Uncharacterized protein ybdO	6		YBD0_BACSU		0.94	0.99	1.08	1.09	0.047102094
Haemoglobin type 1	6	Oxygen transport (heme binding)	gi 110319967	-1	86.0	0.94	1.02	1.17	0.044588502
Elongation factor 1-alpha	จิน	tRNA export from nucleus(translation elongationfactor activity)	gi/202071408	-	1.04	0.97	1.03	1.13	0.004848374
Nicotinate shoedorihoedhanefaraea	6	NAD biosynthetic process	gi86144071	-	1.02	1.01	1.06	1.17	4.03E-05
prios prantos y name e ase Succinate ubiquinone oxidore ductase suburit 2			gi 11466549	-	1.08	1.02	1.16	1.21	0.027727414
Zinc finger, CCHC domain contairing8	6	RNA splicing (nucleic acid binding)	gi 221117253	4/	1.02	1.01	1.06	1.17	4.03E-05
4-hydroxythreorine-4-phosphate dehydrogenase		pynidoxine biosynthetic process (4- hydroxythreonine-4-phosphate dehydrogenase activity)	PDXA_METPB	4	1.01	1.02	H	1.24	0.010371256
Cyclic AMP-responsive element- binding protein 3	~	Transcriptionregulation, response to unfolded protein	CREB3_BOVIN	-	0.94	1.01	1.08	0.00	4.58E-12
DNA-binding protein RHL1	*	DNA endoreduplication (DNA binding)	RHL1_ARATH	-	76.0	1.06	1.04	1.10	0.027226975
MSV199 domain-containing protein 468L	~		468L_IIV6	-	0.97	1.04	1.14	1.21	0.001141856
Tyrosyl-tRNA synthetase	8	tyrosyl-tRNA aminoacylation (ATP binding)	SYY_PICTO		96.0	0.96	1.07	1.12	0.006018259
CCA-adding enzyme	16	RNA repair (ATP binding)	CCA_STRMU	1	0.99	0.98	11.11	1.04	0.042009026
Polyprotein	2	transcription, DNA-dependent (RNA binding)	gi 609608	1	0.95	0.95	1.02	1.05	0.015917271
Integrator complex suburit 1 isoform 1	4	DNA repair (protein binding)	gi 126334195	1	0.94	0.94	1.00	1.06	3.12E-05
KLAA1440	4		gi 118097766	1	0.94	0.94	1.00	1.06	3.12E-05
Hypothetical protein LOC100304460	4		gi 259013199	1	0.94	0.94	1.00	1.06	3.12E-05
KLAA1440	4		gi 118097766	1	0.94	0.94	1.00	1.06	3.12E-05
Hypothetical protein Paramecium tetraureliastrain d4-2			gi 145549836		1.01	0.96	1.04	1.17	3.32E-04

Table A1 Ovarian proteins showing significantly different expression profiles indifferent groups of P. monodon (Cont.)

Protein name	Acc. No.	Function	Cellular	Scor
			component	e
Lysophospholipid acyltransferase 5-like Bombus	gi 00015152	(transferase activity, transferring acyl groups)	integral to	14.43
impatiens			membrane	
ABC transporter Rhizobium leguminosarum bv.	gi 209546740	ATP catabolic process (ATP binding)	integral to	17.05
trifolii WSM2304			membrane	
ABC transporter-like protein Bacillus coagulars	gi 347752136	ATP catabolic process (ATPase activity,	integral to	24.63
36DI		coupled to transmembrane movement of	membrane	
		substances)		
Ankyrin repeat-containing protein	gi 00006035	(nucleotide binding)	integral to	7.26
			membrane	
Ankyrin repeats-like	gi 00011093	(ion channel activity)	integral to	12.14
			membrane	
Aspartyl/asparaginyl beta-hydroxylase Candidatus	gi 94969766	calcium ion transmembrane transport	integral to	11.5
Koribacter versatilis Ellin345		(oxidoreductase activity)	membrane	
ATP lipid-binding protein like protein	gi 00003306	ATP hydrolysis coupled proton transport	integral to	6.14
		(hydrogen ion transmembrane transporter	membrane	
		activity)		
ATP synthase F0F1 subunit delta Chlorobium	gi 21672859	ATP synthesis coupled proton transport	integral to	11.3
tepidum TLS		(hydrogen ion transporting ATP synthase	membrane	
		activity)		
ATP/ADP translocase Pacifastacus leniusculus	gi 00018032	(ATP binding)	integral to	10.47
			membrane	
Bcr/CflA subfamily drug resistance transporter	gi 219848827	transmembrane transport (transporter activity)	integral to	17.38
Chloroflexus aggregans DSM 9485			membrane	
Beta-amyloid precursor-like protein	gi 00014740	neuron projection morphogenesis	integral to	9.2
		(transition metal ion binding)	membrane	
Binding-protein-dependent transport systems inner	gi 186471608	(transporter activity)	integral to	4.3
membrane component Burkholderia phymatum sTM815			membrane	
Calcium activated chloride channel femily member 1	04100010434		intacral to	8 68
	+C+OTOOO 18		momhanno	0.00
			IIIEIII0I AIIE	

Protein name	Acc. No.	Function	Cellular	Scor
			component	e
CapK; capsular polysaccharide biosynthesis protein Sorangium cellulosum 'So ce 56'	gi 162456127	capsule polysaccharide biosynthetic process (sugar efflux transmembrane transporter activity)	integral to membrane	6.32
Carbohydrate sulfotransferase 11	gi 00009798	carbohydrate biosynthetic process (N- acetylgalactosamine 4-O-sulfotransferase activity)	integral to membrane	13.35
Carrier protein YMC2 Verticillium albo-carum VaMs.102	gi 302422118	(organic acid transmembrane transporter activity)	integral to membrane	6.73
Cation diffusion facilitator family transporter Mycobacterium rhodesiae JS60	gi 353193082	cellular response to zinc ion (zinc ion transmembrane transporter activity)	integral to membrane	10.19
CD63 antigen	gi 00002901	cellular protein localization	integral to membrane	16.79
Competence protein CelB Streptococcus pneumoniae R6	gi 15902901	establishment of competence for transformation (hydrolase activity)	integral to membrane	11.86
Cytochrome b Penaeus monodon	gi 00015927	respiratory electron transport chain (electron carrier activity)	integral to membrane	3.56
Cytochrome c assembly protein Deinococcus geothermalis DSM 11300	gi 94985348	respiratory chain complex IV assembly	integral to membrane	3.06
Cytochrome c oxidase assembly protein COX15	gi 00003984	heme a biosynthetic process (cytochrome-c oxidase activity)	integral to membrane	9.53
Cytochrome c oxidase subunit 1 Spizellomyces punctatus	gi 15147305	electron transport chain (electron carrier activity)	integral to membrane	10.37
Cytochrome c oxidase subunit II	gi 00008923	respiratory electron transport chain (copper ion binding)	integral to membrane	26.34
Cytochrome oxidase III Nectarinia talatala	gi 37928597	aerobic electron transport chain (cytochrome- c oxidase activity)	integral to membrane	9.07
Cytochrome P450 Pseudonocardia sp. P1	gi 324998845	(electron carrier activity)	integral to membrane	23.37
Cytochrome P450 CYP6BK17	gi 00009370	(electron carrier activity)	integral to	15

Table A2 Nuclear membrane proteins in ovaries of *P. monodon* identified by 1-DE

Protein name	Acc. No.	Function	Cellular	Score
			component	
Delta12 fatty acid desaturase	gi 00013583	fatty acid biosynthetic process	integral to	10.93
		(oxidoreductase activity)	membrane	
DNA segregation ATPase FtsK/SpoIIIE and related	gi 291520655	cell cycle (ATP binding)	integral to	6.64
proteins Butyrivibrio fibrisolvens 16/4			membrane	
ER lumen protein retaining receptor, putative	gi 00014384	protein transport (ER retention sequence	integral to	10.24
		binding)	membrane	
Exostosin-like 3 protein Clonorchis sinensis	gi 358335223	heparan sulfate proteoglycan biosynthetic	integral to	11.35
		process (metal ion binding)	membrane	
Formate dehydrogenase subunit beta	gi 194367034	cellular respiration (electron carrier activity)	integral to	8.23
Stenotrophomonas maltophilia R551-3			membrane	
Gap junction Cx32.2 protein Anoplopoma fimbria	gi 229367180	cell communication	integral to	16.71
			membrane	
Glucose-6-phosphate translocase	gi 00008383	glucose homeostasis (glucose-6-phosphate	integral to	15.58
		transmembrane transporter activity)	membrane	
Glycoprotein gp2 Equine herpesvirus I	gi 00018435	pathogenesis	integral to	8.92
			membrane	
Heavy metal translocating P-type ATPase	gi 53804062	copper ion transport (ATP binding)	integral to	27.35
Methylococcus capsulatus str. Bath			membrane	
Hypothetical transmembrane protein	gi 89890098	electron transport chain (protein disulfide	integral to	8.99
Flavobacteria bacterium BBFL7		oxidoreductase activity)	membrane	
Integral membrane sensor signal transduction	gi 332666709	signal transduction by phosphorylation	integral to	15.26
Histidine kinase		(ATP binding)	membrane	
Haliscomenobacter hydrossis DSM 1100				
K+-transporting ATPase subunit B	gi 152964985	(potassium-transporting ATPase activity)	integral to	13.81
Kineococcus radiotolerans SRS30216			membrane	
Large-conductance mechanosensitive channel	gi 167465900	cellular water homeostasis (mechanically-	integral to	5.6
Paenibacillus larvae subsp. larvae BRL-230010		gated ion channel activity)	membrane	
Leucine-rich receptor-like protein kinase-like	gi 42408846	(ATP binding)	integral to	9.06
Oryza sativa Japonica Group			membrane	
Longevity assurance protein	gi 118400719		integral to	18.46
Tetrahymena thermophila			membrane	

Table A2 Nuclear membrane proteins in ovaries of *P. monodon* identified by 1-DE

Protein name	Acc. No.	Function	Cellular	Score
			component	
Lysosomal-associated transmembrane protein	gi 00008532	transport	integral to	
Aedes aegypti			membrane	15.23
Major facilitator transporter Dietzia cinnamea P4	gi 319949639	(transmembrane transporter activity)	integral to	
			membrane	15.49
Methyl-accepting chemotaxis protein	gi 86360980	chemotaxis (signal transducer activity)	integral to	
Rhizobium etli CFN 42			membrane	8.86
Methyl-accepting chemotaxis sensory transducer	gi 288940151	(signal transducer activity)	integral to	
Allochromatiumvinosum DSM 180		e:	membrane	16.03
MrS alpha-gucoside transporter, putauve Talaromnees stinitatus ATCC 10500	1060107+7	Iransport (subsuate-specific transmembrane transporter a ctivity)	membrane	20.02
Multidrug ABC transporter ATPase and permease	gi 257064337	ATP catabolic process (ATP binding)	integral to	
Slackia heliotrinireducens DSM20476			membrane	14.79
Na+/H+ antiporter NhaC	gi 157963239	(antiporter activity)	integral to	
Shewanella pealeana ATCC 700345			membrane	7.48
Na+-driven multidrug efflux pump transmembrane	gi 300694222	(antiporter activity)	integral to	
protein, multi antimicrobial extrusion protein mate			membrane	
Raistonia solanacearum PSI07				11.14
Notch homolog	gi 00012008	cell differentiation (calcium ion binding)	integral to	
			membrane	16.54
Omega-3 fatty acid desaturase transmembrane	gi 162457415	lipid metabolic process	integral to	
protein Sorangium cellulosum 'So ce 56'			membrane	11.11
Outer membrane protein	gi 167856673	ion transport (poin activity)	integral to	
Haemophilus parasuis 29755			membrane	9.55
PAS/PAC sensor signal transduction histidine	gi 116619022	regulation of transcription, DNA-dependent	integral to	
kinase Leuconostoc mesenteroides subsp.			membrane	
mesenteroides ATCC 8293				14.42
Pentatncopeptide repeat-containing protein Medicago truncatula	gi 357490817	(nucleic acid binding)	integral to membrane	13.04
Pennease of the major facilitator superfamily	gi 239992950	transmembrane transport	integral to	
protein Alteromonas macleodii ATCC 27126			membrane	9.33
gp5 Enterobacteria phage ES18	gi 62362218	viral attachment to host cell	integral to	14.23
			membrane	

Table A2 Nuclear membrane proteins in ovaries of *P. monodon* identified by 1-DE

Protein name	Acc. No.	Function	Cellular	Score
			component	
Protein dpy-19, putative	gi 00012164		integral to	9.86
			membrane	
Rhomboid family protein	gi 302865368	proteolysis	integral to	7.94
Micromonospora aurantiaca ATCC 27029		(senne-type endopeptidase activity)	membrane	
Ribophorin I	gi 00003116	protein glycosylation	integral to	13.23
		(dolichyl-diphosphooligosaccharide-protein glycotransferase activity)	membrane	
RING finger protein, putative	gi 00007656	protein ubiquitination (zinc ion binding)	integral to	14.17
			membrane	
Ryanodine receptor Homarus americanus	gi 00016831	cellular calcium ion homeostasis	integral to	29.42
		(calcium ion binding)	membrane	
Semaphonin-1A	gi 00011383	negative regulation of cell size	integral to	11.95
		(receptor activity)	membrane	
Semaphonin-4G	gi 13633937	cell differentiation	integral to	21.35
			membrane	
Sensor protein RcsC Citrobacter sp. 30_2	gi 237732270	intracellular signal transduction	integral to	17.53
		(ATP binding)	membrane	
Signal peptidase complex subunit 3	gi 00000755	signal peptide processing (peptidase activity)	integral to	9.01
			membrane	
Signal peptide peptidase SppA	gi 334344778	signal peptide processing (peptidase activity)	integral to	9.11
Sphingobium chlorophenolicum L-1			membrane	
Signal transduction histidine kinase, glucose-6-	gi 91775170	signal transduction by phosphorylation	integral to	5.47
phosphate specific Methylobacillus flagellatus KT		(ATP binding)	membrane	
Signal transduction histidine-protein kinase afsQ2	gi 294631082	signal transduction by phosphorylation	integral to	8.18
Streptomyces sp. e14		(ATP binding)	membrane	
Sodium: alanine symporter Bacillus sp. SG-1	gi 149181621	alanine:sodium symporter activity	integral to	4.62
			membrane	
Solute carrier family 7 (cationic amino acid	gi 183986737	(amino acid transmembrane transporter	integral to	7.44
transporter, y+ system), member 3 Xenovus (Silurana) trovicalis		activity)	membrane	
Voltage-denendent anion-selective channel isoform 1	ei 00001786	anontotic process (nucleotide binding)	pore complex	8.85

Protein name	Acc. No.	Function	Cellular	Score
			component	
Sre1 cleavage activating protein Scp1	gi 19113465		integral to	11.19
Schizosaccharomyces pombe 972h-			membrane	
Tthiamine import ATP-binding protein ThiQ	gi 260427500	ATP catabolic process (ATP binding)	integral to	10.92
Citreicella sp. SE43			membrane	
Transmembrane protein 102 Camelus ferus	gi 00018394	regulation of apoptotic process	integral to	22.92
			membrane	
Transmembrane protein 50A	gi 00006876		integral to	14.24
			membrane	
TRAP dicarboxylate transporter, DctM subunit	gi 238752902		integral to	6.91
Yersinia rohdei ATCC 43380			membrane	
Tumor necrosis factor ligand	gi 00004193	angiogenesis	integral to	16.39
			membrane	
Type II Secretion System PilC	gi 262277340	protein secretion	integral to	13.56
alpha proteobacterium HIMB114			membrane	
Vacuolar proton ATPase	gi 00008262	ATP hydrolysis coupled proton transport	integral to membrane	10.78
VPU protein Human immunodeficiency virus l	gi 00007581	apoptotic process (nucleotide binding)	integral to	1.67
			membrane	
ANKTM1 Drosophila melanogaster	gi 00004630	(ion channel activity)	intergral to	18.3
			membrane	
Poly [ADP-ribose] polymerase 1	gi 00011674	DNA damage response, detection of DNA	nuclear	22.03
		damage (DNA binding)	envelope	
Proliferating cell nuclear antigen (pcna)	gi 00012086	DNA replication (DNA binding)	nuclear lamina	12.85
Cytoplasmic dynein 1 intermediate chain, putative	gi 00016124	axon cargo transport (motor activity)	nuclear	7.52
trodes scapularis			membrane	
Golgi phosphoprotein 3 (coat-protein GPP34)	gi 00005045	cell proliferation (lipid binding)	nuclear	9.1
			membrane	
Ran gtpase-activating protein	gi 00004850	mitotic cell cycle	nuclear	16.82
		(Ran GTPase activator activity)	membrane	
Nucleoporin 50kDa	gi 00004023	intracellular transport	nuclear pore	15.84
Inner-membrane translocator	gi 255261884	protein transport (protein tyrosine phosphatase	nuclear speck	6.36
Inatassioviamsp. NEAVE		acuvity)		

Protein name	Acc. No.	Function	Cellular	Score
			component	
ATP-dependent RNA helicase	gi 00011591	endonucleolytic cleavage in 5'-ETS of tricistronic rRNA transcript (ATP binding)	nucleolus	23.6
DEAD (Asp-Glu-Ala-Asp) box polypeptide 18	gi 00011274	ATP binding	nucleolus	10.34
DEAD (Asp-Glu-Ala-Asp) box polypeptide 23,	gi 72086508	ATP binding	nucleolus	23.64
partial Strongylocentrotus purpuratus		1		
DEAD/DEAH box helicase domain-containing	gi 317052319	ATP binding	nucleolus	11.24
protein Desulfurispirillum indicum S5				
DNA-directed RNA polymerase II, putative	gi 00012757	7-methylguanosine mRNA capping (DNA binding)	nucleolus	12.76
Exosome complex exonuclease RRP40	gi 00017001	nonfunctional rRNA decay (RNA binding)	nucleolus	2.67
Acromyrmex echination				
p21-activated protein kinase-interacting protein 1- like Caligus rogercresseyi	gi 225710414	negative regulation of signal transduction	nucleolus	23.1
Nuclear transcription factor Y, alpha	gi 00013181	transcription, DNA-dependent (DNA binding)	nucleoplasm	18.38
26S protease regulatory subunit 6A-B Uncinocarpus reesii 1704	gi 258563624	protein catabolic process (ATP binding)	nucleus	15.09
26S protease regulatory subunit 8	gi 00012887	protein catabolic process (ATP binding)	nucleus	11.33
26S proteasome non-ATPase regulatory subunit 2	gi 324502812	hyperosmotic response (endopeptidase	nucleus	17.09
Ascaris suum		activity)		
60S acidic ribosomal protein P0	gi 00010441	SRP-dependent cotranslational protein	nucleus	8.01
		targeting to membrane (RNA binding)		
Apoptosis regulator BAX Lepeophtheirus salmonis	gi 000038354	apoptotic DNA fragmentation (channel activity)	nucleus	12.79
Bromodomain-containing protein, putative Ixodes scapularis	gi 000016060	chromatin modification (chromatin binding)	nucleus	12.62
Cell division control protein Cdc6 Aspergilius fumigatus Af293	gi 70987197	cell division (ATP binding)	nucleus	6.59
Cell division cycle 2 protein	gi 00007188	cell division	nucleus	11.63
		(cyclin-dependent protein kinase activity)		
Cell division cycle 6 protein-like	gi 000055840	cell division	nucleus	14.55
Saccoglossus kowalevskii		(cyclin-dependent protein kinase activity)		

Table A3 Nuclear proteins in ovaries of *P. monodon* identified by 1-DE

Protein name	Acc. No.	Function	Cellular	Scor
			component	е
Centromere protein A isoform 2 Canis lupus familicaris	gi 70568888	nucleosome assembly (DNA binding)	nucleus	25.37
Cold shock protein Bradyrhizobium japonicum USDA 110	gi 27379706	DNA duplex unwinding (RNA binding)	nucleus	16.54
Conserved repeat domain protein Methanosaeta harundinacea 6Ac	gi 357209873	carboxypeptidase activity	nucleus	13.18
CRE-RNP-7 protein Caenorhabditis remanei	gi 308501349	(nucleic acid binding)	nucleus	21.52
CRISPR-associated protein	gi 194336719	ATP bindin	nucleus	7.51
Cyclin dependent kinase 2	gi 00001880	meiosis	nucleus	3.5
		(cyclin-dependent protein kinase activity)		
Cyclin T2 Mus musculus	gi 56550069	regulation of cyclin-dependent protein kinase activity	nucleus	7.26
Cytidylate kinase	gi 00002310		nucleus	12.56
Deformed Physopelta quadriguttata	gi 285206865	sequence-specific DNA binding	nucleus	14.77
DNA topoisomerase (ATP-hydrolyzing) subunit B	gi 300777682	DNA topological change (ATP binding)	nucleus	15.08
Chryseobacterium gleum ATCC 35910				
DNA topoisomerase	gi 294635998	DNA topological change (ATP binding)	nucleus	7.67
Edwardsiella tarda ATCC 23685				
DNA topoisomerase 2-like Nasonia vitripennis	gi 345490822	DNA topological change (ATP binding)	nucleus	21.99
DNA topoisomerase I	gi 146296272	DNA topological change (ATP binding)	nucleus	7.21
Caldicellulosiruptor saccharolyticus DSM 8903				
DNA-3-methyladenine glycosylase I	gi 39934142	DNA dealkylation involved in DNA repair	nucleus	8.7
Rhodopseudomonas palustris CGA009		(DNA binding)		
DNA-directed RNA polymerase subunit beta Methylomores methanica MC00	gi 333985467	transcription, DNA-dependent (DNA binding)	nucleus	20.57
Dual enacificity tymosina phoenhourlation ramilated	mi113677520	nositina ramilation of transcription DNA	າແຄ່ລາາຕ	10.87
kinase 2 Danio rerio		dependent (ATP binding)		
E3 ubiquitin ligase, putative Ixodes scapularis	gi 000004273	apoptotic process (ribonucleoprotein complex	nucleus	8.88
		binding		
Ets protein	gi 00005038	(sequence-specific DNA binding)	nucleus	9.86

Protein name	Acc. No.	Function	Cellular	Score
			component	
FACT complex subunit spt16 isoform 1 Acyrthosiphon pisum	gi 00008052	DNA repair (chromatin binding)	nucleus	12.08
Forkhead box transcription factor subgroup N2	gi 00007511	transcription, DNA-dependent (sequence- specific DNA binding)	nucleus	19.98
Forkhead protein/ forkhead protein domain,	gi 242024936	transcription, DNA-dependent (sequence-	nucleus	15.03
putative Pediculus humanus corporis		specific DNA binding)		
Formamidopyrimidine-DNA glycosylase	gi 262200032	base-excision repair (damaged DNA	nucleus	22.38
Haliangium ochraceum DSM 14365		binding)		
GATA-binding protein 4	gi 00005771	positive regulation of transcription, DNA-	nucleus	11.41
		dependent (sequence-specific DNA		
		binding)		
Glucose-6-phosphate 1-dehydrogenase	gi 32472128	cellular response to oxidative stress (NADP	nucleus	15.89
Rhodopirellula baltica SH I		binding)		
Glutamyl-tRNA amidotransferase subunit C	gi 26553662	regulation of translational fidelity (ATP	nucleus	23.28
Mycoplasma penetrans HF-2		binding)		
Glutamyl-tRNA(Gln) amidotransferase subunit B	gi 350566306	regulation of translational fidelity (ATP	nucleus	8.27
Peptoniphilus indolicus ATCC 29427		binding)		
Glycine rich protein	gi 00005291	regulation of transcription, DNA-dependent	nucleus	5.9
		(DNA binding)		
Glycogen phosphorylase isoform 2 Apis	gi 00017177	glycogen catabolic process (nucleotide	nucleus	6.92
mellifera		binding)		
Groucho/TLE N-terminal Q-rich domain-	gi 312072370	regulation of transcription, DNA-dependent	nucleus	13.98
containing protein Loa loa				
Group II intron reverse transcriptase/maturase	gi 47567760	RNA-dependent DNA replication (RNA	nucleus	14.38
Bacillus cereus G9241		binding)		
Guanine-specific ribonuclease N1 and T1	gi 283781994	(RNA binding)	nucleus	25.88
Pirellula staleyi DSM 6068				
Histone acetyltransferase MYST2	gi 307213696	(sequence-specific DNA binding	nucleus	12.71
Harpegnathos saltator		transcription factor activity)		
Histone H1	gi 00011348	nucleosome assembly (DNA binding)	nucleus	13.27
Histone H3.3 type 2-like Callithrix jacchus	gi 296194875	nucleosome assembly (DNA binding)	nucleus	3.68
Importin alpha Schizosaccharomyces pombe	gi 19113424	protein import into nucleus (protein	nucleus	10.5
972h		transporter activity)		

Table A3 Nuclear proteins in ovaries of *P. monodon* identified by 1-DE (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Histone acetyltransferase MYST2 Harpegnathos saltator	gi 307213696	(sequence-specific DNA binding transcription factor activity)	nucleus	12.71
Histone H1	gi 00011348	nucleosome assembly (DNA binding)	nucleus	13.27
Histone H3.3 type 2-like Callithrix jacchus	gi 296194875	nucleosome assembly (DNA binding)	nucleus	3.68
Importin alpha Schizosaccharomyces pombe 972h	gi 19113424	protein import into nucleus (protein transporter activity)	nucleus	10.5
Importin subunit alpha-2	gi 00011302	protein import into nucleus (protein transporter activity)	nucleus	26.38
Integrase family protein Burkholderia phymatun STM815	gi 186473761	DNA integration (DNA binding)	nucleus	15.3
IRA1 protein Acyrthosiphon pisum	gi 000015848		nucleus	9.68
Kynureninase	gi 291302088	L-kynurenine catabolic process	nucleus	14.23
Stackebrandtia nassauensis DSM 44728		(kynureninase activity)		
Late gene regulator	gi 00000581	RNA biosynthetic process (DNA-directed RNA polymerase activity)	nucleus	9.05
LRe0_3	gi 00000566	DNA integration (RNA binding)	nucleus	20.48
Males absent on the first Drosophila immigrans	gi 316927902	regulation of transcription, DNA-dependent (transferase activity)	nucleus	16.43
Mariner transposase	gi 00000418	DNA integration (DNA binding)	nucleus	18.41
Myeloid/Iymphoid or mixed-lineage leukemia 3	gi 00012891	intracellular signal transduction (DNA binding)	nucleus	10.42
Myosin heavy chain, nonmuscle or smooth muscle Aedes aegypti	gi 00016198	(ATP binding)	nucleus	5.63
Myosin light chain Marsupenaeus japonicus	gi 00016905	(calcium ion binding)	nucleus	10.68
Myosin xv Acyrthosiphon pisum	gi 000002631	(ATP binding)	nucleus	13.92
Novel KRAB box and zinc finger	gi 00013337	regulation of transcription, DNA-dependent (nucleic acid binding)	nucleus	7.04
Nuclear autoantigenic sperm protein	gi 00014057	histone exchange (histone binding)	nucleus	2.93
Nuclear DNA-binding protein	gi 00005720	adipose tissue development	nucleus	5.65

Protein name	Acc. No.	Function	Cellular	Score
			component	
p53 Marsupenaeus japonicus	gi 00000714	transcription, DNA-dependent (sequence- specific DNA binding transcription factor activity)	nucleus	15.13
ParB family chromosome partitioning protein Arthrospira platensis str. Paraca	gi 284054522	chromosome segregation (DNA binding)	nucleus	5.98
Peroxiredoxin	gi 00006627	cell proliferation (thioredoxin peroxidase activity)	nucleus	8.38
phd finger protein	gi 00002509	regulation of transcription, DNA-dependent (zinc ion binding)	nucleus	10.5
PHP domain-containing protein Clostridium saccharolyticum WMI	gi 302387539	DNA replication (DNA binding)	nucleus	20.64
pim-3 oncogene	gi 00010637	negative regulation of apoptotic process (ATP binding)	nucleus	1.83
Polycomb protein Suz12 (Suppressor of zeste 12 protein homolog)	gi 00003969	histone methylation (chromatin binding)	nucleus	20.61
Polyubiquitin 2	gi 00001032	DNA repair (ATP-dependent protein binding)	nucleus	3.3
PRP39 pre-mRNA processing factor 39 homolog (yeast) Tribolium castaneum	gi 00002849	mRNA splicing, via spliceosome	nucleus	7.08
RING finger protein Eriocheir sinensis	gi 00012347	cell differentiation (ubiquitin-protein ligase activity)	nucleus	10.72
RNA polymerase factor sigma-54 Geobacillus thermodenitrificans NG80-2	gi 138896647	DNA-dependent transcription, initiation (DNA binding)	nucleus	6.86
RNA-binding protein 39 Harpegnathos saltator	gi 00004914	mRNA processing (RNA binding)	nucleus	10.82
RUNX1 protein Homo sapiens	gi 00016006	signal transduction (3,5'-cyclic-nucleotide phosphodiesterase activity)	nucleus	6.63
Structural maintenance of chromosomes protein Medicago truncatula	gi 357486255	DNA recombination (ATP binding)	nucleus	24.24
TBC domain containing protein	gi 00014287	regulation of protein localization (Rab GTPase activator activity)	nucleus	15.29
TetR family transcriptional regulator Pseudonocardia dioxanivorans CB1190	gi 331698342	regulation of transcription, DNA-dependent (DNA binding)	nucleus	11.49

 Table A3 Nuclear proteins in ovaries of P. monodon identified by 1-DE (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Topoisomerase IV subunit B	gi 331006356	DNA topological change (ATP binding)	nucleus	29.22
gamma proteobacterium IMCC1989				
Transcription accessory protein	gi 291435829	DNA repair (DNA binding)	nucleus	12.69
Streptomyces ghanaensis ATCC 14672				
Transcription factor Cys6 Botryotinia fuckeliana	gi 347830951	regulation of transcription from RNA	nucleus	8.46
		polymerase II promoter (zinc ion binding)		
Transcription initiation factor TFIID subunit 11	gi 307204822	regulation of transcription, DNA-dependent	nucleus	15.05
Harpegnathos saltator		(translation initiation factor activity)		
Transcriptional repressor CTCF-like	gi 345481141	DNA methylation involved in gamete	nucleus	16.82
Nasonia vitripennis		generation (histone binding)		
Twinkle protein, putative Ixodes scapularis	gi 000027526	DNA duplex unwinding	nucleus	11.74
		(5'-3' DNA helicase activity)		
Uracil phosphoribosyltransferase homolog	gi 00018362	UMP biosynthetic process	nucleus	6.15
Bombus terrestris				
Vasa Botryllus primigenus	gi 00015422	(ATP binding)	nucleus	8.88
Y-box binding protein isoform 2	gi 00011460	mRNA stabilization (DNA binding)	nucleus	15.42
Zinc finger protein	gi 00012510	(DNA binding)	nucleus	8.65
Zinc finger protein 160	gi 00001223	hemopoiesis (DNA binding)	nucleus	5.39
Zinc finger protein 235 (Zinc finger protein 93	gi 00011564	regulation of transcription, DNA-dependent	nucleus	5.47
homolog) (Zfp-93) (Zinc finger protein 6) (HZF6)		(DNA binding)		
Zinc finger protein ZIC 5	gi 00003421	cell differentiation (DNA binding)	nucleus	22.91
TATA box-binding protein	gi 00011790	cell death (transcription regulatory region	pronucleus	11.02
		DNA binding)		

Protein name	Acc. No.	Function	Cellular	Score
			component	
26S proteasome non-ATPase regulatory subunit 14-like isoform 1 Strongylocentrotus purpuratus	gi 00001362	1	Not known	16.59
LReO_3-like Saccoglossus kowalevskii	gi 00000243	,	Not known	12.66
UBA-like domain-containing protein 1-like isoform X1 Bombyx mori	gi 00002491		Not known	21.57
Ubiquitin-conjugating enzyme E2 variant 2-like Bombyx mori	gi 00000699	(acid-amino acid ligase activity)	Not known	13.26
AraC family transcriptional regulator Paenibacillus sp. JDR-2	gi 251795765	transcription, DNA-dependent (sequence-specific DNA binding)	Intracellular	19.32
Disks large-like protein 5 Acromyrmex echinatior	gi 332022248	regulation of apoptosis process	Intracellular	17.19
Aldehyde dehydrogenase type III, isoform J Drosophilamelanogaster	gi 00005808	cellular aldehyde metabolic process (aldehyde dehydrogenase [NAD(P)+] activity)	lipid particle	17.94
14.5 kDa translational inhibitor protein, p14.5 Gallus gallus	gi 118087216		Not known	11.26
235 kDa rhoptry protein, putative Wolbachia endosymbiont of Drosophila ananassae	gi 58699286		Not known	21.72
2-alkenal reductase Desulfomicrobium baculatum DSM 4028	gi 256828238	(ATP binding)	🔰 Not known	17.27
2-amino-4-hydroxy-6- Hydroxymethyldihydropteridine pyrophosphokinase, partial <i>Rhodanobacter sp.</i> 2APBS1	gi 352090293	folic acid biosynthetic process (kinase activity)	Not known	8.32
2-hydroxychromene-2-carboxylate isomerase Asper gillus fumigatus Af293	gi 70994518	aromatic compound catabolic process (isomerase activity)	Not known	10.37
2-keto-3-deoxygalactonate kinase Bradyrhizobium sp. BTAil	gi 148253576	(kinase activity)	Not known	23.1
2-oxoglutarate dehydrogenase, E2 component Candidatus Sulcia muelleri GWSS	gi 161833786	tricarboxylic acid cycle (dihydrolipoyllysine-residue succinyltransferase activity)	Not known	26.7
3'-5' exonuclease Stackebrandtia nassauensis DSM 44728	gi 291299881	(3'-5' exonuclease activity)	Not known	12.97

GeLC-MS/MS

Protein name	Acc. No.	Function	Cellular	Score
			component	
6-aminohexanoate-dimer hydrolase <i>Anaeromyxobacter</i>		nylon catabolic process (6- aminohexanoate-dimer hydrolase		
<i>sp. Fw109-5</i> ABC transporter ATPase	gi 153006138	activity)	Not known	5.25
Methanobacterium sp. AL-21	gi 325959572		Not known	25.2
ADC transporter transmentionanc protein on epitomyce zinciresistens K42	gi 345853108		Not known	13.84
ABC transporter, ATP-binding protein				
Bryantellaformatexigens DSM 14469	gi 255280196		Not known	22.47
ABC1 family protein Arabidopsis thaliana	gi 18420844	(protein kinase activity)	Not known	15.8
Southfitobacter sp. EE-36	gi 83942256	(acetolactate synthase activity)	Not known	12.94
Acetyltransferase	gi 00009643	(N-acetyltransferase activity)	Not known	15.24
		tricarboxylic acid cycle		
Aconitate hydratase		(citrate hydro-lyase)		
Acidithiobacillus ferrooxidans ATCC 53993	gi 198282725	(cis-aconitate-forming activity)	Not known	21.92
ActA Listeria monocytogenes	gi 9050037		Not known	10.58
Actin	gi 00005721	(ATP binding)	Not known	17.6
Actin Patches Distal protein 1, putative				
Ogataea parapolymorpha DL-1	gi 320580619	// // //	Not known	10.71
Activator of basal transcription, putative				
Pediculus humanus corporis	gi 242025622	(nucleic acid binding)	Not known	20.08
Shewanella woodvi ATCC 51908	gi 170726888	(acvl-CoA dehvdrogenase activity)	Not known	11.86
Acyl-CoA dehydrogenase domain-containing protein	gi 00013965	(acyl-CoA dehydrogenase activity)	Not known	5.71
Acyl-CoA dehydrogenase, short/branched chain				
Xenopus (Silurana) tropicalis	gi 54020956	(acyl-CoA dehydrogenase activity)	Not known	5.44
Acyltransferase Ruegeriapomeroyi DSS-3	gi 56695955	ı	Not known	6.65
ADP-ribosylation factor GTPase-activating protein,		regulation of ARF GTPase activity		
putative	gi 00010816	(ARF GTPase activator activity)	Not known	19.32
ADR316Wp Ashbya gossypii ATCC 10895	gi 45188189		Not known	13.13
Afadin, putative Pediculus humanus corporis	gi 000035688	signal transduction	Not known	13.26

Protein name	Acc. No.	Function	Cellular	Score
			component	
AGC/MAST/MAST protein kinase Salpingoecasp. ATCC 50818	gi 326427941	(ATP binding)	Not known	21.1
Aggrecan Oncorhynchus keta	gi 319918507	cartilage condensation (calcium ion binding)	Not known	8.76
Alanine aminotransferase, putative	gi 00011611	L-alanine catabolic process, by transamination	Not known	4.97
		(ATP binding)		
Alanyl-tRNA synthetase, mitochondrial precursor	gi 301102849		Not known	14.21
Phytophthora infestans T30-4				
ALB protein Bos taurus	gi 154425704		Not known	55.68
Alginate biosynthesis protein Alg44	gi 28868452	alginic acid biosynthetic process (cyclic-di-	Not known	23.43
Pseudomonas syringaepv. tomato str. DC3000		GMP binding)		
Alginate biosynthesis protein AlgX	gi 237799839		Not known	5.76
Pseudomonas syringaepv. oryzaestr. 1_6				
Alpha 2 macroglobulin	gi 00007423	(endopeptidase inhibitor activity)	Not known	12.05
Alpha glucosidase Litopenaeus vannamei	gi 00018399	cellular polysaccharide catabolic process	Not known	13.82
		(alpha-glucosidase activity)		
Alpha-2-macroglobulin-like Cricetulus griseus	gi 354487225	negative regulation of endopeptidase activity	Not known	14.09
		(endopeptidase inhibitor activity)		
Alpha-galactosidase 1	gi 113501	carbohydrate metabolic process	Not known	21.46
Saccharomyces Cerevisiae		(cation binding)		
Alpha-isopropylmalate/homocitrate synthase	gi 182435772	leucine biosynthetic process	Not known	11.93
transferase		(2-isopropylmalate synthase activity)		
Streptomyces griseus subsp. griseus NBRC 13350				
Alpha-methylacyl-CoA racemase Xenopus laevis	gi 291290961	fatty acid metabolic process	Not known	12.68
		(alpha-methylacyl-CoA racemase activity)		
Amidinotransferase Chelativorans sp. BNCI	gi 110634457	arginine catabolic process (arginine deiminase	Not known	9.38
		activity)		
amino acid adenylation domain protein	gi 334112224	biosynthetic process (hydrolase activity,	Not known	7.94
Methylomicrobium album BG8		acting on ester bonds)		
Aminotransferase	gi 116620793	1	Not known	12.64
Candidatus Solibacter usitatus Ellin6076				
AMP-binding domain protein	gi 00003091	(acyl-CoA dehydrogenase activit)	Not known	7.68

 Table A4 Proteins from ovaries with unknown cellular component identified by

 GeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Anaerobic nitric oxide reductase transcription regulator <i>Vibrio angustum S14</i>	gi 90578316	regulation of transcription, DNA-dependent (ATP binding)	Not known	11.3
Anaphase promoting complex subunit 10-like Saccoglossus kowalewskii	gi 291239008		Not known	2.79
Ankyrin repeat domain-containing protein 13D Pan troelochtes	gi 343960170		Not known	6.63
Ankyrin repeat protein	gi 00004187		Not known	9.11
Anter-specific proline-rich protein APG, putative	gi 255568004	lipid metabolic process (hydrolase activity,	Not known	21.77
Ricinus communis		acting on ester bonds)		
Antibiotic biosynthesis monooxygenase Ralstonia pickettii 12D	gi 241662733	(monooxygenase activity)	Not known	16.34
Anti-codon nuclease masking agent Commilabacter convisus 13876	gi 157164495	DNA modification (DNA binding)	Not known	9.92
Arc CG6741-PB	pil00012238		Not known	23.79
Archaeal/vacuolar-type H+-ATPase subunit A	gi 291515525	ATP hydrolysis coupled proton transport	Not known	16.67
Alistipes shahii WAL 8301		(hydrogen ion transmembrane transporter		
		activity)		
Arginine kinase [Fenneropenaeus chinensis	gi 00015647	(arginine kinase activity)	Not known	23.33
arginyl-tRNA synthetase	gi 227503835		Not known	15.41
Corynebacterium striatum ATCC 6940				
Argonaute-2	gi 00001233	(nucleic acid binding)	Not known	11.95
arrestin domain-containing protein, putative	gi 00004452	signal transduction	Not known	9.95
arthrodial cuticle protein AMP16.3	gi 00000482	(structural constituent of cuticle)	Not known	15.04
Asf2p Saccharomyces cerevisiae Vin13	gi 323338386	1	Not known	4.33
aspartyl aminopeptidase	gi 225562419	1	Not known	14.12
Ajellomyces capsulatus G1864R				
ATP synthase subunit gamma, mitochondrial	gi 000006159	ATP synthesis coupled proton transport	Not known	13.28
precursor Lepeophtheirus salmonis		(hydrogen ion transporting ATP synthase activity)		
ATPase (AAA+ superfamily)-like protein	gi 218887442	(ATP binding)	Not known	17.49
Desulfovibrio vulgaris str. 'Miyazaki F'				

Protein name	Acc. No.	Function	Cellular	Score
			component	
ATPase, class I, type 8B, member 2	gi 00003257	(metal ion binding)	Not known	13.76
ATP-binding ABC transporter protein				
Aromatoleum aromaticum EbN1	gi 56476145	ATP catabolic process (ATP binding)	Not known	19.61
ATP-binding Cassette (ABC) Superfamily				
Phytophthora infestans T30-4	gi 301098081		Not known	11.53
ATP-dependent Clp protease, ATP-binding subunit	gi 00002634	proteolysis(ATP binding)	Not known	12.92
ATP-dependent DNA helicase HFM1-like				
Glycine max	gi 356560587	(ATP binding)	Not known	6.67
ATP-dependent exoDNAse beta subunit				
Methylophaga aminisulfidivorans MP	gi 335044085	DNA repair (ATP binding)	Not known	9.88
ATP-dependent nuclease, subunit A				
Listeria monocytogenes str. 4b H7858	gi 47094504	double-strand break repair (ATP binding)	Not known	12.32
ATP-dependent protease ATP-binding subunit				
HslU Lactobacillus sakei subsp. sakei 23K	gi 81428595	ATP catabolic process (ATP binding)	Not known	9.23
BAI1-associated protein 2-like 1				
Xenopus (Silurana) tropicalis	gi 154147654	signal transduction	Not known	10.59
Bardet-Biedl syndrome 10 protein homolog				
Ailuropodamelanoleuca	gi 301770545	Golgi to plasma membrane protein transport	Not known	13.64
Basic proline-rich protein precursor	gi 00018391		Not known	3.03
BCS-1 Balanus amphitrite	gi 00016357	(structural constituent of cuticle)	Not known	17.72
BCS-2	gi 00005653		Not known	7.56
		lactose catabolic process (alkali metal ion		
Beta-galactosidase	gi 00011054	binding)	Not known	12.75
Beta-ketoacyl synthase				
Streptomyces sp. MP8E7-PKS1-w4	gi 207560107	(catalytic activity)	Not known	10.63
Bifunctional short chain isoprenyl diphosphate				
Synthase IdsA		isoprenoid biosynthetic process		
Methanobrevibacter ruminantium MI	gi 288560181	(dimethylallyltranstransferase activity)	Not known	16.46
Biuret hydrolase		atrazine catabolic process (biuret		
Thermomicrobium roseum DSM 5159	gi 221632338	amidohydrolase activity)	Not known	8.65
BRD group protein	gi 00005196		Not known	5.11

 Table A4 Proteins from ovaries with unknown cellular component identified by

 GeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
BSD domain-containing protein 1 isoform 1 Danio rerio	gi 000054796		Not known	15.95
BVpp12b protein Chelonus inanitus	gi 297372578		Not known	11.15
CAIB/BAIF family enzyme	gi 351645466	(catalytic activity)	Not known	13.06
Magnaporthe oryzae 70-15				
Calcified cuticle protein CP14.1	gi 00004659	(structural constituent of cuticle)	Not known	13.36
Calcitonin I precursor SCT-Gly (synthetic	gi 220946		Not known	15.02
construct)				
Calponin homology (CH) domain-containing,	gi 241998146	(phosphoprotein phosphatase activity)	Not known	8.02
Chdc/Irch Ixodes scapularis				
CAP CG18408-PC, isoform C Apis mellifera	gi 00016368		Not known	15.35
CBXX/CFQX family protein	gi 333988687	(ATP binding)	Not known	15.52
Mycobacterium sp. JDM601				
CCDC46 protein Ciona intestinalis	gi 198438205		Not known	24.64
CDC68 like aminopeptidase family chromatinic	gi 66362808	cellular process (aminopeptidase activity)	Not known	13.5
Protein (possible inactive enzyme)				
Cryptosporidium parvum Iowa II				
Cell wall-associated hydrolase	gi 00017625	(hydrolase activity)	Not known	10.62
Vibrio vulnificus CMCP6				
cement precursor protein 3B variant 2	gi 00007466		Not known	8.18
CG14534-PA Apis mellifera	gi 00016612		Not known	13.39
CG1523 CG1523-PA Acyrthosiphon pisum	gi 000002090		Not known	11.62
CG16711, isoform A Drosophila melanogaster	gi 24661837	1	Not known	8.97
CG16973-PE, partial Nasonia vitripennis	gi 000035548	1	Not known	5.61
CG17680-PA Tribolium castaneum	gi 00017667	1	Not known	10.47
CG1850-PA Drosophilamelanogaster	gi 00017910		Not known	12.52
CG2691 Drosophilamelanogaster	gi 24641825	1	Not known	1.37
CG2691 Drosophilamelanogaster	gi 24641825	1	Not known	1.37
CG2918, isoform A Drosophila melanogaster	gi 20128923		Not known	16.41
CG32556, isoform A Drosophila melanogaster	gi 24642834		Not known	17.5
CG8144-PK Nasonia vitripennis	gi 000035833		Not known	8.19
CG8486 CG8486-PC Tribolium castaneum	gi 189237536	-	Not known	5.12

Protein name	Acc. No.	Function	Cellular	Score
			component	
Chain A, Crystal Structure Of Homo Sapien Glycerol-3-Phosphate Dehydrogenase 1	gi 99031624		Not known	66.6
Chain A, Crystal Structure Of M111, Bcl-2 Homolog From Mvxoma Virus	gi 134105043	1	Not known	9.57
Chain A, Crystal Structure Of The Rna Binding	gi 169791859		Not known	11.04
Domain Of Puf4 From Saccharomyces Cerevisiae				
Chain A, Phd2-R127 With Jnj41536014	gi 00015865		Not known	27.13
Chain A, Ranasmurfin	gi 161761123		Not known	5.94
Chain B, Ran-Rcc1-So4 Complex	gi 000035584		Not known	11.24
Strongylocentrotus purpuratus				
Chitin binding PM protein	gi 00006355	carbohydrate metabolic process (hydrolase	Not known	10.87
		activity,)		
Chitinase 1 precursor	gi 00005887		Not known	12.17
CHK1 checkpoint-like protein	gi 00004433		Not known	10.46
CHL4 family chromosome segregation protein	gi 358365957	The second second	Not known	13.97
Aspergilius kawachii IFO 4308				
Chloramphenicol 3-0 phosphotransferase	gi 117164606	response to antibiotic (ATP binding)	Not known	9.81
Streptomyces ambofaciens ATCC 23877				
Chloride ion current inducer protein, putative	gi 00011657		Not known	5.4
Chordin-like protein Hydramagnipapillata	gi 00015545	BMP signaling pathway	Not known	9.68
CitG protein Clostridium perfringens str. 13	gi 18310127	phosphorylation (ATP binding)	Not known	8.64
Clip domain serine proteinase 1	gi 00002178	proteolysis (serine-type endopeptidase	Not known	3.72
		activity)		
Coatomer subunit delta-like Megachile rotundata	gi 00001837	vesicle-mediated transport	Not known	9.08
Cobalt transport protein	gi 326330680	I	Not known	7.88
Nocardioidaceae bacterium Broad-1				
CobN/Mg-chelatase family protein	gi 20093947	biosynthetic process (magnesium chelatase	Not known	7.1
Methanopyrus kandleri AVI 9		activity)		
cof family hydrolase	gi 269118962	(hydrolase activity)	Not known	13.24
Sebaldella termitidis ATCC 33386				
complement component	gi 00006956	induction of apoptosis	Not known	14.18

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Conjugal transfer protein TraL	gi 242279183	1	Not known	19.55
Desulfovibrio salexigens DSM 2638				
Conjugative transfer protein TraA	gi 294057979		Not known	10.95
Sphingobium japonicum UT26S				
Conserved oligomeric Golgi complex subunit 4-	gi 00015206		Not known	7.57
like Bombus impatiens				
Cop9 complex subunit	gi 00005716		Not known	6.56
COP9 signalosome complex subunit, putative	gi 00014910		Not known	5.13
Copine family protein Brugia malayi	gi 170592234		Not known	14.24
Copper homeostasis protein	gi 289768241	copper ion homeostasis (copper ion binding)	Not known	11.35
Streptomyces lividans TK24				
CRE-NASP-1 protein Caenorhabditis remanei	gi 308510080		Not known	16.12
CRS1/YhbY domain containing protein	gi 347541234	RNA binding	Not known	11
Pseudogulbenkianiasp. NH8B				
Crustacean calcium-binding protein 23 (CCBP-23	gi 00018368	(calcium ion binding)	Not known	15.52
protein)				
C-terminal domain containing protein	gi 00011998		Not known	8.98
C-type lectin	gi 00012640	-	Not known	10.34
Cuticle protein CP1158 (CPCP1158).	gi 00017838	-	Not known	12.1
Cyclase family protein	gi 334090181		Not known	11.75
Desulfotomaculum ruminis DSM 2154				
Cyclase/dehydrase	gi 39935654	1	Not known	25.54
Rhodopseudomonas palustris CGA009				
Cyclic AMP-regulated protein like protein	gi 00006901	1	Not known	13.3
Cysteine-rich C-terminal protein 1 Homo sapiens	gi 9506923	1	Not known	13.63
Cysteine-rich protein 1 (Cysteine-rich intestinal	gi 00017776	1	Not known	12.92
protein) (CRIP) Apis mellifera				
Cytochrome b5, putative	gi 00013894	lipid metabolic process (heme binding)	Not known	7.96
Pediculus humanus corporis				
Cytosine deaminase or related metal-dependent	gi 116694384	(hydrolase activity, acting on carbon-	Not known	14.22
hydrolase RalstoniaeutrophaH16		nitrogen (but not peptide) bonds)		

Protein name	Acc. No.	Function	Cellular	Score
			component	
Daughterless	gi 00008078		Not known	8.91
DbpA RNA-binding domain protein				
Spirochaeta sp. Buddy	gi 325970724	(ATP binding)	Not known	12.76
DD9B Marsupenaeus japonicus	gi 00017079	(structural constituent of cuticle)	Not known	8.51
Dehydrogenase E1 and transketolase domain-		tricarboxylic acid cycle (oxoglutarate		
containing protein 1		dehydrogenase (succinyl-transferring)		
Coprinopsis cinerea okayana 7#130	gi 299742536	activity)	Not known	12.31
Deoxyribodipyrimidine photolyase				
Roseovarius sp. TM1035	gi 149202510	DNA repair (DNA binding)	Not known	26.08
		actin filament polymerization		
Diaphanous	gi 00010323	(Rho GTPase binding)	Not known	5.15
Diguarylate cyclase and metal dependent				
Phosphohydrolase		cyclic nucleotide biosynthetic process		
Thermanaerovibrio acidaminovorans DSM 6589	gi 269791787	(metal ion binding)	Not known	16.93
Diguanylate phosphodiesterase				
Verminephrobacter eiseniae EF01-2	gi 121608685		Not known	11.92
Dihydroxyacetone kinase		anaerobic glycerol catabolic process		
Burkholderia pseudomallei B7210	gi 167845538	(ATP binding)	Not known	9
Dinucleotide-utilizing enzyme involved in				
Molybdopterin and thiamine biosynthesis family 1				
Pseudovibrio sp. JE062	gi 254471277	metabolic process (nucleotide binding)	Not known	2.26
Dipeptidyl aminopeptidase/acylaminoacyl				
peptidase Gluconacetobacter oboediens 174Bp2	gi 349687895	proteolysis (aminopeptidase activity)	Not known	8.6
Dipeptidyl peptidase 9-like Ailuropoda				
melanoleuca	gi 301787997	1	Not known	3.24
Disease resistance protein				
Brassica rapa subsp. pekinensis	gi 227438125	-	Not known	16.25
Disease resistance-like protein Glycine max	gi 7263119	1	Not known	4.55
Di-trans-poly-cis-decaprenylcistransferase				
Janibacter sp. HTCC2649	gi 84496822	1	Not known	9.2
DNA polymerase iota Xenopus (Silurana)				
tropicalis	gi 70955242		Not known	13.66
DNA primase Clostridium sp. DL-VIII	gi 357169920	replisome (DNA binding)	Not known	2.36

Protein name	Acc. No.	Function	Cellular	Score
			component	
DNA primase small subunit Paracoccidioides brasiliensis Pb01	gi 295668429	DNA replication initiation	Not known	9.32
DNA topoisomerase TopA Selenomoras noxia.ATCC 43541	gi 292670828	,	Not known	9.23
DNA topoisomerase/gyrase Aedes aegypti	gi 000002822	DNA topoisomerase/gyrase	Not known	23.14
DNA2-like helicase-like Oreochromis niloticus	gi 348534058		Not known	9.75
DNA-binding domain-containing protein Prosthecochloris aestuarii DSM 271	gi 194334891		Not known	7.79
DNA-binding domain-containing protein, AraC- type Brevibacterium linens BL2	gi 260904381		Not known	16.53
DNA-directed RNA polymerase, sigma subunit (siema70/siema32) Activobacillus	gi 32034495		Not known	6.89
pleuropneumoniae serovar 1 str. 4074				
DnaJ (Hsp40) homolog, subfamily B, member 9	gi 00013709		Not known	9.54
DNAJ heat shock N-terminal domain-containing motein Arabidonsis thationa	gi 334182674	response to stress (nucleic acid binding)	Not known	9.12
double WAP domain-containing protein	g1 00003636	negative regulation of peptidase activity (peptidase inhibitor activity)	Not known	7.94
DSBA oxidoreductase Kylella fastidiosa Dixon	gi 71274788		Not known	9.15
Dual 3',5'-cyclic-AMP and -GMP	gi 00004011		Not known	13.38
phosphodiesterase 11 Harpegnathos saltator				
E3 50K (CR1b) Human adenovirus 36	gi 261875916		Not known	4.09
e3 ubiquitin-protein ligase HECTD1-like	gi 340381960	protein ubiquitination (ubiquitin-protein	Not known	20.4
Amphimedon queenslandica		ligase activity)		
EAL domain-containing protein	gi 302671195	1	Not known	17.68
Butyrivibrio proteoclasticus B316				
early cuticle protein 5 Callinectes sapidus	gi 00001732		Not known	27.27
early gene regulator	gi 00008035		Not known	10.87
ebna2 binding protein P100	gi 00002987		Not known	14.65
ECF subfamily RNA polymerase sigma-24 factor	gi 94967618	DNA-dependent transcription, initiation	Not known	33.31
Candidatus Koribacter versatilis Ellin345		(sequence-specific DNA binding)		

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Eco571 restriction endonuclease Marinithermus hydrothermalis DSM 14884	gi 328949574	DNA modification (DNA binding)	Not known	6.48
EDTP(egg derived tyrosine phosphatase) Sarcophaga peregrima	gi 4586367	peptidyl-tyrosine dephosphorylation (protein tyrosine phosphatase activity)	Not known	13.4
EGF-like domain containing protein	gi 00014977	• • •	Not known	5.17
Electron transfer flavoprotein subunit beta	gi 148656423		Not known	13.32
Roseiflexus sp. RS-1			Not known	
Electron-transfer-flavoprotein beta polypeptide	gi 00006170		Not known	7.71
Enoyl-ACP reductase Alcanivorax borkumensis	gi 110834076		Not known	17.95
JAC 1			VI BUILD	
ENSANGP00000021035-like	gi 00001106	A X C R	Not known	8.36
ENSANGP00000030076	gi 00015814	「ない人気にない	Not known	5.48
Anopheles gambiae str. PEST				
Est1p-like protein B	gi 00014598		Not known	7.89
EvpL Edwardsiella tarda	gi 158512119	A A A A A A A A A A A A A A A A A A A	Not known	14.82
excinuclease ABC subunit C	gi 237751708	a Xan.	Not known	13.9
Helicobacter bilis ATCC 43879				
Expressed hypothetical protein	gi 00008366		Not known	9.35
Expressed protein Chlorella variabilis	gi 307108252		Not known	15.01
Extensin-like protein	gi 00013108		Not known	7.84
F0F1 ATP synthase subunit epsilon	gi 348169093		Not known	6.55
Saccharopolyspora spinosa NRRL 18395				
F20B17.20 Arabidopsis thaliana	gi 7715593		Not known	12.47
F28C1.1 Caenorhabditis elegans	gi 00016908	,	Not known	12.2
FAD linked oxidase domain-containing protein	gi 357022269	(UDP-N-acetylmuramate dehydrogenase	Not known	36.05
Mycobacterium thermoresistibile ATCC 19527		activity)		
FAD linked oxidase-like protein	gi 109898066	(UDP-N-acetylmuramate dehydrogenase	Not known	6.85
Pseudoalteromonas atlantica Tóc		activity)		
FAD-dependent pyridine nucleotide-disulfide	gi 89052931	(flavin adenine dinucleotide binding)	Not known	20.83
Oxidoreductase Jannaschia sp. CCS1				
family 1 extracellular solute-binding protein	gi 331702325	(transporter activity)	Not known	7.81
Tacionactivity puckwent INKKL D-20929				

Protein name	Acc. No.	Function	Cellular	Score
			component	
Family with sequence similarity 76, member A	gi 00013434		Not known	18.52
Farnesoic acid o-methyltransferase-like isoform 1	gi 00008380	(methyltransferase activity)	Not known	12.79
protein				
Fast myosin heavy chain	gi 00006946	(ATP binding)	Not known	8.38
Fatty acid hydroxylase	gi 332667208	fatty acid biosynthetic process	Not known	7.68
Haliscomenobacter hydrossis DSM 1100		(electron carrier activity)		
FBOX domain-containing protein Naegleria	gi 290995883		Not known	6.98
gruberi				
FdxD Mycobacterium rhodesiae JS60	gi 353192332		Not known	9.77
Fe/S oxidoreductase Thermus thermophilus HB27	gi 46199246	cofactor biosynthetic process	🔥 Not known	10.1
		(4 iron, 4 sulfur cluster binding)		
Fibronectin type III domain-containing protein Escherichia coli E482	gi 323942216		Not known	14.68
Tie famili: DAC modulated cieme Ed consifie	01100330120		Mothmonia	770
Tis tauniy FAS mounated sigma-24 spectne Transcriptional regulator	6+16700071R			0+.6
Desulfomicrobium baculatum DSM 4028				
Flavocytochrome c Shewanellasp. W3-18-1	gi 120598393	FMN binding	Not known	6.95
Flavonol reductase/cinnamoyl-CoA reductase,	gi 241703753	cellular metabolic process	Not known	7.39
putative Ixodes scapularis		(coenzyme binding)		
FLJ16542 protein Homo sapiens	gi 00016347		Not known	8.66
Formylmethanofuran dehydrogenase subunit C	gi 289524236	methanogenesis (transition metal ion	Not known	20.78
Anaerobaculum hydrogeniformans ATCC BAA-		binding)		
1850				
GA17051 Drosophila pseudoobscura	gi 198468151		Not known	12.22
pseudoobscura				
GD13716 Drosophilasimulans	gi 195587318	1	Not known	42.08
GE18379 Drosophilayakuba	gi 195471577		Not known	12.09
Gef26 CG9491-PA	gi 00007089	,	Not known	6.7
Geranylgeranyl pyrophosphate synthetase	gi 254283313	isoprenoid biosynthetic process	Not known	17.74
gamma proteobacterium NOR51-B		(farnesyltranstransferase activity)		
Gluconate utilization system Gnt-I transcriptional	gi 84394258	transcription, DNA-dependent (DNA	Not known	28.6
repressor Vibrio splendidus 12B01		binding)		
Glucosamine-6-phosphate deaminase 1	gi 00013678	N-acetylglucosamine catabolic process	Not known	60.6
		(hydrolase activity)		

Protein name	Acc. No.	Function	Cellular	Score
			component	
Glucose dehydrogenase	gi 290963206	alcohol metabolic process	Not known	21.27
Streptomyces scabiei 87.22		(choline dehydrogenase activity)		
Glutamate cysteine ligase Aedes aegypti	gi 00017814	cellular response to arsenic-containing	Not known	11.88
		substance (ATP binding)		
Glutaminescyllo-inositol transaminase Nostoc	gi 298490475	metabolic process (catalytic activity)	Not known	14.16
azollae' 0708				
Glutaminyl-trna synthetase	gi 00002755		Not known	7.25
Glutamyl-tRNA synthetase	gi 39938626		Not known	5.89
Onion yellows phytoplasma OY-M				
Glycosyl transferase, WecB/TagA/CpsF family	gi 329847658	biosynthetic process (transferase activity,	Not known	15.95
protein Asticcacaulis biprosthecum C19		transferring glycosyl groups)		
Glycosyltransferase Ciona intestinalis	gi 56550356	biosynthetic process (transferase activity,	Not known	8.12
		transferring glycosyl groups)		
Glyoxalase/bleomycin resistance	gi 218677517	(oxidoreductase activity, acting on single	Not known	20.54
Protein/dioxygenase Rhizobium etli CIAT 894		donors with incorporation of molecular		
		oxygen, incorporation of two atoms of		
		oxygen)		
gp47 Burkholderia phage Bcep176	gi 77864672	hydrolase activity, acting on ester bonds	Not known	19.05
Group 1 glycosyl transferase	gi 256372003	biosynthetic process (transferase activity)	Not known	19.74
Acidimicrobium ferrooxidans DSM 10331				
Guanine aminohydrolase	gi 158426249	guanine catabolic process	Not known	15.3
Azorhizobium caulinodans ORS 571		(guanine deaminase activity)		
GYD family protein	gi 297192072	1	Not known	20.39
Streptomyces pristinaespiralis ATCC 25486				
GyrA Brucella abortus	gi 133853699	DNA topological change	Not known	10.13
H+ transporting ATP synthase gamma subunit	gi 00003141	1	Not known	13.28
Haloacid dehalogenase	gi 326795411	(hydrolase activity, acting on acid halide	Not known	15.65
Marinomonas mediterranea MMB-1		bonds, in C-halide compounds)		
Halogenase Streptomyces sp. L133(2010)	gi 288816949	(oxidoreductase activity)	Not known	10.2

Protein name	Acc. No.	Function	Cellular	Score
			component	
HECT domain containing 1 Apis mellifera	gi 00016985	(metal ion binding)	Not known	6.32
Helicase domain-containing protein Thiorhodococcus drewsii AZI	gi 345873267	(ATP binding)	Not known	10.94
Helix-turn-helix domain-containing protein Thermoanaerobacter wiegelii Rt8.B1	gi 345018435	(sequence-specific DNA binding)	Not known	10.62
Heme oxygenase	gi 302550972	pyridoxal phosphate biosynthetic process	Not known	5.82
Streptomyces viridochromogenes DSM 40736		(FMN binding)		
Hemocyte kazal-type proteinase inhibitor	gi 00008251		Not known	11.65
Hemocyte protein-glutamine gamma- glutamyltransferase, putative	gi 00012148	peptide cross-linking (metal ion binding)	Not known	5.58
Hemolymph clottable protein	gi 00013564	hemolymph coagulation (lipid transporter activity)	Not known	8.2
Hemolysin activation/secretion protein aipha proteobacterium BAL199	gi 163795779	protein transport	Not known	11.04
heterogeneous nuclear ribonucleoprotein L, putative	gi 00013176	ribonucleoprotein complex (nucleic acid binding)	Not known	6.56
HipA domain-containing protein Sphingomonas wittichii RW1	gi 148550653		Not known	10.16
Histidine kinase Oscillatoria sp. PCC 6506	gi 300865287	intracellular signal transduction (ATP binding)	Not known	15.25
Histone-lysine N-methyltransferase MLL3-like Xenopus (Silurana) tropicalis	gi 301605820	(methyltransferase activity)	Not known	10.42
Holliday junction DNA helicase RuvB Thermanaerovibrio acidaminovorans DSM 6589	gi 269792532	DNA recombination (ATP binding)	Not known	11.23
Hydrogenase assembly chaperone HypC/HupF Selenomonas sputigena ATCC 35185	gi 260887614		Not known	5.92
Hydrolase <i>Capsaspora owczarzaki ATCC</i> 30864	gi 00007589		Not known	17.08
Hypothetical UPF0327 protein isoform 2 <i>Bos taurus</i>	gi 00016916		Not known	13.22
Indolepyruvate oxidoreductase subunit alpha Methanothermobacter thermautotrophicus str. Delta H	gi 15679840	(electron carrier activity)	Not known	10.96

Protein name	Acc. No.	Function	Cellular	Score
			component	
Integrator complex subunit 12	gi 00011156	1	Not known	10.49
Intermediate filament tail domain-containing	gi 00012168	1	Not known	13.96
Protein, partial Wuchereria bancrofti				
Intersectin 2-like	gi 00014719	endocytosis	Not known	3.4
Intracellular fatty acid binding protein	gi 00002085	Transport (lipid binding)	Not known	9.49
Ipk2 CG13688-PA Apis mellifera	gi 00018388	-	Not known	9.12
Iron(3+)-hydroxamate import system permease	gi 282882408		Not known	6.31
Protein FhuB Peptoniphilus lacrimalis 315-B				
Iron(III) dicitrate-binding periplasmic protein	gi 28210666		Not known	14.07
hmuT Clostridium tetani E88				
Isoquinoline 1-oxidoreductase	gi 332665712	(electron carrier activity)	Not known	25.81
Haliscomenobacter hydrossis DSM 1100				
Jumonji/Zn finger-class transcription factor ELF6	gi 79507158	0 0 0 0 0 0 0 0	Not known	3.32
Arabidopsis thaliana				
Kelch repeat and BTB domain-containing protein	gi 326669200	A A A A A A A A A A A A A A A A A A A	Not known	14.84
13-like Danio rerio				
Lactate utilization protein B/C	gi 350573001		Not known	16.74
Thiorhodovibrio sp. 970				
lamin Dm0-like isoform 2 Nasonia vitripennis	gi 00000668		Not known	2.82
LD31582p	gi 00002927		Not known	5.52
Lethal (2) 01424 CG3845-PB, isoform B	gi 00000929		Not known	7.33
Leucine Rich Repeat family protein	gi 00015236		Not known	13.13
L-glutaminase Alistipes shahii WAL 8301	gi 291513775		Not known	12.99
LigA	gi 00007452	DNA repair (DNA binding)	Not known	2.31
lingerer, putative	gi 00008314	1	Not known	12.43
Lipase family protein	gi 00012131	lipid metabolic process	Not known	17.68
		(triglyceride lipase activity)		
Lipoprotein	gi 00000497		Not known	21.01
LOW QUALITY PROTEIN: BTB/POZ and	gi 357152766		Not known	11.15
MATH domain-containing protein 2-like				
Brachypodium distachyon				

Protein name	Acc. No.	Function	Cellular	Score
			component	
LOW QUALITY PROTEIN: PWWP domain- containing protein 2A-like Callithrix jacchus	gi 296192645		Not known	9.51
LPXTG-motif cell wall anchor domain protein Bacillus cereus E33L	gi 00016304		Not known	21.66
LuxR family transcriptional regulator Burkholderia mallei ATCC 23344	gi 53717271	transcription, DNA-dependent (sequence- specific DNA binding)	Not known	14.64
Lysine 2,3-aminomutase YodO family protein Marinobacter aquaeolei VT8	gi 120555694	metabolic process (iron-sulfur cluster binding)	Not known	10.01
Lysosomal acid lipase, putative	gi 00001313		Not known	5.44
LysR family transcripitonal regulator Erwinia billingiae Eb661	gi 300716920	transcription, DNA-dependent (DNA binding)	Not known	17.29
mab-3-related transcription factor 3-like protein Anopheles merus	gi 240268764		Not known	17.3
Malonyl CoA-acyl carrier protein transacylase Rhodotorula glutinis ATCC 204091	gi 342321338	(transferase activity)	Not known	11.24
Mannose-binding protein Pacifastacus leniusculus	gi 00015783	(carbohydrate binding)	Not known	12.62
Membrane coat complex retromer, subunit VPS29/PEP11, putative	gi 00014720	(hydrolase activity, acting on ester bonds)	Not known	11.96
Membrane nuclease Mycoplasma artivitidis 158L3-1	gi 193217053		Not known	8.86
Membrane protein <i>Sphingomonas sp. S17</i> Membrane-associated guanylate kinase WW and	gi 332186963 gi 358334242	- (kinase activity)	Not known Not known	41.16 16.21
PDZ domain-containing protein 3 Clonorchis sinensis				
MerR family transcriptional regulator Streptomyces violaceusniger Tu 4113	gi 345010390	(DNA binding)	Not known	9.46
Metallothionein [Penaeus monodon]	gi 000056117	1	Not known	8.9
Methyl coenzyme M reductase alpha subunit uncultured archaeon	gi 345449509	methanogenesis (coenzyme-B sulfoethylthiotransferase activity)	Not known	12.28
Methylcrotonoyl-Coenzyme A carboxylase 1 (alpha) Nasonia vitripennis	gi 000026401	(ATP binding)	Not known	3.5

Protein name	Acc. No.	Function	Cellular	Score
			component	
Methyltransferase type 11 Chelativorans sp. BNC1	gi 110636356	(ATP binding)	Not known	11.3
Microcompartments protein Mahella australiensis 50-1 BON	gi 332981409	(DNA binding)	Not known	7.8
MORN repeat protein Ichthyophthirius multifiliis	gi 340500584		Not known	16.43
Mov34/MPN/PAD-1 family protein	gi 118365100	mRNA splicing, via spliceosome	Not known	5.1
Tetrahymena thermophila				
MPXV-WRAIR169 Monkeypox virus	gi 00017298		Not known	11.72
Multiple pdz domain protein, putative	gi 00006364		Not known	9.42
MutS family DNA mismatch repair protein Zunongwangia profunda SM-487	gi 295134547	mismatch repair(ATP binding)	Not known	8.23
Myosin heavy chain, non-muscle Harpegnathos saltator	gi 00007858	(ATP binding)	Not known	23.22
Myosin-1	gi 190359856	actomyosin contractile ring contraction (ATP binding)	Not known	7.78
Myosin-like protein Medicago truncatula	gi 357463145	(ATP binding)	Not known	16.66
Myosin-VIIa Tribolium castaneum	gi 00017538	actin filament organization (ATP binding)	Not known	17.86
N-6 DNA methylase	gi 186685409	DNA methylation on adenine	Not known	21.68
Nostoc punctiforme PCC 73102		(DNA binding)		
N-acetyl sugar amidotransferase family protein Subdolieranulum variabile DSM 15176	gi 261368058		Not known	15.65
N-acyl-L-amino acid amidohydrolase	gi 21233214	(aminoacylase activity)	Not known	12.68
Xanthomonas campestris pv. campestris str. ATCC 33913				
NADH kinase, putative	gi 00013095	NADP biosynthetic process (NAD+ kinase activity)	Not known	8.99
NADPH.quinone reductase Mycobacterium rhodesiae JS60	gi 353185023	(zinc ion binding)	Not known	14.28
NADPH-dependent FMN/FAD containing oxidoreductase Trypanosoma vivax Y486	gi 340053222	(iron ion binding)	Not known	16.47
NBS-LRR resistance-like protein RGC662 Helianthus paradoxus	gi 148286930	(ADP binding)	Not known	7.8

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Neuramidase Beutenbergia cavernae DSM 12333	gi 229819930	(exo-alpha-sialidase activity)	Not known	33.78
Neutral ceramidase Heterocephalus glaber	gi 351715569	1	Not known	3.61
Nickel-dependent hydrogenase large subunit	gi 297568874	(ferredoxin hydrogenase activity)	Not known	12.95
Nicotinamida rihosida binasa 1	mi00004048	NAD hivemphatic mocaes	Not bnown	1076
		(metal ion binding)		
NiFe hvdrogenase maturation protein HvpF	gi 347739749	protein carbamovlation (double-stranded	Not known	3.21
Azospirillum amazonense Y2	5	RNA binding)		
Nin protein Enterobacteria phage lambda	gi 00018182	centrosome-templated microtubule	Not known	17.07
		nucleation (calcium ion binding)		
Nipsnap	gi 00012675		Not known	12.42
Nitrate ABC superfamily ATP binding cassette	gi 148657988	ATP catabolic process (ATP binding)	Not known	7.9
transporter				
Nitrate transport ATP-binding subunits C and D	gi 86748881	ATP catabolic process (ATP binding)	Not known	9.91
Rhodopseudomonas palustris HaA2				
Nitrilase family, member 2	gi 00000765	nitrogen compound metabolic process	Not known	3.34
		(hydrolase activity, acting on carbon-		
		nitrogen (but not peptide) bonds)		
Nitrilotriacetate monooxygenase component A	gi 16263599	(monooxygenase activity)	Not known	14.13
Sinorhizobium meliloti 1021				
NLI interacting factor-like phosphatase family	gi 00008934	dephosphorylation (phosphatase activity)	Not known	5.82
protein				
N-myc downstream regulated	gi 00014451	1	Not known	11.43
No on or off transient A CG4211-PB, isoform B	gi 00003355	1	Not known	17.28
Non-ribosomal peptide synthetase	gi 257485057	oxidation-reduction process	Not known	4.68
Pseudomonas syringae pv. tabaci ATCC 11528		(oxidoreductase activity)		
Non-ribosomal peptide synthetase MbtF	gi 240169922	(ligase activity)	Not known	15.09
Mycobacterium kansasii ATCC 12478				
Nucleolar complex protein 14	gi 296806513	1	Not known	8.75
Arthroderma otae CBS 113480				
Nucleolar protein c7b	gi 00002393	1	Not known	7.55

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Nudel CG10129-PA, partial Apis mellifera	gi 000035297	-	Not known	18.82
Odd-skipped 2 protein	gi 00006907	(nucleic acid binding)	Not known	9.41
Olfactory enriched transcipt 14.35	gi 00001993	1	Not known	19.62
Olfactory enriched transcipt 15.22	gi 00003598	1	Not known	16.29
O-methyltransferase	gi 00000838	(O-methyltransferase activity)	Not known	22.08
Ornithine decarboxylase, putative	gi 00000967	polyamine biosynthetic process	Not known	2.41
		(catalytic activity)		
Orotate phosphoribosyltransferase	gi 218294655	de novo' UMP biosynthetic process	Not known	12.3
Thermus aquaticus Y51MC23		(magnesium ion binding)		
Ovarian cancer-associated gene 2 protein	gi 00017976		Not known	28.35
homolog Xenopus (Silurana) tropicalis				
Ovarian peritrophin 1 precursor	gi 00002808		Not known	10.47
Oxidoreductase	gi 291435583	oxidoreductase activity	Not known	21.44
Streptomyces ghanaensis ATCC 14672				
Oxidoreductase, short chain	gi 253681649	oxidation-reduction process	Not known	7.99
dehydrogenase/reductase family		(oxidoreductase activity)		
Clostridium botulinum D str. 1873				
PA14 domain-containing protein	gi 148655418		Not known	7.41
Roseiflexus sp. RS-1				
Papilin, putative	gi 00006263	(serine-type endopeptidase inhibitor activity)	Not known	14.77
par domain protein Aedes ae proti	pi 00006815		Not known	12
Pc13g05420	gi 255935899	DNA integration (nucleic acid binding)	Not known	9.44
Penicillium chrysogenum Wisconsin 54-1255				
Pc22g19160	gi 255950104	RNA metabolic process (DNA binding)	Not known	18.43
Penicillium chrysogenum Wisconsin 54-1255				
Pcoln3 protein Strongylocentrotus purpuratus	gi 00016382		Not known	11.61
Pentaphosphate guanosine-3'-	gi 58580772	guanosine tetraphosphate metabolic	Not known	13.77
Pyrophosphohydrolase		process (hydrolase activity)		
Xanthomonas oryzaepv. oryzae KACC10331				
Pentatricopeptide, putative, expressed	gi 108712143		Not known	13.43
Oryza sativa Japonica Group				
Protein name	Acc. No.	Function	Cellular	Score
--	--------------	--	-----------	-------
			componen	
			t	
PE-PGRS family protein Azospirillum amazonense Y2	gi 347736506	-	Not known	12.71
Peptidoglycan-binding LysM Streptomyces sp. Tu6071	gi 333025155	1	Not known	17.68
PH domain containing protein	gi 67482706	phospholipid binding	Not known	8.01
Entamoeba histolytica HM-1: IMSS				
Phosphate acetyltransferase	gi 329120612	(phosphate acetyltransferase activity)	Not known	10.63
Neisseria baciliformis ATCC BAA-1200				
Phosphatidylserine synthase	gi 343509456	phospholipid biosynthetic process	Not known	12.85
Vibrio scophthalmi LMG 19158		(CDP-diacylglycerol-serine O-		
		phosphatidyltransferase activity)		
Phosphatidylserine/phosphatidylglycerophosphate/cardiolipi	gi 222053811	(catalytic activity)	Not known	17.06
n synthase-like protein Geobacter sp. FRC-32				
phospholipase, patatin-like family protein	gi 83942531	(lipid metabolic process)	Not known	42.77
Sulfitobacter sp. EE-36				
PII uridylyl-transferase Pseudomonas aeruginosa PAO1	gi 15598854	cellular amino acid metabolic process	Not known	17.92
		(amino acid binding)		
PilO, putative	gi 00002577		Not known	9.65
Pinn	gi 00013112		Not known	69.9
Polehole-like protein Penaeus monodon	gi 000069312		Not known	29.73
Pol-like protein	gi 00004531	(zinc ion binding)	Not known	6.17
Poly(3-hydroxyalkanoate) synthetase-like protein	gi 357975589		Not known	16.88
Sphingomonas sp. KC8				
Poly(A) polymerase, putative	gi 00013372		Not known	11.42
Poly-beta-hydroxybutyrate polymerase domain protein	gi 353210572	poly-hydroxybutyrate biosynthetic	Not known	6.95
Hyphomicrobiun denitrificans INESI		process (transferase activity,		
		transferring acyl groups)		
Polyferredoxin Clostridium botulinum C str. Eklund	gi 168186747	(4 iron, 4 sulfur cluster binding)	Not known	2.35
Polypeptide of 976 aa, putative	gi 00007651	1	Not known	12.87
Polyphosphate kinase Prevotella bergensis DSM 17361	gi 261879163	polyphosphate biosynthetic process	Not known	11.5
		(ATP binding)		
Portal vertex protein Pseudomonas mendocina NK-01	gi 330503114	-	Not known	10

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Possible transcriptional regulator Actinomyces urogenitalis DSM 15434	gi 227495778	transcription, DNA-dependent (DNA binding)	Not known	15.77
Potassium voltage-gated channel subfamily H member 1 isoform 2 <i>Homo sapiens</i>	gi 4504831	protein heterooligomerization (inward rectifier potassium channel activity)	Not known	8.73
Pre-mRNA splicing factor ATP-dependent RNA helicase PRP43 Leptosphaeria maculars JN3	gi 312212832	(ATP binding)	Not known	24.17
Preprotein translocase subunit secY Ochrobactrum intermedium LMG 3301	gi 239834933	protein transport	Not known	8.27
Prevents mitotic catastrophe 2 homolog	gi 00008367	(exonuclease activity)	Not known	10.59
Probable phosphoserine aminotransferase	gi 00007969	L-serine biosynthetic process (O-phospho-	Not known	18.68
Harpegnathos saltator		L-serine:2-oxoglutarate aminotransferase		
Prophage Lp1 protein 52, endolysin Fructobacilhus fructosus KCTC 3544	gi 339624806		Not known	30.59
protein alphaB,Ca binding.	gi 00017947		Not known	6.03
Protein CLP1-like protein Acromyrmex	gi 00002825	(ATP binding)	Not known	14.16
echinatior				
Protein daughter of sevenless	gi 307172991	(phospholipid binding)	Not known	13.11
Camponotus floridanus				
Protein Mo25 (dMo25)	gi 00003380	embryonic development via the syncytial blastoderm	Not known	7.57
Protein singed, putative	gi 00000945	-	Not known	6.55
Protein translation factor SUI1 homolog	gi 00010528	regulation of translation (translation initiation factor activity)	Not known	10.05
Protein tyrosine phosphatase receptor type B Clonorchis sinensis	gi 00009341	peptidyl-tyrosine dephosphorylation (protein tyrosine phosphatase activity)	Not known	14.78
Proteophosphoglycan 5 Leishmania major strain Friedlin	gi 00018165		Not known	17.49
PRP38 pre-mRNA processing factor 38 domain containing B	gi 00014972	·	Not known	11.22
PT repeat/fibro-slime domain-containing protein Teredinibacter turnerae T7901	gi 254785927	-	Not known	18.13

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Ductoin name	Ann No	Eunotion	Collular	Coord
	ACC. NO.	F ULCCIOL	Cellular	21026
			component	
Purple acid phosphatase, putative	gi 00009271	(acid phosphatase activity)	Not known	19.48
Putative eukaryotic translation initiation factor 3,	gi 00005693		Not known	14.76
Theta subunit Danaus plexippus				
Putative GTP-binding protein 5 Aedes aegypti	gi 00013923	GTP catabolic process (GTP binding)	Not known	5.89
PVR3-like protein Zea mays	gi 226498322		Not known	5.73
Pyoverdine chromophore synthetase	gi 302540441	(catalytic activity)	Not known	28.07
Streptomyces hygroscopicus ATCC 53653				
Receptor for activated protein kinase c1	gi 00008161	19	Not known	12.15
Recombinase Nitrosomonas sp. AL212	gi 325983030		Not known	8.02
Reductase-related protein	gi 00010391		Not known	17.81
Regulator of de-novo NAD biosynthesis NadR	gi 52081269	(small molecule binding)	Not known	17.05
Bacillus licheniformis ATCC 14580				
Rep B partitioning protein/ParB-like protein	gi 83952923	(DNA binding)	Not known	11.01
Roseovarius nubinhibens ISM				
Replicative DNA helicase	gi 296141938	DNA duplex unwinding (ATP binding)	Not known	6.44
Tsukamurella paurometabola DSM 20162				
Resolvase Erwinia pyrifoliae	gi 27228698	DNA integration (DNA binding)	Not known	10.7
Resolvase domain-containing protein	gi 220931984	(DNA binding)	Not known	11.2
Halothermothrix orenii H 168				
Respiratory-chain NADH dehydrogenase subunit	gi 294083718	(4 iron, 4 sulfur cluster binding)	Not known	9.62
1 Candidatus Puniceispirillum marinum				
MCC1322				
Response regulator receiver protein	gi 284162475	intracellular signal transduction	Not known	6.95
Archaeoglobus profundus DSM 5631		(phosphorelay response regulator activity)		
Reticulocalbin-2 Harpegnathos saltator	gi 307202124	(calcium ion binding)	Not known	16.07
Reverse transcriptase	gi 00003665	DNA integration (RNA binding)	Not known	15.56
RNA polymerase I large subunit Ciona	gi 000037371		Not known	15.83
intestinalis				
RNA polymerase II largest subunit	gi 169247220		Not known	14.35
Candida sequanensis				
RNA polymerase sigma factor	gi 218440234	DNA-dependent transcription, initiation	Not known	12.13
Cyanothece sp. PCC 7424		(DNA binding)		
RNA-binding protein 12 Camponotus floridanus	gi 307179523	(nucleic acid binding)	Not known	13.8

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
RNA-metabolising metallo-beta-lactamase	gi 00009298	(hydrolase activity)	Not known	5.33
domain-containing protein, putative				
ROK family protein	gi 326382534	-	Not known	13.01
Gordonia neofelifaecis NRRL B-59395				
ROK family transcriptional regulator	gi 116251421		Not known	21.01
Rhizobium leguminosarum bv. viciae 3841				
rRNA (guanine-N(1)-)-methyltransferase	gi 120554258		Not known	9.37
Marinobacter aquaeolei VT8				
rRNA methylase Methylomicrobium album BG8	gi 334110009		Not known	21.31
Salivary proline-rich protein	gi 00008671		Not known	12.1
Saposin isoform 1	gi 00009172		Not known	19.05
Secreted protein with cysteine rich repeats and a	gi 00005545		Not known	9.8
Mucin like threonine rich repeat, signal peptide				
Secreted salivary gland peptide, putative	gi 00013384		Not known	12.81
Selenoprotein S Xenopus (Silurana) tropicalis	gi 144922660		Not known	9.03
Semaphorin 2a	gi 00002749	The second	Not known	11.32
Sentrin-specific protease 8-like isoform 1	gi 00009303	4	Not known	14.83
Nasonia vitripennis				
Serine/threonine-protein kinase B-raf-like	gi 340374266		Not known	15.73
Amphimedon queenslandica				
Serine/threonine-protein kinase CTR1	gi 299117098		Not known	20.61
Ectocarpus siliculosus				
Serine/threonine-protein kinase pim-3-like	gi 00008992	(ATP binding)	Not known	19.72
Ciona intestinalis				
Seven transmembrane helix receptor	gi 00011883		Not known	9.58
SHC transforming protein, putative	gi 00012740	1	Not known	21.72
Shematrin-1	gi 00015174	-	Not known	12.26
Short wing CG18000-PK, isoform K	gi 00011263	-	Not known	9.7
Signal transduction protein Vibrio angustum	gi 90579529	cyclic nucleotide biosynthetic process	Not known	23.08
SI4		(phosphorus-oxygen lyase activity)		
Site-specific recombinase, phage integrase	gi 84387354	I	Not known	13.03
tamity domain protein viorio spienataus 12001				

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
SJCHGC01957 protein	gi 00009815	-	Not known	20.31
Skuld CG9936-PD, isoform D	gi 00013240	1	Not known	8.09
S-layer domain-containing protein	gi 357009137	1	Not known	4.14
Paenibacillus elgii B69				
Slit-robo rho GTPase activating protein 1,3	gi 00003191	signal transduction	Not known	8.07
Slow muscle myosin S1 heavy chain	gi 00016769	(motor activity)	Not known	15.02
Homarus americanus				
Small nuclear ribonucleoprotein polypeptide G	gi 00004760		Not known	4.49
SMC domain-containing protein	gi 289577486		Not known	16.83
Thermoanaerobacter italicus Ab9				
SNF2-like protein	gi 332662947	(ATP binding)	Not known	12.4
Haliscomenobacter hydrossis DSM 1100				
SNF7 family protein	gi 00011013	protein transport	Not known	10.15
Spastic paraplegia 21 (H. sapiens)	gi 00007403		Not known	24.78
Splicing factor 3A subunit 3 (Spliceosome	gi 00016550	RNA splicing (nucleic acid binding)	Not known	17.75
Associated protein 61) (SAP 61) (SF3a60)				
Tribolium castaneum				
Splicing factor proline/glutamine-rich	gi 00008002	(nucleic acid binding)	Not known	11.17
(polypyrimidine tract binding protein associated)				
Splicing factor yt521-b	gi 00006902		Not known	7.69
SpoVT / AbrB like domain protein	gi 254426198		Not known	3.32
Synechococcus sp. PCC 7335				
SR Protein (splicing factor) family member (rsp-	gi 00016478	1	Not known	23.31
7) Caenorhabditis elegans				
SRPK1a protein kinase	gi 00011688	(ATP binding)	Not known	15.47
Stylicine 2	gi 00009392	1	Not known	14.44
Sulfate adenylyltransferase	gi 16330927	hydrogen sulfide biosynthetic process	Not known	3.85
Synechocystis sp. PCC 6803		(ATP binding)		
Super cysteine rich protein	gi 00002021	1	Not known	5.2
Tail assembly protein I from prophage	gi 340734555	1	Not known	6.03
Escherichia coli 0104:H4 str. 01-09591				

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
TAR RNA-binding protein 2	gi 00010345	(double-stranded RNA binding)	Not known	10.06
Thioredoxin reductase Blastopirellula marina DSM 3645	gi 87310515	(Oxidoreductase activity)	Not known	18.86
Thioredoxin-related Raphidiopsis brookii D9	gi 282897452	cell redox homeostasis (electron carrier activity)	Not known	11.26
Thymidylate synthase thyX	gi 328949144	dTMP biosynthetic process	Not known	14.18
Treponemu succinificatens D3M 2409 TIGR00268 family protein Desulfosmorasimus orientis DSM 765	gi 357214132		Not known	10.47
TM helix repeat-containing protein Acidovorax citrulli AAC00-1	gi 120610701		Not known	5.39
TniB Marinomonas sp. MED121	gi 87120757		Not known	18.95
Transcription regulation repressor hexr protein	gi 334198994	carbohydrate metabolic process	Not known	16.48
Raistonia solaracearum Po82		(sequence-specific DNA binding transcription factor activity)		
Transcription termination factor	gi 19343387	DNA-dependent transcription,	Not known	8.8
Enterobacteria phage HK022		termination		
Transcriptional regulator protein Rhizobium etli 8C-3	gi 218512383		Not known	20.39
Transcriptional regulator, HxIR family	gi 329945218		Not known	18.36
Actinomyces sp. or at taxon 1 / 0 str. F 0380	6	N DI GI GI A		
Transcriptional regulator, LacI family protein Vibrio scophthalmi LMG 19158	gi 343511170	transcription, DNA-dependent (DNA binding)	Not known	13.74
Transcriptional regulator, LysR family protein Roseobacter sp. AZwK-3b	gi 149916438	transcription, DNA-dependent (DNA binding)	Not known	8.36
transcriptional regulator, PadR family Blautia hansenii DSM 20583	gi 260589309	·	Not known	6.97
Transcriptional regulatory protein TctD Roseibium sp. TrichSKD4	gi 307943941	intracellular signal transduction (DNA binding)	Not known	11.6
Transglutaminase	gi 00010890	1	Not known	9.95
Transglutaminase domain protein <i>Frankia sp. EUNIf</i>	gi 288918868		Not known	12.91

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Transglutaminase y Taeniopygia guttata	gi 224078077	-	Not known	15.69
Transparent testa 8 Arabidopsis thaliana	gi 11121434	1	Not known	14.46
Transposable element MDG1 ORF111	gi 227732		Not known	4.07
Transposase Corynebacterium casei UCMA 3821	gi 356607650	transposition, DNA-mediated	Not known	16.02
		(DNA binding)		
Transposase family protein A	gi 227888988	transposition, DNA-mediated	Not known	17.72
Lactobacillus johnsonii ATCC 33200		(DNA binding)		
Transposase, IS4 family	gi 300923979	transposition, DNA-mediated	Not known	9.31
Escherichia coli MS 182-1		(DNA binding)		
Transposon Ty3-I Gag-Pol polyprotein	gi 00004434	DNA integration (nucleic acid binding)	Not known	9.66
Camponotus floridænus				
Trehalase inhibitor	gi 124987		Not known	31.64
tRNA (uracil-5-)-methyltransferase	gi 159462564	- A A A	Not known	9.11
Chlamydomonas reinhardtii				
tRNA pseudouridine synthase-like 1	gi 00002799	tRNA processing (RNA binding)	Not known	5.14
Camponotus floridanus				
Troponin T isoform 3	gi 00004198		Not known	13.14
Twitching motility protein	gi 241764782	transport (ATP binding)	Not known	18.07
Acidovorax delafieldii 2AN				
Two-component sensor histidine kinase protein Rhizobium etli IE4771	gi 218659984	-	Not known	7.66
Two-component system response regulator	gi 297199299	1	Not known	17.86
Streptomyces sviceus ATCC 29083				
Two-component system sensor histidine	gi 83816000	1	Not known	5.6
kinase/response regulator, hybrid				
Salinibacter ruber DSM 13855				
Type 12 methyltransferase	gi 336177322	(methyltransferase activity)	Not known	7.28
Frankia symbiont of Datisca glomerata				
Type III effector protein	gi 300705555	(ATP binding)	Not known	11.92
Ralstonia solanacearum CFBP2957				

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

		E		2
	ACC. NO.	Function	Cellular	SCOFE
			component	
U2 small nuclear riboprotein auxiliary factor 50 CG9998-PA	gi 00009867	-	Not known	11.72
U88	gi 00013452	1	Not known	12.54
Ubiquinone binding protein Papilio xuthus	gi 00009587	(ubiquinol-cytochrome-creductase activity)	Not known	6.08
Ubiquitin C, isoform CRA a Homo sapiens	gi 00015584		Not known	13.82
Ubiquitin carboxyl-terminal hydrolase, putative	gi 242020942	ubiquitin-dependent protein catabolic	Not known	13.27
Pediculus humanus corports	Ý	process (ubiquitin thiolesterase activity)		
Ubiquitin conjugating enzyme 7 interacting protein	gi 00006522	(zinc ion binding)	Notknown	12.23
Ubiquitin specific protease 14 isoform 2	gi 00002551		Not known	14.32
Ubiquitin-activating enzyme E1 Tribolium castaneum	gi 00016936	cellular protein modification process (ATP binding)	Not known	13.41
Ubiquitin-conjugating enzyme E2-17 kDa Horneanarbos coltator	gi 00016442	(acid-amino acid ligase activity)	Not known	5.11
This is a set of the s		ad the sectors and for the sectors	Mot Imanu	0 11
Onquinta-inter 1-activating enzyme b.15 (SUMO-1-activating enzyme subunit 2) (Anthracycline-associated resistance ARX)	70+01000/ta	centular protern mountcation process (ATP binding)	INOI KIIOMI	0.47
Kattus norvegicus 1 IBX domain containing motain 2	mi1225711708		Not brown	15 44
Caligus rogercresseyi	B1		THOTY IOUT	
UDP-GlcNAc:betaGal beta-1,3-N-	gi 296224671		Not known	10.29
acetylglucosaminyltransferase 5-like Callithrix jacchus				
UDP-glucose 4-epimerase Ictalurus punctatus	gi 318056070	cellular metabolic process (UDP-glucose 4-enimerase activity)	Not known	11.39
UDP-glucose 6-dehydrogenase	gi 340750046	(NAD binding)	Not known	6.71
Fusobacterium mortiferum ATCC 9817				
UDP-glucose/GDP-mannose dehydrogenase Geobacter metallireducens GS-15	gi 78222642	(NAD binding)	Not known	3.25
Umps-prov protein	gi 00010145	de novo' UMP biosynthetic process (orotate phosphoribosyltransferase activity)	Not known	13.32
Uncharacterized component of phosphonate	gi 297171689	,	Not known	5.23
шеаюнын инсили еа клюаюртнае bacterium HF0500_23A22				

 Table A4 Proteins from ovaries with unknown cellular component identified by

 GeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
UPF0585 protein C16orf13 homolog Anolis carolinensis	gi 327291306	1	Not known	20.68
UV radiation resistance-associated gene protein Pyrenophora trittci-repentis Pt-1 C-BFP	gi 189208161	positive regulation of autophagy	Not known	15.62
Vacuolar ATPase subunit C	gi 00004496		Not known	13.97
Vacuolar protein sorting 8 homolog	gi 00005365	(zinc ion binding)	Not known	13.87
Vacuolar protein-sorting-associated protein 36 Cordyceps militaris CM01	gi 346321194	(phosphatidylinositol-3-phosphate binding)	Not known	20.75
VenA Streptomyces venezuelae	gi 2555096	(transferase activity)	Not known	6.98
Vezatin, adherens junctions transmembrane protein,	gi 148689625		Not known	19.62
isoform CRA_f Mus musculus				
VgrG like protein Paracoccus denitrificans SD1	gi 338849989		Not known	16.18
VH region of G7 Ab 2.9 Mus musculus	gi 1333986		Not known	7.66
Virion protein US2 Bovine herpesvirus 1	gi 9629883	A A A A A A A A A A A A A A A A A A A	Not known	6.19
Vomeronasal type-1 receptor 2-like	gi 354502641		Not known	26.23
Cricetulus griseus				
WD-repeat protein, putative Ixodes scapularis	gi 00011412		Not known	17.58
xanthine dehydrogenase Pereskia portulacifolia	gi 160690150	(UDP-N-acetylmuramate dehydrogenase	Not known	20.47
		activity)		
X-linked deafness dystonia protein	gi 00014176		Not known	6.62
YALI0F21681p Yarrowia lipolytica	gi 50556618	-	Not known	5.69
YD repeat protein Pantoeasp. aB	gi 304399325	1	Not known	9.75
YHR077Cp-like protein	gi 00010353	RNA metabolic process (DNA binding)	Not known	5.85
YqjA Bacillus subtilis	gi 1303952		Not known	7.8
Zgc:85671 protein Danio rerio	gi 00016984	1	Not known	5.24
Zinc finger and SCAN domain-containing protein	gi 358338670	(nucleic acid binding)	Not known	18.51
	;			
Zinc finger CCCH domain-containing protein 4	gi 324503865	(nucleic acid binding)	Not known	11.75
Ascaris suum				
Zinc finger protein 273-like Pongo abelii	gi 297680333	-	Not known	3.22

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Protein name	Acc. No.	Function	Cellular	Score
			component	
Zinc finger protein 273-like Pongo abelii	gi 297680333		Not known	3.22
Zinc finger protein 593 homolog Megachile rotundata	gi 00010671	(zinc ion binding)	Not known	11.35
Zinc finger protein 804A Canis lupus familiaris	gi 345797077	(zinc ion binding)	Not known	7.53
Zinc knuckle containing protein-like Oryza sativa Japonica Group	gi 55297470		Not known	12.47
Zn binding domain-containing protein Ectocarpus siliculosus	gi 298708171	(ATP binding)	Not known	25.31
Zn-dependent hy drolase, głyoxylase Desulfosporosinus orientis DSM 765	gi 357212018	(hydrolase activity)	Not known	15.62
3-hy droxy-3-methylglutaryl coenzyme A synthase Dendroctonus jeffreyi	gi 9621905	isoprenoid biosynthetic process (hydroxymethylglutaryl-CoA synthase activity)	Not known	6.48
3-isopropylmalate dehydrogenase Saccharopolyspora erythraea NRRL 2338	gi 134099735	cellular response to amino acid starvation (3-isopropylmalate dehydrogenase activity)	Not known	18.56
3-methyl-2-oxobutanoate hy droxymethyltransferase Paracoccus denitrificans SD1	gi 338849003	pantothenate biosynthetic process from valine	Not known	18.35
3-oxoacyl-ACP reductase Desulfotomaculum acetoxidans DSM 771	gi 258514466		Not known	12.72
4-coumarate:CoAligase	gi 00004142	phenylpropanoid metabolic process (4-coumarate-CoAligase activity)	Not known	17.19
4Fe-4S ferredoxin	gi 00012889	(iron-sulfur cluster binding)	Not known	18.48
4-hy droxyphenyla cetate 3-monooxygenase, oxygenase subunit Deinococcus moriconeseis DSM 21211	gi 320334483	phenylacetate catabolic process (4-hydroxyphenylacetate 3-monooxygenase activity)	Not known	4.63

Table A4 Proteins from ovaries with unknown cellular component identified byGeLC-MS/MS (Cont.)

Restriction mapping of pGEM[®] T-easy Vector

Restriction mapping of pET15b expression Vector

Restriction mapping of pET17b expression Vector

Restriction mapping of pET29a expression Vector

The maps for pET-29b(+) and pET-29c(+) are the same as pET-29a(+) (shown) with the following exceptions: pET-29b(+) is a 5370bp plasmid; subtract 1bp from each site beyond *Bam*H I at 198. pET-29c(+) is a 5372bp plasmid; add 1bp to each site beyond *Bam*H I at 198.

VITA

Miss. Witchulada Talakhun was born on September 10, 1983 in Sakonnakhon. She graduated with the degree of Bachelor of Science from the Department of Science (Biotechnology), Ramkhumhang University in 2005. She graduated a Master degree at the Program in Biotechnology, Chulalongkorn University in 2008. She has enrolled a Doctor's degree program at the Program in Biotechnology, Chulalongkorn University since 2009.

Publications

International publications

1. Talakhun, W., Roytrakul, S., Phaonakrop, N., Kittisenachai, S., Khamnamtong, B., Klinbunga, S., Menasveta, P. 2012. Identification of reproduction-related proteins and characterization of the protein disulfide isomerase A6 cDNA in ovaries of the giant tiger shrimp Penaeus monodon. Comp. Biochem. Physiol. D 7, 180–190.

2. Talakhun,W., Khamnamtong, B., Nounurai, P., Klinbunga, S., Menasveta, P. 2014 Characterization, expression and localization of valosin-containing protein in ovaries of the giant tiger shrimp Penaeus monodon, Gene 533, 188-198.

International conferences

1.Talakhun, W., Kittisenachai, S., Roytrakul, S., Klinbunga, S. and Menasveta, P. (2008). Identification and characterization of proteins related to ovarian development of the giant tiger shrimp Penaeus monodon. The 20th Annual Meeting and International conference of the Thai Society for Biotechnology, 14–17 October 2008, Maha Sarakham, Thailand (Poster presentation).

2.Talakhun, W., Phaonakrop, N., Roytrakul, S., Klinbunga, S., Menasveta, P., Khamnamtong, B. (2013). Identification of reproduction-related proteins and characterization of thymosin- β in ovaries of the giant tiger shrimp Penaeus monodon. 10th Asian Fisheries And Aquaculture Forum. April 30- May 4 2013. The Ocean Resort Hotel, Yeosu, Korea (Oral presentation).

National conferences

1. Talakhun, W., Kittisenachai, S., Roytrakul, S., Klinbunga, S. and Menasveta, P. (2008). Identification of proteins related to ovarian development of the giant tiger shrimp Penaeus monodon using two dimensional gel electrophoresis. 34th Congress on Science and Technology of Thailand, 31 October-2 November 2008, Queen Sirikit National Convention Hall, Bangkok, Thailand (Oral presentation).

2. Talakhun, W., Phaonakrop, N., Roytrakul, S., Khamnamtong, B., Klinbunga, S. and Menasveta, P. (2012). Identification of reproduction-related protein in ovaries of the giant tiger shrimp Penaeus monodon by the proteomic approch. 38th Congress on Science and Technology of Thailand, 17-19 October 2012, The empress hotel, Chaingmai, Thailand (Oral presentation).

3. Thamniemdee, N., Talakhun, W. and Klinbunga, S. (2009). Identification of genes involved in ovarian development of the giant tiger shrimp Penaeus monodon analyzed by cDNA-AFLP. 35th Congress on Science and Technology of Thailand, 15-17 October 2009, The Tide Resort, Burapha University, Chonburi, Thailand (Oral presentation).

Book chapter

Klinbunga, S., Khamnamtong, B., Preechaphol, R., Leelatanawit, R., Talakhun, W., Karoonuthaisiri, N., Roytrakul, S., Penman, D.J., McAndrew, B.J. and Menasveta, P. (Genetics and its applications for increasing management and culture efficiency of the giant tiger shrimp (Penaeus monodon). In: Alday-Sanz, V, editor. The shrimp book. 2010. P.149-192.

